Nonlinear laminate analysis for metal matrix fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1981-01-01
A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.
Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan
1995-01-01
Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.
Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates
NASA Astrophysics Data System (ADS)
Ogihara, Shinji
2014-03-01
It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.
Nonlinear Geometric Effects in Mechanical Bistable Morphing Structures
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Majidi, Carmel; Chen, Wenzhe; Srolovitz, David J.; Haataja, Mikko P.
2012-09-01
Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the conditions for bistability, and extends the large deformation theory of plates and shells.
Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.
San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan
2012-02-01
Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM.
Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord
Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.
2014-01-01
Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612
Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint
NASA Technical Reports Server (NTRS)
Bullock, S. J.; Peterson, L. D.
1994-01-01
The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.
NASA Astrophysics Data System (ADS)
Chen, Cong; Wang, Can; Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Ming, Hai; Wang, Pei; Zhang, Dongxiang; Yang, Guozhen
2011-10-01
An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu 3Ti 4O 12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.
NASA Astrophysics Data System (ADS)
Mann, Ruddy; Magnier, Vincent; Serrano-Munoz, Itziar; Brunel, Jean-Francois; Brunel, Florent; Dufrenoy, Philippe; Henrion, Michele
2017-12-01
Friction materials for braking applications are complex composites made of many components to ensure the various performances required (friction coefficient level, low wear, mechanical strength, thermal resistance, etc.). The material is developed empirically by a trial and error approach. With the solicitation, the material evolves and probably also its properties. In the literature, the mechanical behavior of such materials is generally considered as linear elastic and independent of the loading history. This paper describes a methodology to characterize the mechanical behavior of such a heterogeneous material in order to investigate its non-linear mechanical behavior. Results from mechanical tests are implemented into material laws for numerical simulations. Thanks to the instrumentation, some links with the microstructure can also be proposed. The material is made of a metallic matrix embedding graphite and ceramic particles and is manufactured by sintering. It is used for dry friction applications such as high-energy brake for trains, cars and motorcycles. Compression tests are done with digital image correlation to measure full-filled displacement. It allows to calculate strain fields with enough resolution to identify the material heterogeneity and the role of some of the components of the formulation. A behavior model of the material with plasticity and damage is proposed to simulate the non-linear mechanical behavior and is implemented in an FEM code. Results of mechanical test simulations are compared with two types of experiments showing good agreement. This method thus makes it possible to determine mechanical properties at a virgin state but is extensible for characterizing a material having been submitted to braking solicitations.
Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S
2012-04-13
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Electromagnetic-continuum-induced nonlinearity
NASA Astrophysics Data System (ADS)
Matsko, Andrey B.; Vyatchanin, Sergey P.
2018-05-01
A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative nonlinearity cannot be inferred from the standard Hamiltonian formalism.
Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun
2014-09-01
Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress-strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress-strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure-function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies.
On the structure of nonlinear constitutive equations for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Jansson, Stefan
1992-01-01
The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.
Nonlinear response and avalanche behavior in metallic glasses
NASA Astrophysics Data System (ADS)
Riechers, B.; Samwer, K.
2017-08-01
The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.
Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J
2009-12-01
Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.
Scott E. Hamel; John C. Hermanson; Steven M. Cramer
2014-01-01
Wood-plastic composites (WPCs), commonly used in residential decks and railings, exhibit mechanical behavior that is bimodal, anisotropic, and nonlinear viscoelastic. They exhibit different stress-strain responses to tension and compression, both of which are nonlinear. Their mechanical properties vary with respect to extrusion direction, their deformation under...
Nonlinear mechanical behavior of thermoplastic matrix materials for advanced composites
NASA Technical Reports Server (NTRS)
Arenz, R. J.; Landel, R. F.
1989-01-01
Two recent theories of nonlinear mechanical response are quantitatively compared and related to experimental data. Computer techniques are formulated to handle the numerical integration and iterative procedures needed to solve the associated sets of coupled nonlinear differential equations. Problems encountered during these formulations are discussed and some open questions described. Bearing in mind these cautions, the consequences of changing parameters that appear in the formulations on the resulting engineering properties are discussed. Hence, engineering approaches to the analysis of thermoplastic matrix material can be suggested.
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
Skin mechanical properties and modeling: A review.
Joodaki, Hamed; Panzer, Matthew B
2018-04-01
The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.
Nonlinear Constitutive Relations for High Temperature Applications
NASA Technical Reports Server (NTRS)
1983-01-01
The topics of discussion addressed were material behavior, design analysis, deformation kinetics, metallurgical characterization, mechanical subelement models, stress analysis, fracture mechanics, viscoplasticity, and thermal loading.
NASA Astrophysics Data System (ADS)
Milani, G.; Bertolesi, E.
2017-07-01
A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.
Unexpected mechanical properties of very dry Berea sandstone near 45°C
NASA Astrophysics Data System (ADS)
Miller, R. A.; Darling, T. W.; TenCate, J. A.; Johnson, P. A.
2011-12-01
An understanding of the nonlinear and hysteretic behavior of porous rocks is important for seismic studies and geologic carbon sequestration applications. However, the fundamental processes responsible for such behavior are poorly understood, including interactions involving adsorbed water and bulk carbon dioxide. Water has been shown to affect the nonlinear mechanical properties of porous rocks, both in high humidity conditions and in low pressure conditions where only a monolayer of water is present on rock grain surfaces [1, 2]. To study the impact of small quantities of adsorbed water on the nonlinear behavior of sandstone, we compare nonlinear resonant ultrasound spectroscopy (NRUS) and time-of-flight modulation (TOFM) measurements [3] on a Berea sandstone core before and after removing bulk water from the sample. Water is removed through extended exposure to ultra high vacuum (UHV) conditions. At the sample's driest state, we achieve a partial pressure of water below 10-8 Torr at room temperature. Periodic measurements record acoustic data as the rock is slowly heated from room temperature to 55°C in UHV. Measurements made after several months of exposure to UHV conditions show behavior we have not previously observed. We report an unexpected sharp increase in Q-1 above 45°C, suggesting we have reduced the concentration of water to a low enough level to affect the sample's mechanical properties. Nonlinear effects are still present when the sample is at its driest state below 45°C, in agreement with previous work [4], which indicates water is not the sole contributor to nonlinearity in porous rock. We are also studying the effect of adding carbon dioxide or argon gas to the dry specimen. We present our acoustic data and propose a model for the impact of adsorbed water on the attenuation of porous rock. [We gratefully acknowledge support from the Nevada Terawatt Facility at the University of Nevada, Reno, and from the Geosciences Research Program of the DOE Office of Basic Energy Sciences]. [1] B. R. Tittmann, L. Ahlberg, and J. Curnow, "Internal friction and velocity measurements," Proc. of 7th Lunar Science Conference , pp. 3123-3132, 1997. [2] K. E.-A. Van Den Abeele, J. Carmeliet, P. A. Johnson, and B. Zinszner, "Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity," Journal of Geophysical Research 107, p. 2121, June 2002. [3] "Dynamic Measures of Elastic Nonlinear (Anelastic) Behavior: Dynamic Acousto-Elasticity Testing (DAET)," G. Renaud, P-Y Le Bas, J. A. TenCate, T. J. Ulrich, J. W. Carey, J. Han, T.W. Darling and P. A. Johnson, AGU Fall Meeting, Dec. 2011. [4] "Water and CO2 chemistry influences on the mechanical integrity of rocks," T.W. Darling, P-Y Le Bas, J. W. Carey, P. A. Johnson and R. A. Miller, AGU Fall Meeting, Dec. 2010.
Nonlinear modeling of chaotic time series: Theory and applications
NASA Astrophysics Data System (ADS)
Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.
We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.
A nonlinear high temperature fracture mechanics basis for strainrange partitioning
NASA Technical Reports Server (NTRS)
Kitamura, Takayuki; Halford, Gary R.
1989-01-01
A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction.
Vibrational dynamics of vocal folds using nonlinear normal modes.
Pinheiro, Alan P; Kerschen, Gaëtan
2013-08-01
Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thenozhi, Suresh; Tang, Yu
2018-01-01
Frequency response functions (FRF) are often used in the vibration controller design problems of mechanical systems. Unlike linear systems, the FRF derivation for nonlinear systems is not trivial due to their complex behaviors. To address this issue, the convergence property of nonlinear systems can be studied using convergence analysis. For a class of time-invariant nonlinear systems termed as convergent systems, the nonlinear FRF can be obtained. The present paper proposes a nonlinear FRF based adaptive vibration controller design for a mechanical system with cubic damping nonlinearity and a satellite system. Here the controller gains are tuned such that a desired closed-loop frequency response for a band of harmonic excitations is achieved. Unlike the system with cubic damping, the satellite system is not convergent, therefore an additional controller is utilized to achieve the convergence property. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller.
Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.
Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang
2017-06-12
Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.
Vascular mechanics of the coronary artery
NASA Technical Reports Server (NTRS)
Veress, A. I.; Vince, D. G.; Anderson, P. M.; Cornhill, J. F.; Herderick, E. E.; Klingensmith, J. D.; Kuban, B. D.; Greenberg, N. L.; Thomas, J. D.
2000-01-01
This paper describes our research into the vascular mechanics of the coronary artery and plaque. The three sections describe the determination of arterial mechanical properties using intravascular ultrasound (IVUS), a constitutive relation for the arterial wall, and finite element method (FEM) models of the arterial wall and atheroma. METHODS: Inflation testing of porcine left anterior descending coronary arteries was conducted. The changes in the vessel geometry were monitored using IVUS, and intracoronary pressure was recorded using a pressure transducer. The creep and quasistatic stress/strain responses were determined. A Standard Linear Solid (SLS) was modified to reproduce the non-linear elastic behavior of the arterial wall. This Standard Non-linear Solid (SNS) was implemented into an axisymetric thick-walled cylinder numerical model. Finite element analysis models were created for five age groups and four levels of stenosis using the Pathobiological Determinants of Atherosclerosis Youth (PDAY) database. RESULTS: The arteries exhibited non-linear elastic behavior. The total tissue creep strain was epsilon creep = 0.082 +/- 0.018 mm/mm. The numerical model could reproduce both the non-linearity of the porcine data and time dependent behavior of the arterial wall found in the literature with a correlation coefficient of 0.985. Increasing age had a strong positive correlation with the shoulder stress level, (r = 0.95). The 30% stenosis had the highest shoulder stress due to the combination of a fully formed lipid pool and a thin cap. CONCLUSIONS: Studying the solid mechanics of the arterial wall and the atheroma provide important insights into the mechanisms involved in plaque rupture.
Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert
2010-01-01
Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917
NASA Astrophysics Data System (ADS)
Hamim, Salah Uddin Ahmed
Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Nonlinear characterization of elasticity using quantitative optical coherence elastography.
Qiu, Yi; Zaki, Farzana R; Chandra, Namas; Chester, Shawn A; Liu, Xuan
2016-11-01
Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.
Natural stiffening increases flaw tolerance of biological fibers
NASA Astrophysics Data System (ADS)
Giesa, Tristan; Pugno, Nicola M.; Buehler, Markus J.
2012-10-01
Many fibers in biomaterials such as tendon, elastin, or silk feature a nonlinear stiffening behavior of the stress-strain relationship, where the rigidity of the material increases severely as the material is being stretched. Here we show that such nonlinear stiffening is beneficial for a fiber's ability to withstand cracks, leading to a flaw tolerant state in which stress concentrations around cracks are diminished. Our findings, established by molecular mechanics and the derivation of a theoretical scaling law, explain experimentally observed fiber sizes in a range of biomaterials and point to the importance of nonlinear stiffening to enhance their fracture properties. Our study suggests that nonlinear stiffening provides a mechanism by which nanoscale mechanical properties can be scaled up, providing a means towards bioinspired fibrous material and structural design.
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
NASA Astrophysics Data System (ADS)
Chavarette, Fábio Roberto; Balthazar, José Manoel; Felix, Jorge L. P.; Rafikov, Marat
2009-05-01
This paper analyzes the non-linear dynamics, with a chaotic behavior of a particular micro-electro-mechanical system. We used a technique of the optimal linear control for reducing the irregular (chaotic) oscillatory movement of the non-linear systems to a periodic orbit. We use the mathematical model of a (MEMS) proposed by Luo and Wang.
An iterative hyperelastic parameters reconstruction for breast cancer assessment
NASA Astrophysics Data System (ADS)
Mehrabian, Hatef; Samani, Abbas
2008-03-01
In breast elastography, breast tissues usually undergo large compressions resulting in significant geometric and structural changes, and consequently nonlinear mechanical behavior. In this study, an elastography technique is presented where parameters characterizing tissue nonlinear behavior is reconstructed. Such parameters can be used for tumor tissue classification. To model the nonlinear behavior, tissues are treated as hyperelastic materials. The proposed technique uses a constrained iterative inversion method to reconstruct the tissue hyperelastic parameters. The reconstruction technique uses a nonlinear finite element (FE) model for solving the forward problem. In this research, we applied Yeoh and Polynomial models to model the tissue hyperelasticity. To mimic the breast geometry, we used a computational phantom, which comprises of a hemisphere connected to a cylinder. This phantom consists of two types of soft tissue to mimic adipose and fibroglandular tissues and a tumor. Simulation results show the feasibility of the proposed method in reconstructing the hyperelastic parameters of the tumor tissue.
Nonlinear modeling of chaotic time series: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casdagli, M.; Eubank, S.; Farmer, J.D.
1990-01-01
We review recent developments in the modeling and prediction of nonlinear time series. In some cases apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifyingmore » and quantifying low-dimensional chaotic behavior. During the past few years methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics and human speech. 162 refs., 13 figs.« less
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
ERIC Educational Resources Information Center
Burgess, Robert L.; Molenaar, Peter C. M.
1995-01-01
Supports Gottlieb's conclusion that developmental behavior genetics is unsuitable for analyzing developmental coactional processes because it does not concern itself with mechanisms through which genotypes are transformed into phenotypes. But maintains that modern behavior genetics provides an indispensable tool to analyze nonlinear epigenetic…
Mechanics of inter-modal tunneling in nonlinear waveguides
NASA Astrophysics Data System (ADS)
Jiao, Weijian; Gonella, Stefano
2018-02-01
In this article, we investigate the mechanics of nonlinearly induced inter-modal energy tunneling between flexurally-dominated and axially-dominated modes in phononic waveguides. Special attention is devoted to elucidating the role played by the coupling between axial and flexural degrees of freedom in the determination of the available mode hopping conditions and the associated mechanisms of deformation. Waveguides offer an ideal test bed to investigate the mechanics of nonlinear energy tunneling, due to the fact that they naturally feature, even at low frequencies, families of modes (flexural and axial) that are intrinsically characterized by extreme complementarity. Moreover, thanks to their geometric simplicity, their behavior can be explained by resorting to intuitive structural mechanics models that effectively capture the dichotomy and interplay between flexural and axial mechanisms. After having delineated the fundamental mechanics of flexural-to-axial hopping using the benchmark example of a homogeneous structure, we adapt the analysis to the case of periodic waveguides, in which the complex dispersive behavior due to periodicity results in additional richness of mode hopping mechanisms. We finally extend the analysis to periodic waveguides with internal resonators, in which the availability of locally-resonant bandgaps implies the possibility to activate the resonators even at relatively low frequencies, thus increasing the degree of modal complementarity that is available in the acoustic range. In this context, inter-modal tunneling provides an unprecedented mechanism to transfer conspicuous packets of energy to the resonating microstructure.
Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester
NASA Astrophysics Data System (ADS)
Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng
2017-05-01
The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.
Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering
NASA Astrophysics Data System (ADS)
Karimi, F.; Davoody, A. H.; Knezevic, I.
2018-06-01
Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.
1998-09-01
to characterize the weakening constraint power of the matrix as opposed to earlier analyses that used an additional eigenstrain term. It also...matrix Poisson ratio was constant and the inclusions were rigid, he showed that the disturbed strain and the eigenstrain in the Eshelby method could...Eshelby, elastic properties, prediction, energy balance, mechanical behavior, eigenstrain , nonlinear dcd03e So7S&3 UNCLASSIFIED SECURITY CLASSIFICATION OF FORM (Highest classification of Title, Abstract, Keywords)
NASA Astrophysics Data System (ADS)
Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick
2015-10-01
A simplified model of a Stirling-type thermoacoustic engine coupled to a resonant mechanical system is presented. The acoustic network is presented as its temperature-dependent lumped element equivalent, and the nonlinear effects involved in such engines are accounted for in a nonlinear heat equation governing the temperature distribution through the thermoacoustic core. The low-order model is sufficient to capture the behavior of the engine, both in terms of stability and dynamic behavior.
NASA Astrophysics Data System (ADS)
Brown, A. G.; Francis, N. M.; Broomhead, D. S.; Cannon, P. S.; Akram, A.
1999-06-01
Using data from the Sweden and Britain Radar Experiment (SABRE) VHF coherent radar, Yeoman et al. [1990] found evidence for two and four sector structures during the declining phase of solar cycle (SC) 21. No such obvious harmonic features were present during the ascending phase of SC 22. It was suggested that the structure of the heliospheric current sheet might exhibit nonlinear behavior during the latter period. A direct test of this suggestion, using established nonlinear methods, would require the computation of the fractal dimension of the data, for example. However, the quality of the SABRE data is insufficient for this purpose. Therefore we have tried to answer a simpler question: Is there any evidence that the SABRE data was generated by a (low-dimensional) nonlinear process? If this were the case, it would be a powerful indicator of nonlinear behavior in the solar current sheet. Our approach has been to use a system of orthogonal linear filters to separate the data into linearly uncorrelated time series. We then look for nonlinear dynamical relationships between these time series, using radial basis function models (which can be thought of as a class of neural networks). The presence of such a relationship, indicated by the ability to model one filter output given another, would equate to the presence of nonlinear properties within the data. Using this technique, evidence is found for the presence of low-level nonlinear behavior during both phases of the solar cycle investigated in this study. The evidence for nonlinear behavior is stronger during the descending phase of SC 21. However, it is not possible to distinguish between nonlinear dynamics and a nonlinearly transformed colored Gaussian noise process in either instance, using the available data. Therefore, in conclusion, we find insufficient evidence within the SABRE data set to support the suggestion of increased nonlinear dynamical behavior during the ascending phase of SC 22. In fact, nonlinear dynamics would seem to exert very little influence within the measurement time series at all, given the observed data. Therefore it is likely that stochastic or unresolved high-dimensional nonlinear mechanisms are responsible for the observed spectrum complexity during the ascending phase of SC 22.
Nonlinear deformation and localized failure of bacterial streamers in creeping flows
Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke
2016-01-01
We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior. PMID:27558511
Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model
NASA Astrophysics Data System (ADS)
Vila, J.; Fernández-Sáez, J.; Zaera, R.
2018-04-01
In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.
Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell
NASA Astrophysics Data System (ADS)
Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario
2015-12-01
A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.
Determining mechanical behavior of solid materials using miniature specimens
Manahan, Michael P.; Argon, Ali S.; Harling, Otto K.
1986-01-01
A Miniaturized Bend Test (MBT) capable of extracting and determining mechanical behavior information from specimens only so large as to have at least a volume or smallest dimension sufficient to satisfy continuum behavior in all directions. The mechanical behavior of the material is determined from the measurements taken during the bending of the specimen and is processed according to the principles of linear or nonlinear material mechanics or both. In a preferred embodiment the determination is carried out by a code which is constructed according to the finite element method, and the specimen used for the determinations is a miniature disk simply supported for central loading at the axis on the center of the disk.
Nonlinear effective permittivity of field grading composite dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang
2018-02-01
Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.
Nonlinear modal resonances in low-gravity slosh-spacecraft systems
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1991-01-01
Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.
Multidisciplinary tailoring of hot composite structures
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Chamis, Christos C.
1993-01-01
A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.
Nonlinear dynamics induced anomalous Hall effect in topological insulators
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223
Nonlinear dynamics induced anomalous Hall effect in topological insulators.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-28
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1985-01-01
A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components.
NASA Astrophysics Data System (ADS)
Rajkumar, R.; Praveen Kumar, P.
2018-05-01
Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.
NASA Astrophysics Data System (ADS)
Momeni, F.; Naderi, M. H.
2018-05-01
In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.
Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.
Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold
2002-02-01
The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).
Constitutive Modeling, Nonlinear Behavior, and the Stress-Optic Law
2011-01-01
estimates of D̂ from dynamic mechanical measurements. Some results are shown in Figure 58 for a filled EPDM rubber [116]. There is rough agreement with...elastomers and filler-reinforced rubber . 5.1 Linearity and the superposition principle The problem of analyzing viscoelastic mechanical behavior is greatly...deformation such as shear. For crosslinked rubber the strain can be defined in terms of the strain function suggested by the statistical theories of
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
NASA Technical Reports Server (NTRS)
Jansson, S.
1991-01-01
The nonlinear anisotropic mechanical behavior of an aluminum alloy metal matrix composite reinforced with continuous alumina fibers was determined experimentally. The mechanical behavior of the composite were modeled by assuming that the composite has a periodical microstructure. The resulting unit cell problem was solved with the finite element method. Excellent agreement was found between theoretically predicted and measured stress-strain responses for various tensile and shear loadings. The stress-strain responses for transverse and inplane shear were found to be identical and this will provide a simplification of the constitutive equations for the composite. The composite has a very low ductility in transverse tension and a limited ductility in transverse shear that was correlated to high hydrostatic stresses that develop in the matrix. The shape of the initial yield surface was calculated and good agreement was found between the calculated shape and the experimentally determined shape.
Determining mechanical behavior of solid materials using miniature specimens
Manahan, M.P.; Argon, A.S.; Harling, O.K.
1986-02-04
A Miniaturized Bend Test (MBT) capable of extracting and determining mechanical behavior information from specimens only so large as to have at least a volume or smallest dimension sufficient to satisfy continuum behavior in all directions is disclosed. The mechanical behavior of the material is determined from the measurements taken during the bending of the specimen and is processed according to the principles of linear or nonlinear material mechanics or both. In a preferred embodiment the determination is carried out by a code which is constructed according to the finite element method, and the specimen used for the determinations is a miniature disk simply supported for central loading at the axis on the center of the disk. 51 figs.
NASA Astrophysics Data System (ADS)
Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.
2014-08-01
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.
Linear-Nonlinear-Poisson Models of Primate Choice Dynamics
ERIC Educational Resources Information Center
Corrado, Greg S.; Sugrue, Leo P.; Seung, H. Sebastian; Newsome, William T.
2005-01-01
The equilibrium phenomenon of matching behavior traditionally has been studied in stationary environments. Here we attempt to uncover the local mechanism of choice that gives rise to matching by studying behavior in a highly dynamic foraging environment. In our experiments, 2 rhesus monkeys ("Macacca mulatta") foraged for juice rewards by making…
NASA Astrophysics Data System (ADS)
Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua
2008-10-01
In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sullivan, T. L.
1974-01-01
An approximate computational procedure is described for the analysis of angleplied laminates with residual nonlinear strains. The procedure consists of a combination of linear composite mechanics and incremental linear laminate theory. The procedure accounts for initial nonlinear strains, unloading, and in-situ matrix orthotropic nonlinear behavior. The results obtained in applying the procedure to boron/aluminum angleplied laminates show that this is a convenient means to accurately predict the initial tangent properties of angleplied laminates in which the matrix has been strained nonlinearly by the lamination residual stresses. The procedure predicted initial tangent properties results which were in good agreement with measured data obtained from boron/aluminum angleplied laminates.
NASA Astrophysics Data System (ADS)
Manzanares, Carlos; Diaz, Marlon; Barton, Ann; Nyaupane, Parashu R.
2017-06-01
The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of naphthalene in n-hexane. The pump and probe thermal lens technique is found to be very sensitive for detecting samples of low composition (ppm) in transparent solvents. In this experiment two different probe lasers: one at 488 nm and another 568 nm were used. The C-H fifth vibrational overtone spectrum of benzene is detected at room temperature for different concentrations. A plot of normalized integrated intensity as a function of concentration of naphthalene in solution reveals a non-linear behavior at low concentrations when using the 488 nm probe and a linear behavior over the entire range of concentrations when using the 568 nm probe. The non-linearity cannot be explained assuming solvent enhancement at low concentrations. A two color absorption model that includes the simultaneous absorption of the pump and probe lasers could explain the enhanced magnitude and the non-linear behavior of the thermal lens signal. Other possible mechanisms will also be discussed.
COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, L. H.; Xiang, Y. Y.; Dun, G. T.
The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaoticmore » attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.« less
NASA Astrophysics Data System (ADS)
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.
Pupil movements to light and accommodative stimulation - A comparative study.
NASA Technical Reports Server (NTRS)
Semmlow, J.; Stark, L.
1973-01-01
Isolation and definition of specific response components in pupil reflexes through comparison of the dynamic features of light-induced and accommodation-induced pupil movements. A quantitative analysis of the behavior of the complex nonlinear pupil responses reveals the presence of two independent nonlinear characteristics: a range-dependent gain and a direction dependence or movement asymmetry. These nonlinear properties are attributed to motor processes because they are observable in pupil responses to both light and accommodation stimuli. The possible mechanisms and consequences of these pupil response characteristics are quantitatively defined and discussed.
Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L
2017-12-01
Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sousa, Vagner Candido de; Silva, Tarcísio Marinelli Pereira; De Marqui Junior, Carlos
2017-10-01
In this paper, the combined effects of semi-passive control using shunted piezoelectric material and passive pseudoelastic hysteresis of shape memory springs on the aerolastic behavior of a typical section is investigated. An aeroelastic model that accounts for the presence of both smart materials employed as mechanical energy dissipation devices is presented. The Brinson model is used to simulate the shape memory material. New expressions for the modeling of the synchronized switch damping on inductor technique (developed for enhanced piezoelectric damping) are presented, resulting in better agreement with experimental data. The individual effects of each nonlinear mechanism on the aeroelastic behavior of the typical section are first verified. Later, the combined effects of semi-passive piezoelectric control and passive shape memory alloy springs on the post-critical behavior of the system are discussed in details. The range of post-flutter airflow speeds with stable limit cycle oscillations is significantly increased due to the combined effects of both sources of energy dissipation, providing an effective and autonomous way to modify the behavior of aeroelastic systems using smart materials.
NASA Astrophysics Data System (ADS)
Simniceanu, Loreta; Mihaela, Bogdan; Otat, Victor; Trotea, Mario
2017-10-01
This paper proposes a plan mechanical model for the vehicles with two axles, taking into account the lateral deflection of the tire. For this mechanical model are determined two mathematical models under the nonlinear differential equations systems form without taking into account the action of the driver and taking into account. The analysis of driver-vehicle system consists in the mathematical description of vehicle dynamics, coupled with the possibilities and limits of the human factor. Description seeks to emphasize the significant influence of the driver in handling and stability analyzes of vehicles and vehicle-driver system stability until the advent of skidding. These mathematical models are seen as very useful tools to analyzing the vehicles stability. The paper analyzes the influence of some parameters of the vehicle on its behavior in terms of stability of dynamic systems.
Optical rogue waves generation in a nonlinear metamaterial
NASA Astrophysics Data System (ADS)
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
Phase-space topography characterization of nonlinear ultrasound waveforms.
Dehghan-Niri, Ehsan; Al-Beer, Helem
2018-03-01
Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonlinearities in Behavioral Macroeconomics.
Gomes, Orlando
2017-07-01
This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.
Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance
NASA Astrophysics Data System (ADS)
Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven
2015-03-01
We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.
An Anisotropic Multiphysics Model for Intervertebral Disk
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2016-01-01
Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402
Metal matrix composite micromechanics: In-situ behavior influence on composite properties
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.
1989-01-01
Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
Finite element analysis of hysteresis effects in piezoelectric transducers
NASA Astrophysics Data System (ADS)
Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard
2000-06-01
The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byers, Loren W.; Ten Cate, James A.; Johnson, Paul A.
2012-06-28
Nonlinear resonance ultrasound spectroscopy experiments conducted on concrete cores, one chemically and mechanically damaged by alkali-silica reactivity, and one undamaged, show that this material displays highly nonlinear wave behavior, similar to many other damaged materials. They find that the damaged sample responds more nonlinearly, manifested by a larger resonant peak and modulus shift as a function of strain amplitude. The nonlinear response indicates that there is a hysteretic influence in the stress-strain equation of state. Further, as in some other materials, slow dynamics are present. The nonlinear response they observe in concrete is an extremely sensitive indicator of damage. Ultimately,more » nonlinear wave methods applied to concrete may be used to guide mixing, curing, or other production techniques, in order to develop materials with particular desired qualities such as enhanced strength or chemical resistance, and to be used for damage inspection.« less
NASA Astrophysics Data System (ADS)
Gong, Chun-Lin; Fang, Zhe; Chen, Gang
A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.
Modeling of rolling element bearing mechanics
NASA Technical Reports Server (NTRS)
Greenhill, L. M.
1991-01-01
Roller element bearings provide the primary mechanical interface between rotating and nonrotating components in the high performance turbomachinery of the Space Shuttle Main Engine (SSME). Knowledge of bearing behavior under various loading and environmental conditions is essential to predicting and understanding the overall behavior of turbopumps, including rotordynamic stability, critical speeds and bearing life. The objective is to develop mathematical models and computer programs to describe the mechanical behavior of ball and cylinder roller bearings under the loading and environmental conditions encountered in the SSME and future high performance rocket engines. This includes characteristics such as nonlinear load/motion relationships, stiffness and damping, rolling element loads for life prediction, and roller and cage stability.
Tailoring superelasticity of soft magnetic materials
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
2015-10-01
Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simulations. This behavior results from a combination of two stress-induced mechanisms: a detachment mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.
A study of nonlinear dynamics of single- and two-phase flow oscillations
NASA Astrophysics Data System (ADS)
Mawasha, Phetolo Ruby
The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.
Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay
NASA Astrophysics Data System (ADS)
Shcherbakov, R.; Zhang, X.
2016-12-01
Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle.
Trapped-Particle Instability Leading to Bursting in Stimulated Raman Scattering Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Brunner; E. Valeo
2001-11-08
Nonlinear, kinetic simulations of Stimulated Raman Scattering (SRS) for laser-fusion-relevant conditions present a bursting behavior. Different explanations for this regime has been given in previous studies: Saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1 (1989) 1282] and detuning due to the nonlinear frequency shift of the plasma wave [H.X. Vu et al., Phys. Rev. Lett. 86 (2001) 4306]. Another mechanism, also assigning a key role to the trapped electrons, is proposed here: The break-up of the plasma wave through the trapped-particle instability.
Program For Analysis Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Mital, S. K.
1994-01-01
METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice
2018-05-01
Pre-tensioned cable braces are widely used as bracing systems in various structural typologies. This technology is fundamentally utilized for stiffening purposes in the case of steel and timber structures. The pre-stressing force imparted to the braces provides to the system a remarkable increment of stiffness. On the other hand, the pre-tensioning force in the braces must be properly calibrated in order to satisfactorily meet both serviceability and ultimate limit states. Dynamic properties of these systems are however affected by non-linear behavior due to potential slackening of the pre-tensioned brace. In the recent years the author has been working on a similar problem regarding the non-linear response of cables in cable-stayed bridges and braced structures. In the present paper a displacement-based approach is used to examine the non-linear behavior of a building system. The methodology operates through linearization and allows obtaining an equivalent linearized frequency to approximately characterize, mode by mode, the dynamic behavior of the system. The equivalent frequency depends on both the mechanical characteristics of the system, the pre-tensioning level assigned to the braces and a characteristic vibration amplitude. The proposed approach can be used as a simplified technique, capable of linearizing the response of structural systems, characterized by non-linearity induced by the slackening of pre-tensioned braces.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
NASA Astrophysics Data System (ADS)
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized by the cantilever-surface mechanism. The optimization results show that the 2DOF nonlinear system presents the best average performance when the excitation signals have three possible forms. Moreover, we observe that while for the linear systems the optimal performance is obtained for small values of the electromagnetic damping, for the 2DOF nonlinear system optimal performance is achieved for large values of damping. This feature is of particular importance for the system's robustness to parasitic damping.
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Yield stress materials in soft condensed matter
NASA Astrophysics Data System (ADS)
Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien
2017-07-01
A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.
Composite materials research and education program: The NASA-Virginia Tech composites program
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1980-01-01
Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.
NASA Astrophysics Data System (ADS)
Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng
2018-05-01
Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.
A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.
Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas
2010-11-01
Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Feola, Andrew; Pal, Siladitya; Moalli, Pamela; Maiti, Spandan; Abramowitch, Steven
2014-01-01
Synthetic polypropylene meshes were designed to restore pelvic organ support for women suffering from pelvic organ prolapse; however, the FDA released two notifications regarding the potential complications associated with mesh implantation. Our aim was to characterize the structural properties of Restorelle and UltraPro subjected to uniaxial tension along perpendicular directions, and then model the tensile behavior of these meshes utilizing a co-rotational finite element model, with an imbedded linear or fiber-recruitment local stress-strain relationship. Both meshes exhibited highly nonlinear stress-strain behavior; Restorelle had no significant differences between the two perpendicular directions, while UltraPro had a 93% difference in the low (initial) stiffness (p=0.009) between loading directions. Our model predicted that early alignment of the mesh segments in the loading direction and subsequent stretching could explain the observed nonlinear tensile behavior. However, a nonlinear stress-strain response in the stretching regime, that may be inherent to the mesh segment, was required to better capture experimental results. Utilizing a nonlinear fiber recruitment model with two parameters A and B, we observed improved agreement between the simulations and the experimental results. An inverse analysis found A=120 MPa and B=1.75 for Restorelle (RMSE=0.36). This approach yielded A=30 MPa and B=3.5 for UltraPro along one direction (RMSE=0.652), while the perpendicular orientation resulted in A=130 MPa and B=4.75 (RMSE=4.36). From the uniaxial protocol, Restorelle was found to have little variance in structural properties along these two perpendicular directions; however, UltraPro was found to behave anisotropically. PMID:25011619
Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks
NASA Astrophysics Data System (ADS)
Shcherbakov, R.; Zhang, X.
2017-12-01
Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated from the postseismic surface deformation. Our modelling suggests that the power-law rheology exponent n controls the decay rate of aftershocks and is related to the parameter p of the Omori-Utsu law.
Behavior dynamics: One perspective
Marr, M. Jackson
1992-01-01
Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655
The intrinsic mechanical nonlinearity 3Q0(ω) of linear homopolymer melts
NASA Astrophysics Data System (ADS)
Cziep, Miriam Angela; Abbasi, Mahdi; Wilhelm, Manfred
2017-05-01
Medium amplitude oscillatory shear (MAOS) in combination with Fourier Transformation of the mechanical stress signal (FT rheology) was utilized to investigate the influence of molecular weight, molecular weight distribution and the monomer on the intrinsic nonlinearity 3Q0(ω). Nonlinear master curves of 3Q0(ω) have been created, applying the time-temperature superposition (TTS) principle. These master curves showed a characteristic shape with an increasing slope at small frequencies, a maximum 3Q0,max and a decreasing slope at high frequencies. 3Q0(De) master curves of monodisperse polymers were evaluated and quantified with the help of a semi-empiric equation, derived from predictions from the pom-pom and molecular stress function (MSF) models. This resulted in a monomer independent description of the nonlinear mechanical behavior of linear, monodisperse homopolymer melts, where 3Q0(ω,Z) is only a function of the frequency ω and the number of entanglements Z. For polydisperse samples, 3Q0(ω) showed a high sensitivity within the experimental window towards an increasing PDI. At small frequencies, the slope of 3Q0(ω) decreases until approximately zero as a plateau value is reached, starting at a PDI around 2 and higher.
Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading
NASA Astrophysics Data System (ADS)
Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.
2017-05-01
The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed
NASA Astrophysics Data System (ADS)
Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai
2018-01-01
In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.
An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds
NASA Technical Reports Server (NTRS)
Achenbach, J. D.; Tang, Z.
1999-01-01
In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.
Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo
2017-01-01
Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g–2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg−1 and 19.7 nAg−1, respectively. PMID:28120924
NASA Astrophysics Data System (ADS)
Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo
2017-01-01
Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g-2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg-1 and 19.7 nAg-1, respectively.
Interrelation of creep and relaxation: a modeling approach for ligaments.
Lakes, R S; Vanderby, R
1999-12-01
Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.
NASA Astrophysics Data System (ADS)
Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.
2018-02-01
In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2017-09-01
Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan
2013-09-01
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
Modeling of dielectric elastomer as electromechanical resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing
Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.
Constitutive Modeling of Crosslinked Nanotube Materials
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.
2004-01-01
A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.
Exploring Chaos: A Case Study.
ERIC Educational Resources Information Center
Nemirovsky, Ricardo; Tinker, Robert
1993-01-01
Describes software, hardware, and devices that were designed to provide students with an environment to experiment with basic ideas of mechanics, including nonlinear dynamics. Examines the behavior of a Lorenzian water wheel by comparing experimental data with theoretical results obtained from computer-based sensors. (MDH)
Decoupling nonclassical nonlinear behavior of elastic wave types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less
Reasoning about energy in qualitative simulation
NASA Technical Reports Server (NTRS)
Fouche, Pierre; Kuipers, Benjamin J.
1992-01-01
While possible behaviors of a mechanism that are consistent with an incomplete state of knowledge can be predicted through qualitative modeling and simulation, spurious behaviors corresponding to no solution of any ordinary differential equation consistent with the model may be generated. The present method for energy-related reasoning eliminates an important source of spurious behaviors, as demonstrated by its application to a nonlinear, proportional-integral controlled. It is shown that such qualitative properties of such a system as stability and zero-offset control are captured by the simulation.
NASA Astrophysics Data System (ADS)
Sales, T. P.; Marques, Flávio D.; Pereira, Daniel A.; Rade, Domingos A.
2018-06-01
Nonlinear aeroelastic systems are prone to the appearance of limit cycle oscillations, bifurcations, and chaos. Such problems are of increasing concern in aircraft design since there is the need to control nonlinear instabilities and improve safety margins, at the same time as aircraft are subjected to increasingly critical operational conditions. On the other hand, in spite of the fact that viscoelastic materials have already been successfully used for the attenuation of undesired vibrations in several types of mechanical systems, a small number of research works have addressed the feasibility of exploring the viscoelastic effect to improve the behavior of nonlinear aeroelastic systems. In this context, the objective of this work is to assess the influence of viscoelastic materials on the aeroelastic features of a three-degrees-of-freedom typical section with hardening structural nonlinearities. The equations of motion are derived accounting for the presence of viscoelastic materials introduced in the resilient elements associated to each degree-of-freedom. A constitutive law based on fractional derivatives is adopted, which allows the modeling of temperature-dependent viscoelastic behavior in time and frequency domains. The unsteady aerodynamic loading is calculated based on the classical linear potential theory for arbitrary airfoil motion. The aeroelastic behavior is investigated through time domain simulations, and subsequent frequency transformations, from which bifurcations are identified from diagrams of limit cycle oscillations amplitudes versus airspeed. The influence of the viscoelastic effect on the aeroelastic behavior, for different values of temperature, is also investigated. The numerical simulations show that viscoelastic damping can increase the flutter speed and reduce the amplitudes of limit cycle oscillations. These results prove the potential that viscoelastic materials have to increase aircraft components safety margins regarding aeroelastic stability.
Design of materials configurations for enhanced phononic and electronic properties
NASA Astrophysics Data System (ADS)
Daraio, Chiara
The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Andrés, R R; Acosta, V M; Lucas, M; Riera, E
2018-01-01
Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Singhal, Surendra N.
1992-01-01
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.
Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.
Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun
2010-01-01
Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.
Nonlinear finite-element analysis of nanoindentation of viral capsids
NASA Astrophysics Data System (ADS)
Gibbons, Melissa M.; Klug, William S.
2007-03-01
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .
Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations
NASA Astrophysics Data System (ADS)
Abbott, Stephen; Germaschewski, Kai
2014-10-01
Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.
van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M
2016-04-01
The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.
Neural activation in the "reward circuit" shows a nonlinear response to facial attractiveness.
Liang, Xiaoyun; Zebrowitz, Leslie A; Zhang, Yi
2010-01-01
Positive behavioral responses to attractive faces have led neuroscientists to investigate underlying neural mechanisms in a "reward circuit" that includes brain regions innervated by dopamine pathways. Using male faces ranging from attractive to extremely unattractive, disfigured ones, this study is the first to demonstrate heightened responses to both rewarding and aversive faces in numerous areas of this putative reward circuit. Parametric analyses employing orthogonal linear and nonlinear regressors revealed positive nonlinear effects in anterior cingulate cortex, lateral orbital frontal cortex (LOFC), striatum (nucleus accumbens, caudate, putamen), and ventral tegmental area, in addition to replicating previously documented linear effects in medial orbital frontal cortex (MOFC) and LOFC and nonlinear effects in amygdala and MOFC. The widespread nonlinear responses are consistent with single cell recordings in animals showing responses to both rewarding and aversive stimuli, and with some human fMRI investigations of non-face stimuli. They indicate that the reward circuit does not process face valence with any simple dissociation of function across structures. Perceiver gender modulated some responses to our male faces: Women showed stronger linear effects, and men showed stronger nonlinear effects, which may have functional implications. Our discovery of nonlinear responses to attractiveness throughout the reward circuit echoes the history of amygdala research: Early work indicated a linear response to threatening stimuli, including faces; later work also revealed a nonlinear response with heightened activation to affectively salient stimuli regardless of valence. The challenge remains to determine how such dual coding influences feelings, such as pleasure and pain, and guides goal-related behavioral responses, such as approach and avoidance.
Constitutive Models Based on Compressible Plastic Flows
NASA Technical Reports Server (NTRS)
Rajendran, A. M.
1983-01-01
The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
Tensile and compressive behavior of Borsic/aluminum
NASA Technical Reports Server (NTRS)
Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.
1977-01-01
The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.
NASA Astrophysics Data System (ADS)
Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan
2017-03-01
Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.
NASA Astrophysics Data System (ADS)
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less
Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
Ramo, Nicole L; Shetye, Snehal S; Streijger, Femke; Lee, Jae H T; Troyer, Kevin L; Kwon, Brian K; Cripton, Peter; Puttlitz, Christian M
2018-03-01
Despite efforts to simulate the in vivo environment, post-mortem degradation and lack of blood perfusion complicate the use of ex vivo derived material models in computational studies of spinal cord injury. In order to quantify the mechanical changes that manifest ex vivo, the viscoelastic behavior of in vivo and ex vivo porcine spinal cord samples were compared. Stress-relaxation data from each condition were fit to a non-linear viscoelastic model using a novel characterization technique called the direct fit method. To validate the presented material models, the parameters obtained for each condition were used to predict the respective dynamic cyclic response. Both ex vivo and in vivo samples displayed non-linear viscoelastic behavior with a significant increase in relaxation with applied strain. However, at all three strain magnitudes compared, ex vivo samples experienced a higher stress and greater relaxation than in vivo samples. Significant differences between model parameters also showed distinct relaxation behaviors, especially in non-linear relaxation modulus components associated with the short-term response (0.1-1 s). The results of this study underscore the necessity of utilizing material models developed from in vivo experimental data for studies of spinal cord injury, where the time-dependent properties are critical. The ability of each material model to accurately predict the dynamic cyclic response validates the presented methodology and supports the use of the in vivo model in future high-resolution finite element modeling efforts. Neural tissues (such as the brain and spinal cord) display time-dependent, or viscoelastic, mechanical behavior making it difficult to model how they respond to various loading conditions, including injury. Methods that aim to characterize the behavior of the spinal cord almost exclusively use ex vivo cadaveric or animal samples, despite evidence that time after death affects the behavior compared to that in a living animal (in vivo response). Therefore, this study directly compared the mechanical response of ex vivo and in vivo samples to quantify these differences for the first time. This will allow researchers to draw more accurate conclusions about spinal cord injuries based on ex vivo data (which are easier to obtain) and emphasizes the importance of future in vivo experimental animal work. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli
2015-01-01
The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick
2014-03-10
Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio
2014-10-01
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet's mechanism. The results obtained are compared with those provided by the numerical model.
Effect of Processing Conditions on the Anelastic Behavior of Plasma Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Viswanathan, Vaishak
2011-12-01
Plasma sprayed ceramic materials contain an assortment of micro-structural defects, including pores, cracks, and interfaces arising from the droplet based assemblage of the spray deposition technique. The defective architecture of the deposits introduces a novel "anelastic" response in the coatings comprising of their non-linear and hysteretic stress-strain relationship under mechanical loading. It has been established that this anelasticity can be attributed to the relative movement of the embedded defects under varying stresses. While the non-linear response of the coatings arises from the opening/closure of defects, hysteresis is produced by the frictional sliding among defect surfaces. Recent studies have indicated that anelastic behavior of coatings can be a unique descriptor of their mechanical behavior and related to the defect configuration. In this dissertation, a multi-variable study employing systematic processing strategies was conducted to augment the understanding on various aspects of the reported anelastic behavior. A bi-layer curvature measurement technique was adapted to measure the anelastic properties of plasma sprayed ceramic. The quantification of anelastic parameters was done using a non-linear model proposed by Nakamura et.al. An error analysis was conducted on the technique to know the available margins for both experimental as well as computational errors. The error analysis was extended to evaluate its sensitivity towards different coating microstructure. For this purpose, three coatings with significantly different microstructures were fabricated via tuning of process parameters. Later the three coatings were also subjected to different strain ranges systematically, in order to understand the origin and evolution of anelasticity on different microstructures. The last segment of this thesis attempts to capture the intricacies on the processing front and tries to evaluate and establish a correlation between them and the anelastic parameters.
Bavassi, M Luz; Tagliazucchi, Enzo; Laje, Rodrigo
2013-02-01
Time processing in the few hundred milliseconds range is involved in the human skill of sensorimotor synchronization, like playing music in an ensemble or finger tapping to an external beat. In finger tapping, a mechanistic explanation in biologically plausible terms of how the brain achieves synchronization is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to evoke other nonlinear effects like saturation. We build a nonlinear mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations. While previous authors have used two different model mechanisms for fitting different perturbation types, or have fitted different parameter value sets for different perturbation magnitudes, we propose the first unified description of the behavior following all perturbation types and magnitudes as the dynamical response of a compound model with fixed terms and a single set of parameter values. Copyright © 2012 Elsevier B.V. All rights reserved.
Victor, Jonathan D; Mechler, Ferenc; Ohiorhenuan, Ifije; Schmid, Anita M; Purpura, Keith P
2009-12-01
A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey and area 17 neurons in the cat to two-dimensional Hermite functions (TDHs). TDHs are intermediate in complexity between traditional analytic stimuli and natural scenes and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above-cited model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear-nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.
Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor
NASA Astrophysics Data System (ADS)
Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.
This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.
Reduced-order modeling approach for frictional stick-slip behaviors of joint interface
NASA Astrophysics Data System (ADS)
Wang, Dong; Xu, Chao; Fan, Xuanhua; Wan, Qiang
2018-03-01
The complex frictional stick-slip behaviors of mechanical joint interface have a great effect on the dynamic properties of assembled structures. In this paper, a reduced-order modeling approach based on the constitutive Iwan model is proposed to describe the stick-slip behaviors of joint interface. An improved Iwan model is developed to describe the non-zero residual stiffness at macro-slip regime and smooth transition of joint stiffness from micro-slip to macro-slip regime, and the power-law relationship of energy dissipation during the micro-slip regime. In allusion to these nonlinear behaviors, the finite element method is used to calculate the recycle force under monolithic loading and the energy dissipation per cycle under oscillatory loading. The proposed model is then used to predict the nonlinear stick-slip behaviors of joint interface by curve-fitting to the results of finite element analysis, and the results show good agreements with the finite element analysis. A comparison with the experiment results in literature is also made. The proposed model agrees very well with the experiment results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.H.; Helms, K.L.E.; Hurtado, L.D.
1999-04-06
A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due tomore » the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peryshkin, A. Yu., E-mail: alexb700@yandex.ru; Makarov, P. V., E-mail: bacardi@ispms.ru; Eremin, M. O., E-mail: bacardi@ispms.ru
An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutionsmore » of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.« less
Sensitive periods in affective development: nonlinear maturation of fear learning.
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development.
Sensitive Periods in Affective Development: Nonlinear Maturation of Fear Learning
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development. PMID:25035083
A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior
NASA Astrophysics Data System (ADS)
Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi
2017-12-01
In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.
Nair, K; Yan, K C; Sun, W
2008-01-01
Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.
Nonlinear behavior of the tarka flute's distinctive sounds.
Gérard, Arnaud; Yapu-Quispe, Luis; Sakuma, Sachiko; Ghezzi, Flavio; Ramírez-Ávila, Gonzalo Marcelo
2016-09-01
The Andean tarka flute generates multiphonic sounds. Using spectral techniques, we verify two distinctive musical behaviors and the nonlinear nature of the tarka. Through nonlinear time series analysis, we determine chaotic and hyperchaotic behavior. Experimentally, we observe that by increasing the blow pressure on different fingerings, peculiar changes from linear to nonlinear patterns are produced, leading ultimately to quenching.
Nonlinear behavior of the tarka flute's distinctive sounds
NASA Astrophysics Data System (ADS)
Gérard, Arnaud; Yapu-Quispe, Luis; Sakuma, Sachiko; Ghezzi, Flavio; Ramírez-Ávila, Gonzalo Marcelo
2016-09-01
The Andean tarka flute generates multiphonic sounds. Using spectral techniques, we verify two distinctive musical behaviors and the nonlinear nature of the tarka. Through nonlinear time series analysis, we determine chaotic and hyperchaotic behavior. Experimentally, we observe that by increasing the blow pressure on different fingerings, peculiar changes from linear to nonlinear patterns are produced, leading ultimately to quenching.
Chemical kinetic reaction mechanism for the combustion of propane
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1984-01-01
A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.
Asynchronous cracking with dissimilar paths in multilayer graphene.
Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki
2017-11-16
Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.
The Trail Less Traveled: Individual Decision-Making and Its Effect on Group Behavior
Lanan, Michele C.; Dornhaus, Anna; Jones, Emily I.; Waser, Andrew; Bronstein, Judith L.
2012-01-01
Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act. PMID:23112880
Spatial nonlinearities: Cascading effects in the earth system
Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.
2006-01-01
Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).
Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning
2017-08-01
Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S 0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S 0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S 0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1995-08-01
The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.
NASA Astrophysics Data System (ADS)
Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.
Tachikawa, Masashi; Mochizuki, Atsushi
2015-01-07
The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nonlinear Landing Control for Quadrotor UAVs
NASA Astrophysics Data System (ADS)
Voos, Holger
Quadrotor UAVs are one of the most preferred type of small unmanned aerial vehicles because of the very simple mechanical construction and propulsion principle. However, the nonlinear dynamic behavior requires a more advanced stabilizing control and guidance of these vehicles. In addition, the small payload reduces the amount of batteries that can be carried and thus also limits the operating range of the UAV. One possible solution for a range extension is the application of a mobile base station for recharging purpose even during operation. However, landing on a moving base station requires autonomous tracking and landing control of the UAV. In this paper, a nonlinear autopilot for quadrotor UAVs is extended with a tracking and landing controller to fulfill the required task.
Hegde, Vinay I; Tan, Jin-Chong; Waghmare, Umesh V; Cheetham, Anthony K
2013-10-17
We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper, though the energy barrier associated with its formation is much higher. The lack of vibrational spectroscopic evidence for such faults in experiments can be explained with the structural instability of the barrier state to form a denser and disordered state of ZIF-8 seen in our analysis, that is, large shear leads to its amorphization rather than formation of faults.
Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.
Zhang, T
2011-09-01
Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.
NASA Astrophysics Data System (ADS)
Picu, R. C.; Pal, A.; Lupulescu, M. V.
2016-04-01
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.
Nondestructive ultrasonic characterization of engineering materials
NASA Technical Reports Server (NTRS)
Salama, K.
1985-01-01
The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.
Yang, Z; Chen, H; Yu, T; Li, B
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
NASA Astrophysics Data System (ADS)
Yang, Z.; Chen, H.; Yu, T.; Li, B.
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T.; Chen, H.
2016-08-15
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images whenmore » the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.« less
NASA Astrophysics Data System (ADS)
Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang
2018-01-01
Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.
Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics
Kashima, Kenji
2016-01-01
Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780
Information flow to assess cardiorespiratory interactions in patients on weaning trials.
Vallverdú, M; Tibaduisa, O; Clariá, F; Hoyer, D; Giraldo, B; Benito, S; Caminal, P
2006-01-01
Nonlinear processes of the autonomic nervous system (ANS) can produce breath-to-breath variability in the pattern of breathing. In order to provide assess to these nonlinear processes, nonlinear statistical dependencies between heart rate variability and respiratory pattern variability are analyzed. In this way, auto-mutual information and cross-mutual information concepts are applied. This information flow analysis is presented as a short-term non linear analysis method to investigate the information flow interactions in patients on weaning trials. 78 patients from mechanical ventilation were studied: Group A of 28 patients that failed to maintain spontaneous breathing and were reconnected; Group B of 50 patients with successful trials. The results show lower complexity with an increase of information flow in group A than in group B. Furthermore, a more (weakly) coupled nonlinear oscillator behavior is observed in the series of group A than in B.
de Melo, P B; Nunes, A M; Omena, L; do Nascimento, S M S; da Silva, M G A; Meneghetti, M R; de Oliveira, I N
2015-10-01
The present work is devoted to the study of the thermo-optical and nonlinear optical properties of smectic samples containing gold nanoparticles with different shapes. By using the time-resolved Z-scan technique, we determine the effects of nanoparticle addition on the critical behavior of the thermal diffusivity and thermo-optical coefficient at the vicinity of the smectic-A-nematic phase transition. Our results reveal that introduction of gold nanoparticles affects the temperature dependence of thermo-optical parameters, due to the local distortions in the orientational order and heat generation provided by guest particles during the laser exposure. Further, we show that a nonlinear optical response may take place at temperatures where the smectic order is well established. We provide a detailed discussion of the effects associated with the introduction gold nanoparticles on the mechanisms behind the thermal transport and optical nonlinearity in liquid-crystal samples.
Porter, Marianne E; Ewoldt, Randy H; Long, John H
2016-09-15
During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m -1 Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion. © 2016. Published by The Company of Biologists Ltd.
Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime
NASA Astrophysics Data System (ADS)
Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.
2018-06-01
Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.
Nonlinear breakup of liquid sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jazayeri, S.A.; Li, X.
1997-07-01
Sprays formed from the disintegration of liquid sheets have extensive practical applications, ranging from chemical and pharmaceutical processes to power generation and propulsion systems. A knowledge of the liquid sheet breakup process is essential to the understanding of fundamental mechanism of liquid atomization and spray formation processes. The breakup of liquid sheets has been investigated in terms of hydrodynamic stability via linear analysis by Squire, Hagerty and Shea, Li, etc. nonlinear effect has been studied by Clark and Dombrowski up to the second order, and by Rangel and Sirignano through numerical simulation employing vortex discretization method. As shown by Taubmore » for the breakup of circular liquid jets, the closer to the breakup region, the higher the order of nonlinear analysis has to be for adequate description of the breakup behavior. As pointed out by Bogy, a nonlinear analysis up to the third order is generally sufficient to account for the inherent nonlinear nature of the breakup process. Therefore, a third-order nonlinear analysis has been carried out in this study to investigate the process of liquid sheet disruption preceding the spray formation.« less
Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.
Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias
2018-06-01
Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nonlinear plasmonic imaging techniques and their biological applications
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Viscoelastic Properties of Human Tracheal Tissues.
Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B
2017-01-01
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.
Goldin, Matías A.; Alonso, Leandro M.; Alliende, Jorge A.; Goller, Franz; Mindlin, Gabriel B.
2013-01-01
The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior. PMID:23818988
Goldin, Matías A; Alonso, Leandro M; Alliende, Jorge A; Goller, Franz; Mindlin, Gabriel B
2013-01-01
The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.
Kuznetsov-Ma Soliton Dynamics Based on the Mechanical Effect of Light
NASA Astrophysics Data System (ADS)
Xiong, Hao; Gan, Jinghui; Wu, Ying
2017-10-01
A Kuznetsov-Ma soliton that exhibits an unusual pulsating dynamics has attracted particular attention in hydrodynamics and plasma physics in the context of understanding nonlinear coherent phenomena. Here, we demonstrate theoretically the formation of a novel form of Kuznetsov-Ma soliton in a microfabricated optomechanical array, where both photonic and phononic evolutionary dynamics exhibit periodic structure and coherent localized behavior enabled by radiation-pressure coupling of optical fields and mechanical oscillations, which is a manifestation of the unique property of optomechanical systems. Numerical calculations of the optomechanical dynamics show an excellent agreement with this theory. In addition to providing insight into optomechanical nonlinearity, optomechanical Kuznetsov-Ma soliton dynamics fundamentally broadens the regime of cavity optomechanics and may find applications in on-chip manipulation of light propagation.
Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, H.-C.; Yu, W.-R.; Guo, Z.
The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transversemore » axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.« less
Linear and nonlinear equivalent circuit modeling of CMUTs.
Lohfink, Annette; Eccardt, Peter-Christian
2005-12-01
Using piston radiator and plate capacitance theory capacitive micromachined ultrasound transducers (CMUT) membrane cells can be described by one-dimensional (1-D) model parameters. This paper describes in detail a new method, which derives a 1-D model for CMUT arrays from finite-element methods (FEM) simulations. A few static and harmonic FEM analyses of a single CMUT membrane cell are sufficient to derive the mechanical and electrical parameters of an equivalent piston as the moving part of the cell area. For an array of parallel-driven cells, the acoustic parameters are derived as a complex mechanical fluid impedance, depending on the membrane shape form. As a main advantage, the nonlinear behavior of the CMUT can be investigated much easier and faster compared to FEM simulations, e.g., for a design of the maximum applicable voltage depending on the input signal. The 1-D parameter model allows an easy description of the CMUT behavior in air and fluids and simplifies the investigation of wave propagation within the connecting fluid represented by FEM or transmission line matrix (TLM) models.
Mechanical characterization of human brain tissue.
Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A
2017-01-15
Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed compression but not tension. Our results demonstrate that material parameters identified for a single loading mode fail to predict the response under arbitrary loading conditions. Our systematic characterization of human brain tissue will lead to more accurate computational simulations, which will allow us to determine criteria for injury, to develop smart protection systems, and to predict brain development and disease progression. There is a pressing need to characterize the mechanical behavior of human brain tissue under multiple loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We perform a sequence of experimental tests on the same brain specimen to characterize the regional and directional behavior, and we supplement our tests with DTI and histology to explore to which extent the macrostructural response is a result of the underlying microstructure. Results demonstrate that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry, and we show that the multiaxial data can best be captured by a modified version of the one-term Ogden model. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Dynamics in a nonlinear Keynesian good market model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naimzada, Ahmad, E-mail: ahmad.naimzada@unimib.it; Pireddu, Marina, E-mail: marina.pireddu@unimib.it
2014-03-15
In this paper, we show how a rich variety of dynamical behaviors can emerge in the standard Keynesian income-expenditure model when a nonlinearity is introduced, both in the cases with and without endogenous government spending. A specific sigmoidal functional form is used for the adjustment mechanism of income with respect to the excess demand, in order to bound the income variation. With the aid of analytical and numerical tools, we investigate the stability conditions, bifurcations, as well as periodic and chaotic dynamics. Globally, we study multistability phenomena, i.e., the coexistence of different kinds of attractors.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.
Nonlinear aspects of the EEG during sleep in children
NASA Astrophysics Data System (ADS)
Berryman, Matthew J.; Coussens, Scott W.; Pamula, Yvonne; Kennedy, Declan; Lushington, Kurt; Shalizi, Cosma; Allison, Andrew; Martin, A. James; Saint, David; Abbott, Derek
2005-05-01
Electroencephalograph (EEG) analysis enables the dynamic behavior of the brain to be examined. If the behavior is nonlinear then nonlinear tools can be used to glean information on brain behavior, and aid in the diagnosis of sleep abnormalities such as obstructive sleep apnea syndrome (OSAS). In this paper the sleep EEGs of a set of normal children and children with mild OSAS are evaluated for nonlinear brain behaviour. We found that there were differences in the nonlinearity of the brain behaviour between different sleep stages, and between the two groups of children.
Thermally Driven Inhibition of Superconducting Vortex Avalanches
NASA Astrophysics Data System (ADS)
Lara, Antonio; Aliev, Farkhad G.; Moshchalkov, Victor V.; Galperin, Yuri M.
2017-09-01
Complex systems close to their critical state can exhibit abrupt transitions—avalanches—between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here, we investigate microwave stimulation of avalanches in the so-called vortex matter of type-II superconductors—a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the microwave stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counterintuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the microwave excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.
Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation
NASA Astrophysics Data System (ADS)
Wang, M.; Wang, J.; Wang, B. T.
2018-02-01
Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.
Electrical conduction hysteresis in carbon black-filled butyl rubber compounds
NASA Astrophysics Data System (ADS)
Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.
2018-04-01
Temperature and concentration dependence of electrical resistance of butyl rubber filled with GPF carbon black was carried out. Current-voltage (I-V) characteristics at room-temperature were also investigated. The I-V characteristics show that the behavior is linear at small voltages up to approximately 0.15 V and currents up to 0.05 mA indicating that the conduction mechanism was probably due to electron tunneling from the end of conductive path to the other one under the action of the applied electric field. At higher voltages, a nonlinear behavior was noticed. The nonlinearity was attributed to the joule heating effects. Electrical resistance of the butyl/GPF composites was measured as a function of temperature during heating and cooling cycles from 300 K and upward to a specific temperature. When the specimens were heated up, the resistance was observed to increase continuously with the rise of temperature. However, when the samples were cooled down, the resistance was observed to decrease following a different path. The presence of conduction hysteresis behavior in the resistance-temperature curves during the heating and cooling cycles was then verified. The electrical conduction of the composite system is supposed to follow an activation conduction mechanism. Activation energy was calculated at different filler concentrations for both the heating and cooling processes.
Features and functions of nonlinear spatial integration by retinal ganglion cells.
Gollisch, Tim
2013-11-01
Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye. Copyright © 2012 Elsevier Ltd. All rights reserved.
An extended car-following model to describe connected traffic dynamics under cyberattacks
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng
2018-04-01
In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, Gabriele, E-mail: milani@stru.polimi.it; Olivito, Renato S.; Tralli, Antonio
2014-10-06
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim ofmore » both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.« less
Nonlinear mesomechanics of composites with periodic microstructure
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.
1989-01-01
This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of the structure.
A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.
Elyasi, Nahid; Taheri, Kimia Karimi; Narooei, Keivan; Taheri, Ali Karimi
2017-06-01
In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney-Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney-Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the Ogden order 1 represents a stable behavior, although the fitting of experimental data and theoretical model was not satisfactory. However, the Ogden order 6 model was unstable in the simple tension mode and the Ogden order 5 and general exponential models presented accurate and stable results. In order to reduce the material parameters, the invariants model with four material parameters was investigated and this model presented the minimum error and stable behavior in all deformation modes. The ABAQUS Explicit solver was coupled with the VUMAT subroutine code of the invariants model to simulate the mechanical behavior of the central and terminal slips of the extensor apparatus during the passive finger flexion, which is important in the prediction of boutonniere deformity and chronic mallet finger injuries, respectively. Also, to evaluate the adequacy of constitutive models in simulations, the results of the Ogden order 5 were presented. The difference between the predictions was attributed to the better fittings of the invariants model compared with the Ogden model.
NASA Astrophysics Data System (ADS)
Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun
2016-06-01
Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.
Nonlinear Stress/Strain Behavior of a Synthetic Porous Medium at Seismic Frequencies
NASA Astrophysics Data System (ADS)
Roberts, P. M.; Ibrahim, R. H.
2008-12-01
Laboratory experiments on porous core samples have shown that seismic-band (100 Hz or less) mechanical, axial stress/strain cycling of the porous matrix can influence the transport behavior of fluids and suspended particles during steady-state fluid flow through the cores. In conjunction with these stimulated transport experiments, measurements of the applied dynamic axial stress/strain were made to investigate the nonlinear mechanical response of porous media for a poorly explored range of frequencies from 1 to 40 Hz. A unique core-holder apparatus that applies low-frequency mechanical stress/strain to 2.54-cm-diameter porous samples during constant-rate fluid flow was used for these experiments. Applied stress was measured with a load cell in series with the source and porous sample, and the resulting strain was measured with an LVDT attached to the core face. A synthetic porous system consisting of packed 1-mm-diameter glass beads was used to investigate both stress/strain and stimulated mass-transport behavior under idealized conditions. The bead pack was placed in a rubber sleeve and static confining stresses of 2.4 MPa radial and 1.7 MPa axial were applied to the sample. Sinusoidal stress oscillations were applied to the sample at 1 to 40 Hz over a range of RMS stress amplitude from 37 to 275 kPa. Dynamic stress/strain was measured before and after the core was saturated with deionized water. The slope of the linear portion of each stress/strain hysteresis loop was used to estimate Young's modulus as a function of frequency and amplitude for both the dry and wet sample. The modulus was observed to increase after the dry sample was saturated. For both dry and wet cases, the modulus decreased with increasing dynamic RMS stress amplitude at a constant frequency of 23 Hz. At constant RMS stress amplitude, the modulus increased with increasing frequency for the wet sample but remained constant for the dry sample. The observed nonlinear behavior of Young's modulus and the dependence of stress/strain hysteresis on strain amplitude and frequency have implications on how seismic waves can influence the mechanical properties of granular porous materials in the Earth. This work was funded by the U.S. Department of Energy Basic Energy Sciences Program under the Los Alamos National Laboratory contract no. DE-AC52-06NA25396.
A numerical evaluation of the dynamical systems approach to wall layer turbulence
NASA Technical Reports Server (NTRS)
Berkooz, Gal
1990-01-01
This work attempts to test predictions based on the Dynamical Systems approach to Wall Layer Turbulence. We analyze the Dynamical Systems model for the nonlinear interaction mechanisms between the coherent structures and deduce qualitative behavior as expected. We then test for this behavior in data sets from D.N.S. The agreement is good, given the suboptimal conditions for the test. We discuss implications of this test and work to be done to deepen the understanding of control of turbulent boundary layers.
Constitutive modeling of jugular vein-derived venous valve leaflet tissues.
Kaul, Nayyan; Huang, Hsiao-Ying Shadow
2017-11-01
Venous valve tissues, though used in vein reconstruction surgeries and bioprosthetic valves with moderate success, have not been extensively studied with respect to their structure. Their inherent anisotropic, non-linear behavior combined with severe diseases which affect veins, such as chronic venous insufficiency, warrant understanding the structure and material behavior of these tissues. Hence, before any bioprosthetic grafts may be used in place of tissues, it is of the utmost importance to understand the mechanical and structural properties of these tissues as this may lead to higher success rates for valve replacement surgeries. The longevity of the bioprosthetics may also increase if the manufactured grafts behave the same as native valves. Building on the scant information about the uniaxial and biaxial mechanical properties of jugular venous valves and wall tissues from previous studies, the current focus of our investigation lies in understanding the material behavior by establishing a phenomenological strain energy-based constitutive relation for the tissues. We used bovine veins to study the behavior of valve leaflet tissue and adjoining wall tissue (from the proximal and distal ends of the veins) under different biaxial testing protocols. We looked at the behavior of numerical partial derivatives of the strain energy to select a suitable functional form for the strain energy for wall and valve tissues. Using this strain energy descriptor, we determined the Cauchy stress and compared it with experimental results under additional sets of displacement-controlled biaxial testing protocols to find material specific model parameters by the Powell's method algorithm. Results show that whereas wall tissue strain energy can be explained using a polynomial non-linear function, the valve tissue, due to higher non-linearities, requires an exponential function. This study may provide useful information for the primary stages of bioprosthetic designs and replacement surgeries and may support future studies investigating structural models. It may also support the study of valvular diseases by providing a way to understand material properties and behavior and to form a continuum model when required for numerical analyses and computational simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.
Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin
2016-07-01
Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-harmonic generation in graphene enhanced by elliptically polarized light excitation
NASA Astrophysics Data System (ADS)
Yoshikawa, Naotaka; Tamaya, Tomohiro; Tanaka, Koichiro
2017-05-01
The electronic properties of graphene can give rise to a range of nonlinear optical responses. One of the most desirable nonlinear optical processes is high-harmonic generation (HHG) originating from coherent electron motion induced by an intense light field. Here, we report on the observation of up to ninth-order harmonics in graphene excited by mid-infrared laser pulses at room temperature. The HHG in graphene is enhanced by an elliptically polarized laser excitation, and the resultant harmonic radiation has a particular polarization. The observed ellipticity dependence is reproduced by a fully quantum mechanical treatment of HHG in solids. The zero-gap nature causes the unique properties of HHG in graphene, and our findings open up the possibility of investigating strong-field and ultrafast dynamics and nonlinear behavior of massless Dirac fermions.
Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.
2015-01-01
A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.
NASA Astrophysics Data System (ADS)
Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D.
2018-04-01
Issues such as energy generation/transmission and greenhouse gas emissions are the two energy problems we face today. In this context, renewable energy sources are a necessary part of the solution essentially winds power, which is one of the most profitable sources of competition with new fossil energy facilities. This paper present the simulation of mechanical behavior and damage of a 48 m composite wind turbine blade under critical wind loads. The finite element analysis was performed by using ABAQUS code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear FE analysis using mean values for the material properties and the failure criteria of Tsai-Hill to predict failure modes in large structures and to identify the sensitive zones.
Non-linear behavior of fiber composite laminates
NASA Technical Reports Server (NTRS)
Hashin, Z.; Bagchi, D.; Rosen, B. W.
1974-01-01
The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.
The effect of storage temperature on blue cheese mechanical properties.
Joyner Melito, Helen S; Francis, Dorothy; Luzzi, Brooke; Johnson, John R
2018-06-01
Blue cheese is commonly aged for 60 days at 10°C after curing. However, some manufacturers store blue cheese at 4°C and the effect of lower storage temperature on blue cheese final properties is unknown. Thus, the objective of this study was to determine the effect of storage temperature and time on blue cheese mechanical behaviors. Blue cheeses were stored at 4 or 10°C for 77 days after production. Composition and small- and large-strain rheological behaviors were evaluated every 2 weeks of storage. Storage time had significant impact on blue cheese rheological behaviors; storage temperature did not. Large-strain compressive force and viscoelastic moduli decreased with storage time, and the extent of nonlinear viscoelastic behavior increased. These results indicated that sample microstructure likely weakened and was more easily deformed as storage time increased. Overall, blue cheese can be stored at 4-10°C without significant changes to its composition or mechanical behavior. The results of this work can be used by blue cheese manufacturers to better understand the impact of storage time and temperature on blue cheese end quality. Manufacturers can take advantage of the effects of storage time on blue cheese mechanical behaviors to determine how long to age blue cheese to achieve the desired texture. © 2017 Wiley Periodicals, Inc.
Iterative and variational homogenization methods for filled elastomers
NASA Astrophysics Data System (ADS)
Goudarzi, Taha
Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly bonded or bonded through finite size interphases) at finite concentrations. Three-dimensional finite element simulations are also carried out to gain further insight into the proposed theoretical solutions. Inter alia, we make use of these solutions to examine the effects of particle concentration, mono- and poly-dispersity of the filler particle size, and the presence of finite size interphases on the macroscopic response of filled elastomers. The solutions are found able to explain and describe experimental results that to date have been understood only in part. More generally, the solutions provide a robust tool to efficiently guide the design of filled elastomers with desired macroscopic properties. The homogenization techniques developed in this work are not limited to nonlinear elasticity, but can be readily utilized to study multi-functional properties as well. For demonstration purposes, we work out a novel exact solution for the macroscopic dielectric response of filled elastomers with interphasial space charges.
NASA Astrophysics Data System (ADS)
Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.
2006-02-01
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology
Visual aftereffects and sensory nonlinearities from a single statistical framework
Laparra, Valero; Malo, Jesús
2015-01-01
When adapted to a particular scenery our senses may fool us: colors are misinterpreted, certain spatial patterns seem to fade out, and static objects appear to move in reverse. A mere empirical description of the mechanisms tuned to color, texture, and motion may tell us where these visual illusions come from. However, such empirical models of gain control do not explain why these mechanisms work in this apparently dysfunctional manner. Current normative explanations of aftereffects based on scene statistics derive gain changes by (1) invoking decorrelation and linear manifold matching/equalization, or (2) using nonlinear divisive normalization obtained from parametric scene models. These principled approaches have different drawbacks: the first is not compatible with the known saturation nonlinearities in the sensors and it cannot fully accomplish information maximization due to its linear nature. In the second, gain change is almost determined a priori by the assumed parametric image model linked to divisive normalization. In this study we show that both the response changes that lead to aftereffects and the nonlinear behavior can be simultaneously derived from a single statistical framework: the Sequential Principal Curves Analysis (SPCA). As opposed to mechanistic models, SPCA is not intended to describe how physiological sensors work, but it is focused on explaining why they behave as they do. Nonparametric SPCA has two key advantages as a normative model of adaptation: (i) it is better than linear techniques as it is a flexible equalization that can be tuned for more sensible criteria other than plain decorrelation (either full information maximization or error minimization); and (ii) it makes no a priori functional assumption regarding the nonlinearity, so the saturations emerge directly from the scene data and the goal (and not from the assumed function). It turns out that the optimal responses derived from these more sensible criteria and SPCA are consistent with dysfunctional behaviors such as aftereffects. PMID:26528165
NASA Astrophysics Data System (ADS)
Rasal, Y. B.; Shaikh, R. N.; Shirsat, M. D.; Kalainathan, S.; Hussaini, S. S.
2017-03-01
A single crystal of bis-thiourea nickel nitrate (BTNN) doped potassium dihydrogen phosphate (KDP) has been grown from solution at room temperature by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal x-ray diffraction analysis. The different functional groups of the grown crystal were confirmed using Fourier transform infrared analysis. The improved optical parameters of the grown crystal have been evaluated in the range of 200-900 nm using UV-visible spectral analysis. The grown crystal was transparent in the entire visible region and the band gap value was found to be 4.96 eV. The influence of BTNN on the third order nonlinear optical properties of KDP crystal has been investigated by means of the Z-scan technique. The second harmonic generation (SHG) efficiency of grown crystal measured using a Nd-YAG laser is 1.98 times higher than that of pure KDP. The third order nonlinear optical susceptibility (χ 3) and nonlinear absorption coefficient (β) of BTNN doped KDP crystal is found to be 1.77 × 10-5 esu and 5.57 × 10-6 cm W-1 respectively. The laser damage threshold (LDT) energy for the grown crystal has been measured by using a Q-switched Nd:YAG laser source. The bis-thiourea nickel nitrate shows authoritative impact on the dielectric properties of doped crystal. The influence of bis-thiourea nickel nitrate on the mechanical behavior of KDP crystal has been investigated using Vickers microhardness intender. The thermal behavior of BTNN doped KDP crystal has been analyzed by TGA/DTA analysis.
The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin
NASA Astrophysics Data System (ADS)
Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.
2017-04-01
Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.
NASA Technical Reports Server (NTRS)
Assaad, Mahmoud; Arnold, Steven M.
1999-01-01
A special class of composite laminates composed of soft rubbery matrices and stiff reinforcements made of steel wires or synthetic fibers is examined, where each constituent behaves in a nonlinear fashion even in the small strain domain. Composite laminates made of piles stacked at alternating small orientation angles with respect to the applied axial strain are primarily dominated by the nonlinear behavior of the reinforcing fibers. However; composites with large ply orientations or those perpendicular to the loading axis, will approximate the behavior of the matrix phase and respond in even a more complex fashion for arbitrarily stacked piles. The geometric nonlinearity due to small cord rotations during loading was deemed here to have a second order effect and consequently dropped from any consideration. The user subroutine USRMAT within the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC), was utilized to introduce the constituent material nonlinear behavior. Stress-strain behavior at the macro level was experimentally generated for single and multi ply composites comprised of continuous Nylon-66 reinforcements embedded in a carbon black loaded rubbery matrix. Comparisons between the predicted macro composite behavior and experimental results are excellent when material nonlinearity is included in the analysis. In this paper, a brief review of GMC is provided, along with a description of the nonlinear behavior of the constituents and associated constituent constitutive relations, and the improved macro (or composite) behavior predictions are documented and illustrated.
METCAN: The metal matrix composite analyzer
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Murthy, Pappu L. N.
1988-01-01
Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective
NASA Technical Reports Server (NTRS)
Newman, James C., Jr.
1997-01-01
The seventh Jerry L. Swedlow Memorial Lecture presents a review of some of the technical developments, that have occurred during the past 40 years, which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of 'crack propagation.' As methods to observe the 'fatigue' process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by 'crack size.' In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading, conditions. These mechanisms have also provided a rationale for developing, new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified 'fatigue' and 'fracture mechanics' concepts; and has bridged the cap between safe-life and durability/damage-tolerance design concepts.
Nonlinear dynamics and numerical uncertainties in CFD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.
Nonlinear analysis of a rotor-bearing system using describing functions
NASA Astrophysics Data System (ADS)
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
Chen, Yen-Yin; Chen, Weng-Pin; Chang, Hao-Hueng; Huang, Shih-Hao; Lin, Chun-Pin
2014-02-01
The aim of this study was to develop a novel dental implant abutment with a micro-motion mechanism that imitates the biomechanical behavior of the periodontal ligament, with the goal of increasing the long-term survival rate of dental implants. Computer-aided design software was used to design a novel dental implant abutment with an internal resilient component with a micro-motion capability. The feasibility of the novel system was investigated via finite element analysis. Then, a prototype of the novel dental implant abutment was fabricated, and the mechanical behavior was evaluated. The results of the mechanical tests and finite element analysis confirmed that the novel dental implant abutment possessed the anticipated micro-motion capability. Furthermore, the nonlinear force-displacement behavior apparent in this micro-motion mechanism imitated the movement of a human tooth. The slope of the force-displacement curve of the novel abutment was approximately 38.5 N/mm before the 0.02-mm displacement and approximately 430 N/mm after the 0.03-mm displacement. The novel dental implant abutment with a micro-motion mechanism actually imitated the biomechanical behavior of a natural tooth and provided resilient function, sealing, a non-separation mechanism, and ease-of-use. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Cochlear compression: perceptual measures and implications for normal and impaired hearing.
Oxenham, Andrew J; Bacon, Sid P
2003-10-01
This article provides a review of recent developments in our understanding of how cochlear nonlinearity affects sound perception and how a loss of the nonlinearity associated with cochlear hearing impairment changes the way sounds are perceived. The response of the healthy mammalian basilar membrane (BM) to sound is sharply tuned, highly nonlinear, and compressive. Damage to the outer hair cells (OHCs) results in changes to all three attributes: in the case of total OHC loss, the response of the BM becomes broadly tuned and linear. Many of the differences in auditory perception and performance between normal-hearing and hearing-impaired listeners can be explained in terms of these changes in BM response. Effects that can be accounted for in this way include poorer audiometric thresholds, loudness recruitment, reduced frequency selectivity, and changes in apparent temporal processing. All these effects can influence the ability of hearing-impaired listeners to perceive speech, especially in complex acoustic backgrounds. A number of behavioral methods have been proposed to estimate cochlear nonlinearity in individual listeners. By separating the effects of cochlear nonlinearity from other aspects of hearing impairment, such methods may contribute towards identifying the different physiological mechanisms responsible for hearing loss in individual patients. This in turn may lead to more accurate diagnoses and more effective hearing-aid fitting for individual patients. A remaining challenge is to devise a behavioral measure that is sufficiently accurate and efficient to be used in a clinical setting.
Inducing in situ, nonlinear soil response applying an active source
Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.
2009-01-01
[1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.
Nonlinear mechanics of composite materials with periodic microstructure
NASA Technical Reports Server (NTRS)
Jordan, E. H.; Walker, K. P.
1991-01-01
This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; ...
2015-01-20
Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less
NASA Astrophysics Data System (ADS)
Morgenstern Horing, Norman J.; Popov, Vyacheslav V.
2006-04-01
Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This ''conditioning'' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening.
NASA Astrophysics Data System (ADS)
Praturi, Divya Sri; Girimaji, Sharath
2017-11-01
Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.
An analytical study of the dual mass mechanical system stability
NASA Astrophysics Data System (ADS)
Nikolov, Svetoslav; Sinapov, Petko; Kralov, Ivan; Ignatov, Ignat
2011-12-01
In this paper an autonomous, nonlinear model of five ordinary differential equations modeling the motion of a dual mass mechanical system with universal joint is studied. The model is investigated qualitatively. On the base of the stability analysis performed, we obtain that the system is: i) in an equilibrium state, or ii) in a structurally unstable behavior when equilibrium states disappear. In case (i) the system is in a normal technical condition and in case (ii) hard break-downs take place.
Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids.
Moocarme, M; Domínguez-Juárez, J L; Vuong, L T
2014-03-12
Magneto-plasmonics is a designation generally associated with ferromagnetic-plasmonic materials because such optical responses from nonmagnetic materials alone are considered weak. Here, we show that there exists a switching transition between linear and nonlinear magneto-optical behaviors in noble-metal nanocolloids that is observable at ultralow illumination intensities and direct current magnetic fields. The response is attributed to polarization-dependent nonzero-time-averaged plasmonic loops, vortex power flows, and nanoparticle magnetization. This work identifies significant mechanical effects that subsequently exist via magnetic-dipole interactions.
Nonlinear Developmental trajectory of fear learning and memory
King, Elizabeth C.; Pattwell, Siobhan S.; Sun, Alice; Glatt, Charles E.; Lee, Francis S.
2013-01-01
The transition into and out of adolescence represents a unique developmental period during which neuronal circuits are particularly susceptible to modification by experience. Adolescence is associated with an increased incidence of anxiety disorders in humans,1–3 and an estimated 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents.4,5 Conserved neural circuitry between rodents and humans has facilitated neurodevelopmental studies of behavioral and molecular processes associated with fear learning and memory, which lie at the heart of many anxiety disorders. Here, we review the non-linear developmental aspects of fear learning and memory during a transition period into and out of adolescence and provide a discussion of the molecular mechanisms that may underlie these alterations in behavior. We provide a model that may help to inform novel treatment strategies for children and adolescents with fear-related disorders. PMID:24176014
The viscoelastic behavior of notched glassy polymers
NASA Technical Reports Server (NTRS)
Crook, R. A.; Letton, Alan
1993-01-01
In the bulk, glassy polymers exhibit a nonlinear viscoelastic response during deformation. Stress or strain induced damage (i.e. crazing, microshear banding) results in the production of nonrecoverable work and observed nonlinearity. Stress or strain dependent shift factors have been used to mathematically model the mechanical behavior of these polymers. Glassy polymers that have been notched, may exhibit very different load displacement response compared to the same material under bulk deformation. If a sharp notch is introduced into the body then loaded, the load displacement trace may appear to be single-valued in the absence of viscoelasticity and crack growth. This suggests the volume of damaged material is small compared to the overall dimensions of the specimen. The ability to produce a single-valued load-load-line displacement trace through the use of the Correspondence Principle may prove to be useful for fracture of viscoelastic materials.
The Role of Network Architecture in Collagen Mechanics.
Jansen, Karin A; Licup, Albert J; Sharma, Abhinav; Rens, Robbie; MacKintosh, Fred C; Koenderink, Gijsje H
2018-06-05
Collagen forms fibrous networks that reinforce tissues and provide an extracellular matrix for cells. These networks exhibit remarkable strain-stiffening properties that tailor the mechanical functions of tissues and regulate cell behavior. Recent models explain this nonlinear behavior as an intrinsic feature of disordered networks of stiff fibers. Here, we experimentally validate this theoretical framework by measuring the elastic properties of collagen networks over a wide range of self-assembly conditions. We show that the model allows us to quantitatively relate both the linear and nonlinear elastic behavior of collagen networks to their underlying architecture. Specifically, we identify the local coordination number (or connectivity) 〈z〉 as a key architectural parameter that governs the elastic response of collagen. The network elastic response reveals that 〈z〉 decreases from 3.5 to 3 as the polymerization temperature is raised from 26 to 37°C while being weakly dependent on concentration. We furthermore infer a Young's modulus of 1.1 MPa for the collagen fibrils from the linear modulus. Scanning electron microscopy confirms that 〈z〉 is between three and four but is unable to detect the subtle changes in 〈z〉 with polymerization conditions that rheology is sensitive to. Finally, we show that, consistent with the model, the initial stress-stiffening response of collagen networks is controlled by the negative normal stress that builds up under shear. Our work provides a predictive framework to facilitate future studies of the regulatory effect of extracellular matrix molecules on collagen mechanics. Moreover, our findings can aid mechanobiological studies of wound healing, fibrosis, and cancer metastasis, which require collagen matrices with tunable mechanical properties. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Vibration of mechanically-assembled 3D microstructures formed by compressive buckling
NASA Astrophysics Data System (ADS)
Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang
2018-03-01
Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.
NASA Astrophysics Data System (ADS)
Chen, Q.; Sun, F.; Li, Z. Y.; Taxis, L.; Pugno, N.
2017-10-01
Combining the elastica theory, finite element (FE) analysis, and a geometrical topological experiment, we studied the mechanical behavior of a ring subjected to multi-pairs of evenly distributed equal radial forces by looking at its seven distinct states. The results showed that the theoretical predictions of the ring deformation and strain energy matched the FE results very well, and that the ring deformations were comparable to the topological experiment. Moreover, no matter whether the ring was compressed or tensioned by N-pairs of forces, the ring always tended to be regular polygons with 2 N sides as the force increased, and a proper compressive force deformed the ring into exquisite flower-like patterns. The present study solves a basic mechanical problem of a ring subjected to lateral forces, which can be useful for studying the relevant mechanical behavior of ring structures from the nano- to the macro-scale.
NASA Technical Reports Server (NTRS)
Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.
2008-01-01
The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.
Self-Powered Temperature-Mapping Sensors Based on Thermo-Magneto-Electric Generator.
Chun, Jinsung; Kishore, Ravi Anant; Kumar, Prashant; Kang, Min-Gyu; Kang, Han Byul; Sanghadasa, Mohan; Priya, Shashank
2018-04-04
We demonstrate a thermo-magneto-electric generator (TMEG) based on second-order phase transition of soft magnetic materials that provides a promising pathway for scavenging low-grade heat. It takes advantage of the cyclic magnetic forces of attraction and repulsion arising through ferromagnetic-to-paramagnetic phase transition to create mechanical vibrations that are converted into electricity through piezoelectric benders. To enhance the mechanical vibration frequency and thereby the output power of the TMEG, we utilize the nonlinear behavior of piezoelectric cantilevers and enhanced thermal transport through silver (Ag) nanoparticles (NPs) applied on the surface of a soft magnet. This results in large enhancement of the oscillation frequency reaching up to 9 Hz (300% higher compared with that of the prior literature). Optimization of the piezoelectric beam and Ag NP distribution resulted in the realization of nonlinear TMEGs that can generate a high output power of 80 μW across the load resistance of 0.91 MΩ, which is 2200% higher compared with that of the linear TMEG. Using a nonlinear TMEG, we fabricated and evaluated self-powered temperature-mapping sensors for monitoring the thermal variations across the surface. Combined, our results demonstrate that nonlinear TMEGs can provide additional functionality including temperature monitoring, thermal mapping, and powering sensor nodes.
Rheological behaviors of doughs reconstituted from wheat gluten and starch.
Yang, Yanyan; Song, Yihu; Zheng, Qiang
2011-08-01
Hydrated starch-gluten reconstituted doughs were prepared and dynamic rheological tests of the reconstituted doughs were performed using dynamic strain and dynamic frequency sweep modes. Influence of starch/gluten ratio on rheological behaviors of the reconstituted doughs was investigated. The results showed that the reconstituted doughs exhibited nonlinear rheological behavior with increasing strain. The mechanical spectra revealed predominantly elastic characteristics in frequency range from 10(-1) rad s(-1) to 10(2) rad s(-1). Cole-Cole functions were applied to fit the mechanical spectra to reveal the influence of starch/gluten ratio on Plateau modulus and longest relaxation time of the dough network. The time-temperature superposition principle was applicable to a narrow temperature range of 25°C ~40°C while it failed at 50°C due to swelling and gelatinization of the starch.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H., Jr.
2002-01-01
The results of an analytical study of the elastic buckling and nonlinear behavior of the liquid-oxygen tank for the new Space Shuttle superlightweight external fuel tank are presented. Selected results that illustrate three distinctly different types of non-linear response phenomena for thin-walled shells which are subjected to combined mechanical and thermal loads are presented. These response phenomena consist of a bifurcation-type buckling response, a short-wavelength non-linear bending response and a non-linear collapse or "snap-through" response associated with a limit point. The effects of initial geometric imperfections on the response characteristics are emphasized. The results illustrate that the buckling and non-linear response of a geometrically imperfect shell structure subjected to complex loading conditions may not be adequately characterized by an elastic linear bifurcation buckling analysis, and that the traditional industry practice of applying a buckling-load knock-down factor can result in an ultraconservative design. Results are also presented that show that a fluid-filled shell can be highly sensitive to initial geometric imperfections, and that the use a buckling-load knock-down factor is needed for this case.
NASA Astrophysics Data System (ADS)
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Further Results of Soft-Inplane Tiltrotor Aeromechanics Investigation Using Two Multibody Analyses
NASA Technical Reports Server (NTRS)
Masarati, Pierangelo; Quaranta, Giuseppe; Piatak, David J.; Singleton, Jeffrey D.
2004-01-01
This investigation focuses on the development of multibody analytical models to predict the dynamic response, aeroelastic stability, and blade loading of a soft-inplane tiltrotor wind-tunnel model. Comprehensive rotorcraft-based multibody analyses enable modeling of the rotor system to a high level of detail such that complex mechanics and nonlinear effects associated with control system geometry and joint deadband may be considered. The influence of these and other nonlinear effects on the aeromechanical behavior of the tiltrotor model are examined. A parametric study of the design parameters which may have influence on the aeromechanics of the soft-inplane rotor system are also included in this investigation.
Coupled Multi-physics analysis of Caprock Integrity and Fault Reactivation during CO2 Sequestration*
NASA Astrophysics Data System (ADS)
Newell, P.; Martinez, M. J.; Bishop, J.
2012-12-01
Structural/stratigraphic trapping beneath a low-permeable caprock layer is the primary trapping mechanism for long-term subsurface sequestration of CO2. Pre-existing fracture networks, injection induced fractures, and faults are of concern for possible CO2 leakage both during and after injection. In this work we model the effects of both caprock jointing and a fault on the caprock sealing integrity during various injection scenarios. The modeling effort uses a three-dimensional finite-element based coupled multiphase flow and geomechanics simulator. The joints within the caprock are idealized as equally spaced and parallel. Both the mechanical and flow behavior of the joint network are treated within an effective continuum formulation. The mechanical behavior of the joint network is linear elastic in shear and nonlinear elastic in the normal direction. The flow behavior of the joint network is treated using the classical cubic-law relating flow rate and aperture. The flow behavior is then upscaled to obtain an effective permeability. The fault is modeled as a finite-thickness layer with multiple joint sets. The joint sets within the fault region are modeled following the same mechanical and flow formulation as the joints within the caprock. Various injection schedules as well as fault and caprock jointing configurations within a proto-typical sequestration site have been investigated. The resulting leakage rates through the caprock and fault are compared to those assuming intact material. The predicted leakage rates are a strong nonlinear function of the injection rate. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change
NASA Technical Reports Server (NTRS)
Liu, H. S.
1998-01-01
This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.
Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.
Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y
2015-11-06
Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.
Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink
NASA Astrophysics Data System (ADS)
Gourc, E.; Seguy, S.; Michon, G.; Berlioz, A.; Mann, B. P.
2015-10-01
This paper investigates the passive control of chatter instability in turning processes using a vibro-impact nonlinear energy sink (NES). The workpiece is assumed to be rigid and the tool is flexible. A dynamical model including a nonlinear cutting law is presented and the stability lobes diagram is obtained. The behavior of the system with the vibro-impact NES is investigated using an asymptotic analysis. A control mechanism by successive beating is revealed, similarly to the strongly modulated response in the case of NES with cubic stiffness. It is shown that such a response regime may be beneficial for chatter mitigation. An original experimental procedure is proposed to verify the sizing of the vibro-impact NES. An experimental setup is developed with a vibro-impact NES embedded on the lathe tool and the results are analyzed and validated.
2007-05-04
TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic
Influence of combined fundamental potentials in a nonlinear vibration energy harvester
NASA Astrophysics Data System (ADS)
Podder, Pranay; Mallick, Dhiman; Amann, Andreas; Roy, Saibal
2016-11-01
Ambient mechanical vibrations have emerged as a viable energy source for low-power wireless sensor nodes aiming the upcoming era of the ‘Internet of Things’. Recently, purposefully induced dynamical nonlinearities have been exploited to widen the frequency spectrum of vibration energy harvesters. Here we investigate some critical inconsistencies between the theoretical formulation and applications of the bistable Duffing nonlinearity in vibration energy harvesting. A novel nonlinear vibration energy harvesting device with the capability to switch amidst individually tunable bistable-quadratic, monostable-quartic and bistable-quartic potentials has been designed and characterized. Our study highlights the fundamentally different large deflection behaviors of the theoretical bistable-quartic Duffing oscillator and the experimentally adapted bistable-quadratic systems, and underlines their implications in the respective spectral responses. The results suggest enhanced performance in the bistable-quartic potential in comparison to others, primarily due to lower potential barrier and higher restoring forces facilitating large amplitude inter-well motion at relatively lower accelerations.
Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone
Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; ...
2016-04-14
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less
Lu, Tao
2016-01-01
The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.
Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach
NASA Astrophysics Data System (ADS)
Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich
2018-04-01
Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.
Some Aspects of Nonlinear Dynamics and CFD
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Merriam, Marshal (Technical Monitor)
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.
An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.
Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen
2018-06-01
This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia
2014-02-01
How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.
Emergent structure-function relations in emphysema and asthma.
Winkler, Tilo; Suki, Béla
2011-01-01
Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.
Equilibrium softening of an enzyme explored with the DNA spring
NASA Astrophysics Data System (ADS)
Tseng, Chiao-Yu; Zocchi, Giovanni
2014-04-01
We explore enzyme mechanics using a system of two mechanically coupled biomolecules. Measurements of the mechanical modulation of enzymatic activity in a Luciferase—DNA chimera are presented. These are molecules where the enzyme is deformed by the action of a DNA spring. The response of the enzyme for different states of stress is examined. It is found that small changes in the stress cause large changes in activity. This nonlinear behavior is qualitatively interpreted as arising from a soft regime of the enzyme beyond linear elasticity. This soft regime may enable large conformational motion in enzymes.
Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix.
Babaei, Behzad; Velasquez-Mao, A J; Pryse, Kenneth M; McConnaughey, William B; Elson, Elliot L; Genin, Guy M
2018-05-21
Characterizing how a tissue's constituents give rise to its viscoelasticity is important for uncovering how hidden timescales underlie multiscale biomechanics. These constituents are viscoelastic in nature, and their mechanics must typically be assessed from the uniaxial behavior of a tissue. Confounding the challenge is that tissue viscoelasticity is typically associated with nonlinear elastic responses. Here, we experimentally assessed how fibroblasts and extracellular matrix (ECM) within engineered tissue constructs give rise to the nonlinear viscoelastic responses of a tissue. We applied a constant strain rate, "triangular-wave" loading and interpreted responses using the Fung quasi-linear viscoelastic (QLV) material model. Although the Fung QLV model has several well-known weaknesses, it was well suited to the behaviors of the tissue constructs, cells, and ECM tested. Cells showed relatively high damping over certain loading frequency ranges. Analysis revealed that, even in cases where the Fung QLV model provided an excellent fit to data, the the time constant derived from the model was not in general a material parameter. Results have implications for design of protocols for the mechanical characterization of biological materials, and for the mechanobiology of cells within viscoelastic tissues. Copyright © 2018. Published by Elsevier Ltd.
Experimental and Analytical Studies for a Computational Materials Program
NASA Technical Reports Server (NTRS)
Knauss, W. G.
1999-01-01
The studies supported by Grant NAG1-1780 were directed at providing physical data on polymer behavior that would form the basis for computationally modeling these types of materials. Because of ongoing work in polymer characterization this grant supported part of a larger picture in this regard. Efforts went into two combined areas of their time dependent mechanical response characteristics: Creep properties on the one hand, subject to different volumetric changes (nonlinearly viscoelastic behavior) and time or frequency dependence of dilatational material behavior. The details of these endeavors are outlined sufficiently in the two appended publications, so that no further description of the effort is necessary.
Grey-box state-space identification of nonlinear mechanical vibrations
NASA Astrophysics Data System (ADS)
Noël, J. P.; Schoukens, J.
2018-05-01
The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.
DOE R&D Accomplishments Database
Prigogine, I.
1990-12-01
Our report contains a brief summary of what has been achieved over the period of the contract. We have studied the behavior of matter under nonequilibrium conditions on three levels: (1) on the microscopic level in the frame of classical mechanics or of quantum theory; (2) on the stochastic level, which includes fluctuations; and (3) on the phenomenological, macroscopic level described by nonlinear equations. We first report on the level (1), then report on the levels (2) and (3).
The merging of fatigue and fracture mechanics concepts: a historical perspective
NASA Astrophysics Data System (ADS)
Newman, J. C.
1998-07-01
In this review, some of the technical developments that have occurred during the past 40 years are presented which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of “crack propagation”. As methods to observe the “fatigue” process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by “crack size”. In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading conditions. These mechanisms have also provided a rationale for developing new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified “fatigue” and “fracture mechanics” concepts; and has bridged the gap between safe-life and durability/damage-tolerance design concepts.
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Size effects in non-linear heat conduction with flux-limited behaviors
NASA Astrophysics Data System (ADS)
Li, Shu-Nan; Cao, Bing-Yang
2017-11-01
Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.
NASA Astrophysics Data System (ADS)
Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi
2014-07-01
Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.
Kamenskiy, Alexey V.; Pipinos, Iraklis I.; MacTaggart, Jason N.; Jaffar Kazmi, Syed A.; Dzenis, Yuris A.
2011-01-01
Patch angioplasty is the most common technique used for the performance of carotid endarterectomy. A large number of patching materials are available for use while new materials are being continuously developed. Surprisingly little is known about the mechanical properties of these materials and how these properties compare with those of the carotid artery wall. Mismatch of the mechanical properties can produce mechanical and hemodynamic effects that may compromise the long-term patency of the endarterectomized arterial segment. The aim of this paper was to systematically evaluate and compare the biaxial mechanical behavior of the most commonly used patching materials. We compared PTFE (n = 1), Dacron (n = 2), bovine pericardium (n = 10), autogenous greater saphenous vein (n = 10), and autogenous external jugular vein (n = 9) with the wall of the common carotid artery (n = 18). All patching materials were found to be significantly stiffer than the carotid wall in both the longitudinal and circumferential directions. Synthetic patches demonstrated the most mismatch in stiffness values and vein patches the least mismatch in stiffness values compared to those of the native carotid artery. All biological materials, including the carotid artery, demonstrated substantial nonlinearity, anisotropy, and variability; however, the behavior of biological and biologically-derived patches was both qualitatively and quantitatively different from the behavior of the carotid wall. The majority of carotid arteries tested were stiffer in the circumferential direction, while the opposite anisotropy was observed for all types of vein patches and bovine pericardium. The rates of increase in the nonlinear stiffness over the physiological stress range were also different for the carotid and patching materials. Several carotid wall samples exhibited reverse anisotropy compared to the average behavior of the carotid tissue. A similar characteristic was observed for two of 19 vein patches. The obtained results quantify, for the first time, significant mechanical dissimilarity of the currently available patching materials and the carotid artery. The results can be used as guidance for designing more efficient patches with mechanical properties resembling those of the carotid wall. The presented systematic comparative mechanical analysis of the existing patching materials provides valuable information for patch selection in the daily practice of carotid surgery and can be used in future clinical studies comparing the efficacy of different patches in the performance of carotid endarterectomy. PMID:22168740
NASA Astrophysics Data System (ADS)
Chen, Shu-Peng; He, Ling-Yun
2010-04-01
Based on Partition Function and Multifractal Spectrum Analysis, we investigated the nonlinear dynamical mechanisms in China’s agricultural futures markets, namely, Dalian Commodity Exchange (DCE for short) and Zhengzhou Commodity Exchange (ZCE for short), where nearly all agricultural futures contracts are traded in the two markets. Firstly, we found nontrivial multifractal spectra, which are the empirical evidence of the existence of multifractal features, in 4 representative futures markets in China, that is, Hard Winter wheat (HW for short) and Strong Gluten wheat (SG for short) futures markets from ZCE and Soy Meal (SM for short) futures and Soy Bean No.1 (SB for short) futures markets from DCE. Secondly, by shuffling the original time series, we destroyed the underlying nonlinear temporal correlation; thus, we identified that long-range correlation mechanism constitutes major contributions in the formation in the multifractals of the markets. Thirdly, by tracking the evolution of left- and right-half spectra, we found that there exist critical points, between which there are different behaviors, in the left-half spectra for large price fluctuations; but for the right-hand spectra for small price fluctuations, the width of those increases slowly as the delay t increases in the long run. Finally, the dynamics of large fluctuations is significantly different from that of the small ones, which implies that there exist different underlying mechanisms in the formation of multifractality in the markets. Our main contributions focus on that we not only provided empirical evidence of the existence of multifractal features in China agricultural commodity futures markets; but also we pioneered in investigating the sources of the multifractality in China’s agricultural futures markets in current literature; furthermore, we investigated the nonlinear dynamical mechanisms based on spectrum analysis, which offers us insights into the underlying dynamical mechanisms in China’s agricultural futures markets.
Visuomotor Transformations Underlying Hunting Behavior in Zebrafish
Bianco, Isaac H.; Engert, Florian
2015-01-01
Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638
Visuomotor transformations underlying hunting behavior in zebrafish.
Bianco, Isaac H; Engert, Florian
2015-03-30
Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
Masson, Ingrid; Beaussier, Hélène; Boutouyrie, Pierre; Laurent, Stéphane; Humphrey, Jay D; Zidi, Mustapha
2011-12-01
The goal of this study was to model the in vivo non-linear mechanical behavior of human common carotid arteries (CCAs) and then to compare wall stresses and associated contributions of micro-constituents in normotensive (NT) and treated hypertensive (HT) subjects. We used an established theoretical model of 3D arterial mechanics that assumes a hyperelastic, anisotropic, active-passive, and residually stressed wall. In vivo data were obtained non-invasively from CCAs in 16 NT (21-64 years old) and 25 treated HT (44-69 years old) subjects. The associated quasi-static boundary value problem was solved semi-analytically over a cardiac cycle while accounting for surrounding perivascular tissue. Best-fit values of model parameters, including those describing contributions by intramural elastin, fibrillar collagen, and vascular smooth muscle, were estimated by a non-linear least-squares method. The model (1) captured temporal changes in intraluminal pressure, (2) estimated wall stress fields that appeared to reflect the presence or absence of age and disease, and (3) suggested changes in mechanical characteristics of wall micro-constituents despite medical treatment of hypertension. For example, age was positively correlated with residual stresses and altered fibrillar collagen in NT subjects, which indirectly validated the modeling, and HT subjects had higher levels of stresses, increased smooth muscle tone, and a stiffer elastin-dominated matrix despite treatment. These results are consistent with prior reports on effects of age and hypertension, but provide increased insight into evolving contributions of cell and matrix mechanics to arterial behavior in vivo.
NASA Astrophysics Data System (ADS)
Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.
2018-01-01
This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.
Symons, Jennifer E; Fyhrie, David P; Hawkins, David A; Upadhyaya, Shrinivasa K; Stover, Susan M
2015-02-26
Race surfaces have been associated with the incidence of racehorse musculoskeletal injury, the leading cause of racehorse attrition. Optimal race surface mechanical behaviors that minimize injury risk are unknown. Computational models are an economical method to determine optimal mechanical behaviors. Previously developed equine musculoskeletal models utilized ground reaction floor models designed to simulate a stiff, smooth floor appropriate for a human gait laboratory. Our objective was to develop a computational race surface model (two force-displacement functions, one linear and one nonlinear) that reproduced experimental race surface mechanical behaviors for incorporation in equine musculoskeletal models. Soil impact tests were simulated in a musculoskeletal modeling environment and compared to experimental force and displacement data collected during initial and repeat impacts at two racetracks with differing race surfaces - (i) dirt and (ii) synthetic. Best-fit model coefficients (7 total) were compared between surface types and initial and repeat impacts using a mixed model ANCOVA. Model simulation results closely matched empirical force, displacement and velocity data (Mean R(2)=0.930-0.997). Many model coefficients were statistically different between surface types and impacts. Principal component analysis of model coefficients showed systematic differences based on surface type and impact. In the future, the race surface model may be used in conjunction with previously developed the equine musculoskeletal models to understand the effects of race surface mechanical behaviors on limb dynamics, and determine race surface mechanical behaviors that reduce the incidence of racehorse musculoskeletal injury through modulation of limb dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evanescent radiation, quantum mechanics and the Casimir effect
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1989-01-01
An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.
Heterogeneous mechanics of the mouse pulmonary arterial network.
Lee, Pilhwa; Carlson, Brian E; Chesler, Naomi; Olufsen, Mette S; Qureshi, M Umar; Smith, Nicolas P; Sochi, Taha; Beard, Daniel A
2016-10-01
Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure-radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more physiologically realistic pressure versus radius relationship.
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555
Studies of central interactions of Si ions at 14.5 x A GeV/c in Au and Cu
NASA Astrophysics Data System (ADS)
Eiseman, S. E.; Etkin, A.; Foley, K. J.; Hackenburg, R. W.; Longacre, R. S.; Love, W. A.; Morris, T. W.; Platner, E. D.; Saulys, A. C.; Lindenbaum, S. J.
Understanding the growth and saturation of parametric instabilities in laser-produced plasmas requires knowledge of the nonlinear properties of the instabilities and their interaction with each other. Nonlinear behavior of parametric instabilities, which are usually associated with unique optical features, were evidenced in numerous experiments on a variety of laser facilities. Four examples of nonlinear behavior in laser-produced plasmas are discussed: nonlinear stimulated Brillouin scattering spectra, suppression of stimulated Raman scattering by stimulated Brillouin scattering, the parametric decay instability and the onset of turbulence, and the transition to bursting behavior of the two-plasmon decay instability. Experiments are discussed that demonstrate the nonlinear effects which occur as a consequence.
Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations
NASA Astrophysics Data System (ADS)
Abdelkefi, Abdessattar
Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the effects of the linear spring coefficients and electrical load resistance on the flutter speed. Then, the normal form of the Hopf bifurcation ( utter) is derived to characterize the type of instability and determine the effects of the aerodynamic nonlinearities and the nonlinear coefficients of the springs on the system's stability near the bifurcation. This is useful to characterize the effects of different parameters on the system's output and ensure that subcritical or "catastrophic" bifurcation does not take place. Both linear and nonlinear analyses are then used to design and enhance the performance of these harvesters. In the last part, the concept of energy harvesting from vortex-induced vibrations of a circular cylinder is investigated. The power levels that can be generated from these vibrations and the variations of these levels with the freestream velocity are determined. A mathematical model that accounts for the coupled lift force, cylinder motion and generated voltage is presented. Linear analysis of the electromechanical model is performed to determine the effects of the electrical load resistance on the natural frequency of the rigid cylinder and the onset of the synchronization region. The impacts of the nonlinearities on the cylinder's response and energy harvesting are then investigated.
Research on the time-temperature-damage superposition principle of NEPE propellant
NASA Astrophysics Data System (ADS)
Han, Long; Chen, Xiong; Xu, Jin-sheng; Zhou, Chang-sheng; Yu, Jia-quan
2015-11-01
To describe the relaxation behavior of NEPE (Nitrate Ester Plasticized Polyether) propellant, we analyzed the equivalent relationships between time, temperature, and damage. We conducted a series of uniaxial tensile tests and employed a cumulative damage model to calculate the damage values for relaxation tests at different strain levels. The damage evolution curve of the tensile test at 100 mm/min was obtained through numerical analysis. Relaxation tests were conducted over a range of temperature and strain levels, and the equivalent relationship between time, temperature, and damage was deduced based on free volume theory. The equivalent relationship was then used to generate predictions of the long-term relaxation behavior of the NEPE propellant. Subsequently, the equivalent relationship between time and damage was introduced into the linear viscoelastic model to establish a nonlinear model which is capable of describing the mechanical behavior of composite propellants under a uniaxial tensile load. The comparison between model prediction and experimental data shows that the presented model provides a reliable forecast of the mechanical behavior of propellants.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
A preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity is presented. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. It is shown that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
Presented here is a preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. The authors show that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators
NASA Astrophysics Data System (ADS)
SoltanRezaee, Masoud; Ghazavi, Mohammad-Reza
2017-09-01
Electrostatically actuated miniature wires/tubes have many operational applications in the high-tech industries. In this research, the nonlinear pull-in instability of piezoelectric thermal small-scale switches subjected to Coulomb and dissipative forces is analyzed using strain gradient and modified couple stress theories. The discretized governing equation is solved numerically by means of the step-by-step linearization method. The correctness of the formulated model and solution procedure is validated through comparison with experimental and several theoretical results. Herein, the length-scale, surface energy, van der Waals attraction and nonlinear curvature are considered in the present comprehensive model and the thermo-electro-mechanical behavior of cantilever piezo-beams are discussed in detail. It is found that the piezoelectric actuation can be used as a design parameter to control the pull-in phenomenon. The obtained results are applicable in stability analysis, practical design and control of actuated miniature intelligent devices.
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.
Bianca, C; Lemarchand, A
2014-06-14
This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.
Recovery from nonlinear creep provides a window into physics of polymer glasses
NASA Astrophysics Data System (ADS)
Caruthers, James; Medvedev, Grigori
Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.
Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics
NASA Astrophysics Data System (ADS)
Wang, Min; Wang, Jun
A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.
Reduced-Volume Fracture Toughness Characterization for Transparent Polymers
2015-03-21
Caruthers et al. (2004) developed a thermodynamically consistent, nonlinear viscoelastic bulk constitutive model based on a potential energy clock ( PEC ...except that relaxation times change. Because of its formulation, the PEC model predicts mechanical yield as a natural consequence of relaxation...softening type of behavior, but hysteresis effects are not naturally accounted for. Adolf et al. (2009) developed a method of simplifying the PEC model
1989-03-31
present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL
Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.
Setoodeh, A R; Farahmand, H
2018-01-24
In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.
A nonlinear dynamics of trunk kinematics during manual lifting tasks.
Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin
2015-01-01
Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.
On the geometrically nonlinear elastic response of class θ = 1 tensegrity prisms
NASA Astrophysics Data System (ADS)
Mascolo, Ida; Amendola, Ada; Zuccaro, Giulio; Feo, Luciano; Fraternali, Fernando
2018-03-01
The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Jardin, Stephen C.; Guenter, Sibylle; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika; Ferraro, Nate
2017-10-01
3D nonlinear MHD simulations of tokamak plasmas have been performed in toroidal geometry by means of the high-order finite element code M3D-C1. The simulations are set up such that the safety factor on axis (q0) is driven towards values below unity. As reported in and the resulting asymptotic states either exhibit sawtooth-like reconnection cycling or they are sawtooth-free. In the latter cases, a self-regulating magnetic flux pumping mechanism, mainly provided by a saturated quasi-interchange instability via a dynamo effect, redistributes the central current density so that the central safety factor profile is flat and q0 1 . Sawtoothing is prevented if β is sufficiently high to allow for the necessary amount of flux pumping to counterbalance the tendency of the current density profile to centrally peak. We present the results of 3D nonlinear simulations based on specific types of experimental discharges and analyze their asymptotic behavior. A set of cases is presented where aspects of the current ramp-up phase of Hybrid ASDEX Upgrade discharges are mimicked. Another set of simulations is based on low-qedge discharges in DIII-D.
NASA Astrophysics Data System (ADS)
Dolev, A.; Bucher, I.
2018-04-01
Mechanical or electromechanical amplifiers can exploit the high-Q and low noise features of mechanical resonance, in particular when parametric excitation is employed. Multi-frequency parametric excitation introduces tunability and is able to project weak input signals on a selected resonance. The present paper addresses multi degree of freedom mechanical amplifiers or resonators whose analysis and features require treatment of the spatial as well as temporal behavior. In some cases, virtual electronic coupling can alter the given topology of the resonator to better amplify specific inputs. An analytical development is followed by a numerical and experimental sensitivity and performance verifications, illustrating the advantages and disadvantages of such topologies.
The influence of and the identification of nonlinearity in flexible structures
NASA Technical Reports Server (NTRS)
Zavodney, Lawrence D.
1988-01-01
Several models were built at NASA Langley and used to demonstrate the following nonlinear behavior: internal resonance in a free response, principal parametric resonance and subcritical instability in a cantilever beam-lumped mass structure, combination resonance in a parametrically excited flexible beam, autoparametric interaction in a two-degree-of-freedom system, instability of the linear solution, saturation of the excited mode, subharmonic bifurcation, and chaotic responses. A video tape documenting these phenomena was made. An attempt to identify a simple structure consisting of two light-weight beams and two lumped masses using the Eigensystem Realization Algorithm showed the inherent difficulty of using a linear based theory to identify a particular nonlinearity. Preliminary results show the technique requires novel interpretation, and hence may not be useful for structural modes that are coupled by a guadratic nonlinearity. A literature survey was also completed on recent work in parametrically excited nonlinear system. In summary, nonlinear systems may possess unique behaviors that require nonlinear identification techniques based on an understanding of how nonlinearity affects the dynamic response of structures. In this was, the unique behaviors of nonlinear systems may be properly identified. Moreover, more accutate quantifiable estimates can be made once the qualitative model has been determined.
NASA Astrophysics Data System (ADS)
Kamali, M.; Shamsi, M.; Saidi, A. R.
2018-03-01
As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.
The Precession Index and a Nonlinear Energy Balance Climate Model
NASA Technical Reports Server (NTRS)
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.
Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A
1998-12-01
In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The results corroborate earlier findings with phenacetin. The similar pattern shown by the drugs studied suggests that the nonlinear enthalpy-entropy compensation effect may be characteristic of the solubility of semipolar drugs in dioxane-water mixtures.
Bechtel, William; Abrahamsen, Adele
2010-09-01
We consider computational modeling in two fields: chronobiology and cognitive science. In circadian rhythm models, variables generally correspond to properties of parts and operations of the responsible mechanism. A computational model of this complex mechanism is grounded in empirical discoveries and contributes a more refined understanding of the dynamics of its behavior. In cognitive science, on the other hand, computational modelers typically advance de novo proposals for mechanisms to account for behavior. They offer indirect evidence that a proposed mechanism is adequate to produce particular behavioral data, but typically there is no direct empirical evidence for the hypothesized parts and operations. Models in these two fields differ in the extent of their empirical grounding, but they share the goal of achieving dynamic mechanistic explanation. That is, they augment a proposed mechanistic explanation with a computational model that enables exploration of the mechanism's dynamics. Using exemplars from circadian rhythm research, we extract six specific contributions provided by computational models. We then examine cognitive science models to determine how well they make the same types of contributions. We suggest that the modeling approach used in circadian research may prove useful in cognitive science as researchers develop procedures for experimentally decomposing cognitive mechanisms into parts and operations and begin to understand their nonlinear interactions.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.
Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina
Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925
Network reconfiguration and neuronal plasticity in rhythm-generating networks.
Koch, Henner; Garcia, Alfredo J; Ramirez, Jan-Marino
2011-12-01
Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short- and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.
NASA Technical Reports Server (NTRS)
Dubowsky, Steven
1989-01-01
An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.
Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels
Nam, Sungmin; Hu, Kenneth H.; Chaudhuri, Ovijit
2016-01-01
The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction. PMID:27140623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu
2015-09-28
The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods
NASA Astrophysics Data System (ADS)
Shi, Jialiang; Wang, Qiuwei
To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.
A chaos wolf optimization algorithm with self-adaptive variable step-size
NASA Astrophysics Data System (ADS)
Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun
2017-10-01
To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.
Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering
NASA Astrophysics Data System (ADS)
Maiden, M. D.; Bookman, L. D.; Hoefer, M. A.
2014-05-01
The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.
Signal and noise extraction from analog memory elements for neuromorphic computing.
Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T
2018-05-29
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
Levillain, A; Orhant, M; Turquier, F; Hoc, T
2016-08-01
The linea alba is a complex structure commonly involved in hernia formation. Knowledge of its mechanical behavior is essential to design suitable meshes and reduce the risk of recurrence. The aim of this study was to investigate the relationships between the mechanical properties of the linea alba and the organization of collagen and elastin fibers. For that purpose, longitudinal and transversal samples were removed from four porcine and three human linea alba, to perform tensile tests under a biphotonic confocal microscope, in each direction. Microscopic observation revealed a tissue composed of two layers, made of transversal collagen fibers in the dorsal side and oblique collagen fibers in the ventral side. This particular architecture led to an anisotropic mechanical behavior, with higher stress in the transversal direction. During loading, oblique fibers of the ventral layer reoriented toward the tensile axis in both directions, while fibers of the dorsal layer remained in the transversal direction. This rotation of oblique fibers progressively increased the stiffness of the tissue and induced a non-linear stress-stretch relation. Elastin fibers formed a layer covering the collagen fibers and followed their movement, suggesting that they ensure their elastic recoil. All of these results demonstrated the strong relationships between the microstructure and the mechanical behavior of the linea alba. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brain regulation of food craving: relationships with weight status and eating behavior.
Dietrich, A; Hollmann, M; Mathar, D; Villringer, A; Horstmann, A
2016-06-01
Food craving is a driving force for overeating and obesity. However, the relationship between brain mechanisms involved in its regulation and weight status is still an open issue. Gaps in the studied body mass index (BMI) distributions and focusing on linear analyses might have contributed to this lack of knowledge. Here, we investigated brain mechanisms of craving regulation using functional magnetic resonance imaging in a balanced sample including normal-weight, overweight and obese participants. We investigated associations between characteristics of obesity, eating behavior and regulatory brain function focusing on nonlinear relationships. Forty-three hungry female volunteers (BMI: 19.4-38.8 kg m(-2), mean: 27.5±5.3 s.d.) were presented with visual food stimuli individually pre-rated according to tastiness and healthiness. The participants were instructed to either admit to the upcoming craving or regulate it. We analyzed the relationships between regulatory brain activity as well as functional connectivity and BMI or eating behavior (Three-Factor Eating Questionnaire, scales: Cognitive Restraint, Disinhibition). During regulation, BMI correlated with brain activity in the left putamen, amygdala and insula in an inverted U-shaped manner. Functional connectivity between the putamen and the dorsolateral prefrontal cortex (dlPFC) correlated positively with BMI, whereas that of amygdala with pallidum and lingual gyrus was nonlinearly (U-shaped) associated with BMI. Disinhibition correlated negatively with the strength of functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex as well as caudate. This study is the first to reveal quadratic relationships of food-related brain processes and BMI. Reported nonlinear associations indicate inverse relationships between regulation-related motivational processing in the range of normal weight/overweight compared with the obese range. Connectivity analyses suggest that the need for top-down (dlPFC) adjustment of striatal value representations increases with BMI, whereas the interplay of self-monitoring (dmPFC) or eating-related strategic action planning (caudate) and salience processing (amygdala) might be hampered with high Disinhibition.
Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta.
Kim, Jungsil; Staiculescu, Marius Catalin; Cocciolone, Austin J; Yanagisawa, Hiromi; Mecham, Robert P; Wagenseil, Jessica E
2017-08-16
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln -/- ) or two key proteins (lysyl oxidase, Lox -/- , or fibulin-4, Fbln4 -/- ) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln -/- , Lox -/- , and Fbln4 -/- ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56-97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln -/- aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53-387% in Eln -/- , Lox -/- , and Fbln4 -/- aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta. Copyright © 2017 Elsevier Ltd. All rights reserved.
Period doubling induced by thermal noise amplification in genetic circuits
Ruocco, G.; Fratalocchi, A.
2014-01-01
Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise. PMID:25404210
Period doubling induced by thermal noise amplification in genetic circuits.
Ruocco, G; Fratalocchi, A
2014-11-18
Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an "elemental" genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.
NASA Astrophysics Data System (ADS)
Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri
2018-01-01
In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.
Neural response to reward anticipation under risk is nonlinear in probabilities.
Hsu, Ming; Krajbich, Ian; Zhao, Chen; Camerer, Colin F
2009-02-18
A widely observed phenomenon in decision making under risk is the apparent overweighting of unlikely events and the underweighting of nearly certain events. This violates standard assumptions in expected utility theory, which requires that expected utility be linear (objective) in probabilities. Models such as prospect theory have relaxed this assumption and introduced the notion of a "probability weighting function," which captures the key properties found in experimental data. This study reports functional magnetic resonance imaging (fMRI) data that neural response to expected reward is nonlinear in probabilities. Specifically, we found that activity in the striatum during valuation of monetary gambles are nonlinear in probabilities in the pattern predicted by prospect theory, suggesting that probability distortion is reflected at the level of the reward encoding process. The degree of nonlinearity reflected in individual subjects' decisions is also correlated with striatal activity across subjects. Our results shed light on the neural mechanisms of reward processing, and have implications for future neuroscientific studies of decision making involving extreme tails of the distribution, where probability weighting provides an explanation for commonly observed behavioral anomalies.
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Reza Barati, Mohammad
2017-02-01
This article investigates the thermo-mechanical vibration frequencies of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates in the framework of refined four-unknown shear deformation plate theory. The present nanoplate is subjected to various kinds of thermal loads with uniform, linear and nonlinear distributions. The nonlinear distribution is considered as heat conduction and sinusoidal temperature rise. The present refined theory captures the influences of shear deformations without the need for shear correction factors. Thermo-magneto-electro-elastic coefficients of the FG nanoplate vary gradually along the thickness according to the power-law form. The scale coefficient is taken into consideration implementing the nonlocal elasticity of Eringen. The governing equations are derived through Hamilton's principle and are solved analytically. The frequency response is compared with those of previously published data. The obtained results are presented for the thermo-mechanical vibrations of the FG nanobeams to investigate the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.
Transport coefficients and mechanical response in hard-disk colloidal suspensions
NASA Astrophysics Data System (ADS)
Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang
2016-11-01
We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).
Design of Multistable Origami Structures
NASA Astrophysics Data System (ADS)
Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip
Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.
A simple model of mechanotransduction in primate glabrous skin
Dong, Yi; Mihalas, Stefan; Kim, Sung Soo; Yoshioka, Takashi; Niebur, Ernst
2013-01-01
Tactile stimulation of the hand evokes highly precise and repeatable patterns of activity in mechanoreceptive afferents; the strength (i.e., firing rate) and timing of these responses have been shown to convey stimulus information. To achieve an understanding of the mechanisms underlying the representation of tactile stimuli in the nerve, we developed a two-stage computational model consisting of a nonlinear mechanical transduction stage followed by a generalized integrate-and-fire mechanism. The model improves upon a recently published counterpart in two important ways. First, complexity is dramatically reduced (at least one order of magnitude fewer parameters). Second, the model comprises a saturating nonlinearity and therefore can be applied to a much wider range of stimuli. We show that both the rate and timing of afferent responses are predicted with remarkable precision and that observed adaptation patterns and threshold behavior are well captured. We conclude that the responses of mechanoreceptive afferents can be understood using a very parsimonious mechanistic model, which can then be used to accurately simulate the responses of afferent populations. PMID:23236001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua; School of Automation, Chongqing University, Chongqing 400044; Sun, Quanping
This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Puttingmore » tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.« less
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Tensile properties of craniofacial tendons in the mature and aged zebrafish
Shah, Rishita R.; Nerurkar, Nandan L.; Wang, Calvin; Galloway, Jenna L.
2015-01-01
The zebrafish Danio rerio is a powerful model for the study of development, regenerative biology, and human disease. However, the analysis of load-bearing tissues such as tendons and ligaments has been limited in this system. This is largely due to technical limitations that preclude accurate measurement of their mechanical properties. Here, we present a custom tensile testing system that applies nano-Newton scale forces to zebrafish tendons as small as 1 mm in length. Tendon properties were remarkably similar to mammalian tendons, including stress-strain nonlinearity and a linear modulus (515±152 MPa) that aligned closely with mammalian data. Additionally, a simple exponential constitutive law used to describe tendon mechanics was successfully fit to zebrafish tendons; the associated material constants agreed with literature values for mammalian tendons. Finally, mature and aged zebrafish comparisons revealed a significant decline in mechanical function with age. Based on the exponential constitutive model, age related changes were primarily caused by a reduction in nonlinearity (e.g. changes in collagen crimp or fiber recruitment). These findings demonstrate the utility of zebrafish as a model to study tendon biomechanics in health and disease. Moreover, these findings suggest that tendon mechanical behavior is highly conserved across vertebrates. PMID:25665155
Strain-driven criticality underlies nonlinear mechanics of fibrous networks
NASA Astrophysics Data System (ADS)
Sharma, A.; Licup, A. J.; Rens, R.; Vahabi, M.; Jansen, K. A.; Koenderink, G. H.; MacKintosh, F. C.
2016-10-01
Networks with only central force interactions are floppy when their average connectivity is below an isostatic threshold. Although such networks are mechanically unstable, they can become rigid when strained. It was recently shown that the transition from floppy to rigid states as a function of simple shear strain is continuous, with hallmark signatures of criticality [Sharma et al., Nature Phys. 12, 584 (2016), 10.1038/nphys3628]. The nonlinear mechanical response of collagen networks was shown to be quantitatively described within the framework of such mechanical critical phenomenon. Here, we provide a more quantitative characterization of critical behavior in subisostatic networks. Using finite-size scaling we demonstrate the divergence of strain fluctuations in the network at well-defined critical strain. We show that the characteristic strain corresponding to the onset of strain stiffening is distinct from but related to this critical strain in a way that depends on critical exponents. We confirm this prediction experimentally for collagen networks. Moreover, we find that the apparent critical exponents are largely independent of the spatial dimensionality. With subisostaticity as the only required condition, strain-driven criticality is expected to be a general feature of biologically relevant fibrous networks.
Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.
Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C
2012-04-03
The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.
NASA Astrophysics Data System (ADS)
Mancilla Canales, M. A.; Leguto, A. J.; Riquelme, B. D.; León, P. Ponce de; Bortolato, S. A.; Korol, A. M.
2017-12-01
Ektacytometry techniques quantifies red blood cells (RBCs) deformability by measuring the elongation of suspended RBCs subjected to shear stress. Raw shear stress elongation plots are difficult to understand, thus most research papers apply data reduction methods characterizing the relationship between curve fitting. Our approach works with the naturally generated photometrically recorded time series of the diffraction pattern of several million of RBCs subjected to shear stress, and applies nonlinear quantifiers to study the fluctuations of these elongations. The development of new quantitative methods is crucial for restricting the subjectivity in the study of the cells behavior, mainly if they are capable of analyze at the same time biological and mechanical aspects of the cells in flowing conditions and compare their dynamics. A patented optical system called Erythrocyte Rheometer was used to evaluate viscoelastic properties of erythrocytes by Ektacytometry. To analyze cell dynamics we used the technique of Time Delay Coordinates, False Nearest Neighbors, the forecasting procedure proposed by Sugihara and May, and Hurst exponent. The results have expressive meaning on comparing healthy samples with parasite treated samples, suggesting that apparent noise associated with deterministic chaos can be used not only to distinguish but also to characterize biological and mechanical aspects of cells at the same time in flowing conditions.
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
Ferroelectric Phase Transformations for Energy Conversion and Storage Applications
NASA Astrophysics Data System (ADS)
Jo, Hwan Ryul
Ferroelectric materials possess a spontaneous polarization and actively respond to external mechanical, electrical, and thermal loads. Due to their coupled behavior, ferroelectric materials are used in products such as sensors, actuators, detectors, and transducers. However, most current applications rely on low-energy conversion that involves low magnitude fields. They utilize the low-field linear properties of ferroelectric materials (piezoelectric, pyroelectric) and do not take full advantage of the large-field nonlinear behavior (irreversible domain wall motion, phase transformations) that can occur in ferroelectric materials. When external fields exceed a certain critical level, a structural transformation of the crystal can occur. These phase transformations are accompanied by a much larger response than the linear piezoelectric and pyroelectric responses, by as much as a multiple of ten times in the magnitude. This makes the non-linear behavior in ferroelectric materials promising for energy harvesting and energy storage technologies which will benefit from large-energy conversion. Yet, the ferroelectric phase transformation behavior under large external fields have been less studied and only a few studies have been directed at utilizing this large material response in applications. This dissertation addresses the development ferroelectric phase transformation-based applications, with particular focus on the materials. Development of the ferroelectric phase transformation-based applications was approached in several steps. First, the phase transformation behavior was fully characterized and understood by measuring the phase transformation responses under mechanical, electrical, thermal, and combined loads. Once the behavior was well characterized, systems level applications were addressed. This required assessing the effect of the phase transformation behavior on system performance. The performance of ferroelectric devices is strongly dependent on material properties and phase transformation behavior which can be tailored by modifying the chemical composition, processing conditions, and the loading history (poling). This results in optimization of system performance by tailoring material properties and phase transformation behavior. This approach applied to three ferroelectric phase transformation-based applications: 1. Ferroelectric energy generation 2. Ferroelectric high-energy storage capacitor 3. Ferroelectric thermal energy harvesting. This dissertation has addressed tuning the large field properties for phase transformation-based systems.
System identification and sensorimotor determinants of flight maneuvers in an insect
NASA Astrophysics Data System (ADS)
Sponberg, Simon; Hall, Robert; Roth, Eatai
Locomotor maneuvers are inherently closed-loop processes. They are generally characterized by the integration of multiple sensory inputs and adaptation or learning over time. To probe sensorimotor processing we take a system identification approach treating the underlying physiological systems as dynamic processes and altering the feedback topology in experiment and analysis. As a model system, we use agile hawk moths (Manduca sexta), which feed from real and robotic flowers while hovering in mid air. Moths rely on vision and mechanosensation to track floral targets and can do so at exceptionally low luminance levels despite hovering being a mechanically unstable behavior that requires neural feedback to stabilize. By altering the sensory environment and placing mechanical and visual signals in conflict we show a surprisingly simple linear summation of visual and mechanosensation produces a generative prediction of behavior to novel stimuli. Tracking performance is also limited more by the mechanics of flight than the magnitude of the sensory cue. A feedback systems approach to locomotor control results in new insights into how behavior emerges from the interaction of nonlinear physiological systems.
NASA Astrophysics Data System (ADS)
Seo, H.; Kwon, Y. O.; Joyce, T. M.
2016-02-01
A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.
Houssein, Alexandros; Papadimitriou, Konstantinos I; Drakakis, Emmanuel M
2015-08-01
Cytomimetic circuits represent a novel, ultra low-power, continuous-time, continuous-value class of circuits, capable of mapping on silicon cellular and molecular dynamics modelled by means of nonlinear ordinary differential equations (ODEs). Such monolithic circuits are in principle able to emulate on chip, single or multiple cell operations in a highly parallel fashion. Cytomimetic topologies can be synthesized by adopting the Nonlinear Bernoulli Cell Formalism (NBCF), a mathematical framework that exploits the striking similarities between the equations describing weakly-inverted Metal-Oxide Semiconductor (MOS) devices and coupled nonlinear ODEs, typically appearing in models of naturally encountered biochemical systems. The NBCF maps biological state variables onto strictly positive subthreshold MOS circuit currents. This paper presents the synthesis, the simulation and proof-of-concept chip results corresponding to the emulation of a complex cellular network mechanism, the skeleton model for the network of Cyclin-dependent Kinases (CdKs) driving the mammalian cell cycle. This five variable nonlinear biological model, when appropriate model parameter values are assigned, can exhibit multiple oscillatory behaviors, varying from simple periodic oscillations, to complex oscillations such as quasi-periodicity and chaos. The validity of our approach is verified by simulated results with realistic process parameters from the commercially available AMS 0.35 μm technology and by chip measurements. The fabricated chip occupies an area of 2.27 mm2 and consumes a power of 1.26 μW from a power supply of 3 V. The presented cytomimetic topology follows closely the behavior of its biological counterpart, exhibiting similar time-dependent solutions of the Cdk complexes, the transcription factors and the proteins.
Werblin, Frank S
2010-03-01
Early retinal studies categorized ganglion cell behavior as either linear or nonlinear and rectifying as represented by the familiar X- and Y-type ganglion cells in cat. Nonlinear behavior is in large part a consequence of the rectifying nonlinearities inherent in synaptic transmission. These nonlinear signals underlie many special functions in retinal processing, including motion detection, motion in motion, and local edge detection. But linear behavior is also required for some visual processing tasks. For these tasks, the inherently nonlinear signals are "linearized" by "crossover inhibition." Linearization utilizes a circuitry whereby nonlinear ON inhibition adds with nonlinear OFF excitation or ON excitation adds with OFF inhibition to generate a more linear postsynaptic voltage response. Crossover inhibition has now been measured in most bipolar, amacrine, and ganglion cells. Functionally crossover inhibition enhances edge detection, allows ganglion cells to recognize luminance-neutral patterns with their receptive fields, permits ganglion cells to distinguish contrast from luminance, and maintains a more constant conductance during the light response. In some cases, crossover extends the operating range of cone-driven OFF ganglion cells into the scotopic levels. Crossover inhibition is also found in neurons of the lateral geniculate nucleus and V1.
From linear mechanics to nonlinear mechanics
NASA Technical Reports Server (NTRS)
Loeb, Julian
1955-01-01
Consideration is given to the techniques used in telecommunication where a nonlinear system (the modulator) results in a linear transposition of a signal. It is then shown that a similar method permits linearization of electromechanical devices or nonlinear mechanical devices. A sweep function plays the same role as the carrier wave in radio-electricity. The linearizations of certain nonlinear functionals are presented.
Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua
2007-04-01
We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.
NASA Astrophysics Data System (ADS)
Gooh Pattader, Partho Sarathi
There are enumerable examples of natural processes which fall in the class of non-equilibrium stochastic dynamics. In the literature it is prescribed that such a process can be described completely using transition probability that satisfy the Fokker Planck equation. The analytical solutions of transition probability density function are difficult to obtain and are available for linear systems along with few first order nonlinear systems. We studied such nonlinear stochastic systems and tried to identify the important parameters associated with the dynamics and energy dissipative mechanism using statistical tools. We present experimental study of macroscopic systems driven away far from equilibrium with an applied bias and external mechanical noise. This includes sliding of small solid object, gliding of a liquid drop or a rolling of a rigid sphere. We demonstrated that the displacement statistics are non-Gaussian at short observation time, but they tend towards a Gaussian behavior at long time scale. We also found that, the drift velocity increases sub-linearly, but the diffusivity increases super-linearly with the strength of the noise. These observations reflect that the underlying non-linear friction controls the stochastic dynamics in each of these cases. We established a new statistical approach to determine the underlying friction law and identified the operating range of linear and nonlinear friction regime. In all these experiments source of the noise and the origin of the energy dissipation mechanism (i.e. friction) are decoupled. Naturally question arises whether the stochastic dynamics of these athermal systems are amenable to Einstein's Fluctuation dissipation theorem which is valid strictly for a closed thermodynamic system. We addressed these issues by comparing Einstein's ratio of Diffusivity and mobility which are measurable quantities in our experimental systems. As all our experimental systems exhibit substantial negative fluctuations of displacement that diminishes with observation time scale, we used another approach of integrated fluctuation theorem to identify athermal temperature of the system by characterizing a persistence time of negative fluctuations in terms of the measurable quantity. Specific experiments have also been designed to study the crossing of a small object over a physical barrier assisted by an external noise and a bias force. These results mimic the classical Arrhenius behavior from which another effective temperature may be deduced. All these studies confer that the nonlinear system does not possess any unique temperature. Detachment of a solid sphere as well as a liquid drop from a structured rubber surface during subcritical motion in presence of external noise was examined in the light of Arrhenius' activated rate equation. Drift velocity of small drops of water-glycerin solution behaves nonlinearly with viscosity which is reminiscence of Kramers' turn over theory of activated rate. In a designed experiment of barrier crossing of liquid drops we satisfactorily verified the Kramers' formalism of activated rate at the low friction limit.
The impact law of confining pressure and plastic parameter on Dilatancy of rock
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing
2017-08-01
Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.
NASA Astrophysics Data System (ADS)
Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong
2017-06-01
Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)
Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite
He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin
2016-01-01
As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research. PMID:28773703
Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite.
He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin
2016-07-15
As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research.
Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites
NASA Astrophysics Data System (ADS)
Yuan, Yang; Wang, Qingguo; Qu, Zhaoming
2018-01-01
Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.
NASA Technical Reports Server (NTRS)
Hopkins, D. A.
1984-01-01
A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.
Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047
Fracture mechanics criteria for turbine engine hot section components
NASA Technical Reports Server (NTRS)
Meyers, G. J.
1982-01-01
The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.
Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks
NASA Astrophysics Data System (ADS)
Sebastian, Resmi; Sitharam, T. G.
2018-01-01
Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.
An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime
NASA Astrophysics Data System (ADS)
Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.
2016-06-01
Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.
The Extreme Mechanics of Soft Structures
NASA Astrophysics Data System (ADS)
Reis, Pedro
2015-03-01
I will present a series of experimental investigations on the rich behavior of soft mechanical structures, which, similarly to soft materials, can undergo large deformations under a variety of loading conditions. Soft structures typically comprise slender elements that can readily undergo mechanical instabilities to achieve extreme flexibility and reversible reconfigurations. This field has came to be warmly known as `Extreme Mechanics', where one of the fundamental challenges lies in rationalizing the geometric nonlinearities that arise in the post-buckling regime. I shall focus on problems involving thin elastic rods and shells, through examples ranging from the deployment of submarine cables onto the seabed, locomotion of uniflagellar bacteria, crystallography of curved wrinkling and its usage for active aerodynamic drag reduction. The main common feature underlying this series of studies is the prominence of geometry, and its interplay with mechanics, in dictating complex mechanical behavior that is relevant and applicable over a wide range of length scales. Moreover, our findings suggest that we rethink our relationship with mechanical instabilities which, rather than modes of failure, can be embraced as opportunities for functionality that are scalable, reversible, and robust. The author knowledges financial support from the National Science Foundation, CMMI-1351449 (CAREER).
Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal
NASA Astrophysics Data System (ADS)
Deepa, B.; Philominathan, P.
2017-11-01
An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train.more » The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.« less
NASA Astrophysics Data System (ADS)
Wang, Wenjun; Li, Peng; Jin, Feng
2018-04-01
Based on Hamilton’s principle and Mindlin plate theory, a series of 2D equations to describe the mechanical behaviors of magneto-electro-elastic (MEE) laminated nanoplates, is established for the first time with consideration of flexoelectricity and surface effect. The equations derived are general, which not only can be reduced to the corresponding piezoelectric, piezomagnetic, and elastic cases, but can also be degenerated to the classical higher-order plate theory of conventional macroscopic MEE laminates if flexoelectricity and surface effect are neglected. As the typical application, a flexoelectric magnetic energy nanoharvester array with surface effect, consisting of a giant magnetostrictive material Terfenol-D with a nonlinear magneto-thermo-mechanical coupling constitutive relation and a linear piezoelectric layer PZT-4, is investigated systematically under coupled extensional and flexural deformations. After the correctness is confirmed, an important performance index (i.e. output current) of the harvester is discussed for different conditions, including flexoelectricity, surface effect, and nonlinear magneto-mechanical coupling. It has been revealed that flexoelectricity, surface effect, external magnetic field, and pre-stress can dramatically improve the performance of characteristics such as resonant frequencies, bandwidth, and output current of the nanoharvester. Especially, a critical thickness corresponding to the flexoelectricity or surface effect is proposed, below which the size-dependent effect is obvious and must be considered. The current work can be viewed as an innovative theoretical tool for evaluating the size-dependent and nonlinear characteristics qualitatively and quantitatively, which is essential and crucial to understanding the physical and mechanical properties of MEE nanostructures.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
Structural analysis consultation using artificial intelligence
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Marcal, P. V.; Berke, L.
1978-01-01
The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.
From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction
Metin, Selin; Sengor, N. Serap
2012-01-01
Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed. PMID:23251144
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2017-09-01
The creep of homogenous and hybrid composite beams of an irregular laminar fibrous structure is investigated. The beams consist of thin walls and flanges (load-carrying layers). The walls may be reinforced longitudinally or crosswise in the plane, and the load-carrying layers are reinforced in the longitudinal direction. The mechanical behavior of phase materials is described by the Rabotnov nonlinear hereditary theory of creep taking into account their possible different resistance to tension and compression. On the basis of hypotheses of the Timoshenko theory, with using the method of time steps, a problem is formulated for the inelastic bending deformation of such beams with account of the weakened resistance of their walls to the transverse shear. It is shown that, at discrete instants of time, the mechanical behavior of such structures can formally be described by the governing relations for composite beams made of nonlinear elastic anisotropic materials with a known initial stress state. The method of successive iterations, similar to the method of variable parameters of elasticity, is used to linearize the boundary-value problem at each instant of time. The bending deformation is investigated for homogeneous and reinforced cantilever and simply supported beams in creep under the action of a uniformly distributed transverse load. The cross sections of the beams considered are I-shaped. It is found that the use of the classical theory for such beams leads to the prediction of indefensibly underestimated flexibility, especially in long-term loading. It is shown that, in beams with reinforced load-carrying layers, the creep mainly develops due to the shear strains of walls. It is found that, in short- and long-term loadings of composite beams, the reinforcement structures rational by the criterion of minimum flexibility are different.
Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh
NASA Astrophysics Data System (ADS)
Deng, Mingle; Yue, Baozeng
2017-04-01
This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
Composite Beam Theory with Material Nonlinearities and Progressive Damage
NASA Astrophysics Data System (ADS)
Jiang, Fang
Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.
Experiments on a non-smoothly-forced oscillator
NASA Astrophysics Data System (ADS)
Virgin, Lawrence N.; George, Christopher; Kini, Ashwath
2015-12-01
This paper describes some typical behavior encountered in the response of a harmonically-excited mechanical system in which a severe nonlinearity occurs due to an impact. Although such systems have received considerable recent attention (most of it from a theoretical viewpoint), the system scrutinized in this paper also involves a discrete input of energy at the impact condition. That is, it is kicked when contact is made. One of the motivations for this work is related to a classic pinball machine in which a ball striking a bumper experiences a sudden impulse, introducing additional unpredictability to the motion of the ball. A one-dimensional analog of a pinball machine was the subject of a detailed mathematical study in Pring and Budd (2011), and the current paper details behavior obtained from a mechanical experiment and describes dynamics not observed in a conventional (passive) impact oscillator.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
Ramo, Nicole L.; Puttlitz, Christian M.
2018-01-01
Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558
Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.
Fang, Fei; Lake, Spencer P
2016-10-01
Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chan, Roger W.
2018-01-01
Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli (G′ and G″). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures. PMID:29780189
Chan, Roger W
2018-05-01
Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli ( G' and G″ ). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures.
Straightening of a wavy strip: An elastic-plastic contact problem including snap-through
NASA Technical Reports Server (NTRS)
Fischer, D. F.; Rammerstorfer, F. G.
1980-01-01
The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.
The Search for an Effective Clinical Behavior Analysis: The Nonlinear Thinking of Israel Goldiamond
ERIC Educational Resources Information Center
Layng, T. V. Joe
2009-01-01
This paper has two purposes; the first is to reintroduce Goldiamond's constructional approach to clinical behavior analysis and to the field of behavior analysis as a whole, which, unfortunately, remains largely unaware of his nonlinear functional analysis and its implications. The approach is not simply a set of clinical techniques; instead it…
Acoustic signatures of sound source-tract coupling.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Mindlin, Gabriel B
2011-04-01
Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced "frequency jumps," enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. ©2011 American Physical Society
Acoustic signatures of sound source-tract coupling
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.
2014-01-01
Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. PMID:21599213
Nonlinear Ballistic Transport in an Atomically Thin Material.
Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R
2016-01-26
Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.
Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata
Han, C. J.
2015-01-01
This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460
Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions
NASA Astrophysics Data System (ADS)
Itin, A. P.; Katsnelson, M. I.
2018-05-01
Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.
Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R
2015-01-25
An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.
The brain as a dynamic physical system.
McKenna, T M; McMullen, T A; Shlesinger, M F
1994-06-01
The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.
The role of damage-softened material behavior in the fracture of composites and adhesives
NASA Technical Reports Server (NTRS)
Ungsuwarungsri, T.; Knauss, W. G.
1986-01-01
Failure mechanisms of materials under very high strains experienced at and ahead of the crack tip such as formation, growth, and interaction of microvoids in ductile materials, microcracks in brittle solids or crazes in polymers and adhesives are represented by one-dimensional, nonlinear stress-strain relations possessing different ways by which the material loses capacity to carry load up to fracture or total separation. A double cantilever beam (DCB) type specimen is considered. The nonlinear material is confined to a thin strip between the two elastic beams loaded by a wedge. The problem is first modeled as a beam on a nonlinear foundation. The pertinent equation is solved numerically as a two-point boundary value problem for both the stationary and the quasi-stationay propagating crack. A finite element model is then used to model the problem in more detail in order to assess the adequacy of the beam model for the reduction of experimental data to determine in-situ properties of the thin interlayer.
A nonlinear dynamical analogue model of geomagnetic activity
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.
1992-01-01
Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.
Nonlinear dynamics analysis of the spur gear system for railway locomotive
NASA Astrophysics Data System (ADS)
Wang, Junguo; He, Guangyue; Zhang, Jie; Zhao, Yongxiang; Yao, Yuan
2017-02-01
Considering the factors such as the nonlinearity backlash, static transmission error and time-varying meshing stiffness, a three-degree-of-freedom torsional vibration model of spur gear transmission system for a typical locomotive is developed, in which the wheel/rail adhesion torque is considered as uncertain but bounded parameter. Meantime, the Ishikawa method is used for analysis and calculation of the time-varying mesh stiffness of the gear pair in meshing process. With the help of bifurcation diagrams, phase plane diagrams, Poincaré maps, time domain response diagrams and amplitude-frequency spectrums, the effects of the pinion speed and stiffness on the dynamic behavior of gear transmission system for locomotive are investigated in detail by using the numerical integration method. Numerical examples reveal various types of nonlinear phenomena and dynamic evolution mechanism involving one-period responses, multi-periodic responses, bifurcation and chaotic responses. Some research results present useful information to dynamic design and vibration control of the gear transmission system for railway locomotive.
Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?
Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A
2017-12-01
Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.
Constitutive formulations for the mechanical investigation of colonic tissues.
Carniel, Emanuele Luigi; Gramigna, Vera; Fontanella, Chiara Giulia; Stefanini, Cesare; Natali, Arturo N
2014-05-01
A constitutive framework is provided for the characterization of the mechanical behavior of colonic tissues, as a fundamental tool for the development of numerical models of the colonic structures. The constitutive analysis is performed by a multidisciplinary approach that requires the cooperation between experimental and computational competences. The preliminary investigation pertains to the review of the tissues histology. The complex structural configuration of the tissues and the specific distributions of fibrous elements entail the nonlinear mechanical behavior and the anisotropic response. The identification of the mechanical properties requires to perform mechanical tests according to different loading situations, as different loading directions. Because of the typical functionality of colon structures, the tissues mechanics is investigated by tensile tests, which are performed on taenia coli and haustra specimens from fresh pig colons. Accounting for the histological investigation and the results from the mechanical tests, a specific hyperelastic framework is provided within the theory of fiber-reinforced composite materials. Preliminary analytical formulations are defined to identify the constitutive parameters by the inverse analysis of the experimental tests. Finite element models of the specimens are developed accounting for the actual configuration of the colon structures to verify the quality of the results. The good agreement between experimental and numerical model results suggests the reliability of the constitutive formulations and parameters. Finally, the developed constitutive analysis makes it possible to identify the mechanical behavior and properties of the different colonic tissues. Copyright © 2013 Wiley Periodicals, Inc.
Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)
NASA Astrophysics Data System (ADS)
Pavlenko, Olga V.
2016-07-01
To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.
Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films
NASA Astrophysics Data System (ADS)
Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan
2018-04-01
We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Mookerjee, P.; Bar-Shalom, Y.
1983-01-01
Effect of nonlinearity on convergence of the local linear and global linear adaptive controllers is evaluated. A nonlinear helicopter vibration model is selected for the evaluation which has sufficient nonlinearity, including multiple minimum, to assess the vibration reduction capability of the adaptive controllers. The adaptive control algorithms are based upon a linear transfer matrix assumption and the presence of nonlinearity has a significant effect on algorithm behavior. Simulation results are presented which demonstrate the importance of the caution property in the global linear controller. Caution is represented by a time varying rate weighting term in the local linear controller and this improves the algorithm convergence. Nonlinearity in some cases causes Kalman filter divergence. Two forms of the Kalman filter covariance equation are investigated.
NASA Astrophysics Data System (ADS)
Vintila, Iuliana; Gavrus, Adinel
2017-10-01
The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).
A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.
Feng, Peihua; Wu, Ying; Zhang, Jiazhong
2017-01-01
Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.
A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation
Feng, Peihua; Wu, Ying; Zhang, Jiazhong
2017-01-01
Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior. PMID:29089882
A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters
NASA Astrophysics Data System (ADS)
Weber, H.; Widemann, C.; Mathis, W.
2013-07-01
In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.
Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity
NASA Astrophysics Data System (ADS)
Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.
2012-12-01
In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (< 10-6), the nonlinear classical theory issued from a Taylor decomposition can explain the harmonic content. For higher strain, harmonic content becomes richer and the material exhibits more hysteretic behaviors, i.e. strain rate dependencies. Such observations have been made in the past (e.g., Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.
Mechanical biocompatibility of highly deformable biomedical materials.
Mazza, Edoardo; Ehret, Alexander E
2015-08-01
Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
NASA Astrophysics Data System (ADS)
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-03-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
NASA Astrophysics Data System (ADS)
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-02-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
Chaos in the Music of the Spheres
NASA Astrophysics Data System (ADS)
Buchler, J. Robert; Kolláth, Zoltan; Cadmus, Robert
2002-07-01
The light curves (time series of the radiated energy) of most large amplitude, pulsating stars such as the well known Cepheid stars are regular. However, a smaller group of variable stars that are located next to them in the Hertzsprung-Russell diagram undergoes irregular light variations and exhibits irregular radial velocities as well. The mechanism behind this irregular behavior was a long standing mystery. A flow reconstruction technique based on the observed lightcurves of six separate stars shows that their underlying dynamics is chaotic and low dimensional (d = 4). Furthermore, we present evidence that the physical mechanism behind the behavior is the nonlinear interaction of just two pulsation eigenmodes. In a generalized Shil'nikov scenario, the pulsation energy alternates continuously, but irregularly between a lower frequency mode that is linearly unstable and thus growing, and a stable overtone that gets entrained through a low order resonance (2:1), but that wants to decay. The flow reconstruction from the stellar light curve thus yields interesting physical insight into the pulsation mechanism.
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
NASA Astrophysics Data System (ADS)
Ingber, Lester
1991-09-01
A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single-neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memory and electroencephalographic (EEG) systematics. The necessity of including nonlinear and stochastic structures in this development has been stressed. In this paper, a more stringent test is placed on SMNI: The algebraic and numerical algorithms previously developed in this and similar systems are brought to bear to fit large sets of EEG and evoked-potential data being collected to investigate genetic predispositions to alcoholism and to extract brain ``signatures'' of short-term memory. Using the numerical algorithm of very fast simulated reannealing, it is demonstrated that SMNI can indeed fit these data within experimentally observed ranges of its underlying neuronal-synaptic parameters, and the quantitative modeling results are used to examine physical neocortical mechanisms to discriminate high-risk and low-risk populations genetically predisposed to alcoholism. Since this study is a control to span relatively long time epochs, similar to earlier attempts to establish such correlations, this discrimination is inconclusive because of other neuronal activity which can mask such effects. However, the SMNI model is shown to be consistent with EEG data during selective attention tasks and with neocortical mechanisms describing short-term memory previously published using this approach. This paper explicitly identifies similar nonlinear stochastic mechanisms of interaction at the microscopic-neuronal, mesoscopic-columnar, and macroscopic-regional scales of neocortical interactions. These results give strong quantitative support for an accurate intuitive picture, portraying neocortical interactions as having common algebraic or physics mechanisms that scale across quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of neurons, and regional masses of neurons.
1991-01-01
their midsurface counterparts due to the nature of the pin deflection and resulting load transfer. Linear elastic coupon radial stresses also followed... midsurface counterparts. The effects of the nonlinear elastic material behavior were quite evident when viewing the [(0/90)3,01, coupon intralaminar...to the midsurface of the coupon. The nonlinear elastic intralaminar shear stress-strain assumption acted to increase through thickness stresses
A new method for analysis of limit cycle behavior of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
A piecewise linear method of analyzing the effects of discontinuous nonlinearities on control system performance is described. The limit cycle oscillatory behavior of the system resulting from the nonlinearities is described in terms of a sequence of linear system transient responses. The equations are derived which relate the initial and the terminal conditions of successive transients and the boundary conditions imposed by the non-linearities. The method leads to a convenient computation algorithm for prediction of limit cycle characteristics resulting from discontinuous nonlinearities such as friction, deadzones, and hysteresis.
A Novel Approach to Anharmonicity for a Wealth of Applications in Nonlinear Science Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanusse, Patrick
2011-04-19
We present a new theory of the anharmonicity of nonlinear oscillations that are exhibited by many physical systems. New physical quantities are introduced that describe the departure from linear or harmonic behavior and as far as extremely anharmonic situations. In order to solve the nonlinear phase equation, the key notion of our theory, which controls the anharmonic behavior, a new and fascinating nonlinear trigonometry is designed. These results provide a general and accurate yet compact description of such signals, by far better than the Fourier description, both quantitatively and qualitatively and will benefit many application fields.
Modeling workplace bullying using catastrophe theory.
Escartin, J; Ceja, L; Navarro, J; Zapf, D
2013-10-01
Workplace bullying is defined as negative behaviors directed at organizational members or their work context that occur regularly and repeatedly over a period of time. Employees' perceptions of psychosocial safety climate, workplace bullying victimization, and workplace bullying perpetration were assessed within a sample of nearly 5,000 workers. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes in workplace bullying. More specifically, the present study examines whether a nonlinear dynamical systems model (i.e., a cusp catastrophe model) is superior to the linear combination of variables for predicting the effect of psychosocial safety climate and workplace bullying victimization on workplace bullying perpetration. According to the AICc, and BIC indices, the linear regression model fits the data better than the cusp catastrophe model. The study concludes that some phenomena, especially unhealthy behaviors at work (like workplace bullying), may be better studied using linear approaches as opposed to nonlinear dynamical systems models. This can be explained through the healthy variability hypothesis, which argues that positive organizational behavior is likely to present nonlinear behavior, while a decrease in such variability may indicate the occurrence of negative behaviors at work.
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Shajari, A. R.; Amir, S.; Loghman, A.
2012-08-01
Nonlinear vibration and stability of a smart composite micro-tube made of Poly-vinylidene fluoride (PVDF) reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under electro-thermal loadings is investigated. The BNNTs are considered to be long straight fibers and the composite used in this study is in the category of piezoelectric fiber reinforced composites (PEFRC). The micro-tube is conveying a fully developed isentropic, incompressible and irrotational fluid flow. The smart micro-tube is modeled as a thin shell based on the nonlinear Donnell's shell theory. Effects of mean flow velocity, fluid viscosity, elastic medium modulus, temperature change, imposed electric potential, small scale, aspect ratio, volume percent and orientation angle of the BNNTs on the vibration behavior of the micro-tube are taken into account. The results indicate that increasing mean flow velocity considerably increases the nonlinearity effects so that small scale and temperature change effects become negligible. It has also been found that stability of the system is strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. The system studied in this article can be used as sensor and actuator in the sensitive applications.
Mirror instability near the threshold: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, P.; Trávníček, P.; Passot, T.; Sulem, P.; Kuznetsov, E. A.; Califano, F.
2007-12-01
Nonlinear behavior of the mirror instability near the threshold is investigated using 1-D hybrid simulations. The simulations demonstrate the presence of an early phase where quasi-linear effects dominate [ Shapiro and Shevchenko, 1964]. The quasi-linear diffusion is however not the main saturation mechanism. A second phase is observed where the mirror mode is linearly stable (the stability is evaluated using the instantaneous ion distribution function) but where the instability nevertheless continues to develop, leading to nonlinear coherent structures in the form of magnetic humps. This regime is well modeled by a nonlinear equation for the magnetic field evolution, derived from a reductive perturbative expansion of the Vlasov-Maxwell equations [ Kuznetsov et al., 2007] with a phenomenological term which represents local variations of the ion Larmor radius. In contrast with previous models where saturation is due to the cooling of a population of trapped particles, the resulting equation correctly reproduces the development of magnetic humps from an initial noise. References Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003. Shapiro, V. D., and V. I. Shevchenko (1964), Sov. JETP, 18, 1109.
Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence
NASA Astrophysics Data System (ADS)
Plunk, G. G.; Tatsuno, T.
2011-04-01
The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.
Transition probability, dynamic regimes, and the critical point of financial crisis
NASA Astrophysics Data System (ADS)
Tang, Yinan; Chen, Ping
2015-07-01
An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.
Nieder, Andreas; Miller, Earl K
2003-01-09
Whether cognitive representations are better conceived as language-based, symbolic representations or perceptually related, analog representations is a subject of debate. If cognitive processes parallel perceptual processes, then fundamental psychophysical laws should hold for each. To test this, we analyzed both behavioral and neuronal representations of numerosity in the prefrontal cortex of rhesus monkeys. The data were best described by a nonlinearly compressed scaling of numerical information, as postulated by the Weber-Fechner law or Stevens' law for psychophysical/sensory magnitudes. This nonlinear compression was observed on the neural level during the acquisition phase of the task and maintained through the memory phase with no further compression. These results suggest that certain cognitive and perceptual/sensory representations share the same fundamental mechanisms and neural coding schemes.
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
New intrinsic mechanism on gum-like superelasticity of multifunctional alloys
Liu, Jia-Peng; Wang, Yan-Dong; Hao, Yu-Lin; Wang, Yunzhi; Nie, Zhi-Hua; Wang, Dong; Ren, Yang; Lu, Zhao-Ping; Wang, Jinguo; Wang, Haoliang; Hui, Xidong; Lu, Ning; Kim, Moon J.; Yang, Rui
2013-01-01
Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to α″ martensite and those with BCC structure transform to δ martensite. PMID:23831664
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.
Features of tuned mass damper behavior under strong earthquakes
NASA Astrophysics Data System (ADS)
Nesterova, Olga; Uzdin, Alexander; Fedorova, Maria
2018-05-01
Plastic deformations, cracks and destruction of structure members appear in the constructions under strong earthquakes. Therefore constructions are characterized by a nonlinear deformation diagram. Two types of construction non-linearity are considered in the paper. The first type of nonlinearity is elastoplastic one. In this case, plastic deformations occur in the structural elements, and when the element is unloaded, its properties restores. Among such diagrams are the Prandtl diagram, the Prandtl diagram with hardening, the Ramberg-Osgood diagram and others. For systems with such nonlinearity there is an amplitude-frequency characteristic and resonance oscillation frequencies. In this case one can pick up the most dangerous accelerograms for the construction. The second type of nonlinearity is nonlinearity with degrading rigidity and dependence of behavior on the general loading history. The Kirikov-Amankulov model is one of such ones. Its behavior depends on the maximum displacement in the stress history. Such systems do not have gain frequency characteristic and resonance frequency. The period of oscillation of such system is increasing during the system loading, and the system eigen frequency decreases to zero at the time of collapse. In the cases under consideration, when investigating the system with MD behavior, the authors proposed new efficiency criteria. These include the work of plastic deformation forces for the first type of nonlinearity, which determines the possibility of progressive collapse or low cycle fatigue of the structure members. The period of system oscillations and the time to collapse of the structural support members are the criterion for systems with degrading rigidity. In the case of non-linear system behavior, the efficiency of MD application decreases, because the fundamental structure period is reduced because of structure damages and the MD will be rebound from the blanking regime. However, the MD using can significantly reduce the damageability of the protected object.
NASA Astrophysics Data System (ADS)
Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A.
2017-10-01
A nonlocal continuum-based model is derived to simulate the dynamic behavior of bridged carbon nanotube-based nano-scale mass detectors. The carbon nanotube (CNT) is modeled as an elastic Euler-Bernoulli beam considering von-Kármán type geometric nonlinearity. In order to achieve better accuracy in characterization of the CNTs, the geometrical properties of an attached nano-scale particle are introduced into the model by its moment of inertia with respect to the central axis of the beam. The inter-atomic long-range interactions within the structure of the CNT are incorporated into the model using Eringen's nonlocal elastic field theory. In this model, the mass can be deposited along an arbitrary length of the CNT. After deriving the full nonlinear equations of motion, the natural frequencies and corresponding mode shapes are extracted based on a linear eigenvalue problem analysis. The results show that the geometry of the attached particle has a significant impact on the dynamic behavior of the CNT-based mechanical resonator, especially, for those with small aspect ratios. The developed model and analysis are beneficial for nano-scale mass identification when a CNT-based mechanical resonator is utilized as a small-scale bio-mass sensor and the deposited particles are those, such as proteins, enzymes, cancer cells, DNA and other nano-scale biological objects with different and complex shapes.
Bawolin, N K; Chen, X B
2017-04-01
Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.
Toward patient-specific articular contact mechanics
Ateshian, Gerard A.; Henak, Corinne R.; Weiss, Jeffrey A.
2015-01-01
The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. PMID:25698236
Finite-Element Analysis of a Mach-8 Flight Test Article Using Nonlinear Contact Elements
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1997-01-01
A flight test article, called a glove, is required for a Mach-8 boundary-layer experiment to be conducted on a flight mission of the air-launched Pegasus(reg) space booster. The glove is required to provide a smooth, three-dimensional, structurally stable, aerodynamic surface and includes instrumentation to determine when and where boundary-layer transition occurs during the hypersonic flight trajectory. A restraint mechanism has been invented to attach the glove to the wing of the space booster. The restraint mechanism securely attaches the glove to the wing in directions normal to the wing/glove interface surface, but allows the glove to thermally expand and contract to alleviate stresses in directions parallel to the interface surface. A finite-element analysis has been performed using nonlinear contact elements to model the complex behavior of the sliding restraint mechanism. This paper provides an overview of the glove design and presents details of the analysis that were essential to demonstrate the flight worthiness of the wing-glove test article. Results show that all glove components are well within the allowable stress and deformation requirements to satisfy the objectives of the flight research experiment.
NASA Astrophysics Data System (ADS)
Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.
2016-03-01
In presence of friction, the frequency response function of a metallic assembly is strongly dependent on the excitation level. The local stick-slip behavior at the friction interfaces induces energy dissipation and local stiffness softening. These phenomena are studied both experimentally and numerically on a test structure named "Harmony". Concerning the numerical part, a classical complete methodology from the finite element and friction modeling to the prediction of the nonlinear vibrational response is implemented. The well-known Harmonic Balance Method with a specific condensation process on the nonlinear frictional elements is achieved. Also, vibration experiments are performed to validate not only the finite element model of the test structure named "Harmony" at low excitation levels but also to investigate the nonlinear behavior of the system on several excitation levels. A scanning laser vibrometer is used to measure the nonlinear behavior and the local stick-slip movement near the contacts.
NASA Technical Reports Server (NTRS)
Ng, C. F.
1988-01-01
Static postbuckling and nonlinear dynamic analysis of plates are usually accomplished by multimode analyses, although the methods are complicated and do not give straightforward understanding of the nonlinear behavior. Assuming single-mode transverse displacement, a simple formula is derived for the transverse load displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the static postbuckling displacement and nonlinear dynamic responses of postbuckled plates under sinusoidal or random excitation. Regions with softening and hardening spring behavior are identified. Also, the highly nonlinear motion of snap-through and its effects on the overall dynamic response can be easily interpreted using the single-mode formula. Theoretical results are compared with experimental results obtained using a buckled aluminum panel, using discrete frequency and broadband point excitation. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are found.
Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads
NASA Astrophysics Data System (ADS)
Stepanov, Alexey B.; Antman, Stuart S.
2017-12-01
This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.
Finite element methods in a simulation code for offshore wind turbines
NASA Astrophysics Data System (ADS)
Kurz, Wolfgang
1994-06-01
Offshore installation of wind turbines will become important for electricity supply in future. Wind conditions above sea are more favorable than on land and appropriate locations on land are limited and restricted. The dynamic behavior of advanced wind turbines is investigated with digital simulations to reduce time and cost in development and design phase. A wind turbine can be described and simulated as a multi-body system containing rigid and flexible bodies. Simulation of the non-linear motion of such a mechanical system using a multi-body system code is much faster than using a finite element code. However, a modal representation of the deformation field has to be incorporated in the multi-body system approach. The equations of motion of flexible bodies due to deformation are generated by finite element calculations. At Delft University of Technology the simulation code DUWECS has been developed which simulates the non-linear behavior of wind turbines in time domain. The wind turbine is divided in subcomponents which are represented by modules (e.g. rotor, tower etc.).
A Model for the Oxidation of Carbon Silicon Carbide Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2004-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
Study of EPDM/PP polymeric blends: mechanical behavior and effects of compatibilization
NASA Astrophysics Data System (ADS)
Bouchart, Vanessa; Bhatnagar, N.; Brieu, Mathias; Ghosh, A. K.; Kondo, Djimedo
2008-09-01
A blend of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by polypropylene (PP) particles has been processed and its hyperelastic behavior has been characterized under cyclic uni-axial tensile tests. The experimental results show a significant effect of the fraction of polypropylene particles (10%, 25% and 30% by weight). Moreover, from another series of tests conducted on materials containing compatibilizers at different mass concentration, it is observed that the introduction of a compatibilizer increases the rigidity of the blends and affects notably their macroscopic behavior. These observations are interpreted as a consequence of the modification at microlevel of adherence between particles and matrix phases. The use of a nonlinear micromechanical model allows us to confirm this interpretation. To cite this article: V. Bouchart et al., C. R. Mecanique 336 (2008).
Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A
2012-03-01
We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.
Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas
2016-04-01
The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.
Linear approximations of global behaviors in nonlinear systems with moderate or strong noise
NASA Astrophysics Data System (ADS)
Liang, Junhao; Din, Anwarud; Zhou, Tianshou
2018-03-01
While many physical or chemical systems can be modeled by nonlinear Langevin equations (LEs), dynamical analysis of these systems is challenging in the cases of moderate and strong noise. Here we develop a linear approximation scheme, which can transform an often intractable LE into a linear set of binomial moment equations (BMEs). This scheme provides a feasible way to capture nonlinear behaviors in the sense of probability distribution and is effective even when the noise is moderate or big. Based on BMEs, we further develop a noise reduction technique, which can effectively handle tough cases where traditional small-noise theories are inapplicable. The overall method not only provides an approximation-based paradigm to analysis of the local and global behaviors of nonlinear noisy systems but also has a wide range of applications.
Nonlinear dynamics induced in a structure by seismic and environmental loading
Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe
2016-07-26
In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less
Nonlinear dynamics induced in a structure by seismic and environmental loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe
In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less
Abbasi, Mohammad
2018-04-01
The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sacks, Michael S; Mirnajafi, Ali; Sun, Wei; Schmidt, Paul
2006-11-01
The present review surveys significant developments in the biomechanical characterization and computational simulation of biologically derived chemically cross-linked soft tissues, or 'heterograft' biomaterials, used in replacement bioprosthetic heart valve (BHV). A survey of mechanical characterization techniques, relevant mechanical properties and computational simulation approaches is presented for both the source tissues and cross-linked biomaterials. Since durability remains the critical problem with current bioprostheses, changes with the mechanical behavior with fatigue are also presented. Moreover, given the complex nature of the mechanical properties of heterograft biomaterials it is not surprising that most constitutive (stress-strain) models, historically used to characterize their behavior, were oversimplified. Simulations of BHV function utilizing these models have inevitably been inaccurate. Thus, more recent finite element simulations utilizing nonlinear constitutive models, which achieve greater model fidelity, are reviewed. An important conclusion of this review is the need for accurate constitutive models, rigorously validated with appropriate experimental data, in order that the design benefits of computational models can be realized. Finally, for at least the coming 20 years, BHVs fabricated from heterograft biomaterials will continue to be extensively used, and will probably remain as the dominant valve design. We should thus recognize that rational, scientifically based approaches to BHV biomaterial development and design can lead to significantly improved BHV, over the coming decades, which can potentially impact millions of patients worldwide with heart valve disease.
Tensile properties of helical auxetic structures: A numerical study
NASA Astrophysics Data System (ADS)
Wright, J. R.; Sloan, M. R.; Evans, K. E.
2010-08-01
This paper discusses a helical auxetic structure which has a diverse range of practical applications. The mechanical properties of the system can be determined by particular combinations of geometry and component material properties; finite element analysis is used to investigate the static behavior of these structures under tension. Modeling criteria are determined and design issues are discussed. A description of the different strain-dependent mechanical phases is provided. It is shown that the stiffnesses of the component fibers and the initial helical wrap angle are critical design parameters, and that strain-dependent changes in cross-section must be taken into consideration: we observe that the structures exhibit nonlinear behavior due to nonzero component Poisson's ratios. Negative Poisson's ratios for the helical structures as low as -5 are shown. While we focus here on the structure as a yarn our findings are, in principle, scaleable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields duringmore » the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.« less
Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect
NASA Astrophysics Data System (ADS)
Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.
2013-12-01
Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.
1998-01-01
The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).
NASA Astrophysics Data System (ADS)
Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan
2016-03-01
A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.
Nonlinear time dependence of dark current in charge-coupled devices
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf
2011-03-01
It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.
Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.
Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru
2011-03-01
We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.
NASA Astrophysics Data System (ADS)
Liu, Rong; Chen, Xue; Ding, Zijing
2018-01-01
We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.
NASA Astrophysics Data System (ADS)
de Brito, P. E.; Nazareno, H. N.
2012-09-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials
Gan, Yong X.
2009-01-01
This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466
Ontology of Earth's nonlinear dynamic complex systems
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2017-04-01
As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.
Nonlinear Wave propagation at sediment layers
NASA Astrophysics Data System (ADS)
Tsuda, K.; Archuleta, R. J.; O'Connell, D. R.; Bonilla, F. L.
2002-12-01
Data from some large earthquakes, such as the 2000 Tottoriken-Seibu earthquake, the 1995 Kobe earthquake, and 1994 Northridge earthquake have reinforced the importance of the effect of surface soil on seismic waves. This is especially true of the Tottoriken-Seibu earthquake where the damage from the liquefaction of surface soil was very severe. The mechanism of the liquefaction of soil is understood as the result of the nonlinear soil behavior-the pore water pressure build up-during the strong shaking. The model to explain the mechanics of pore water pressure build up has been proposed by many studies. In this study, we tried to predict the pore water pressure based on the constitutive model proposed by Iai et al. (1992). This model has been already applied to predict nonlinear soil behavior by Bonilla (2000) whose simulated results showed good agreement with the laboratory data in the VELACS program. We have applied this method to simulate ground motions at Jackson Lake Dam, Wyoming. We constructed a 140 m one-dimensional shear-wave velocity/depth profile for the sediment layers. The water table is at 2 m depth. The elastic material properties are based on in situ measurements. However, the parameters needed for the nonlinear response are taken from generic data for similar materials. To check for consistency we have constructed liquefaction resistance curves using a range of parameters that will be assumed for the soil column. These curves are compared with measured point values of the liquefaction resistance. To estimate the response at Jackson Lake Dam we have used strong motion records-JMA records from the 1995 Kobe earthquake and the Pleasant Valley Pumping Plant records from the 1983 Coalinga earthquake-as input motions at 140 m depth. We have also used synthetic ground motions computed from scenario earthquakes that might occur on the Teton Fault, very close to the dam. In the case of the synthetic input motions, the calculated shear strain approaches 20% in the sand layer. The material between 0 and 10 m shows maximum strain of about 1%, which still produces an increase in the fundamental period of the layer as well as a deamplification of the amplitude of the seismic waves.
Ingber, Lester; Nunez, Paul L
2011-02-01
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.
NOLIN: A nonlinear laminate analysis program
NASA Technical Reports Server (NTRS)
Kibler, J. J.
1975-01-01
A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.
Altet, J; Mateo, D; Perpiñà, X; Grauby, S; Dilhaire, S; Jordà, X
2011-09-01
This work presents an alternative characterization strategy to quantify the nonlinear behavior of temperature sensing systems. The proposed approach relies on measuring the temperature under thermal sinusoidal steady state and observing the intermodulation products that are generated within the sensing system itself due to its nonlinear temperature-output voltage characteristics. From such intermodulation products, second-order interception points can be calculated as a figure of merit of the measuring system nonlinear behavior. In this scenario, the present work first shows a theoretical analysis. Second, it reports the experimental results obtained with three thermal sensing techniques used in integrated circuits. © 2011 American Institute of Physics
Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.
Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav
2018-05-14
Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.
Nonlinear problems in flight dynamics
NASA Technical Reports Server (NTRS)
Chapman, G. T.; Tobak, M.
1984-01-01
A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.
van der Groen, Onno; Wenderoth, Nicole
2016-05-11
Random noise enhances the detectability of weak signals in nonlinear systems, a phenomenon known as stochastic resonance (SR). Though counterintuitive at first, SR has been demonstrated in a variety of naturally occurring processes, including human perception, where it has been shown that adding noise directly to weak visual, tactile, or auditory stimuli enhances detection performance. These results indicate that random noise can push subthreshold receptor potentials across the transfer threshold, causing action potentials in an otherwise silent afference. Despite the wealth of evidence demonstrating SR for noise added to a stimulus, relatively few studies have explored whether or not noise added directly to cortical networks enhances sensory detection. Here we administered transcranial random noise stimulation (tRNS; 100-640 Hz zero-mean Gaussian white noise) to the occipital region of human participants. For increasing tRNS intensities (ranging from 0 to 1.5 mA), the detection accuracy of a visual stimuli changed according to an inverted-U-shaped function, typical of the SR phenomenon. When the optimal level of noise was added to visual cortex, detection performance improved significantly relative to a zero noise condition (9.7 ± 4.6%) and to a similar extent as optimal noise added to the visual stimuli (11.2 ± 4.7%). Our results demonstrate that adding noise to cortical networks can improve human behavior and that tRNS is an appropriate tool to exploit this mechanism. Our findings suggest that neural processing at the network level exhibits nonlinear system properties that are sensitive to the stochastic resonance phenomenon and highlight the usefulness of tRNS as a tool to modulate human behavior. Since tRNS can be applied to all cortical areas, exploiting the SR phenomenon is not restricted to the perceptual domain, but can be used for other functions that depend on nonlinear neural dynamics (e.g., decision making, task switching, response inhibition, and many other processes). This will open new avenues for using tRNS to investigate brain function and enhance the behavior of healthy individuals or patients. Copyright © 2016 the authors 0270-6474/16/365289-10$15.00/0.
Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics
NASA Technical Reports Server (NTRS)
Monk, Joshua D.; Lawson, John W.
2016-01-01
Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.
Foutz, T L
1991-03-01
A phenomenological model was developed to describe the nonlinear elastic behavior of the avian gastrocnemius tendon. Quasistatic uniaxial tensile tests were used to apply a deformation and resulting load on the tendon at a deformation rate of 5 mm/min. Plots of deformation versus load indicated a nonlinear loading response. By calculating engineering stress and engineering strain, the experimental data were normalized for tendon shape. The elastic response was determined from stress-strain curves and was found to vary with engineering strain. The response to the applied engineering strain could best be described by a mathematical model that combined a linear function and a nonlinear function. Three parameters in the model were developed to represent the nonlinear elastic behavior of the tendon, thereby allowing analysis of elasticity without prior knowledge of engineering strain. This procedure reduced the amount of data needed for the statistical analysis of nonlinear elasticity.
Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udayabhaskar, R.; Karthikeyan, B., E-mail: bkarthik@nitt.edu; Ollakkan, Muhamed Shafi
2014-01-06
Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5 ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.
Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires
NASA Astrophysics Data System (ADS)
Udayabhaskar, R.; Ollakkan, Muhamed Shafi; Karthikeyan, B.
2014-01-01
Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5 ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.
Suppression and Contrast Normalization in Motion Processing
2017-01-01
Sensory neurons are activated by a range of stimuli to which they are said to be tuned. Usually, they are also suppressed by another set of stimuli that have little effect when presented in isolation. The interactions between preferred and suppressive stimuli are often quite complex and vary across neurons, even within a single area, making it difficult to infer their collective effect on behavioral responses mediated by activity across populations of neurons. Here, we investigated this issue by measuring, in human subjects (three males), the suppressive effect of static masks on the ocular following responses induced by moving stimuli. We found a wide range of effects, which depend in a nonlinear and nonseparable manner on the spatial frequency, contrast, and spatial location of both stimulus and mask. Under some conditions, the presence of the mask can be seen as scaling the contrast of the driving stimulus. Under other conditions, the effect is more complex, involving also a direct scaling of the behavioral response. All of this complexity at the behavioral level can be captured by a simple model in which stimulus and mask interact nonlinearly at two stages, one monocular and one binocular. The nature of the interactions is compatible with those observed at the level of single neurons in primates, usually broadly described as divisive normalization, without having to invoke any scaling mechanism. SIGNIFICANCE STATEMENT The response of sensory neurons to their preferred stimulus is often modulated by stimuli that are not effective when presented alone. Individual neurons can exhibit multiple modulatory effects, with considerable variability across neurons even in a single area. Such diversity has made it difficult to infer the impact of these modulatory mechanisms on behavioral responses. Here, we report the effects of a stationary mask on the reflexive eye movements induced by a moving stimulus. A model with two stages, each incorporating a divisive modulatory mechanism, reproduces our experimental results and suggests that qualitative variability of masking effects in cortical neurons might arise from differences in the extent to which such effects are inherited from earlier stages. PMID:29018158
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
Dynamical and fractal properties in periodically forced stretch-twist-fold (STF) flow
NASA Astrophysics Data System (ADS)
Aqeel, Muhammad; Ahmad, Salman; Azam, Anam; Ahmed, Faizan
2017-05-01
The periodically forced stretch-twist-fold (STF) flow is introduced in this article. The nonlinear behavior of the STF flow with periodic force along the y -axis is investigated analytically and numerically. The STF flow is a prototype of the dynamo theory that proposes a mechanism of magnetic field generation continuously. The stability analysis is done by Routh Huwritz criteria and Cardano method. Chasing chaos through numerical simulation is determined to demonstrate the chaotic behavior of the forced STF flow. With the help of fractal processes based on the forced STF flow, a multi-wing forced STF flow is obtained that gives a n -wing forced STF flow system.
Mechanical behavior and failure phenomenon of an in situ-toughened silicon nitride
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Choi, Sung R.; Freedman, Marc R.; Jenkins, Michael G.
1990-01-01
The Weibull modulus, fracture toughness and crack growth resistance of an in-situ toughened, silicon nitride material used to manufacture a turbine combustor were determined from room temperature to 1371 C. The material exhibited an elongated grain structure that resulted in improved fracture toughness, nonlinear crack growth resistance, and good elevated temperature strength. However, low temperature strength was limited by grains of excessive length (30 to 100 microns). These excessively long grains were surrounded by regions rich in sintering additives.
NASA Astrophysics Data System (ADS)
Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.
In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.
Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.
Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L
2007-08-01
Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.
Understanding of flux-limited behaviors of heat transport in nonlinear regime
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Jou, David; Wang, Moran
2016-01-01
The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.
The Application of a Nonlinear Fracture Mechanics Parameter to Ductile Fatigue Crack Growth
1982-12-01
ADAl I4~ AFWAL-TR-83-4023 0 THE APPLICATION OF A NONLINEAR FRACTURE MECHANICS PARAMETER TO DUCTILE FATIGUE CRACK GROW4TH University of Dayton...SubtSle) S. TYPE OF REPORT & PERIOD COVERED The Application of a Nonlinear Fracture Final Report Mechanics Parameter to Ductile Fatigue Sept. 1978...5, and 6. To date, no single elastic-plastic fracture mechanics ( EPFM ) "type parameter has achieved universal acceptance for its corre- lation
Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials
NASA Astrophysics Data System (ADS)
Herbold, Eric B.
New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.
A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
Jahnke, Sven; Timme, Marc; Memmesheimer, Raoul-Martin
2015-12-09
Hippocampal activity is fundamental for episodic memory formation and consolidation. During phases of rest and sleep, it exhibits sharp-wave/ripple (SPW/R) complexes, which are short episodes of increased activity with superimposed high-frequency oscillations. Simultaneously, spike sequences reflecting previous behavior, such as traversed trajectories in space, are replayed. Whereas these phenomena are thought to be crucial for the formation and consolidation of episodic memory, their neurophysiological mechanisms are not well understood. Here we present a unified model showing how experience may be stored and thereafter replayed in association with SPW/Rs. We propose that replay and SPW/Rs are tightly interconnected as they mutually generate and support each other. The underlying mechanism is based on the nonlinear dendritic computation attributable to dendritic sodium spikes that have been prominently found in the hippocampal regions CA1 and CA3, where SPW/Rs and replay are also generated. Besides assigning SPW/Rs a crucial role for replay and thus memory processing, the proposed mechanism also explains their characteristic features, such as the oscillation frequency and the overall wave form. The results shed a new light on the dynamical aspects of hippocampal circuit learning. During phases of rest and sleep, the hippocampus, the "memory center" of the brain, generates intermittent patterns of strongly increased overall activity with high-frequency oscillations, the so-called sharp-wave/ripples. We investigate their role in learning and memory processing. They occur together with replay of activity sequences reflecting previous behavior. Developing a unifying computational model, we propose that both phenomena are tightly linked, by mutually generating and supporting each other. The underlying mechanism depends on nonlinear amplification of synchronous inputs that has been prominently found in the hippocampus. Besides assigning sharp-wave/ripples a crucial role for replay generation and thus memory processing, the proposed mechanism also explains their characteristic features, such as the oscillation frequency and the overall wave form. Copyright © 2015 the authors 0270-6474/15/3516236-23$15.00/0.
Pyrogenic Carbon as a Nonlinear Driver in the Carbon and Nitrogen Cycles
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Gao, X.; Del Valle, I.
2016-12-01
Our first conceptual models of pyrogenic carbon's effects on the carbon cycle treated this material as a form of organic matter whose environmental residence time was long enough to render it inert, and PyC was modeled as an unreactive mass that moved through C cycle reservoirs essentially unmodified. This concept saw modifications with the recognition that some fractions of PyC were labile. For example, the reactive sugars and lignin monomers cleaved off the lignocellulose matrix by heating have lifetimes on the order of hours to weeks. However, the now-common multiple component model of PyC does not satisfactorily explain many nonlinearities that have been observed when it is added to soils. These nonlinearities include the positive and negative "priming" effects sometimes triggered, where the presence of PyC in some matrices can trigger shifts in the overall microbial community metabolism, as well as alteration of microbial community structure, shifts in the behavior of belowground and aboveground plant parasites, and shifted rates of greenhouse gas emissions that are not well-correlated to shifts in soil hydrologic processes. To understand the effects of PyC on the global C and N cycles, we will need a better understanding of the mechanisms behind PyC-driven C and N cycle nonlinearities. This talk will examine potential mechanisms driving the nonlinearities observed in soil systems following the introduction of PyC. Potential mechanisms discussed will include PyC effects on soil microbial communication and PyC effects on microbial electron transfer. Cell-cell communication through the secretion and detection of small molecules is used by soil microbes to manage many biogeochemically relevant processes including production of biofilms, production of extracellular enzymes, and management of methanogenesis and denitrification. PyC disrupts microbial cell-cell communication differentially, altering some species' ability to communicate more than others. Electron transfer between microbes is a central part of many environmental syntrophies, including those responsible for methanogenesis, and has been shown to be altered by the presence of PyC. Both these processes may underlie observed ecosystem-scale shifts following PyC amendment to soils.
Kuznetsov-Ma waves train generation in a left-handed material
NASA Astrophysics Data System (ADS)
Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon
2015-03-01
We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.
MSC products for the simulation of tire behavior
NASA Technical Reports Server (NTRS)
Muskivitch, John C.
1995-01-01
The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.
The role of nonlinear viscoelasticity on the functionality of laminating shortenings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macias-Rodriguez, Braulio A.; Peyronel, Fernanda; Marangoni, Alejandro G.
The rheology of fats is essential for the development of homogeneous and continuous layered structures of doughs. Here, we define laminating shortenings in terms of rheological behavior displayed during linear-to-nonlinear shear deformations, investigated by large amplitude oscillatory shear rheology. Likewise, we associate the rheological behavior of the shortenings with structural length scales elucidated by ultra-small angle x-ray scattering and cryo-electron microscopy. Shortenings exhibited solid-like viscoelastic and viscoelastoplastic behaviors in the linear and nonlinear regimes respectively. In the nonlinear region, laminating shortenings dissipated more viscous energy (larger normalized dynamic viscosities) than a cake bakery shortening. The fat solid-like network of laminatingmore » shortening displayed a three-hierarchy structure and layered crystal aggregates, in comparison to two-hierarchy structure and spherical-like crystal aggregates of a cake shortening. We argue that the observed rheology, correlated to the structural network, is crucial for optimal laminating performance of shortenings.« less
Ratcheting in a nonlinear viscoelastic adhesive
NASA Astrophysics Data System (ADS)
Lemme, David; Smith, Lloyd
2017-11-01
Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.
Nonlinear Characterization of Half and Full Wavelength Power Ultrasonic Devices
NASA Astrophysics Data System (ADS)
Mathieson, Andrew; Cerisola, Niccolò; Cardoni, Andrea
It is well known that power ultrasonic devices whilst driven under elevated excitation levels exhibit nonlinear behaviors. If no attempt is made to understand and subsequently control these behaviors, these devices can exhibit poor performance or even suffer premature failure. This paper presents an experimental method for the dynamic characterization of a commercial ultrasonic transducer for bone cutting applications (Piezosurgery® Device) operated together with a variety of rod horns that are tuned to operate in a longitudinal mode of vibration. Near resonance responses, excited via a burst sine sweep method were used to identify nonlinear responses exhibited by the devices, while experimental modal analysis was performed to identify the modal parameters of the longitudinal modes of vibration of the assemblies between 0-80 kHz. This study tries to provide an understanding of the effects that geometry and material choices may have on the nonlinear behavior of a tuned device.
Indication of multiscaling in the volatility return intervals of stock markets
NASA Astrophysics Data System (ADS)
Wang, Fengzhong; Yamasaki, Kazuko; Havlin, Shlomo; Stanley, H. Eugene
2008-01-01
The distribution of the return intervals τ between price volatilities above a threshold height q for financial records has been approximated by a scaling behavior. To explore how accurate is the scaling and therefore understand the underlined nonlinear mechanism, we investigate intraday data sets of 500 stocks which consist of Standard & Poor’s 500 index. We show that the cumulative distribution of return intervals has systematic deviations from scaling. We support this finding by studying the m -th moment μm≡⟨(τ/⟨τ⟩)m⟩1/m , which show a certain trend with the mean interval ⟨τ⟩ . We generate surrogate records using the Schreiber method, and find that their cumulative distributions almost collapse to a single curve and moments are almost constant for most ranges of ⟨τ⟩ . Those substantial differences suggest that nonlinear correlations in the original volatility sequence account for the deviations from a single scaling law. We also find that the original and surrogate records exhibit slight tendencies for short and long ⟨τ⟩ , due to the discreteness and finite size effects of the records, respectively. To avoid as possible those effects for testing the multiscaling behavior, we investigate the moments in the range 10<⟨τ⟩≤100 , and find that the exponent α from the power law fitting μm˜⟨τ⟩α has a narrow distribution around α≠0 which depends on m for the 500 stocks. The distribution of α for the surrogate records are very narrow and centered around α=0 . This suggests that the return interval distribution exhibits multiscaling behavior due to the nonlinear correlations in the original volatility.
Circadian Role in Daily Pattern of Cardiovascular Risk
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.
2004-03-01
Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.
Nagata, Yuki; Lennartz, Christian
2008-07-21
The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1981-01-01
Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.
Algebraic disturbances and their consequences in rotating channel flow transition
NASA Astrophysics Data System (ADS)
Jose, Sharath; Kuzhimparampil, Vishnu; Pier, Benoît.; Govindarajan, Rama
2017-08-01
It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of nonrotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behavior are found: the transient growth leading to nonlinearity at low rotation rates R o , a highly chaotic intermediate R o regime, a localized weak chaos at higher R o , and complete stabilization of transient disturbances at very high R o . At very low R o , the transient growth amplitudes are close to those for nonrotating flow, but Coriolis forces assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high R o regimes do not show these signatures; here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to reduce nonnormality in the linear operator, in an indirect manifestation of Taylor-Proudman effects. Although the critical Reynolds for exponential growth of instabilities is known to vary a lot with rotation rate, we show that the energy critical Reynolds number is insensitive to rotation rate. It is hoped that these findings will motivate experimental verification and examination of other rotating flows in this light.
Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.
Basafa, Ehsan; Farahmand, Farzam
2011-05-01
Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. The model was able to replicate complex biological soft tissue mechanical properties under large deformations, i.e., the nonlinear and viscoelastic behaviors. The simulated response of the model after tuning of its parameters to the experimental data of a deer liver sample, closely tracked the reference data with high correlation and maximum relative differences of less than 5 and 10%, for the tuning and testing data sets respectively. Finally, implementation of the proposed model and algorithms in a graphical environment resulted in a real-time simulation with update rates of 150 Hz for interactive deformation and haptic manipulation, and 30 Hz for visual rendering. The proposed real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was efficient, realistic, and accurate in ex vivo testing. This model is a suitable candidate for testing in vivo during laparoscopic surgery.
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Li, C.; Liao, Y. F.
2017-12-01
Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.
Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco
2017-01-07
Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.
Applications of Automation Methods for Nonlinear Fracture Test Analysis
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
Analysis and design of ferroelectric-based smart antenna structures
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth; Washington, Gregory N.
2009-03-01
Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.
Evaluation and Analysis of F-16XL Wind Tunnel Data From Static and Dynamic Tests
NASA Technical Reports Server (NTRS)
Kim, Sungwan; Murphy, Patrick C.; Klein, Vladislav
2004-01-01
A series of wind tunnel tests were conducted in the NASA Langley Research Center as part of an ongoing effort to develop and test mathematical models for aircraft rigid-body aerodynamics in nonlinear unsteady flight regimes. Analysis of measurement accuracy, especially for nonlinear dynamic systems that may exhibit complicated behaviors, is an essential component of this ongoing effort. In this report, tools for harmonic analysis of dynamic data and assessing measurement accuracy are presented. A linear aerodynamic model is assumed that is appropriate for conventional forced-oscillation experiments, although more general models can be used with these tools. Application of the tools to experimental data is demonstrated and results indicate the levels of uncertainty in output measurements that can arise from experimental setup, calibration procedures, mechanical limitations, and input errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, H.; Chong, C.; Charalampidis, E. G.
Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less
Formation of rarefaction waves in origami-based metamaterials
NASA Astrophysics Data System (ADS)
Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.
2016-04-01
We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.
Interlaminar fracture of random short-fiber SMC composite
NASA Technical Reports Server (NTRS)
Wang, S. S.; Suemasu, H.; Zahlan, N. M.
1984-01-01
In the experimental phase of the present study of the interlaminar fracture behavior of a randomly oriented short fiber sheet molding compound (SMC) composite, the double cantilever beam fracture test is used to evaluate the mode I interlaminar fracture toughness of different composite thicknesses. In the analytical phase of this work, a geometrically nonlinear analysis is introduced in order to account for large deflections and nonlinear load deflection curves in the evaluation of interlaminar fracture toughness. For the SMC-R50 material studied, interlaminar toughness is an order of magnitude higher than that of unreinforced neat resin, due to unusual damage mechanisms ahead of the crack tip, together with significant fiber bridging across crack surfaces. Composite thickness effects on interlaminar fracture are noted to be appreciable, and a detailed discussion is given on the influence of SMC microstructure.
NASA Astrophysics Data System (ADS)
Memarianfard, H.; Turusov, R. A.
2017-11-01
A nonlinear numerical multiscale analysis to predict the residual shrinkage and thermal stresses arising during curing and cooling of thickwall cross-ply filament-wound cylinders of a reinforced polymer is performed at macro- and microscales using the representative volume element (RVE) of the composite. The mechanical behavior of the polymeric matrix is described by a nonlinear viscoelastic model with account of chemical shrinkage. The fiber material is considered elastic, isotropic, and temperature-independent. The maximum residual macrostresses arising during manufacture of the cylinders were calculated. The fields of residual microstresses in the RVE in three different zones across the thickness of the cylinders were found. Results of the microscale analysis showed that microstresses in some zones of RVE were several times higher than macrostresses in these areas.
Signal bi-amplification in networks of unidirectionally coupled MEMS
NASA Astrophysics Data System (ADS)
Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere
2016-01-01
The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.
Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K
2014-06-01
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
Experimental Nonlinear Dynamics and Snap-Through of Post-Buckled Thin Laminated Composite Plates
NASA Astrophysics Data System (ADS)
Kim, Han-Gyu
Modern aerospace systems are increasingly being designed with composite panels and plates to achieve light weight and high specific strength and stiffness. For constrained panels, thermally-induced axial loading may cause buckling of the structure, which can lead to nonlinear and potentially chaotic behavior. When post-buckled composite plates experience snap-through, they are subjected to large-amplitude deformations and in-plane compressive loading. These phenomena pose a potential threat to the structural integrity of composite structures. In this work, the nonlinear dynamic behavior of post-buckled composite plates was investigated experimentally and computationally. For the experimental work, an electrodynamic shaker was used to apply harmonic loads and the dynamic response of plate specimens was measured using a single-point displacement-sensing laser, a double-point laser vibrometer (velocity-sensing), and a set of digital image correlation cameras. Both chaotic and periodic steady-state snap-through behaviors were investigated. The experimental data were used to characterize snap-through behaviors of the post-buckled specimens and their boundaries in the harmonic forcing parameter space. The nonlinear behavior of post-buckled plates was modeled using the classical laminated plate theory (CLPT) and the von Karman strain-displacement relations. The static equilibrium paths of the post-buckled plates were analyzed using an arc-length method with a branch-switching technique. For the dynamic analysis, the nonlinear equations of motion were derived based on CLPT and the nonlinear finite element model of the equations was constructed using the Hermite cubic interpolation functions for both conforming and nonconforming elements. The numerical analyses were conducted using the model and were compared with the experimental data.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.
Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2006-01-01
Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.
Negative extensibility metamaterials: phase diagram calculation
NASA Astrophysics Data System (ADS)
Klein, John T.; Karpov, Eduard G.
2017-12-01
Negative extensibility metamaterials are able to contract against the line of increasing external tension. A bistable unit cell exhibits several nonlinear mechanical behaviors including the negative extensibility response. Here, an exact form of the total mechanical potential is used based on engineering strain measure. The mechanical response is a function of the system parameters that specify unit cell dimensions and member stiffnesses. A phase diagram is calculated, which maps the response to regions in the diagram using the system parameters as the coordinate axes. Boundary lines pinpoint the onset of a particular mechanical response. Contour lines allow various material properties to be fine-tuned. Analogous to thermodynamic phase diagrams, there exist singular "triple points" which simultaneously satisfy conditions for three response types. The discussion ends with a brief statement about how thermodynamic phase diagrams differ from the phase diagram in this paper.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; Peng, Haowei; Deml, Ann M.; Matthews, Bethany E.; Schelhas, Laura T.; Toney, Michael F.; Gordon, Roy G.; Tumas, William; Perkins, John D.; Ginley, David S.; Gorman, Brian P.; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-01-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region. PMID:28630928
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.
Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-06-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; ...
2017-06-07
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less
Chaotic behaviors of operational amplifiers.
Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min
2004-04-01
We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.
Functional properties of models for direction selectivity in the retina.
Grzywacz, N M; Koch, C
1987-01-01
Poggio and Reichardt (Kybernetik, 13:223-227, 1973) showed that if the average response of a visual system to a moving stimulus is directionally selective, then this sensitivity must be mediated by a nonlinear operation. In particular, it has been proposed that at the behavioral level, motion-sensitive biological systems are implemented by quadratic nonlinearities (Hassenstein and Reichardt: Z. Naturforsch., 11b:513-524, 1956; van Santen and Sperling: J. Opt. Soc. Am. [A] 1:451-473, 1984; Adelson and Bergen: J. Opt. Soc. Am. [A], 2:284-299, 1985). This paper analyzes theoretically two nonlinear neural mechanisms that possibly underlie retinal direction selectivity and explores the conditions under which they behave as a quadratic nonlinearity. The first mechanism is shunting inhibition (Torre and Poggio: Proc. R. Soc. Lond. [Biol.], 202:409-416, 1978), and the second consists of the linear combination of the outputs of a depolarizing and a hyperpolarizing synapse, followed by a threshold operation. It was found that although sometimes possible, it is in practice hard to approximate the Shunting Inhibition and the Threshold models for direction selectivity by quadratic systems. For instance, the level of the threshold on the Threshold model must be close to the steady-state level of the cell's combined synaptic input. Furthermore, for both the Shunting and the Threshold models, the approximation by a quadratic system is only possible for a small range of low contrast stimuli and for situations where the rectifications due to the ON-OFF mechanisms, and to the ganglion cells' action potentials, can be linearized. The main question that this paper leaves open is, how do we account for the apparent quadratic properties of motion perception given that the same properties seem so fragile at the single cell level? Finally, as a result of this study, some system analysis experiments were proposed that can distinguish between different instances of the models.
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamışlıoğlu, Miraç, E-mail: m.kamislioglu@gmail.com; Külahcı, Fatih, E-mail: fatihkulahci@firat.edu.tr
Nonlinear time series analysis techniques have large application areas on the geoscience and geophysics fields. Modern nonlinear methods are provided considerable evidence for explain seismicity phenomena. In this study nonlinear time series analysis, fractal analysis and spectral analysis have been carried out for researching the chaotic behaviors of release radon gas ({sup 222}Rn) concentration occurring during seismic events. Nonlinear time series analysis methods (Lyapunov exponent, Hurst phenomenon, correlation dimension and false nearest neighbor) were applied for East Anatolian Fault Zone (EAFZ) Turkey and its surroundings where there are about 35,136 the radon measurements for each region. In this paper weremore » investigated of {sup 222}Rn behavior which it’s used in earthquake prediction studies.« less
NASA Astrophysics Data System (ADS)
Mizuno, Daisuke; Head, David; Ikebe, Emi; Nakamasu, Akiko; Kinoshita, Suguru; Peijuan, Zhang; Ando, Shoji
2013-03-01
Forces are generated heterogeneously in living cells and transmitted through cytoskeletal networks that respond highly non-linearly. Here, we carry out high-bandwidth passive microrheology on vimentin networks reconstituted in vitro, and observe the nonlinear mechanical response due to forces propagating from a local source applied by an optical tweezer. Since the applied force is constant, the gel becomes equilibrated and the fluctuation-dissipation theorem can be employed to deduce the viscoelasticity of the local environment from the thermal fluctuations of colloidal probes. Our experiments unequivocally demonstrate the anisotropic stiffening of the cytoskeletal network behind the applied force, with greater stiffening in the parallel direction. Quantitative agreement with an affine continuum model is obtained, but only for the response at certain frequency ~ 10-1000 Hz which separates the high-frequency power law and low-frequency elastic behavior of the network. We argue that the failure of the model at lower frequencies is due to the presence of non-affinity, and observe that zero-frequency changes in particle separation can be fitted when an independently-measured, empirical nonaffinity factor is applied.
Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids
NASA Astrophysics Data System (ADS)
Ingebrigtsen, Trond S.; Tanaka, Hajime
2018-01-01
Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.
Wen, Xiao-Yong; Yang, Yunqing; Yan, Zhenya
2015-07-01
In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are discussed in detail for different parameters, which display abundant interesting wave structures, including the triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics. The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave solutions of other nonlinear integrable equations.
Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.
Ingebrigtsen, Trond S; Tanaka, Hajime
2018-01-02
Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
Analysis of Composite Panels Subjected to Thermo-Mechanical Loads
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1999-01-01
The results of a detailed study of the effect of cutout on the nonlinear response of curved unstiffened panels are presented. The panels are subjected to combined temperature gradient through-the-thickness combined with pressure loading and edge shortening or edge shear. The analysis is based on a first-order, shear deformation, Sanders-Budiansky-type shell theory with the effects of large displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, as well as in the material properties of the individual layers. Numerical results are presented for cylindrical panels and show the effects of variations in the loading and the size of the cutout on the global and local response quantities as well as their sensitivity to changes in the various panel, layer, and micromechanical parameters.
Silva, R S; de Melo, P B; Omena, L; Nunes, A M; da Silva, M G A; Meneghetti, M R; de Oliveira, I N
2017-12-01
The present study is devoted to the investigation of the nonlinear optical properties of a smectic liquid crystal doped with gold nanorods. Using the Z-scan technique, we investigate the changes in the optical birefringence of a homeotropic sample upon laser exposure, considering the configurations of normal and oblique incidence. Our results reveal that the birefringence variations may be governed by distinct physical mechanisms, depending on the relative angle between the far-field director and the wave vector of the excitation laser beam. In particular, we observe that the position dependence of the far-field transmittance exhibits different behaviors as the incidence angle is changed, indicating that distortions in the beam wavefront may be associated with the thermal lens phenomenon or an optically induced reorientation of the nematic director. The temperature dependence of the nonlinear refractive and absorptive coefficients is investigated close to the smectic-A-nematic phase transition. A detailed analysis of the interplay between smectic order and plasmon resonance is performed, thus unveiling the capability of plasmonic liquid crystal to be used in optical devices.
NASA Astrophysics Data System (ADS)
Silva, R. S.; de Melo, P. B.; Omena, L.; Nunes, A. M.; da Silva, M. G. A.; Meneghetti, M. R.; de Oliveira, I. N.
2017-12-01
The present study is devoted to the investigation of the nonlinear optical properties of a smectic liquid crystal doped with gold nanorods. Using the Z -scan technique, we investigate the changes in the optical birefringence of a homeotropic sample upon laser exposure, considering the configurations of normal and oblique incidence. Our results reveal that the birefringence variations may be governed by distinct physical mechanisms, depending on the relative angle between the far-field director and the wave vector of the excitation laser beam. In particular, we observe that the position dependence of the far-field transmittance exhibits different behaviors as the incidence angle is changed, indicating that distortions in the beam wavefront may be associated with the thermal lens phenomenon or an optically induced reorientation of the nematic director. The temperature dependence of the nonlinear refractive and absorptive coefficients is investigated close to the smectic-A -nematic phase transition. A detailed analysis of the interplay between smectic order and plasmon resonance is performed, thus unveiling the capability of plasmonic liquid crystal to be used in optical devices.
Mechanical characterization and structural assessment of biocomposites for construction
NASA Astrophysics Data System (ADS)
Christian, Sarah Jane
The objective of this dissertation is to assess whether or not two particular biocomposite materials, made from hemp fabric and cellulose acetate or polyhydroxybutyrate matrices, are capable of being used for structural and/or construction purposes within in the construction and building industry. The objective of this dissertation was addressed by conducting research to meet the following three goals: (1) to measure the basic mechanical properties of hemp/cellulose acetate and hemp/PHB biocomposites and evaluate if they suitable for use in construction applications, (2) to determine how quickly moisture diffuses into the biocomposite materials and how the moisture affects the mechanical behavior, and (3) to determine how well simple models can predict behavior of structural scale laminates in tension and flexure using biocomposite ply behavior. Compression molding was used to manufacturing the biocomposites from hemp fabric and the themoplastic matrices: cellulose acetate and polyhydroxybutyrate. Four methods for determining the fiber volume fraction were evaluated, and the dissolution method, using different solvents for each matrix type, was used to determine the fiber volume fraction for each composite plate manufactured. Both types of biocomposite were tested in tension, compression, shear, and flexure and the measured properties were compared to wood and engineered wood products to assess whether the biocomposite properties are suitable for use in the construction industry. The biocomposites were conditioned in a humid environment to determine the rate of moisture diffusion into the materials. Then saturated specimens and specimens that were saturated and then dried were tested in tension to evaluate how moisture absorption affects the mechanical behavior of the biocomposites. Finally, simple models of laminate behavior based on laminate plate theory were evaluated to determine if ply level behavior could be used to predict structural scale laminate behavior. While the biocomposite strengths in flexure, compression, and shear were comparable to the strengths of wood and wood-based products parallel to grain, the biocomposite strengths exceeded the strengths perpendicular to the wood grain, as would be expected with fabric reinforcement. The biocomposite moduli of elasticity were between 35% and 75% of the wood moduli parallel to grain. While structural shape of the biocomposites could be manipulated to achieve a comparable structural stiffness to replace wood and short fiber FRPs, the biocomposites have comparable stiffness to the engineered wood-products. Thus, in terms of mechanical properties, the biocomposites can be used in place of engineered-wood products. Yet, the higher densities of the biocomposites as compared to wood and engineered-wood products may limit their implementation in construction. The diffusion coefficients for both biocomposites were comparable to wood and higher than the coefficients for synthetic composites as expected due to the hydrophilicity of the natural fibers. Significantly greater moisture absorption of the hemp/cellulose acetate composite as compared to the hemp/PHB composite was attributed to the cellulose acetate itself being hydrophilic whereas PHB is hydrophobic. The rate of diffusion for both materials was found to increase with increasing temperature. Moisture absorption negatively affected the biocomposites as shown through lower initial stiffnesses and higher strains at failure of saturated specimens. The hemp/cellulose acetate composites were much more affected by moisture absorption than the hemp/PHB composites likely because the moisture plasticized the cellulose acetate and also weakened the interfacial fiber-matrix bond. Moisture was assumed to cause permanent damage because the stress-strain behavior did not return to the unconditioned behavior upon drying of the saturated specimens. The degradation of mechanical properties upon introduction to humid environments limits the potential applications of these biocomposites. For these biocomposites to be used widely within the construction industry, they must therefore be protected from moisture for example through sealants and/or fiber treatments. Classical laminate plate theory was shown to be effective in predicting the initial linear behavior of all of the laminates in tension and flexure, but did not capture stiffness degradation or the full nonlinear stress-strain response of the biocomposites because the model was for linear elastic materials. Use of this model would be appropriate for design of deflection-limited applications within certain stress ranges. The modified nonlinear laminate plate theory predicted the initial stress-strain response well, but at higher strains overestimated the strength and stiffness. The overestimation was attributed to the constitutive model assuming uncoupled stress-strain behavior for each strain component and, additionally in flexure, to the use of tensile behavior as the constitutive behavior in compression. While the simple models provided an adequate prediction of laminate behavior at low strains, to predict behavior at higher strains, it is recommended instead to evaluate the use of finite element analysis to predict response using experimental stress-strain as models for orthotropic materials and non-linear behavior are well-established. (Abstract shortened by UMI.)
Large strain deformation behavior of polymeric gels in shear- and cavitation rheology
NASA Astrophysics Data System (ADS)
Hashemnejad, Seyed Meysam; Kundu, Santanu
Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-01-01
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-05-20
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.
Exploration of Fermi-Pasta-Ulam Behavior in a Magnetic System
NASA Astrophysics Data System (ADS)
Lewis, Jeramy; Camley, Robert E.; Anderson, Nicholas R.
2018-04-01
We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU behavior may be altered or turned off through the magnitude and orientation of an external magnetic field. A realistic micromagnetic model shows such behavior could be measurable.