2007-05-04
TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Berkowitz, Brian
2015-03-01
We develop continuous-time random walk (CTRW) equations governing the transport of two species that annihilate when in proximity to one another. In comparison with catalytic or spontaneous transformation reactions that have been previously considered in concert with CTRW, both species have spatially variant concentrations that require consideration. We develop two distinct formulations. The first treats transport and reaction microscopically, potentially capturing behavior at sharp fronts, but at the cost of being strongly nonlinear. The second, mesoscopic, formulation relies on a separation-of-scales technique we develop to separate microscopic-scale reaction and upscaled transport. This simplifies the governing equations and allows treatment of more general reaction dynamics, but requires stronger smoothness assumptions of the solution. The mesoscopic formulation is easily tractable using an existing solution from the literature (we also provide an alternative derivation), and the generalized master equation (GME) for particles undergoing A +B →0 reactions is presented. We show that this GME simplifies, under appropriate circumstances, to both the GME for the unreactive CTRW and to the advection-dispersion-reaction equation. An additional major contribution of this work is on the numerical side: to corroborate our development, we develop an indirect particle-tracking-partial-integro-differential-equation (PIDE) hybrid verification technique which could be applicable widely in reactive anomalous transport. Numerical simulations support the mesoscopic analysis.
Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee
2017-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426
Time-dependent photon heat transport through a mesoscopic Josephson device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn
The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heatmore » branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.« less
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
Time-dependent photon heat transport through a mesoscopic Josephson device
NASA Astrophysics Data System (ADS)
Lu, Wen-Ting; Zhao, Hong-Kang
2017-02-01
The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green's function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction.
Ge, Hao; Qian, Hong
2011-01-01
A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813
Describing transport across complex biological interfaces
NASA Astrophysics Data System (ADS)
Lervik, A.; Kjelstrup, S.
2013-05-01
It has long been known that proteins are capable of transporting ions against a gradient in the chemical potential, using the energy available from a chemical reaction. This is called active transport. A well studied example is the Ca2+-transport by means of hydrolysis of adenosine triphoshpate (ATP) at the surface of the Ca2+-ATPase in sarcoplasmic reticulum. The cycle of events is known to be reversible, and has recently also been associated with a characteristic, and also reversible, heat production. We use the case of the Ca2+-ATPase to present and discuss various central theoretical approaches to describe active transport, with focus on two schools of development, namely the kinetic and the thermodynamic schools. Among the kinetic descriptions, Hill's diagram method gives the most sophisticated description, reducing to the common Post-Albers scheme with simple enzyme kinetic reactions. Among the thermodynamic approaches, we review the now classical approach of Katchalsky and Curran, and its extension to proper pathways by Caplan and Essig, before the most recent development based on mesoscopic theory is outlined. The mesoscopic approach gives a non-linear theory compatible with Hill's most general method when the active transport is isothermal. We show how the old question of scalar-vector coupling is resolved using rules for non-equilibrium thermodynamics for interfaces. Also thermal driving forces can then be accounted for. Essential physical concepts behind all methods are presented and advantages/deficiencies are pointed out. Emphasis is made on the connection to experiments.
Viscous electron flow in mesoscopic two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Gusev, G. M.; Levin, A. D.; Levinson, E. V.; Bakarov, A. K.
2018-02-01
We report electrical and magneto transport measurements in mesoscopic size, two-dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the probe configuration and sample geometry strongly affects the temperature evolution of local resistance. We attribute all transport properties to the presence of hydrodynamic effects. Experimental results confirm the theoretically predicted significance of viscous flow in mesoscopic devices.
The stochastic thermodynamics of a rotating Brownian particle in a gradient flow
Lan, Yueheng; Aurell, Erik
2015-01-01
We compute the entropy production engendered in the environment from a single Brownian particle which moves in a gradient flow, and show that it corresponds in expectation to classical near-equilibrium entropy production in the surrounding fluid with specific mesoscopic transport coefficients. With temperature gradient, extra terms are found which result from the nonlinear interaction between the particle and the non-equilibrated environment. The calculations are based on the fluctuation relations which relate entropy production to the probabilities of stochastic paths and carried out in a multi-time formalism. PMID:26194015
Josephson junction in the quantum mesoscopic electric circuits with charge discreteness
NASA Astrophysics Data System (ADS)
Pahlavani, H.
2018-04-01
A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.
Electron Waiting Times in Mesoscopic Conductors
NASA Astrophysics Data System (ADS)
Albert, Mathias; Haack, Géraldine; Flindt, Christian; Büttiker, Markus
2012-05-01
Electron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula. We illustrate our methodology by calculating the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson statistics at full transmission to Poisson statistics close to pinch-off. Even when the low-frequency transport is noiseless, the electrons are not equally spaced in time due to their inherent wave nature. We discuss the implications for renewal theory in mesoscopic systems and point out several analogies with level spacing statistics and random matrix theory.
Non-Linear Meissner Effect in Mesoscopic Superconductors
1998-06-01
6525 ED Nijmegen, the Netherlands Abstract. Magnetization measurements on superconducting bulk samples and large radius cylinders had resulted in the...Phenomenological London’s theory that is found to be violated in recent magnetization measurements in superconducting mesoscopic discs that exhibit a...quantity. Recently Geim et al [1] used sub-micron Hall probes to detect the magnetization of thin (thickness down to d - 0.07 pm) single superconducting
2012-01-01
The Braess paradox, known for traffic and other classical networks, lies in the fact that adding a new route to a congested network in an attempt to relieve congestion can degrade counterintuitively the overall network performance. Recently, we have extended the concept of the Braess paradox to semiconductor mesoscopic networks, whose transport properties are governed by quantum physics. In this paper, we demonstrate theoretically that, alike in classical systems, congestion plays a key role in the occurrence of a Braess paradox in mesoscopic networks. PMID:22913510
Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations
NASA Astrophysics Data System (ADS)
Atalaya, Juan
Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.
Effect of the presence and size of a localized nonlinear source in concrete.
Zardan, J-P; Payan, C; Garnier, V; Salin, J
2010-07-01
The aim of the present letter is to identify the contribution of a macroscopic source of elastic nonlinearity in concrete, a medium which by nature is nonlinear, and belongs to the nonlinear mesoscopic class of materials. The influence of real, localized macro-cracks is characterized with respect to the intrinsic nonlinearity of the material. The influence of the size of the source on the amplitude of the measured nonlinearity is qualitatively demonstrated. A comparison is made between the changes in linear and nonlinear parameters.
Mesoscopic bar magnet based on ε-Fe2O3 hard ferrite.
Ohkoshi, Shin-Ichi; Namai, Asuka; Yamaoka, Takehiro; Yoshikiyo, Marie; Imoto, Kenta; Nasu, Tomomichi; Anan, Shizuka; Umeta, Yoshikazu; Nakagawa, Kosuke; Tokoro, Hiroko
2016-06-07
Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ε-Fe2O3 with a large coercive field (>25 kOe). The ε-Fe2O3-based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ε-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ε-Fe2O3-based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ε-Fe2O3 bar magnet can be used as a magnetic force microscopy probe.
Mesoscopic bar magnet based on ɛ-Fe2O3 hard ferrite
NASA Astrophysics Data System (ADS)
Ohkoshi, Shin-Ichi; Namai, Asuka; Yamaoka, Takehiro; Yoshikiyo, Marie; Imoto, Kenta; Nasu, Tomomichi; Anan, Shizuka; Umeta, Yoshikazu; Nakagawa, Kosuke; Tokoro, Hiroko
2016-06-01
Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ɛ-Fe2O3 with a large coercive field (>25 kOe). The ɛ-Fe2O3-based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ɛ-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ɛ-Fe2O3-based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ɛ-Fe2O3 bar magnet can be used as a magnetic force microscopy probe.
Noise switching at a dynamical critical point in a cavity-conductor hybrid
NASA Astrophysics Data System (ADS)
Armour, Andrew D.; Kubala, Björn; Ankerhold, Joachim
2017-12-01
Coupling a mesoscopic conductor to a microwave cavity can lead to fascinating feedback effects which generate strong correlations between the dynamics of photons and charges. We explore the connection between cavity dynamics and charge transport in a model system consisting of a voltage-biased Josephson junction embedded in a high-Q cavity, focusing on the behavior as the system is tuned through a dynamical critical point. On one side of the critical point the noise is strongly suppressed, signaling the existence of a regime of highly coherent transport, but on the other side it switches abruptly to a much larger value. Using a semiclassical approach we show that this behavior arises because of the strongly nonlinear cavity drive generated by the Cooper pairs. We also uncover an equivalence between charge and photonic current noise in the system which opens up a route to detecting the critical behavior through straightforward microwave measurements.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Yang, Ying; Ri, Kwangho; Rong, Yaoguang; Liu, Linfeng; Liu, Tongfa; Hu, Min; Li, Xiong; Han, Hongwei
2014-09-07
We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.
Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.
Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E
2017-03-03
We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics
NASA Astrophysics Data System (ADS)
Erol, Galip Ozan
Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover, mesoscopic unit cell finite elements are coupled with a design-of-experiments method to systematically identify the important yarn material properties for the macroscale response of various weave architectures. To demonstrate the macroscopic length scale approach, two new material models for woven fabrics were developed. The Planar Material Model (PMM) utilizes two important deformation mechanisms in woven fabrics: (1) yarn elongation, and (2) relative yarn rotation due to shear loads. The yarns' uniaxial tensile response is modeled with a nonlinear spring using constitutive relations while a nonlinear rotational spring is implemented to define fabric's shear stiffness. The second material model, Sawtooth Material Model (SMM) adopts the sawtooth geometry while recognizing the biaxial nature of woven fabrics by implementing the interactions between the yarns. Material properties/parameters required by both PMM and SMM can be directly determined from standard experiments. Both macroscopic material models are implemented within an explicit finite element code and validated by comparing to the experiments. Then, the developed macroscopic material models are compared under various loading conditions to determine their accuracy. Finally, the numerical models developed in the mesoscopic and macroscopic length scales are linked thus demonstrating the new systematic design framework involving linked mesoscopic and macroscopic length scale modeling approaches. The approach is demonstrated with both Planar and Sawtooth Material Models and the simulation results are verified by comparing the results obtained from meso and macro models.
On an aggregation in birth-and-death stochastic dynamics
NASA Astrophysics Data System (ADS)
Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena
2014-06-01
We consider birth-and-death stochastic dynamics of particle systems with attractive interaction. The heuristic generator of the dynamics has a constant birth rate and density-dependent decreasing death rate. The corresponding statistical dynamics is constructed. Using the Vlasov-type scaling we derive the limiting mesoscopic evolution and prove that this evolution propagates chaos. We study a nonlinear non-local kinetic equation for the first correlation function (density of population). The existence of uniformly bounded solutions as well as solutions growing inside of a bounded domain and expanding in the space are shown. These solutions describe two regimes in the mesoscopic system: regulation and aggregation.
NASA Astrophysics Data System (ADS)
Vanaverbeke, Sigfried; Van Den Abeele, Koen
2006-05-01
A multiscale model for the simulation of two-dimensional nonlinear wave propagation in microcracked materials exhibiting hysteretic nonlinearity is presented. We use trigger-like elements with a two state nonlinear stress-strain relation to simulate microcracks at the microlevel. A generalized Preisach space approach, based on the eigenstress-eigenstrain formulation, upscales the microscopic state relation to the mesoscopic level. The macroscopic response of the sample to an arbitrary excitation signal is then predicted using a staggered grid Elastodynamic Finite Integration Technique (EFIT) formalism. We apply the model to investigate spectral changes of a pulsed signal traversing a localized microdamaged region with hysteretic nonlinearity in a plate, and to study the influence of a superficial region with hysteretic nonlinearity on the nonlinear Rayleigh wave propagation.
NASA Astrophysics Data System (ADS)
Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick
2016-04-01
Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.
Mammalian cochlea as a physics guided evolution-optimized hearing sensor.
Lorimer, Tom; Gomez, Florian; Stoop, Ruedi
2015-07-28
Nonlinear physics plays an essential role in hearing. We demonstrate on a mesoscopic description level that during the evolutionary perfection of the hearing sensor, nonlinear physics led to the unique design of the cochlea observed in mammals, and that this design requests as a consequence the perception of pitch. Our insight challenges the view that mostly genetics is responsible for the uniformity of the construction of the mammalian hearing sensor. Our analysis also suggests that scaleable and non-scaleable arrangements of nonlinear sound detectors may be at the origin of the differences between hearing sensors in amniotic lineages.
Giant mesoscopic fluctuations of the elastic cotunneling thermopower of a single-electron transistor
NASA Astrophysics Data System (ADS)
Vasenko, A. S.; Basko, D. M.; Hekking, F. W. J.
2015-02-01
We study the thermoelectric transport of a small metallic island weakly coupled to two electrodes by tunnel junctions. In the Coulomb blockade regime, in the case when the ground state of the system corresponds to an even number of electrons on the island, the main mechanism of electron transport at the lowest temperatures is elastic cotunneling. In this regime, the transport coefficients strongly depend on the realization of the random impurity potential or the shape of the island. Using random-matrix theory, we calculate the thermopower and the thermoelectric kinetic coefficient and study the statistics of their mesoscopic fluctuations in the elastic cotunneling regime. The fluctuations of the thermopower turn out to be much larger than the average value.
What can we learn from noise? — Mesoscopic nonequilibrium statistical physics —
KOBAYASHI, Kensuke
2016-01-01
Mesoscopic systems — small electric circuits working in quantum regime — offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456
What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.
Kobayashi, Kensuke
2016-01-01
Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.
Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...
2016-03-29
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33La 0.56)TiO 3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li 0.33La 0.56)TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam
2017-01-01
A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685
NASA Astrophysics Data System (ADS)
Lu, Wen-Ting; Zhao, Hong-Kang; Wang, Jian
2018-03-01
Photon heat current tunneling through a series coupled two mesoscopic Josephson junction (MJJ) system biased by dc voltages has been investigated by employing the nonequilibrium Green’s function approach. The time-oscillating photon heat current is contributed by the superposition of different current branches associated with the frequencies of MJJs ω j (j = 1, 2). Nonlinear behaviors are exhibited to be induced by the self-inductance, Coulomb interaction, and interference effect relating to the coherent transport of Cooper pairs in the MJJs. Time-oscillating pumping photon heat current is generated in the absence of temperature difference, while it becomes zero after time-average. The combination of ω j and Coulomb interactions in the MJJs determines the concrete heat current configuration. As the external and intrinsic frequencies ω j and ω 0 of MJJs match some specific combinations, resonant photon heat current exhibits sinusoidal behaviors with large amplitudes. Symmetric and asymmetric evolutions versus time t with respect to ω 1 t and ω 2 t are controlled by the applied dc voltages of V 1 and V 2. The dc photon heat current formula is a special case of the general time-dependent heat current formula when the bias voltages are settled to zero. The Aharonov-Bohm effect has been investigated, and versatile oscillation structures of photon heat current can be achieved by tuning the magnetic fluxes threading through separating MJJs.
NASA Astrophysics Data System (ADS)
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
NASA Astrophysics Data System (ADS)
Virally, Stéphane; Olivier Simoneau, Jean; Lupien, Christian; Reulet, Bertrand
2018-03-01
The quantum behavior of the electromagnetic field in mesoscopic elements is intimately linked to the quantization of the charge. In order to probe nonclassical aspects of the field in those elements, it is essential that thermal noise be reduced to the quantum level, i.e. to scales where kT ≲ hν. This is easily achieved in dilution refrigerators for frequencies of a few GHz, i.e. in the microwave domain. Several recent experiments have highlighted the link between discrete charge transport and discrete photon emission in simple mesoscopic elements such as a tunnel junction. Photocount statistics are inferred from the measurement of continuous variables such as the quadratures of the field.
NASA Astrophysics Data System (ADS)
Korman, Murray S.
2004-05-01
The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like rocks (sandstone) or granular materials. Experiments are performed with an inert VS 1.6 anti-tank mine that is buried 3.6 cm deep in dry sifted loess soil. Airborne sound at two primary frequencies f1=120 Hz and f2=130 Hz undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can affect the vibration velocity at the surface. Profiles of the soil surface particle velocity at f1 and f2 and the nonlinearly generated f1-(f2-f1) component are characterized by a single peak. Doubly peaked profiles at 2f1+f2 and 2f2+f1 are attributed to the familiar mode shape of a timpani drum. Near resonance, the bending (a softening) of a family of tuning curves for the soil surface vibration over a landmine exhibits a linear relationship between the peak frequency and the corresponding peak particle velocity, which also exhibit hysteresis effects. [Work supported by U.S. Army Communications-Electronics Command RDEC, NVESD, Fort Belvoir, VA.
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.
2006-03-01
Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).
Effect of Phase-Breaking Events on Electron Transport in Mesoscopic and Nanodevices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meunier, Vincent; Mintmire, John W; Thushari, Jayasekera
2008-01-01
Existing ballistic models for electron transport in mesoscopic and nanoscale systems break down as the size of the device becomes longer than the phase coherence length of electrons in the system. Krstic et al. experimentally observed that the current in single-wall carbon nanotube systems can be regarded as a combination of a coherent part and a noncoherent part. In this article, we discuss the use of Buettiker phase-breaking technique to address partially coherent electron transport, generalize that to a multichannel problem, and then study the effect of phase-breaking events on the electron transport in two-terminal graphene nanoribbon devices. We alsomore » investigate the difference between the pure-phase randomization and phase/momentum randomization boundary conditions. While momentum randomization adds an extra resistance caused by backward scattering, pure-phase randomization smooths the conductance oscillations because of interference.« less
Fluctuations in the DNA double helix
NASA Astrophysics Data System (ADS)
Peyrard, M.; López, S. C.; Angelov, D.
2007-08-01
DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.
Nonlinear dynamics and cavity cooling of levitated nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-09-01
We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.
Mesoscopic modeling of multi-physicochemical transport phenomena in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Qinjin; Wang, Moran; Mukherjee, Partha P
2009-01-01
We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth,more » and environmental systems.« less
Electronic transport in low dimensions: Carbon nanotubes and mesoscopic silver wires
NASA Astrophysics Data System (ADS)
Ghanem, Tarek Khairy
This thesis explores the physics of low-dimensional electronic conductors using two materials systems, carbon nanotubes (CNTs) and lithographically-defined silver nanowires. In order to understand the intrinsic electronic properties of CNTs, it is important to eliminate the contact effects from the measurements. Here, this is accomplished by using a conductive-tip atomic force microscope cantilever as a local electrode in order to obtain length dependent transport properties. The CNT-movable electrode contact is fully characterized, and is largely independent of voltage bias conditions, and independent of the contact force beyond a certain threshold. The contact is affected by the fine positioning of the cantilever relative to the CNT due to parasitic lateral motion of the cantilever during the loading cycle, which, if not controlled, can lead to non-monotonic behavior of contact resistance vs. force. Length dependent transport measurements are reported for several metallic and semiconducting CNTs. The resistance versus length R(L) of semiconducting CNTs is linear in the on state. For the depleted state R(L) is linear for long channel lengths, but non-linear for short channel lengths due to the long depletion lengths in one-dimensional semiconductors. Transport remains diffusive under all depletion conditions, due to both low disorder and high temperature. The study of quantum corrections to classical conductivity in mesoscopic conductors is an essential tool for understanding phase coherence in these systems. A long standing discrepancy between theory and experiment regards the phase coherence time, which is expected theoretically to grow as a power law at low temperatures, but is experimentally found to saturate. The origins of this saturation have been debated for the last decade, with the main contenders being intrinsic decoherence by zero-point fluctuations of the electrons, and decoherence by dilute magnetic impurities. Here, the phase coherence time in quasi-one-dimensional silver wires is measured. The phase coherence times obtained from the weak localization correction to the conductivity at low magnetic field show saturation, while those obtained from universal conductance fluctuations at high field do not. This indicates that, for these samples, the origin of phase coherence time saturation obtained from weak localization is extrinsic, due to the presence of dilute magnetic impurities.
The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires
NASA Astrophysics Data System (ADS)
Hoffmann, Eric A.
State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient. This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters---a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots. To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric performance, many mesoscopic thermoelectric effects were observed and studied, including Coulomb-blockade thermovoltage oscillations, thermoelectric power generation, and strong nonlinear behavior. In the end, a quantum-dot-based thermoelectric heat engine was achieved and demonstrated an electronic efficiency of up to 95% Carnot efficiency.
A living mesoscopic cellular automaton made of skin scales.
Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C
2017-04-12
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.
A living mesoscopic cellular automaton made of skin scales
NASA Astrophysics Data System (ADS)
Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.
2017-04-01
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.
CHAIRMAN'S FOREWORD: First International Symposium on Advanced Nanodevices and Nanotechnology
NASA Astrophysics Data System (ADS)
Aoyagi, Yoshinobu; Goodnick, Stephen M.
2008-03-01
This volume of Journal of Physics: Conference Series contains selected papers from the First International Symposium on Advanced Nanodevices and Nanotechnology. This conference is a merging of the two previous series New Phenomena in Mesoscopic Structures and the Surfaces and Interfaces of Mesoscopic Devices. This year's conference was held 2-7 December 2007 at the Waikoloa Beach Marriott on the Kohala coast of the big island of Hawaii. The scope of ISANN spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest included: Nano-scale fabrication (high-resolution electron lithography, FIB nano-patterning SFM lithography, SFM stimulated growth, novel patterning, nano-imprint lithography, special etching, and SAMs) Nano-characterization (SFM characterization, BEEM, optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, electro-luminescence in small structures) Nano-devices (ultra-scaled FETs, quantum SETs, RTDs, ferromagnetic, and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, nano-magnetics) Quantum coherent transport (quantum Hall effect, ballistic quantum systems, quantum computing implementations and theory, magnetic spin systems, quantum NEMs) Mesoscopic structures (quantum wires and dots, chaos, non-equilibrium transport, instabilities, nano-electro-mechanical systems, mesoscopic Josephson effects, phase coherence and breaking, Kondo effect) Systems of nano-devices (QCAs, systolic SET processors, quantum neural nets, adaptive effects in circuits, molecular circuits, NEMs) Nanomaterials (nanotubes, nanowires, organic and molecular materials, self-assembled nanowires, organic devices) Nano-bio-electronics (electronic properties of biological structures on the nanoscale) We were very pleased and honored to have the opportunity to organize the first International Symposium on Advanced Nanodevices and Nanotechnology. The conference benefited from 14 invited speakers, whose topics spanned the above list, and a total of 90 registered attendees. The largest contingent was from Japan, followed closely by the USA. We wish to particularly thank the sponsors for the meeting: Arizona State University on the US side, and the Japan Society for the Promotion of Science, through their 151 Committee, on the Japanese side. We would also like to thank Dr Koji Ishibashi, of RIKEN, for his assistance in the organization of the conference, and Professor David K Ferry for serving as the Editor for the ISANN Proceedings. Yoshinobu Aoyagi and Stephen M Goodnick Conference Co-Chairs
NASA Astrophysics Data System (ADS)
Fujimoto, Minoru
2017-11-01
Solitons in Crystalline Processes is an introduction to the statistical thermodynamics of phase transitions in crystallized solids. This book is written as an introductory treatise with respect to the soliton concept, from structural transitions where the crystal symmetry changes, to magnets and superconductors, describing the role of nonlinear excitations in detail.
Harvesting dissipated energy with a mesoscopic ratchet
NASA Astrophysics Data System (ADS)
Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.
2015-04-01
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.
Decoupling nonclassical nonlinear behavior of elastic wave types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less
Microstructure-based hyperelastic models for closed-cell solids
Wyatt, Hayley
2017-01-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases. PMID:28484340
Microstructure-based hyperelastic models for closed-cell solids.
Mihai, L Angela; Wyatt, Hayley; Goriely, Alain
2017-04-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
Microstructure-based hyperelastic models for closed-cell solids
NASA Astrophysics Data System (ADS)
Mihai, L. Angela; Wyatt, Hayley; Goriely, Alain
2017-04-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
'Metal'-like transport in high-resistance, high aspect ratio two-dimensional electron gases.
Backes, Dirk; Hall, Richard; Pepper, Michael; Beere, Harvey; Ritchie, David; Narayan, Vijay
2016-01-13
We investigate the striking absence of strong localisation observed in mesoscopic two-dimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity [Formula: see text]. In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a 'metal'-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into the more conventional framework of the 2D MIT.
Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.
2015-07-07
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPDmore » simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.« less
Spintronics: spin accumulation in mesoscopic systems.
Johnson, Mark
2002-04-25
In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial.
Sharma, P; Córcoles, A; Bennett, R G; Parpia, J M; Cowan, B; Casey, A; Saunders, J
2011-11-04
We discuss the mass transport of a degenerate Fermi liquid ^{3}He film over a rough surface, and the film momentum relaxation time, in the framework of theoretical predictions. In the mesoscopic regime, the anomalous temperature dependence of the relaxation time is explained in terms of the interference between elastic boundary scattering and inelastic quasiparticle-quasiparticle scattering within the film. We exploit a quasiclassical treatment of quantum size effects in the film in which the surface roughness, whose power spectrum is experimentally determined, is mapped into an effective disorder potential within a film of uniform thickness. Confirmation is provided by the introduction of elastic scattering centers within the film. The improved understanding of surface roughness scattering may impact on enhancing the conductivity in thin metallic films.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Sabatier, James M.
2005-09-01
In nonlinear acoustic detection schemes, airborne sound at two primary tones, f1, f2 (closely spaced near an 80-Hz resonance) excites the soil surface over a buried landmine. Due to soil wave interactions with the landmine, a scattered surface profile can be measured by a geophone. Profiles at f1, f2, f1-(f2-f1) and f2+(f2-f1) exhibit single peaks; those at 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) involve higher order mode shapes for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Results are similar to nonlinear mesoscopic/nanoscale effects that are observed in granular solids like Berea sandstone. New experiments show that first sweeping up through resonance and then immediately sweeping back down result in different tuning curve behavior that might be explained by ``slow dynamics'' where an effective modulus reduction persists following periods of high strain. Results are similar to those described by TenCate et al. [Phys. Rev. Lett. 85, 1020-1023 (2000)]. [Work supported by U.S. Army RDECOM CERDEC, NVESD.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Fenneman, Douglas J.; Sabatier, James M.
2004-10-01
The vibration interaction between the top-plate of a buried VS 1.6 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. In nonlinear detection schemes, airborne sound at two primary frequencies f1 and f2 (chosen several Hz apart on either side of resonance) undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can effect the vibration velocity at the surface. Profiles at f1, f2, f1-(f2-f1) and f2+(f2-f1) exhibit a single peak while profiles at 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) are attributed to higher order mode shapes. Near resonance (~125 Hz for a mine buried 3.6 cm deep), the bending (softening) of a family of increasing amplitude tuning curves (involving the surface vibration over the landmine) exhibits a linear relationship between the peak particle velocity and corresponding frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.
NASA Astrophysics Data System (ADS)
Aoyagi, Yoshinobu; Goodnick, Stephen M.
2006-05-01
This special issue of the Journal of Physics: Conference Series contains the proceedings of the joint Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, which was held from November 27th - December 2nd, 2005, at the Ritz Carlton Kapalua, Maui, Hawaii. The string of these conferences dates back to the first one in 1989. Of special importance is that this year's conference was dedicated to Professor Gottfried Landwehr, in recognition of his many outstanding contributions to semiconductor physics. A personal tribute to Prof Landwehr by Dr K von Klitzing leads off this issue. The scope of NPMS-7/SIMD-5 spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest include: •Nanoscale fabrication: high-resolution electron lithography, FIB nano-patterning, scanning- force-microscopy (SFM) lithography, SFM-stimulated growth, novel patterning, nano-imprint lithography, special etching, and self-assembled monolayers •Nanocharacterization: SFM characterization, ballistic-electron emission microscopy (BEEM), optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, and electro-luminescence in small structures •Nanodevices: ultra-scaled FETs, quantum single-electron transistors (SETS), resonant tunneling diodes, ferromagnetic and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, and nanomagnetics •Quantum-coherent transport: the quantum Hall effect, ballistic quantum systems, quantum-computing implementations and theory, and magnetic spin systems •Mesoscopic structures: quantum wires and dots, quantum chaos, non-equilibrium transport, instabilities, nano-electro-mechanical systems, mesoscopic Josephson effects, phase coherence and breaking, and the Kondo effect •Systems of nanodevices: Quantum cellular automata, systolic SET processors, quantum neural nets, adaptive effects in circuits, and molecular circuits •Nanomaterials: nanotubes, nanowires, organic and molecular materials, self-assembled nano wires, and organic devices •Nanobioelectronics: electronic properties of biological structures on the nanoscale. This year's conference was organized by Prof Stephen Goodnick, Arizona State University, and Prof Yoshinobu Aoyagi, Tokyo Institute of Technology. The conference benefited from 14 invited speakers, whose topics spanned the above list, and a total of 97 registered attendees. The largest contingent was from Japan, followed closely by the US. In total, there were 49 from Japan, 31 fiom the US, and 17 from Europe. The organizers want to especially thank the sponsors for the meeting: The Office of Naval Research, the Army Research Office, and Arizona State University on the US side, and the Japan Society for the Promotion of Science, through their 151 Committee, on the Japanese side. PROGRAM COMMITTEE •Prof Gerhard Abstreiter, Technical University of Munich •Prof Tsuneya Ando, Tokyo Institute of Technology •Prof John Barker, University of Glasgow •Prof Jonathan Bird, the University at Buffalo •Prof Robert Blick, University of Wisconsin •Prof David Ferry, Chair, Arizona State University •Dr Yoshiro Hirayama, NTT Basic Research Laboratories •Dr Koji Ishibashi, RIKEN •Prof Carlo Jacoboni, University of Modena •Prof David Janes, Purdue University •Prof Friedl Kuchar, University of Leoben •Prof K. Matsumoto, Osaka University •Prof Wolfgang Porod, Notre Dame University •Prof Michiharu Tabe, Shizuoka University •Prof Joachim Wolter, Eindhoven Institute of Technology •Prof Lukas Worschech, University of Würzburg •Dr Naoki Yokoyama, Fujitsu Research
Vortex-slip transitions in superconducting a-NbGe mesoscopic channels
NASA Astrophysics Data System (ADS)
Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.
2006-06-01
Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.
NASA Astrophysics Data System (ADS)
Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua
2018-03-01
Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.
2018-04-01
A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.
Wang, XinJie; Wu, YanQing; Huang, FengLei
2017-01-05
A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice
NASA Astrophysics Data System (ADS)
Lebrat, Martin; Grišins, Pjotrs; Husmann, Dominik; Häusler, Samuel; Corman, Laura; Giamarchi, Thierry; Brantut, Jean-Philippe; Esslinger, Tilman
2018-01-01
We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after another, we observe and characterize the emergence of a band insulating phase, demonstrating control over quantum-coherent transport. We explore the influence of atom-atom interactions and show that the insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using bosonization and classical Monte Carlo simulations, we analyze such a model of interacting fermions and find good qualitative agreement with the data. The robustness of the insulating state supports the existence of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice Fermi gas strongly coupled to reservoirs, which is an ideal test bed for nonequilibrium many-body physics.
Superparamagnetic enhancement of thermoelectric performance.
Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing
2017-09-13
The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.
Zhang, Yumin; Zhao, Jianhong; Zhang, Jin; Jiang, Xixi; Zhu, Zhongqi; Liu, Qingju
2018-05-09
A printing process for the fabrication of perovskite solar cells (PSCs) exhibits promising future application in the photovoltaic industry due to its low-cost and eco-friendly preparation. In mesoscopic carbon-based PSCs, however, compared to conventional ones, the hole-transport-layer-free PSCs often lead to inefficient hole extraction. Here, we used liquid metal (LM, Galinstan) as an interface modifier material in combination with a carbon electrode. Considering the high conductivity and room-temperature fluidity, it is found that LMs are superior in improving hole extraction and, more importantly, LMs tend to be reserved at the interface between ZrO 2 and carbon for enhancing the contact property. Correspondingly, the carrier transfer resistance was decreased at the carbon/perovskite interface. As optimized content, the triple mesoscopic PSCs based on mixed-cation perovskite with a power conversion efficiency of 13.51% was achieved, involving a 26% increase compared to those without LMs. This work opens new techniques for LMs in optoelectronics and printing.
GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics.
Blumers, Ansel L; Tang, Yu-Hang; Li, Zhen; Li, Xuejin; Karniadakis, George E
2017-08-01
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.
Nonlinear acoustic techniques for landmine detection.
Korman, Murray S; Sabatier, James M
2004-12-01
Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.
Seismological Field Observation of Mesoscopic Nonlinearity
NASA Astrophysics Data System (ADS)
Sens-Schönfelder, Christoph; Gassenmeier, Martina; Eulenfeld, Tom; Tilmann, Frederik; Korn, Michael; Niederleithinger, Ernst
2016-04-01
Noise based observations of seismic velocity changes have been made in various environments. We know of seasonal changes of velocities related to ground water or temperature changes, co-seismic changes originating from shaking or stress redistribution and changes related to volcanic activity. Is is often argued that a decrease of velocity is related to the opening of cracks while the closure of cracks leads to a velocity increase if permanent stress changes are invoked. In contrast shaking induced changes are often related to "damage" and subsequent "healing" of the material. The co-seismic decrease and transient recovery of seismic velocities can thus be explained with both - static stress changes or damage/healing processes. This results in ambiguous interpretations of the observations. Here we present the analysis of one particular seismic station in northern Chile that shows very strong and clear velocity changes associated with several earthquakes ranging from Mw=5.3 to Mw=8.1. The fact that we can observe the response to several events of various magnitudes from different directions offers the unique possibility to discern the two possible causative processes. We test the hypothesis, that the velocity changes are related to shaking rather than stress changes by developing an empirical model that is based on the local ground acceleration at the sensor site. The eight year of almost continuous observations of velocity changes are well modeled by a daily drop of the velocity followed by an exponential recovery. Both, the amplitude of the drop as well as the recovery time are proportional to the integrated acceleration at the seismic station. Effects of consecutive days are independent and superimposed resulting in strong changes after earthquakes and constantly increasing velocities during quiet days thereafter. This model describes the continuous observations of the velocity changes solely based on the acceleration time series without individually defined dates of events associated with separately inverted parameters. As the local ground acceleration is not correlated to static stress changes we can exclude static stress changes as causative process. The shaking sensitivity and healing process is well known from laboratory experiments in composite materials as mesoscopic nonlinearity. The sensitive behavior at this station is related to the particular near surface material that is a conglomerate cemented with gypsum - so called gypcrete. However, mesoscopic nonlinearity with different parameters might be a key to understand velocity changes also at other sites.
2D barrier in a superconducting niobium square
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joya, Miryam R., E-mail: mrinconj@unal.edu.co; Barba-ortega, J., E-mail: jjbarbao@unal.edu.co; Sardella, Edson, E-mail: edsonsdl@gmail.com
The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Sabatier, James M.
2006-05-01
The vibration interaction between the top-plate of a buried VS 2.2 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. When airborne sound at two primary frequencies f1 and f2 (closely spaced near resonance) undergo acoustic-to-seismic coupling, (A/S), interactions with the mine and soil generate combination frequencies | n f1 ± m f2 | which affect the surface vibration velocity. Profiles at f1, f2, f1 -(f2 - f1) and f2 +(f2 - f1) exhibit single peaks whereas other combination frequencies may involve higher order modes. A family of increasing amplitude tuning curves, involving the surface vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding resonant frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. New experiments for a buried VS 1.6 anti-tank landmine and a "plastic drum head" mine simulant behave similarly. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Support by U.S. Army RDECOM CERDEC, NVESD, Fort Belvoir, VA.
2016-12-08
mesoscopic models of interfaces and interphases, and microstructure-resolved representative volume element simulations. Atomic simulations were...title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a...careful prediction of the pressure- volume -temperature equation of state, pressure- and temperature-dependent crystal and liquid thermal and transport
DOT National Transportation Integrated Search
2013-03-01
It has become apparent in recent years that significant benefits will be obtained if : the Maryland State Highway Administration (SHA) can combine its data products : and modeling tools for integrated transportation operations and planning. Examples ...
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, C. H. Raymond
2009-07-10
Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with anmore » integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.« less
Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems
2014-10-13
function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer
Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations
NASA Astrophysics Data System (ADS)
Huard, B.
2006-07-01
This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.
11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials
Cao, Yiming; Saygili, Yasemin; Ummadisingu, Amita; Teuscher, Joël; Luo, Jingshan; Pellet, Norman; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Moser, Jacques -E.; Freitag, Marina; Hagfeldt, Anders; Grätzel, Michael
2017-01-01
Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide)2 and [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 μm-thick mesoscopic TiO2 scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO2 and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 μs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors. PMID:28598436
PREFACE: Advanced many-body and statistical methods in mesoscopic systems
NASA Astrophysics Data System (ADS)
Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe
2012-02-01
It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius University (where the conference took place), the Academy of Romanian Scientists and the Romanian National Authority for Scientific Research. This conference proceedings volume brings together some of the invited and contributed talks of the conference. The hope of the editors is that they will constitute reference material for applying many-body techniques to problems in mesoscopic and nuclear physics. We thank all the participants for their contribution to the success of this conference. D V Anghel and D S Delion IFIN-HH, Bucharest, Romania G S Paraoanu Aalto University, Finland Conference photograph
Electron teleportation via Majorana bound states in a mesoscopic superconductor.
Fu, Liang
2010-02-05
Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at nanoscale
Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong; ...
2016-04-27
Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less
Quantum Coherence and Random Fields at Mesoscopic Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, Thomas F.
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less
Imaging quantum transport using scanning gate microscopy
NASA Astrophysics Data System (ADS)
Hackens, Benoit
2014-03-01
Quantum transport in nanodevices is usually probed thanks to measurements of the electrical resistance or conductance, which lack the spatial resolution necessary to probe electron behaviour inside the devices. In this talk, we will show that scanning gate microscopy (SGM) yields real-space images of quantum transport phenomena inside archetypal mesoscopic devices such as quantum point contacts and quantum rings. We will first discuss the SGM technique, which is based on mapping the electrical conductance of a device as an electrically-biased sharp metallic tip scans in its vicinity. With SGM, we demonstrated low temperature imaging of the electron probability density and interferences in embedded mesoscopic quantum rings [B. Hackens et al., Nat. Phys. 2, 826 (2006)]. At high magnetic field, thanks to the SGM conductance maps, one can decrypt complex transport phenomena such as tunneling between quantum Hall edge state, either direct or through localized states [B. Hackens et al., Nat. Comm. 1, 39 (2010)]. Moreover, the technique also allows to perform local spectroscopy of electron transport through selected localized states [F. Martins et al., New J. of Phys. 15, 013049 (2013); F. Martins et al., Sci. Rep. 3, 1416 (2013)]. Overall, these examples show that scanning gate microscopy is a powerful tool for imaging charge carrier behavior inside devices fabricated from a variety of materials, and opens the way towards a more intimate manipulation of charge and quasiparticle transport. This work was performed in collaboration with F. Martins, S. Faniel, B. Brun, M. Pala, X. Wallart, L. Desplanque, B. Rosenow, T. Ouisse, H. Sellier, S. Huant and V. Bayot.
Current conserving theory at the operator level
NASA Astrophysics Data System (ADS)
Yuan, Jiangtao; Wang, Yin; Wang, Jian
The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.
NASA Astrophysics Data System (ADS)
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit significant curvature when the soil particle velocity is relatively higher. An oscillator with hysteresis modeled by a distribution of parallel spring elements each with a different threshold slip condition seems to describe fairly linear backbone curve behavior [W. D. Iwan, Transactions of the ASME, J. of Applied Mech., 33,(1966), 893-900], while a single bilinear hysteresis element describes the backbone curvature results in the experiments reported here [T. K. Caughey, Transactions of the ASME, J. of Applied Mech., 27, (1960), 640-643]. When "off target" resonances have a different backbone curvature than "on the mine" backbone curves, then false alarms may be eliminated due to resonances from the natural soil layering. See [R. A. Guyer, J. TenCate, and P. Johnson, "Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials," Phys. Rev. Lett., 82, 16 (1999), 3280-3283] for recent models of nonlinear mesoscopic behavior.
Efficient method for computing the electronic transport properties of a multiterminal system
NASA Astrophysics Data System (ADS)
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong
Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less
Energy dissipation in slipping biological pumps.
Kjelstrup, Signe; Rubi, J Miguel; Bedeaux, Dick
2005-12-07
We describe active transport in slipping biological pumps, using mesoscopic nonequilibrium thermodynamics. The pump operation is characterised by its stochastic nature and energy dissipation. We show how heating as well as cooling effects can be associated with pump operation. We use as an example the well studied active transport of Ca2+ across a biological membrane by means of its ATPase, and use published data to find values for the transport coefficients of the pump under various conditions. Most of the transport coefficients of the pump, including those that relate ATP hydrolysis or synthesis to thermal effects, are estimated. This can give a quantitative description of thermogenesis. We show by calculation that all of these coupling coefficients are significant.
Effect of TiO 2 particle size and layer thickness on mesoscopic perovskite solar cells
Lee, Dong Geon; Kim, Min-cheol; Kim, Byeong Jo; ...
2017-11-16
Mesoporous TiO 2 (mp-TiO 2) layers are commonly used as electron transport layers in perovskite solar cells, which help to extract electrons from the perovskite light-absorbing layer and transport them to the electrodes. We investigated the effects of the layer thickness of mp-TiO 2 and particle size of TiO 2 on photovoltaic properties, in terms of the surface area of the mp-layer and the interfacial areas of the TiO 2 nanoparticles in the mp-layer. Various mp-TiO 2 layers with thicknesses of 150, 250, and 400 nm and particle sizes of 25 nm and 41 nm were prepared to compare themore » photovoltaic properties of such layer-containing perovskite solar cells. Time-resolved photoluminescence decay and impedance studies showed that interfacial resistance as well as perovskite-to-TiO 2 charge injection are important factors affecting photovoltaic performance. The deterioration of the photovoltaic parameters with increasing TiO 2/TiO 2 interfacial area also confirms that the interfacial series resistance that arises from these connections should be reduced to enhance the performance of mesoscopic perovskite solar cells.« less
Effect of TiO 2 particle size and layer thickness on mesoscopic perovskite solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong Geon; Kim, Min-cheol; Kim, Byeong Jo
Mesoporous TiO 2 (mp-TiO 2) layers are commonly used as electron transport layers in perovskite solar cells, which help to extract electrons from the perovskite light-absorbing layer and transport them to the electrodes. We investigated the effects of the layer thickness of mp-TiO 2 and particle size of TiO 2 on photovoltaic properties, in terms of the surface area of the mp-layer and the interfacial areas of the TiO 2 nanoparticles in the mp-layer. Various mp-TiO 2 layers with thicknesses of 150, 250, and 400 nm and particle sizes of 25 nm and 41 nm were prepared to compare themore » photovoltaic properties of such layer-containing perovskite solar cells. Time-resolved photoluminescence decay and impedance studies showed that interfacial resistance as well as perovskite-to-TiO 2 charge injection are important factors affecting photovoltaic performance. The deterioration of the photovoltaic parameters with increasing TiO 2/TiO 2 interfacial area also confirms that the interfacial series resistance that arises from these connections should be reduced to enhance the performance of mesoscopic perovskite solar cells.« less
Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics
NASA Astrophysics Data System (ADS)
Hagenmüller, David; Schütz, Stefan; Schachenmayer, Johannes; Genes, Claudiu; Pupillo, Guido
2018-05-01
We study the interplay between charge transport and light-matter interactions in a confined geometry by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of nonequilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transferred to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.
Mesoscopic model for the viscosities of nematic liquid crystals.
Chrzanowska, A; Kröger, M; Sellers, S
1999-10-01
Based on the definition of the mesoscopic concept by Blenk et al. [Physica A 174, 119 (1991); J. Noneq. Therm. 16, 67 (1991); Mol. Cryst. Liq. Cryst. 204, 133 (1991)] an approach to calculate the Leslie viscosity coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor, whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear viscosity alpha(4). In the nematic phase alpha(4) is shown to have two contributions: isotropic and nematic. There exists an indication that the influence of the isotropic part is dominant over the nematic part. The so-called microscopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent representation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transformation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the same. The difference is caused by the hindered diffusion in the affine model case.
Differential conductance fluctuation of curved nanographite sheets in the mesoscopic regime
NASA Astrophysics Data System (ADS)
Wang, Haomin; Choong, Catherine; Zhang, Jun; Teo, Kie Leong; Wu, Yihong
2008-02-01
Excess conductance fluctuations with peculiar temperature dependence from 1.4 to 250 K were observed in curved nanographite sheets with electrode gap lengths of 300 and 450 nm, whereas the conductance fluctuation is greatly suppressed above 4.2 K when the electrode gap lengths increase to 800 and 1000 nm. The former is discussed in the context of the presence of a small energy bandgap in the nanographite sheets, while the latter is attributed to the crossover from the coherent transport to diffusive transport regime.
Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact
Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526
Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.
Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.
NASA Astrophysics Data System (ADS)
Böhm, Fabian; Grosse, Nicolai B.; Kolarczik, Mirco; Herzog, Bastian; Achtstein, Alexander; Owschimikow, Nina; Woggon, Ulrike
2017-09-01
Quantum state tomography and the reconstruction of the photon number distribution are techniques to extract the properties of a light field from measurements of its mean and fluctuations. These techniques are particularly useful when dealing with macroscopic or mesoscopic systems, where a description limited to the second order autocorrelation soon becomes inadequate. In particular, the emission of nonclassical light is expected from mesoscopic quantum dot systems strongly coupled to a cavity or in systems with large optical nonlinearities. We analyze the emission of a quantum dot-semiconductor optical amplifier system by quantifying the modifications of a femtosecond laser pulse propagating through the device. Using a balanced detection scheme in a self-heterodyning setup, we achieve precise measurements of the quadrature components and their fluctuations at the quantum noise limit1. We resolve the photon number distribution and the thermal-to-coherent evolution in the photon statistics of the emission. The interferometric detection achieves a high sensitivity in the few photon limit. From our data, we can also reconstruct the second order autocorrelation function with higher precision and time resolution compared with classical Hanbury Brown-Twiss experiments.
Marincel, Dan M.; Zhang, H. R.; Briston, J.; ...
2015-04-27
The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O 3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO 3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domainmore » structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.« less
The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction
NASA Astrophysics Data System (ADS)
Pahlavanias, Hassan
2018-03-01
The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.
p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.
Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin
2014-04-23
In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.
p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells
Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin
2014-01-01
In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics. PMID:24755642
Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon
2017-01-01
Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems. PMID:28569767
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan
2013-05-10
The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Witten, Thomas R.; Fenneman, Douglas J.
2004-10-01
Donskoy [SPIE Proc. 3392, 211-217 (1998); 3710, 239-246 (1999)] has suggested a nonlinear technique that is insensitive to relatively noncompliant targets that can detect an acoustically compliant buried mine. Airborne sound at two primary frequencies eventually causes interactions with the soil and mine generating combination frequencies that can affect the vibration velocity at the surface. In current experiments, f1 and f2 are closely spaced near a mine resonance and a laser Doppler vibrometer profiles the surface. In profiling, certain combination frequencies have a much greater contrast ratio than the linear profiles at f1 and f2-but off the mine some nonlinearity exists. Near resonance, the bending (a softening) of a family of tuning curves (over the mine) exhibits a linear relationship between peak velocity and corresponding frequency, which is characteristic of nonlinear mesoscopic elasticity effects that are observed in geomaterials like rocks or granular media. Results are presented for inert plastic VS 1.6, VS 2.2 and M14 mines buried 3.6 cm in loose soil. Tuning curves for a rigid mass plate resting on a soil layer exhibit similar results, suggesting that nonresonant conditions off the mine are desirable. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2012-10-01
We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.
Kalay, Ziya
2011-08-01
How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-01-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459
Unconventional transport in ultraclean graphene constriction devices
NASA Astrophysics Data System (ADS)
Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.
Revisiting Feynman's ratchet with thermoelectric transport theory.
Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph
2014-07-01
We show how the formalism used for thermoelectric transport may be adapted to Smoluchowski's seminal thought experiment, also known as Feynman's ratchet and pawl system. Our analysis rests on the notion of useful flux, which for a thermoelectric system is the electrical current and for Feynman's ratchet is the effective jump frequency. Our approach yields original insight into the derivation and analysis of the system's properties. In particular we define an entropy per tooth in analogy with the entropy per carrier or Seebeck coefficient, and we derive the analog to Kelvin's second relation for Feynman's ratchet. Owing to the formal similarity between the heat fluxes balance equations for a thermoelectric generator (TEG) and those for Feynman's ratchet, we introduce a distribution parameter γ that quantifies the amount of heat that flows through the cold and hot sides of both heat engines. While it is well established that γ = 1/2 for a TEG, it is equal to 1 for Feynman's ratchet. This implies that no heat may be rejected in the cold reservoir for the latter case. Further, the analysis of the efficiency at maximum power shows that the so-called Feynman efficiency corresponds to that of an exoreversible engine, with γ = 1. Then, turning to the nonlinear regime, we generalize the approach based on the convection picture and introduce two different types of resistance to distinguish the dynamical behavior of the considered system from its ability to dissipate energy. We finally put forth the strong similarity between the original Feynman ratchet and a mesoscopic thermoelectric generator with a single conducting channel.
Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route
NASA Astrophysics Data System (ADS)
Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq
2018-03-01
A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.
Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.
Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J
2013-06-01
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.
Vigelius, Matthias; Meyer, Bernd
2012-01-01
For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001
Nonlinear and Stochastic Dynamics in the Heart
Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.
2014-01-01
In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872
Mesoscopic pairing without superconductivity
NASA Astrophysics Data System (ADS)
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
Reprint of : Scattering theory approach to bosonization of non-equilibrium mesoscopic systems
NASA Astrophysics Data System (ADS)
Sukhorukov, Eugene V.
2016-08-01
Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.
Scattering theory approach to bosonization of non-equilibrium mesoscopic systems
NASA Astrophysics Data System (ADS)
Sukhorukov, Eugene V.
2016-03-01
Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.
Power output and carrier dynamics studies of perovskite solar cells under working conditions.
Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng
2017-08-02
Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.
Dissecting anode swelling in commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Ningxin; Tang, Huaqiong
2012-11-01
An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.
Li, Simeng; Li, Nianbei
2018-03-28
For one-dimensional (1d) nonlinear atomic lattices, the models with on-site nonlinearities such as the Frenkel-Kontorova (FK) and ϕ 4 lattices have normal energy transport while the models with inter-site nonlinearities such as the Fermi-Pasta-Ulam-β (FPU-β) lattice exhibit anomalous energy transport. The 1d Discrete Nonlinear Schrödinger (DNLS) equations with on-site nonlinearities has been previously studied and normal energy transport has also been found. Here, we investigate the energy transport of 1d FPU-like DNLS equations with inter-site nonlinearities. Extended from the FPU-β lattice, the renormalized vibration theory is developed for the FPU-like DNLS models and the predicted renormalized vibrations are verified by direct numerical simulations same as the FPU-β lattice. However, the energy diffusion processes are explored and normal energy transport is observed for the 1d FPU-like DNLS models, which is different from their atomic lattice counterpart of FPU-β lattice. The reason might be that, unlike nonlinear atomic lattices where models with on-site nonlinearities have one less conserved quantities than the models with inter-site nonlinearities, the DNLS models with on-site or inter-site nonlinearities have the same number of conserved quantities as the result of gauge transformation.
Aspects of electron transport in zigzag graphene nanoribbons
NASA Astrophysics Data System (ADS)
Bhalla, Pankaj; Pratap, Surender
2018-05-01
In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.
Gupta, Vinod Kumar
2014-12-01
Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.
Realizing Controllable Quantum States
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be-[symbol]-doped GaAs quantum wells with a back gate / M. Yamaguchi et al. Direct observation of [symbol]Si nuclear-spin decoherence process / S. Sasaki and S. Watanabe.
Yu, X.; Hsu, T.-J.; Hanes, D.M.
2010-01-01
Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.
Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Méndez, Vicenç
2008-11-01
Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.
Evolution of colloidal dispersions in novel time-varying optical potentials
NASA Astrophysics Data System (ADS)
Koss, Brian Alan
Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of discrete spatially-symmetric potential wells, which are implemented with an array of HOTs.
Mesoscopic homogenization of semi-insulating GaAs by two-step post growth annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, B.; Jurisch, M.; Koehler, A.
1996-12-31
Mesoscopic homogenization of the electrical properties of s.i. LEC-GaAs is commonly realized by thermal treatment of the crystals including the steps of dissolution of arsenic precipitates, homogenization of excess As and re-precipitation by creating a controlled supersaturation. Caused by the inhomogeneous distribution of dislocations and the corresponding cellular structure along and across LEC-grown crystals a proper choice of the time-temperature program is necessary to minimize fluctuations of mesoscopic homogeneity. A modified two-step ingot annealing process is demonstrated to ensure the homogeneous distribution of mesoscopic homogeneity.
Structure and growth of the mesoscopic surfactant/silica thin films
NASA Astrophysics Data System (ADS)
Zhou, Linbo
1999-10-01
We report the study of the structure and the growth of the mesoscopic surfactant/silica thin films. We use X-ray diffraction coupled with Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM) and light scattering techniques to study the structure, lattice strain and the drying effect of the thin films as well as the growth kinetics and mechanism. The surfactant/silica materials are synthesized using the supramolecular assemblies of the surfactant molecules to template the condensation of the inorganic species. The subsequent calcination yields the mesoporous silica materials, which have many application properties such as unusual electronic, optical, magnetic and elastic characteristics. The films are grown on mica, graphite and silicon substrates in an acidic CTAC (Cetyltrimethyl Ammonium Chloride)/TEOS (Tetraethyl Orthosilicate) solution and are found to consist of the hexagonally packed tubules. The substrate plays an important role in the epitaxial arrangement of the film. We use the light scattering and cryo TEM to study the micelle morphology and aggregation in the solution and use synchrotron radiation X-ray diffraction to study the growth of the film at the solid/liquid interfaces in-situ. An induction time is found followed by the growth of the film at a nonlinear growth rate. The induction time depends on the ratio of the concentrations of CTAC to TEOS in the high CTAC concentration regime. The growth kinetics and mechanism are elucidated in a context of a growth model. For the technological application, Micromolding in Capillaries (MIMIC) technique and the field guided growth are used to process the patterned mesoscopic surfactant/silica thin films and align the nanotubules into the desired orientation. X-ray diffraction characterization has been performed to study the structure and orientation of the thin films. The combined influence of the electric field and the confinement of the mold allows the synthesis of the surfactant/silica thin films with the controlled orientation.
Understanding of flux-limited behaviors of heat transport in nonlinear regime
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Jou, David; Wang, Moran
2016-01-01
The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.
Thermodynamic evolution far from equilibrium
NASA Astrophysics Data System (ADS)
Khantuleva, Tatiana A.
2018-05-01
The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.
Seo, Y; Qin, Y; Vicente, C L; Choi, K S; Yoon, Jongsoo
2006-08-04
We have studied the effect of perpendicular magnetic fields and temperatures on nonlinear electronic transport in amorphous Ta superconducting thin films. The films exhibit a magnetic field-induced metallic behavior intervening the superconductor-insulator transition in the zero temperature limit. We show that the phase-identifying nonlinear transport in the superconducting and metallic phases arises from an intrinsic origin, not from an electron heating effect. The nonlinear transport is found to accompany an extraordinarily long voltage response time.
Le, Khoa V; Takezoe, Hideo; Araoka, Fumito
2017-07-01
Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrodynamic Electron Flow and Hall Viscosity
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.
2017-06-01
In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.
Hydrodynamic Electron Flow and Hall Viscosity.
Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P; Moore, Joel E
2017-06-02
In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.
Probing the energy reactance with adiabatically driven quantum dots
NASA Astrophysics Data System (ADS)
Ludovico, María Florencia; Arrachea, Liliana; Moskalets, Michael; Sánchez, David
2018-02-01
The tunneling Hamiltonian describes a particle transfer from one region to another. Although there is no particle storage in the tunneling region itself, it has an associated amount of energy. The corresponding energy flux was named reactance since, such as an electrical reactance, it manifests itself in time-dependent transport only. We show here that the existence of the energy reactance leads to the universal response of a mesoscopic thermometer, a floating contact coupled to an adiabatically driven quantum dot.
Freeman, Walter J
2007-06-01
The hypothesis is proposed that the central dynamics of the action-perception cycle has five steps: emergence from an existing macroscopic brain state of a pattern that predicts a future goal state; selection of a mesoscopic frame for action control; execution of a limb trajectory by microscopic spike activity; modification of microscopic cortical spike activity by sensory inputs; construction of mesoscopic perceptual patterns; and integration of a new macroscopic brain state. The basis is the circular causality between microscopic entities (neurons) and the mesoscopic and macroscopic entities (populations) self-organized by axosynaptic interactions. Self-organization of neural activity is bidirectional in all cortices. Upwardly the organization of mesoscopic percepts from microscopic spike input predominates in primary sensory areas. Downwardly the organization of spike outputs that direct specific limb movements is by mesoscopic fields constituting plans to achieve predicted goals. The mesoscopic fields in sensory and motor cortices emerge as frames within macroscopic activity. Part 1 describes the action-perception cycle and its derivative reflex arc qualitatively. Part 2 describes the perceptual limb of the arc from microscopic MSA to mesoscopic wave packets, and from these to macroscopic EEG and global ECoG fields that express experience-dependent knowledge in successive states. These macroscopic states are conceived to embed and control mesoscopic frames in premotor and motor cortices that are observed in local ECoG and LFP of frontoparietal areas. The fields sampled by ECoG and LFP are conceived as local patterns of neural activity in which trajectories of multiple spike activities (MSA) emerge that control limb movements. Mesoscopic frames are located by use of the analytic signal from the Hilbert transform after band pass filtering. The state variables in frames are measured to construct feature vectors by which to describe and classify frame patterns. Evidence is cited to justify use of linear analysis. The aim of the review is to enable researchers to conceive and identify goal-oriented states in brain activity for use as commands, in order to relegate the details of execution to adaptive control devices outside the brain.
Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saveleva, Natalia, E-mail: saveleva@icmm.ru; Bayandin, Yuriy, E-mail: buv@icmm.ru; Naimark, Oleg, E-mail: naimark@icmm.ru
2015-10-27
The aim of this paper is numerical study of deformation processes and failure of vanadium under shock-wave loading. According developed statistical theory of solid with mesoscopic defects the constitutive equations were proposed in terms of two structural variables characterizing behavior of defects ensembles: defect density tensor and structural scaling parameter. On the basis of wide-range constitutive equations the mathematical model of deformation behavior and failure of vanadium was developed taking into account the bond relaxation mechanisms, multistage of fracture and nonlinearity kinetic of defects. Results of numerical simulation allow the description of the major effects of shock wave propagation (elasticmore » precursor decay, grow of spall strength under grow strain rate)« less
Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices
NASA Astrophysics Data System (ADS)
Al-Taie, H.; Smith, L. W.; Xu, B.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2013-06-01
We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.
The positioning logic and copy number control of genes in bacteria under stress
NASA Astrophysics Data System (ADS)
Zhang, Qiucen; Austin, Robert; Vyawahare, Saurabh; Lau, Alexandra
2013-03-01
Escherichia coli (E. coli) cells when challenged with sublethal concentrations of the genotoxic antibiotic ciprofloxacin cease to divide and form long filaments which contain multiple bacterial chromosomes. These filaments are individual mesoscopic environmental niches which provide protection for a community of chromosomes (as opposed to cells) under mutagenic stress and can provide an evolutionary fitness advantage within the niche. We use comparative genomic hybridization to show that the mesoscopic niche evolves within 20 minutes of ciprofloxacin exposure via replication of multiple copies of genes expressing ATP dependent transporters. We show that this rapid genomic amplification is done in a time efficient manner via placement of the genes encoding the pumps near the origin of replication on the bacterial chromosome. The de-amplification of multiple copies back to the wild type number is a function of the duration is a function of the ciprofloxacin exposure duration: the longer the exposure, the slower the removal of the multiple copies. The project described was supported by the National Science Foundation and the National Cancer Institute
Enhanced energy transport owing to nonlinear interface interaction
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-01
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363
NASA Astrophysics Data System (ADS)
Korman, Murray S.
2005-09-01
When airborne sound at two primary tones, f1, f2 (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the ``target.'' Profiles at f1, f2, and f1-(f2-f1), f2+(f2-f1), 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) (among others) are measured for a VS 1.6 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil. It is observed that the ``on target'' to ``off target'' contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments along with two-tone tests are performed both on and off the mine in an effort to understand the nonlinearities in each case. [Work supported by U.S. Army RDECOM CERDEC, NVESD.
Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties.
Chen, Zhiwen; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2014-02-01
Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.
A molecular fragment cheminformatics roadmap for mesoscopic simulation.
Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias
2014-12-01
Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences. Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
NASA Astrophysics Data System (ADS)
Granger, G.; Kam, A.; Studenikin, S. A.; Sachrajda, A. S.; Aers, G. C.; Williams, R. L.; Poole, P. J.
2010-09-01
The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov-de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.
NASA Astrophysics Data System (ADS)
van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group
2017-12-01
A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.
Quantum transport through MoS2 constrictions defined by photodoping.
Epping, Alexander; Banszerus, Luca; Güttinger, Johannes; Krückeberg, Luisa; Watanabe, Kenji; Taniguchi, Takashi; Hassler, Fabian; Beschoten, Bernd; Stampfer, Christoph
2018-05-23
We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS 2 ) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS 2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS 2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS 2 /hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.
Quantum transport through MoS2 constrictions defined by photodoping
NASA Astrophysics Data System (ADS)
Epping, Alexander; Banszerus, Luca; Güttinger, Johannes; Krückeberg, Luisa; Watanabe, Kenji; Taniguchi, Takashi; Hassler, Fabian; Beschoten, Bernd; Stampfer, Christoph
2018-05-01
We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.
cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-01
The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based on wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scalesmore » accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less
The measurable heat flux that accompanies active transport by Ca2+-ATPase.
Bedeaux, Dick; Kjelstrup, Signe
2008-12-28
We present a new mesoscopic basis which can be used to derive flux equations for the forward and reverse mode of operation of ion-pumps. We obtain a description of the fluxes far from global equilibrium. An asymmetric set of transport coefficients is obtained, by assuming that the chemical reaction as well as the ion transports are activated, and that the enzyme has a temperature independent of the activation coordinates. Close to global equilibrium, the description reduces to the well known one from non-equilibrium thermodynamics with a symmetric set of transport coefficients. We show how the measurable heat flux and the heat production under isothermal conditions, as well as thermogenesis, can be defined. Thermogenesis is defined via the onset of the chemical reaction or ion transports by a temperature drop. A prescription has been given for how to determine transport coefficients on the mesocopic level, using the macroscopic coefficient obtained from measurements, the activation enthalpy, and a proper probability distribution. The method may give new impetus to a long-standing unsolved transport problem in biophysics.
2010-11-10
nanoparticles, and nanoshells by making sub 100 nm diameter nanoshells to mesoscopic sized nanoparticles (gold meatballs ) and micron sized nanoshells. In...mesoscopic gold ‘ meatballs ’, gold bipyrimids etc. In addition nanoparticles such as the nanostar demonstrate some of the highest LSPR sensitivity but...20, 535-538 (2008). 64. H. Wang and N. J. Halas, “Mesoscopic Au ‘ Meatball ’ Particles”, Advanced Materials 20, 820-825 (2008). 65. S. Priya
Nonlinear Ballistic Transport in an Atomically Thin Material.
Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R
2016-01-26
Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.
Electron Transport In Nanowires - An Engineer'S View
NASA Astrophysics Data System (ADS)
Nawrocki, W.
In the paper technological problems connected to electron transport in mesoscopic- and nanostructures are considered. The electrical conductance of nanowires formed by metallic contacts in an experimental setup proposed by Costa-Kramer et al. The investigation has been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G o = 2e /h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowirese are also discussed in the paper.
Fano effect in the transport of an artificial molecule
NASA Astrophysics Data System (ADS)
Norimoto, Shota; Nakamura, Shuji; Okazaki, Yuma; Arakawa, Tomonori; Asano, Kenichi; Onomitsu, Koji; Kobayashi, Kensuke; Kaneko, Nobu-hisa
2018-05-01
The Fano effect is a ubiquitous phenomenon arising from interference between a discrete energy state and an energy continuum. We explore this effect in an artificial molecule, namely, two lateral quantum dots (QDs) fabricated from a two-dimensional electron gas system and coupled in series. When the coupling between the leads and QDs is small, the charge stability diagram of the system shows a honeycomb lattice structure that is characteristic of a double QD system. As the coupling increases, a honeycomb structure consisting of the Fano resonances emerges. A numerical simulation based on the T-matrix method can satisfactorily reproduce our experimental observation. This report constitutes a clear example of the ubiquitous nature of the Fano effect in mesoscopic transport.
Revealing mesoscopic structural universality with diffusion.
Novikov, Dmitry S; Jensen, Jens H; Helpern, Joseph A; Fieremans, Els
2014-04-08
Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke.
Modelling the Active Hearing Process in Mosquitoes
NASA Astrophysics Data System (ADS)
Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan
2011-11-01
A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.
Innovative acoustic technique for studying new materials and new developments in solid state physics
NASA Astrophysics Data System (ADS)
Maynard, Julian D.
1993-10-01
The goals of this project involve the use of innovative acoustic techniques to study new materials and new developments in solid state physics, such as effects in mesoscopic electronic systems. Major accomplishments include (1) the preparation and publication of a number of major papers and chapters in books, (2) the comparison of the anisotropy of an aluminum alloy quasicrystal with that of its cubic approximant, (3) the measurement of the elastic constants of a diamond substitute material, TiB2, (4) the measurement of an extremely low (possibly the lowest) infrared optical-absorption coefficient, (5) the measurement of the effects of disorder on the propagation of a nonlinear pulse, and (6) the acquisition of initial data in an experiment on the onset of fracture.
High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials
NASA Astrophysics Data System (ADS)
Snigireva, I.; Snigirev, A.
2013-10-01
We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.
Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes
NASA Astrophysics Data System (ADS)
Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.
2016-12-01
The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-13
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Local dynamic nuclear polarization using quantum point contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.
1994-08-15
We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.
Quantum transport in graphene in presence of strain-induced pseudo-Landau levels
NASA Astrophysics Data System (ADS)
Settnes, Mikkel; Leconte, Nicolas; Barrios-Vargas, Jose E.; Jauho, Antti-Pekka; Roche, Stephan
2016-09-01
We report on mesoscopic transport fingerprints in disordered graphene caused by strain-field induced pseudomagnetic Landau levels (pLLs). Efficient numerical real space calculations of the Kubo formula are performed for an ordered network of nanobubbles in graphene, creating pseudomagnetic fields up to several hundreds of Tesla, values inaccessible by real magnetic fields. Strain-induced pLLs yield enhanced scattering effects across the energy spectrum resulting in lower mean free path and enhanced localization effects. In the vicinity of the zeroth order pLL, we demonstrate an anomalous transport regime, where the mean free paths increases with disorder. We attribute this puzzling behavior to the low-energy sub-lattice polarization induced by the zeroth order pLL, which is unique to pseudomagnetic fields preserving time-reversal symmetry. These results, combined with the experimental feasibility of reversible deformation fields, open the way to tailor a metal-insulator transition driven by pseudomagnetic fields.
All-phosphorus flexible devices with non-collinear electrodes: a first principles study.
Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin
2018-03-07
With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.
A simple quantum mechanical treatment of scattering in nanoscale transistors
NASA Astrophysics Data System (ADS)
Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.
2003-05-01
We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.
Transport studies of mesoscopic and magnetic topological insulators
NASA Astrophysics Data System (ADS)
Kandala, Abhinav
Topological Insulators (TI) are a novel class of materials that are ideally insulating in the bulk, but have gapless, metallic states at the surface. These surface states have very exciting properties such as suppressed backscattering and spin-momentum locking, which are of great interest for research efforts towards dissipation-less electronics and spintronics. The popular thermo-electrics from the Bi chalcogenide family -- Bi2Se3 and Bi 2Te3 -- have been experimentally demonstrated to be promising candidate TI materials, and form the chosen material system for this dissertation research. The first part of this dissertation research focuses on low temperature magneto-transport measurements of mesoscopic topological insulator devices (Chapter 3). The top-down patterning of epitaxial thin films of Bi2Se 3 and Bi2Te3 (that are plagued with bulk conduction) is motivated, in part, by an effort to enhance the surface-to-volume ratio in mesoscopic channels. At cryogenic temperatures, transport measurements of these devices reveal periodic conductance fluctuations in straight channel devices, despite the lack of any explicit patterning of the TI film into a ring or a loop. A careful analysis of the surface morphology and comparison with the transport data then demonstrate that scattering off the edges of triangular plateaus at the surface leads to the creation of Aharonov-Bohm electronic orbits responsible for the periodicity. Another major focus of this dissertation work is on combining topological insulators with magnetism. This has been shown to open a gap in the surface states leading to possibilities of magnetic "gating" and the realization of dissipation-less transport at zero-field, amongst several other exotic quantum phenomena. In this dissertation, I present two different schemes for probing these effects in electrical transport devices -- interfacing with insulating ferromagnets (Chapter 4) and bulk magnetic doping (Chapter 5). In Chapter 4, I shall present the integration of GdN with Bi2Se 3 thin films. Careful structural, magnetic and electrical characterization of the heterostructures is employed to confirm that the magnetic species is solely restricted to the surface, and that the ferromagnetic GdN layer to be insulating, ensuring current flow solely through the TI layer. We also devise a novel device geometry that enables direct comparison of the magneto-transport properties of TI films with and without proximate magnetism, all, in a single device. A comparative study of weak anti-localization suggested that the overlying GdN suppressed quantum interference in the top surface state. In our second generation heterostructure devices, GdN is interfaced with low-carrier density, gate-tunable thin films of (Bi,Sb)2Te3 grown on SrTiO 3 substrates. These devices enable us to map out the comparison of magneto-transport, as the chemical potential is tuned from the bulk conduction band into the bulk valence band. In a second approach to study the effects of magnetism on TI's, I shall present, in Chapter 5, our results from magnetic doping of (Bi,Sb) 2Te3 thin films with Cr -- a system that was recently demonstrated to be a Quantum Anomalous Hall (QAH) insulator. In a Cr-rich regime, a highly insulating, high Curie temperature ferromagnetic phase is achieved. However, a careful, iterative process of tuning the composition of this complex alloy enabled access to the QAHE regime, with the observation of near dissipation-less transport and perfect Hall quantization at zero external field. Furthermore, we demonstrate a field tilt driven crossover between a quantum anomalous Hall phase and a gapless, ferromagnetic TI phase. This crossover manifests itself in an electrically tunable, giant anisotropic magneto-resistance effect that we employ as a quantitative probe of edge transport in this system.
Revealing mesoscopic structural universality with diffusion
Novikov, Dmitry S.; Jensen, Jens H.; Helpern, Joseph A.; Fieremans, Els
2014-01-01
Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke. PMID:24706873
Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui
2017-09-26
Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.
Molecular electronics: some views on transport junctions and beyond.
Joachim, Christian; Ratner, Mark A
2005-06-21
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.
Molecular electronics: Some views on transport junctions and beyond
Joachim, Christian; Ratner, Mark A.
2005-01-01
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192
Nonlinear transport theory in the metal with tunnel barrier
NASA Astrophysics Data System (ADS)
Zubov, E. E.
2018-02-01
Within the framework of the scattering matrix formalism, the nonlinear Kubo theory for electron transport in the metal with a tunnel barrier has been considered. A general expression for the mean electrical current was obtained. It significantly simplifies the calculation of nonlinear contributions to the conductivity of various hybrid structures. In the model of the tunnel Hamiltonian, all linear and nonlinear contributions to a mean electrical current are evaluated. The linear approximation agrees with results of other theories. For effective barrier transmission ?, the ballistic transport is realised with a value of the Landauer conductivity equal to ?.
Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano
2014-01-21
We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.
Many-Body Effects in the Mesoscopic x-Ray Edge Problem
NASA Astrophysics Data System (ADS)
Hentschel, M.; R"Oder, G.; Ullmo, D.
Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.
Taupin, M; Khaymovich, I M; Meschke, M; Mel'nikov, A S; Pekola, J P
2016-03-16
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data.
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors
Taupin, M.; Khaymovich, I. M.; Meschke, M.; Mel'nikov, A. S.; Pekola, J. P.
2016-01-01
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data. PMID:26980225
Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis
2018-01-24
Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.
Self-organization and feedback effects in the shock compressed media
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana
2005-07-01
New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.
Hydrodynamic Electron Flow and Hall Viscosity
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Moll, Philip; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; MacKenzie, Andrew; Moore, Joel
In metallic samples of small enough size and sufficiently strong electron-electron scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory for which bounds on diffusion were conjectured based on an holographic correspondence. Furthermore, breaking time-reversal symmetry can lead to the appearance of an odd component to the viscosity called the Hall viscosity which has attracted a lot of attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields. Gordon and Betty Moore Foundation.
Thermoelectric ZT enhanced by asymmetric configuration in single-molecule-magnet junctions
NASA Astrophysics Data System (ADS)
Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang
2016-02-01
In mesoscopic devices, many factors like the Coulomb and spin interactions can enhance the thermoelectric figure of merit ZT. Here we use a system consisting of a single-molecule magnet (SMM) connected to two ferromagnetic electrodes to consider the possible enhancement effects of thermoelectric efficiency. By introducing an asymmetric configuration to the transport junction, we find that this configuration can significantly enhance the thermoelectric ZT. The optimized asymmetric thermoelectric ZT is five times that of the ZT with a symmetric configuration or non-magnetic case. Due to this asymmetry, a non-zero charge thermopower at the electron-hole symmetry point is also found. These results demonstrate that the asymmetry of the transport junction helps to enhance thermoelectric efficiency and is useful for fabricating SMM-based thermoelectric devices.
NASA Astrophysics Data System (ADS)
Yan, Han; Li, Denghua; He, Chang; Wei, Zhixiang; Yang, Yanlian; Li, Yongfang
2013-11-01
Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered.Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered. Electronic Supplementary Information (ESI) available. See DOI: 10.1039/c3nr03165a
Statewide mesoscopic simulation for Wyoming.
DOT National Transportation Integrated Search
2013-10-01
This study developed a mesoscopic simulator which is capable of representing both city-level and statewide roadway : networks. The key feature of such models are the integration of (i) a traffic flow model which is efficient enough to : scale to larg...
Grima, R
2010-07-21
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the regions of parameter space in which there are maximum differences between the solutions of the master equation and the corresponding rate equations. We show that these differences depend sensitively on the Fano factors and on the inherent structure and topology of the chemical network. The theory of effective mesoscopic rate equations generalizes the conventional rate equations of physical chemistry to describe kinetics in systems of mesoscopic size such as biological cells.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-08-11
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Minganti, Fabrizio; Casteels, Wim; Ciuti, Cristiano
2016-09-01
We present exact results for the steady-state density matrix of a general class of driven-dissipative systems consisting of a nonlinear Kerr resonator in the presence of both coherent (one-photon) and parametric (two-photon) driving and dissipation. Thanks to the analytical solution, obtained via the complex P -representation formalism, we are able to explore any regime, including photon blockade, multiphoton resonant effects, and a mesoscopic regime with large photon density and quantum correlations. We show how the interplay between one- and two-photon driving provides a way to control the multimodality of the Wigner function in regimes where the semiclassical theory exhibits multistability. We also study the emergence of dissipative phase transitions in the thermodynamic limit of large photon numbers.
The adiabatic piston: a perpetuum mobile in the mesoscopic realm
NASA Astrophysics Data System (ADS)
Crosignani, Bruno; Porto, Paolo; Conti, Claudio
2004-03-01
A detailed analysis of the adiabatic-piston problem reveals, for a finely-tuned choice of the spatial dimensions of the system, peculiar dynamical features that challenge the statement that an isolated system necessarily reaches a time-independent equilibrium state. In particular, the piston behaves like a perpetuum mobile, i.e., it never comes to a stop but keeps wandering, undergoing sizeable oscillations around the position corresponding to maximum entropy; this has remarkable implications on the entropy changes of a mesoscopic isolated system and on the limits of validity of the second law of thermodynamics in the mesoscopic realm.
Mesoscopic Length Scale Controls the Rheology of Dense Suspensions
NASA Astrophysics Data System (ADS)
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-01
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Mesoscopic length scale controls the rheology of dense suspensions.
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-03
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2015-02-23
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2016-01-01
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640
Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris
2002-11-27
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less
Counterfactual quantum-information transfer without transmitting any physical particles
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2015-02-01
We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.
Counterfactual quantum-information transfer without transmitting any physical particles.
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2015-02-12
We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.
Shot noise: from Schottky's vacuum tube to present-day quantum devices
NASA Astrophysics Data System (ADS)
Schonenberger, Christian; Oberholzer, Stefan
2004-05-01
Shot-noise in the electrical current through a 'device' is caused by random processes that determine the electron transport from source to drain. Two sources can be distinguished: on the hand, electrons may randomly emanate from the contacts (source and drain), because the relevant states in the reservoirs fluctuate. On the other hand, the transmission through the device is non-deterministic (non-classical). As we demonstrate in this article the former dominates noise in the vacuum tube, whereas the latter applies to coherent mesoscopic devices, which have been studied in great detail during the last decade.
Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions
NASA Astrophysics Data System (ADS)
Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke
2016-09-01
We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.
Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.
Meair, Jonathan; Jacquod, Philippe
2013-02-27
We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, J., E-mail: elfjw@chalmers.se
2016-05-15
Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular the fluid closure has strong effects on zonal flows which are needed to create an absorbing boundary for long wave lengths and also to obtain the Dimits nonlinear upshift. The fluid resonance in the energy equation is found to be instrumental for generating the L–H transition, the spin-up of poloidal rotation in internal transport barriers, as well as the nonlinear Dimits upshift. The difference between the linearly fastest growing mode number and the corresponding longer nonlinear correlation length is also addressed. It is found that the Kadomtsevmore » mixing length result is consistent with the non-Markovian diagonal limit of the transport at the nonlinearly obtained correlation length.« less
Introscopy in nano- and mesoscopic physics: Single electronics and quantum ballistics
NASA Astrophysics Data System (ADS)
Tkachenko, V. A.; Tkachenko, O. A.; Kvon, Z. D.; Latyshev, A. V.; Aseev, A. L.
2016-09-01
A method is presented to be used in a computational experiment aimed at studying the internal structure of nano- and mesoscopic objects, i.e., conducting subsystems and quantum phenomena in solid submicron objects, which demonstrate an individual behavior of low-temperature resistance.
Fermi edge singularities in the mesoscopic regime: Photoabsorption spectra
NASA Astrophysics Data System (ADS)
Hentschel, Martina; Ullmo, Denis; Baranger, Harold U.
2007-12-01
We study Fermi edge singularities in photoabsorption spectra of generic mesoscopic systems such as quantum dots or nanoparticles. We predict deviations from macroscopic-metallic behavior and propose experimental setups for the observation of these effects. The theory is based on the model of a localized, or rank one, perturbation caused by the (core) hole left behind after the photoexcitation of an electron into the conduction band. The photoabsorption spectra result from the competition between two many-body responses, Anderson’s orthogonality catastrophe and the Mahan-Nozières-DeDominicis contribution. Both mechanisms depend on the system size through the number of particles and, more importantly, fluctuations produced by the coherence characteristic of mesoscopic samples. The latter lead to a modification of the dipole matrix element and trigger one of our key results: a rounded K -edge typically found in metals will turn into a (slightly) peaked edge on average in the mesoscopic regime. We consider in detail the effect of the “bound state” produced by the core hole.
Toussaint, Renaud; Pride, Steven R
2002-09-01
This is the first of a series of three articles that treats fracture localization as a critical phenomenon. This first article establishes a statistical mechanics based on ensemble averages when fluctuations through time play no role in defining the ensemble. Ensembles are obtained by dividing a huge rock sample into many mesoscopic volumes. Because rocks are a disordered collection of grains in cohesive contact, we expect that once shear strain is applied and cracks begin to arrive in the system, the mesoscopic volumes will have a wide distribution of different crack states. These mesoscopic volumes are the members of our ensembles. We determine the probability of observing a mesoscopic volume to be in a given crack state by maximizing Shannon's measure of the emergent-crack disorder subject to constraints coming from the energy balance of brittle fracture. The laws of thermodynamics, the partition function, and the quantification of temperature are obtained for such cracking systems.
Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.
NASA Astrophysics Data System (ADS)
Greenfield, Alan Barry
Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.
Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2017-06-01
We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.
A baker's dozen of new particle flows for nonlinear filters, Bayesian decisions and transport
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2015-05-01
We describe a baker's dozen of new particle flows to compute Bayes' rule for nonlinear filters, Bayesian decisions and learning as well as transport. Several of these new flows were inspired by transport theory, but others were inspired by physics or statistics or Markov chain Monte Carlo methods.
NASA Astrophysics Data System (ADS)
Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger
2018-06-01
Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Lattice Boltzmann model capable of mesoscopic vorticity computation
NASA Astrophysics Data System (ADS)
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
Extended Hubbard model for mesoscopic transport in donor arrays in silicon
NASA Astrophysics Data System (ADS)
Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran
2017-12-01
Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.
NASA Astrophysics Data System (ADS)
Tran, Lauren Christine
The Extraordinary Electroconductance (EEC) sensor has been previously demonstrated to have an electric field sensitivity of 3.05V/cm in a mesoscopic-scale structure fabricated at the center of a parallel plate capacitor. In this thesis, we demonstrate the first successful application of EEC sensors as electrochemical detectors of protein binding and biological molecule concentration. Using the avidin derivative, captavidin, in complex with the vitamin biotin, the change in four-point measured resistance with fluid protein concentration of bare EEC sensors was shown to increase by a factor of four in the presence of biomolecular binding as compared to baseline. Calculations for approximate field strengths introduced by a bound captavidin molecule are also presented. The development of Inverse-Extraordinary Optoconductance (I-EOC), an effect which occurs in nanoscale sensors, is also discussed. In the I-EOC effect, electron transport transitions from ballistic to diffusive with increasing light intensity. In these novel, room temperature optical detectors, the resistance is low at low light intensity and resistance increases by 9462% in a 250nm device mesa upon full illumination with a 5 mW HeNe laser. This is the inverse of bulk and mesoscopic device behavior, in which resistance decreases with increasing photon density.
Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.
Terrón-Mejía, Ketzasmin A; Martínez-Benavidez, Evelin; Higuera-Ciapara, Inocencio; Virués, Claudia; Hernández, Javier; Domínguez, Zaira; Argüelles-Monal, Waldo; Goycoolea, Francisco M; López-Rendón, Roberto; Gama Goicochea, Armando
2018-06-12
The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.
TOPICAL REVIEW: Vicinal surfaces for functional nanostructures
NASA Astrophysics Data System (ADS)
Tegenkamp, Christoph
2009-01-01
Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF2, MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior.
Vicinal surfaces for functional nanostructures.
Tegenkamp, Christoph
2009-01-07
Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF(2), MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior.
Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics
NASA Astrophysics Data System (ADS)
Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.
2012-12-01
Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.
Spin interferometry in anisotropic spin-orbit fields
NASA Astrophysics Data System (ADS)
Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku
2018-03-01
Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
DOT National Transportation Integrated Search
2010-02-01
This technical report documents the calibration and validation of the baseline (2008) mesoscopic model for the I-394 Minneapolis, Minnesota, Pioneer Site. DynusT was selected as the mesoscopic model for analyzing operating conditions in the I-394 cor...
DOT National Transportation Integrated Search
2013-03-01
This study developed a mesoscopic model for the before and after study of MD 200, the Inter-County Connector. It is in line with : recent efforts by the Maryland State Highway Administration (SHA) in developing effective modeling tools for traffic an...
Mesoscopic Rings with Spin-Orbit Interactions
ERIC Educational Resources Information Center
Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto
2010-01-01
A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin…
Transport equations for subdiffusion with nonlinear particle interaction.
Straka, P; Fedotov, S
2015-02-07
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Implementation of a quantum metamaterial using superconducting qubits.
Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V
2014-10-14
The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.
2003-03-01
We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.
A new and trustworthy formalism to compute entropy in quantum systems
NASA Astrophysics Data System (ADS)
Ansari, Mohammad
Entropy is nonlinear in density matrix and as such its evaluation in open quantum system has not been fully understood. Recently a quantum formalism was proposed by Ansari and Nazarov that evaluates entropy using parallel time evolutions of multiple worlds. We can use this formalism to evaluate entropy flow in a photovoltaic cells coupled to thermal reservoirs and cavity modes. Recently we studied the full counting statistics of energy transfers in such systems. This rigorously proves a nontrivial correspondence between energy exchanges and entropy changes in quantum systems, which only in systems without entanglement can be simplified to the textbook second law of thermodynamics. We evaluate the flow of entropy using this formalism. In the presence of entanglement, however, interestingly much less information is exchanged than what we expected. This increases the upper limit capacity for information transfer and its conversion to energy for next generation devices in mesoscopic physics.
How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.
2016-11-01
This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized) potential vorticity (PV). Such mixing results in the local sharpening of density and vorticity gradients. When PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps" and "steps," which are, respectively, regions of local gradient steepening and flattening. The jumps then merge and migrate in radius, leading to the emergence of a new macroscale profile structure, so indicating that profile self-organization is a global process, which may be described by a local, but nonlinear model. This work predicts and demonstrates how mesoscale condensation of staircases leads to global states of enhanced confinement.
Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor
NASA Astrophysics Data System (ADS)
Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng
2018-06-01
Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.
Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale
NASA Astrophysics Data System (ADS)
Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.
2014-10-01
The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.
An asymmetric mesoscopic model for single bulges in RNA
NASA Astrophysics Data System (ADS)
de Oliveira Martins, Erik; Weber, Gerald
2017-10-01
Simple one-dimensional DNA or RNA mesoscopic models are of interest for their computational efficiency while retaining the key elements of the molecular interactions. However, they only deal with perfectly formed DNA or RNA double helices and consider the intra-strand interactions to be the same on both strands. This makes it difficult to describe highly asymmetric structures such as bulges and loops and, for instance, prevents the application of mesoscopic models to determine RNA secondary structures. Here we derived the conditions for the Peyrard-Bishop mesoscopic model to overcome these limitations and applied it to the calculation of single bulges, the smallest and simplest of these asymmetric structures. We found that these theoretical conditions can indeed be applied to any situation where stacking asymmetry needs to be considered. The full set of parameters for group I RNA bulges was determined from experimental melting temperatures using an optimization procedure, and we also calculated average opening profiles for several RNA sequences. We found that guanosine bulges show the strongest perturbation on their neighboring base pairs, considerably reducing the on-site interactions of their neighboring base pairs.
NASA Astrophysics Data System (ADS)
Vincent, R. R. R.; Mansel, B. W.; Kramer, A.; Kroy, K.; Williams, M. A. K.
2013-03-01
The same fundamental questions that have driven enquiry into cytoskeletal mechanics can be asked of the considerably less-studied, yet arguably just as important, biopolymer matrix in the plant cell wall. In this case, it is well-known that polysaccharides, rather than filamentous and tubular protein assemblies, play a major role in satisfying the mechanical requirements of a successful cell wall, but developing a clear structure-function understanding has been exacerbated by the familiar issue of biological complexity. Herein, in the spirit of the mesoscopic approaches that have proved so illuminating in the study of cytoskeletal networks, the linear microrheological and strain-stiffening responses of biopolymeric networks reconstituted from pectin, a crucial cell wall polysaccharide, are examined. These are found to be well-captured by the glassy worm-like chain (GWLC) model of self-assembled semi-flexible filaments. Strikingly, the nonlinear mechanical response of these pectin networks is found to be much more sensitive to temperature changes than their linear response, a property that is also observed in F-actin networks, and is well reproduced by the GWLC model. Additionally, microrheological measurements suggest that over long timescales (>10 s) internal stresses continue to redistribute facilitating low frequency motions of tracer particles.
A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.
Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em
2016-01-01
Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).
Non-Gaussianity in a quasiclassical electronic circuit
NASA Astrophysics Data System (ADS)
Suzuki, Takafumi J.; Hayakawa, Hisao
2017-05-01
We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.
Two-terminal conductance fluctuations in the integer quantum Hall regime
NASA Astrophysics Data System (ADS)
Ho, Chang-Ming
1999-09-01
Motivated by recent experiments on the conductance fluctuations in mesoscopic integer quantum Hall systems, we consider a model in which the Coulomb interactions are incorporated into the picture of edge-state transport through a single saddle point. The occupancies of classical localized states in the two-dimensional electron system change due to the interactions between electrons when the gate voltage on top of the device is varied. The electrostatic potential between the localized states and the saddle point causes fluctuations of the saddle-point potential and thus fluctuations of the transmission probability of edge states. This simple model is studied numerically and compared with the observation.
Ant groups optimally amplify the effect of transiently informed individuals
NASA Astrophysics Data System (ADS)
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer
2015-07-01
To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge.
Quantum transport in the FMO photosynthetic light-harvesting complex.
Karafyllidis, Ioannis G
2017-06-01
The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.
Shot noise generated by graphene p–n junctions in the quantum Hall effect regime
Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.
2015-01-01
Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067
A mesoscopic simulation on distributions of red blood cells in a bifurcating channel
NASA Astrophysics Data System (ADS)
Inoue, Yasuhiro; Takagi, Shu; Matsumoto, Yoichiro
2004-11-01
Transports of red blood cells (RBCs) or particles in bifurcated channels have been attracting renewed interest since the advent of concepts of MEMS for sorting, analyzing, and removing cells or particles from sample medium. In this talk, we present a result on a transport of red blood cells (RBCs) in a bifurcating channel studied by using a mesoscale simulation technique of immiscible droplets, where RBCs have been modeled as immiscible droplets. The distribution of RBCs is represented by the fractional RBC flux into two daughters as a function of volumetric flow ratio between the daughters. The data obtained in our simulations are examined with a theoretical prediction, in which, we assume an exponential distribution for positions of RBCs in the mother channel. The theoretical predictions show a good agreement with simulation results. A non-uniform distribution of RBCs in the mother channel affects disproportional separation of RBC flux at a bifurcation.
Ant groups optimally amplify the effect of transiently informed individuals
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer
2015-01-01
To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge. PMID:26218613
NanoShuttles: Harnessing Motor Proteins to Transport Cargo in Synthetic Environments
NASA Astrophysics Data System (ADS)
Vogel, V.; Hess, H.
Motors have become a crucial commodity in our daily lives, from transportation to driving conveyor belts that enable the sequential assembly of cars and other industrial machines. For the sequential assembly of building blocks at the nanoscale that would not assemble spontaneously into larger functional systems, however, active transport systems are not yet available. In contrast, cells have evolved sophisticated molecular machinery that drives movement and active transport. Driven by the conversion of chemical into mechanical energy, namely through hydrolysis of the biological fuel ATP, molecular motors enable cells to operate far away from equilibrium by transporting organelles and molecules to designated locations within the cell, often against concentration gradients. Inspired by the biological concept of active transport, major efforts are underway to learn how to build nanoscale transport systems that are driven by molecular motors. Emerging engineering principles are discussed of how to build tracks and junctions to guide such nanoshuttles, how to load them with cargo and control their speed, how to use active transport to assemble mesoscopic structures that would otherwise not assemble spontaneously and what polymeric materials to choose to integrate motors into MEMS and other biohybrid devices. Finally, two applications that exploit the physical properties of microtubules are discussed, surface imaging by a swarm of microtubules and a self-assembled picoNewton force meter to probe receptor-ligand interactions.
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
NASA Astrophysics Data System (ADS)
Gao, Q. D.; Budny, R. V.
2015-03-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
NASA Astrophysics Data System (ADS)
Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga
2018-06-01
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.
Many-Worlds Interpretation of Quantum Theory and Mesoscopic Anthropic Principle
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Teryaev, O. V.
2008-10-01
We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.
Mesoscopic fluctuations of the population of a qubit in a strong alternating field
NASA Astrophysics Data System (ADS)
Denisenko, M. V.; Satanin, A. M.
2016-12-01
Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau-Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of the population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.
An efficient transport solver for tokamak plasmas
Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...
2017-01-03
A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.
Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.
Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk
2016-03-01
Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.
Direct measurement of superdiffusive energy transport in disordered granular chains.
Kim, Eunho; Martínez, Alejandro J; Phenisee, Sean E; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu
2018-02-13
Energy transport properties in heterogeneous materials have attracted scientific interest for more than half of a century, and they continue to offer fundamental and rich questions. One of the outstanding challenges is to extend Anderson theory for uncorrelated and fully disordered lattices in condensed-matter systems to physical settings in which additional effects compete with disorder. Here we present the first systematic experimental study of energy transport and localization properties in simultaneously disordered and nonlinear granular crystals. In line with prior theoretical studies, we observe in our experiments that disorder and nonlinearity-which individually favor energy localization-can effectively cancel each other out, resulting in the destruction of wave localization. We also show that the combined effect of disorder and nonlinearity can enable manipulation of energy transport speed in granular crystals. Specifically, we experimentally demonstrate superdiffusive transport. Furthermore, our numerical computations suggest that subdiffusive transport should be attainable by controlling the strength of the system's external precompression force.
Mesoscopic Physics of Electronic and Optical Systems
NASA Astrophysics Data System (ADS)
Hentschel, Martina
2005-10-01
The progress in fabricating and controlling mesoscopic samples opens the possibility to investigate many-body phenomena on the nanoscopic scale, for example in quantum dots or nanoparticles. We recently studied the many-body signatures in the photoabsorption cross-section of those systems. Two counteracting many-body effects (Anderson's orthogonality catastrophe and Mahan's exciton) lead to deviations from the naively expected cross-section and to Fermi-edge singularities in the form of a peaked or rounded edge. We found that mesoscopic-coherent systems can show a many-body response that differs considerably from macroscopic samples. The reason for this lies in the finite number of particles and the lack of rotational symmetry in generic mesoscopic systems. The properties of mesoscopic systems crucially depend on whether the corresponding classical systems possess chaotic or integrable dynamics. Signatures of the underlying classical dynamics in quantum-mechanical behavior are searched for in the field of quantum chaos. We study it in the context of optical microresonators-billiards where reflection at hard walls is replaced by confinement due to total internal reflection. The relation between the simple ray model and the wave description (that has to be used when the wavelength becomes comparable to the system size) is called ``ray-wave correspondence.'' It can be established in both real and phase space. For the latter we generalized the concept of Husimi functions to dielectric boundaries. Although the ray model provides a qualitative understanding of the system properties even into the wave limit, semiclassical corrections of the ray picture are necessary in order to establish quantitative correspondence.
NASA Astrophysics Data System (ADS)
Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.
2015-12-01
Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The transported crystals hint at some significant differences in roughness morphology, but they do provide evidence that crystals grown in air/water mixtures and with minimal substrate influence also exhibit mesoscopic roughness with similarity to that observed in ESEM-grown crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinis, Panos
2016-08-07
This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.
Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng
2014-12-15
Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.
Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grätzel, Michael; Park, Nam-Gyu
2012-01-01
We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.
Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu
2012-01-01
We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919
The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin
2018-06-01
The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
Quantum transport in coupled Majorana box systems
NASA Astrophysics Data System (ADS)
Gau, Matthias; Plugge, Stephan; Egger, Reinhold
2018-05-01
We present a theoretical analysis of low-energy quantum transport in coupled Majorana box devices. A single Majorana box represents a Coulomb-blockaded mesoscopic superconductor proximitizing two or more long topological nanowires. The box thus harbors at least four Majorana zero modes (MZMs). Setups with several Majorana boxes, where MZMs on different boxes are tunnel coupled via short nanowire segments, are key ingredients to recent Majorana qubit and code network proposals. We construct and study the low-energy theory for multiterminal junctions with normal leads connected to the coupled box device by lead-MZM tunnel contacts. Transport experiments in such setups can test the nonlocality of Majorana-based systems and the integrity of the underlying Majorana qubits. For a single box, we recover the previously described topological Kondo effect which can be captured by a purely bosonic theory. For several coupled boxes, however, nonconserved local fermion parities require the inclusion of additional local sets of Pauli operators. We present a renormalization group analysis and develop a nonperturbative strong-coupling approach to quantum transport in such systems. Our findings are illustrated for several examples, including a loop qubit device and different two-box setups.
Simulation of electron transport during electron-beam-induced deposition of nanostructures
Jeschke, Harald O; Valentí, Roser
2013-01-01
Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747
NASA Astrophysics Data System (ADS)
Wang, Xiu-Xia
2016-02-01
By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of (\\vartriangle {hat {H}})2 is almost zero and the values of
Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.
de Buyl, Pierre; Kapral, Raymond
2013-02-21
The fabrication of synthetic self-propelled particles and the experimental investigations of their dynamics have stimulated interest in self-generated phoretic effects that propel nano- and micron-scale objects. Theoretical modeling of these phenomena is often based on a continuum description of the solvent for different phoretic propulsion mechanisms, including, self-electrophoresis, self-diffusiophoresis and self-thermophoresis. The work in this paper considers various types of catalytic chemical reaction at the motor surface and in the bulk fluid that come into play in mesoscopic descriptions of the dynamics. The formulation is illustrated by developing the mesoscopic reaction dynamics for exothermic and dissociation reactions that are used to power motor motion. The results of simulations of the self-propelled dynamics of composite Janus particles by these mechanisms are presented.
Mesoscopic fluctuations of the population of a qubit in a strong alternating field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisenko, M. V., E-mail: mar.denisenko@gmail.com; Satanin, A. M.
Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau–Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of themore » population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.« less
Macroscopic and mesoscopic approach to the alkali-silica reaction in concrete
NASA Astrophysics Data System (ADS)
Grymin, Witold; Koniorczyk, Marcin; Pesavento, Francesco; Gawin, Dariusz
2018-01-01
A model of the alkali-silica reaction, which takes into account couplings between thermal, hygral, mechanical and chemical phenomena in concrete, has been discussed. The ASR may be considered at macroscopic or mesoscopic scale. The main features of each approach have been summarized and development of the model for both scales has been briefly described. Application of the model to experimental results for both scales has been presented. Even though good accordance of the model has been obtained for both approaches, consideration of the model at the mesoscopic scale allows to model different mortar mixes, prepared with the same aggregate, but of different grain size, using the same set of parameters. It enables also to predict reaction development assuming different alkali sources, such as de-icing salts or alkali leaching.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric
2018-01-01
This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..
NASA Astrophysics Data System (ADS)
Kuiroukidis, Ap.; Throumoulopoulos, G. N.
2015-08-01
We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Q. D., E-mail: qgao@swip.ac.cn; Budny, R. V.
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LHmore » driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.« less
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Violation of Ohm's law in a Weyl metal.
Shin, Dongwoo; Lee, Yongwoo; Sasaki, M; Jeong, Yoon Hee; Weickert, Franziska; Betts, Jon B; Kim, Heon-Jung; Kim, Ki-Seok; Kim, Jeehoon
2017-11-01
Ohm's law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm's law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm's law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I-V characteristics in Bi 0.96 Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity, which completely describes our experimental results. As a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Large-scale model of flow in heterogeneous and hierarchical porous media
NASA Astrophysics Data System (ADS)
Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît
2017-11-01
Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.
Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...
2015-01-26
We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less
ERIC Educational Resources Information Center
Besson, Ugo; Viennot, Laurence
2004-01-01
This article examines the didactic suitability of introducing models at an intermediate (i.e. mesoscopic) scale in teaching certain subjects, at an early stage. The design and evaluation of two short sequences based on this rationale will be outlined: one bears on propulsion by solid friction, the other on fluid statics in the presence of gravity.…
Electrical and thermal conductance quantization in nanostructures
NASA Astrophysics Data System (ADS)
Nawrocki, Waldemar
2008-10-01
In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.
Mesoscopic description of random walks on combs
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji
2018-04-01
We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.
Fabrication methods for mesoscopic flying vehicle
NASA Astrophysics Data System (ADS)
Cheng, Yih-Lin
2001-10-01
Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass microspheres to reduce their density. The finished airframe (65.5 mm x 65.5 mm) weighed only 1.5g. Two mesicopter prototypes, weighing 3g and 17g, have illustrated that powered flight at this scale is feasible. This research provides solutions to manufacture the challenging parts for the mesicopter. The manufacturing approaches discussed here are applicable to other small flying vehicles in similar and even smaller size regimes.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Nonlinear parallel momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu, E-mail: luwang@hust.edu.cn; Wen, Tiliang; Diamond, P. H.
2015-05-15
Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller thanmore » the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.« less
NASA Astrophysics Data System (ADS)
Oleschko, K.; Khrennikov, A.
2017-10-01
This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.
Mesoscopic model for binary fluids
NASA Astrophysics Data System (ADS)
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
Seismoelectric effects due to mesoscopic heterogeneities
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Rubino, J. GermáN.; Carbajal, Marina Rosas; Linde, Niklas; Holliger, Klaus
2013-05-01
While the seismic effects of wave-induced fluid flow due to mesoscopic heterogeneities have been studied for several decades, the role played by these types of heterogeneities on seismoelectric phenomena is largely unexplored. To address this issue, we have developed a novel methodological framework which allows for the coupling of wave-induced fluid flow, as inferred through numerical oscillatory compressibility tests, with the pertinent seismoelectric conversion mechanisms. Simulating the corresponding response of a water-saturated sandstone sample containing mesoscopic fractures, we demonstrate for the first time that these kinds of heterogeneities can produce measurable seismoelectric signals under typical laboratory conditions. Given that this phenomenon is sensitive to key hydraulic and mechanical properties, we expect that the results of this pilot study will stimulate further exploration on this topic in several domains of the Earth, environmental, and engineering sciences.
Magnetic disorder in superconductors: Enhancement by mesoscopic fluctuations
NASA Astrophysics Data System (ADS)
Burmistrov, I. S.; Skvortsov, M. A.
2018-01-01
We study the density of states (DOS) and the transition temperature Tc in a dirty superconducting film with rare classical magnetic impurities of an arbitrary strength described by the Poissonian statistics. We take into account that the potential disorder is a source of mesoscopic fluctuations of the local DOS, and, consequently, of the effective strength of magnetic impurities. We find that these mesoscopic fluctuations result in a nonzero DOS for all energies in the region of the phase diagram where without this effect the DOS is zero within the standard mean-field theory. This mechanism can be more efficient in filling the mean-field superconducting gap than rare fluctuations of the potential disorder (instantons). Depending on the magnetic impurity strength, the suppression of Tc by spin-flip scattering can be faster or slower than in the standard mean-field theory.
Long-range spin coherence in a strongly coupled all-electronic dot-cavity system
NASA Astrophysics Data System (ADS)
Ferguson, Michael Sven; Oehri, David; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Blatter, Gianni; Zilberberg, Oded
2017-12-01
We present a theoretical analysis of spin-coherent electronic transport across a mesoscopic dot-cavity system. Such spin-coherent transport has been recently demonstrated in an experiment with a dot-cavity hybrid implemented in a high-mobility two-dimensional electron gas [C. Rössler et al., Phys. Rev. Lett. 115, 166603 (2015), 10.1103/PhysRevLett.115.166603] and its spectroscopic signatures have been interpreted in terms of a competition between Kondo-type dot-lead and molecular-type dot-cavity singlet formation. Our analysis brings forward all the transport features observed in the experiments and supports the claim that a spin-coherent molecular singlet forms across the full extent of the dot-cavity device. Our model analysis includes (i) a single-particle numerical investigation of the two-dimensional geometry, its quantum-coral-type eigenstates, and associated spectroscopic transport features, (ii) the derivation of an effective interacting model based on the observations of the numerical and experimental studies, and (iii) the prediction of transport characteristics through the device using a combination of a master-equation approach on top of exact eigenstates of the dot-cavity system, and an equation-of-motion analysis that includes Kondo physics. The latter provides additional temperature scaling predictions for the many-body phase transition between molecular- and Kondo-singlet formation and its associated transport signatures.
Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA
NASA Astrophysics Data System (ADS)
Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.
2018-01-01
Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.
Quantum gambling using mesoscopic ring qubits
NASA Astrophysics Data System (ADS)
Pakuła, Ireneusz
2007-07-01
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg {\\it et al} is one of the simplest yet still hard to implement applications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game.
NASA Astrophysics Data System (ADS)
Pileni, M. P.
2005-12-01
We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.
1997 Technical Digest Series. Volume 9: Quantum Optoelectronics
1997-03-01
Program Co-Chair Shigehisa Arai, Tokyo Institute of Technology, Japan Yasuhiko Arakawa, University of Tokyo, Japan Israel Bar-Joseph, Weizmann...assembly formed quantum dot active layers, (p. 3) 2:30pm (Invited) QWA3 • Optical probing of mesoscopic and nano-structures, Yasuhiko Arakawa, Univ...80, 3466 (1996). 6/QWA3-1 Optical Probing of Mesoscopic and Nano-Structures Yasuhiko Arakawa University of Tokyo, Japan We investigate the
Polymorphism of Lysozyme Condensates.
Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G
2017-10-05
Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.
Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers
NASA Astrophysics Data System (ADS)
Grier, David
2004-03-01
An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
2017-04-26
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
Anomalous transport from holography. Part I
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2016-11-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.
NASA Astrophysics Data System (ADS)
Reid, Andrew C. E.; Olson, Gregory B.
2000-03-01
Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
Violation of Ohm’s law in a Weyl metal [A hallmark of the Weyl metal state: Breakdown of Ohm's law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwoo; Lee, Yongwoo; Sasaki, M.
Ohm’s law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm’s law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm’s law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I–V characteristics in Bi 0.96Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity,more » which completely describes our experimental results. Furthermore, as a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.« less
Violation of Ohm’s law in a Weyl metal [A hallmark of the Weyl metal state: Breakdown of Ohm's law
Shin, Dongwoo; Lee, Yongwoo; Sasaki, M.; ...
2017-08-14
Ohm’s law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm’s law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm’s law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I–V characteristics in Bi 0.96Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity,more » which completely describes our experimental results. Furthermore, as a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.« less
Sustainability of transport structures - some aspects of the nonlinear reliability assessment
NASA Astrophysics Data System (ADS)
Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír
2017-09-01
Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.
Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals.
Xu, Xiangling; Majetich, Sara A; Asher, Sanford A
2002-11-20
We report here the first synthesis of mesoscopic, monodisperse particles which contain nanoscopic inclusions of ferromagnetic cobalt ferrites. These monodisperse ferromagnetic composite particles readily self-assemble into magnetically responsive photonic crystals that efficiently Bragg diffract incident light. Magnetic fields can be used to control the photonic crystal orientation and, thus, the diffracted wavelength. We demonstrate the use of these ferromagnetic particles to fabricate magneto-optical diffracting fluids and magnetically switchable diffracting mirrors.
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
BLANC, EMILIE; ENGBLOM, STEFAN; HELLANDER, ANDREAS; LÖTSTEDT, PER
2017-01-01
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again. PMID:29046618
Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble
NASA Astrophysics Data System (ADS)
Berggren, Tomas; Duits, Maurice
2017-09-01
In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, G., E-mail: gnaderi@ncsu.edu; Schwartz, J.
2014-04-14
Despite progress in the performance of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi2212)/Ag multifilamentary round wires, understanding the impact of microstructural defects on multiple length scales on electrical transport remains a significant challenge. Many recent studies have focused on porosity, but porosity is not the only factor in determining J{sub c}. The primary impurity in partial-melt processed multifilamentary Bi2212 wires is Bi{sub 2}Sr{sub 2}CuO{sub x} (Bi2201), which forms as mesoscopic grains and nanoscopic intergrowths. Previously, we showed the destructive effect of Bi2201 grains on transport. Here, we relate scanning transmission electron microscopy results to the Bi2212 coherence length, anisotropic magnetization behavior,more » and magnetic-field dependent transport to study c-axis transport and the effects of Bi2201 intergrowths on magnetic flux pinning. We show that wide Bi2201 intergrowths are barrier to c-axis transport within Bi2212 grains, whereas narrow (half- and full-cell) Bi2201 intergrowths are not detrimental to c-axis transport and are likely magnetic flux pinning centers. These results have significant impact on the understanding of Bi2212/Bi2201 systems and provide important physical insight towards future improvements in devices based upon wires, film, and junctions.« less
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based on SPH method and macroscopic model based on FVM, FEM and FDM, can be applied to even more complicated system. In the mesoscopic model by SPH method, some fundamental mesoscopic phenomena, such as the microstructure evolution, interface morphology represented by high resolution, particle entrapment in solidification can be studied. In the macroscopic model, the heat transfer, fluid flow, species transport can be modeled, and the simulation results provided the velocity, temperature and species boundary condition necessary for the mesoscopic model. This part falls into the region of future work. (Abstract shortened by UMI.)
Thermoelectric effects in disordered branched nanowires
NASA Astrophysics Data System (ADS)
Roslyak, Oleksiy; Piriatinskiy, Andrei
2013-03-01
We shall develop formalism of thermal and electrical transport in Si1 - x Gex and BiTe nanowires. The key feature of those nanowires is the possibility of dendrimer type branching. The branching tree can be of size comparable to the short wavelength of phonons and by far smaller than the long wavelength of conducting electrons. Hence it is expected that the branching may suppress thermal and let alone electrical conductance. We demonstrate that the morphology of branches strongly affects the electronic conductance. The effect is important to the class of materials known as thermoelectrics. The small size of the branching region makes large temperature and electrical gradients. On the other hand the smallness of the region would allow the electrical transport being ballistic. As usual for the mesoscopic systems we have to solve macroscopic (temperature) and microscopic ((electric potential, current)) equations self-consistently. Electronic conductance is studied via NEGF formalism on the irreducible electron transfer graph. We also investigate the figure of merit ZT as a measure of the suppressed electron conductance.
Hole-Transporting Materials for Printable Perovskite Solar Cells
Salunke, Jagadish K.; Priimagi, Arri
2017-01-01
Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs. PMID:28914823
Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.
Bergmann, Victor W; Weber, Stefan A L; Javier Ramos, F; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Li, Dan; Domanski, Anna L; Lieberwirth, Ingo; Ahmad, Shahzada; Berger, Rüdiger
2014-09-22
Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng
2017-07-01
Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
NASA Astrophysics Data System (ADS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
Bloch-Grüneisen nonlinearity of electron transport in GaAs/AlGaAs heterostructures
Raichev, O. E.; Hatke, A. T.; Zudov, M. A.; ...
2017-08-22
We report on nonlinear transport measurements in a two-dimensional electron gas hosted in GaAs/AlGaAs heterostructures. Upon application of direct current, the low-temperature differential resistivity acquires a positive correction, which exhibits a pronounced maximum followed by a plateau. With increasing temperature, the nonlinearity diminishes and disappears. These observations can be understood in terms of a crossover from the Bloch-Gr¨uneisen regime to the quasielastic scattering regime as the electrons are heated by direct current. Calculations considering interaction of electrons with acoustic phonons provide reasonable description of our experimental findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di
Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...
2018-04-01
Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu
Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storagemore » applications.« less
Brusseau, Mark L.; Srivastava, Rajesh
1999-01-01
One of the largest field studies of reactive‐solute transport is the natural‐gradient experiment conducted at Cape Cod from 1985 to 1988. Major findings regarding the transport behavior of the reactive solute (lithium) were that the rate of plume displacement decreased with time (temporal increase in effective retardation), the degree of longitudinal spreading was much greater than that observed for bromide for an equivalent travel distance, and the plume was asymmetric, with maximum concentrations located near the leading edges. The objective of our work was to quantitatively analyze the transport of lithium and to attempt to identify the factor or factors that contributed significantly to its observed nonideal transport. We used a mathematical model that accounted for several transport factors, including spatially variable hydraulic conductivity and spatially variable, nonlinear, rate‐limited sorption, with all parameter values obtained independently. The transport behavior observed during the first 250 days, corresponding to a transport distance of 60 m, was predicted reasonably well by the simulation that incorporated spatially variable hydraulic conductivity; nonlinear, rate‐limited, spatially variable sorption; and uniform water chemistry. However, the larger degree of deceleration observed during the latter stage of the experiment (the filial 20 m) was not. The larger deceleration was successfully simulated by increasing 3‐fold the mean sorption capacity of the latter portion of the transport domain. Such a change in sorption capacity is consistent with the potential impact on lithium sorption of measured changes in water chemistry (e.g.,pH increase, reduction in resident Zn)at occur in the zone through which the lithium plume traversed. The results of the analyses suggest that nonlinear sorption and variable water chemistry may have btors responsible for the nonuniform displacement of the lithium plume, with rate‐limited sorption/desorption having minimal impact. In addition, the asymmetry of the plume appears to have been caused primarily by nonlinear sorption, whereas the enhanced longitudinal spreading appears to have been caused by the combined influences of spatially variable hydraulic conductivity and sorption, nonlinear sorption, and rate‐limited sorption/desorption. A comparison of the results of this analysis to those we obtained from an analysis of the Borden natural‐gradient study reveals several similarities regarding the transport of reactive contaminants at the field scale.
Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board
NASA Astrophysics Data System (ADS)
Yuan, Huali; Little, John C.; Hodgson, Alfred T.
Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less
Vanderschuren, Marianne
2008-03-01
Intelligent Transport Systems (ITS) can facilitate the delivery of a wide range of policy objectives. There are six main objectives/benefits identified in the international literature: Safety (reduction of (potential) crashes), mobility (reduction of delays and travel times), efficiency (optimise the use of existing infrastructure), productivity (cost saving), energy/environment and customer satisfaction [Mitretek Systems, 2001. Intelligent Transport System Benefits: 2001 update, Under Contract to the Federal Highway Administration, US Department of Transportation, Washington, DC, US]. In the South African context, there is an interest for measures that can reduce (potential) crashes. In South Africa the number of year on year traffic related fatalities is still increasing. In 2005 the number of fatalities was 15393 (from 14135 in 2004) while the estimated costs for the same period increased from R8.89-billion to R9.99-billion [RTMC, 2007. Interim Road Traffic and Fatal Crash Report 2006, Road Traffic Management Corporation, Pretoria, SA]. Given the extent of the road safety problem and the potential benefits of ITS, the need for further research is apparent. A study with regards to the potential of different types of models (macroscopic, mesoscopic and miscroscopic simulation models) led to the use of Paramics. Two corridors and three types of ITS measures were investigated and safety benefits were estimated.
Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite
NASA Astrophysics Data System (ADS)
Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim
2018-03-01
A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.
The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.
Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing
2017-02-27
This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.
Topological approximation of the nonlinear Anderson model
NASA Astrophysics Data System (ADS)
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less
Neoclassical transport including collisional nonlinearity.
Candy, J; Belli, E A
2011-06-10
In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.
Li, Nianbei; Ren, Jie
2014-08-29
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.
Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.
Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y
2015-11-06
Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.
NASA Astrophysics Data System (ADS)
Holland, Christopher George
Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well-separated frequencies. These results are qualitatively reproduced in a simple numerical "thought experiment," described in Chapter VI, which suggests that zonal flows may trigger the L-H transition.
Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc
2015-01-01
Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less
Geomorphically based predictive mapping of soil thickness in upland watersheds
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.; Rasmussen, Craig
2009-09-01
The hydrologic response of upland watersheds is strongly controlled by soil (regolith) thickness. Despite the need to quantify soil thickness for input into hydrologic models, there is currently no widely used, geomorphically based method for doing so. In this paper we describe and illustrate a new method for predictive mapping of soil thicknesses using high-resolution topographic data, numerical modeling, and field-based calibration. The model framework works directly with input digital elevation model data to predict soil thicknesses assuming a long-term balance between soil production and erosion. Erosion rates in the model are quantified using one of three geomorphically based sediment transport models: nonlinear slope-dependent transport, nonlinear area- and slope-dependent transport, and nonlinear depth- and slope-dependent transport. The model balances soil production and erosion locally to predict a family of solutions corresponding to a range of values of two unconstrained model parameters. A small number of field-based soil thickness measurements can then be used to calibrate the local value of those unconstrained parameters, thereby constraining which solution is applicable at a particular study site. As an illustration, the model is used to predictively map soil thicknesses in two small, ˜0.1 km2, drainage basins in the Marshall Gulch watershed, a semiarid drainage basin in the Santa Catalina Mountains of Pima County, Arizona. Field observations and calibration data indicate that the nonlinear depth- and slope-dependent sediment transport model is the most appropriate transport model for this site. The resulting framework provides a generally applicable, geomorphically based tool for predictive mapping of soil thickness using high-resolution topographic data sets.
Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
González-Tudela, Alejandro; Porras, Diego
2013-02-22
Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
Mesoscopic Vortex–Meissner currents in ring ladders
NASA Astrophysics Data System (ADS)
Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan
2018-07-01
Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.
Filippov, A E; Popov, V L
2007-02-01
A modified Tomlinson equation with fractal potential is studied. The effective potential is numerically generated and its mesoscopic structure is gradually adjusted to different scales by a number of Fourier modes. It is shown that with the change of scale the intensity of velocity-dependent damping in an effective Langevin equation can be gradually substituted by an equivalent constant "dry friction." For smooth macrosopic surfaces the effective equation completely reduces to the well known Coulomb law.
Quantum Device Applications of Mesoscopic Superconductivity
NASA Astrophysics Data System (ADS)
Hakonen, P. J.
2006-08-01
A brief account is given on the possibilities of mesoscopic superconductivity in low-noise amplifier and detector applications. In particular, three devices will be described: 1) Bloch oscillating transistor (BOT), 2) Inductively-read superconducting Cooper pair transistor (L-SET), and 3) Quantum capacitive phase detector (C-SET). The BOT is a low-noise current amplifier while the L-SET and C-SET act as ultra-sensitive charge and phase detectors, respectively. The basic operating principles and the main characteristics of these devices will be reviewed and discussed.
Superconductivity in disordered thin films: giant mesoscopic fluctuations.
Skvortsov, M A; Feigel'man, M V
2005-07-29
We discuss the intrinsic inhomogeneities of superconductive properties of uniformly disordered thin films with a large dimensionless conductance g. It is shown that mesoscopic fluctuations, which usually contain a small factor 1/g, are crucially enhanced near the critical conductance g(cF) > 1 where superconductivity is destroyed at T = 0 due to Coulomb suppression of the Cooper attraction. This leads to strong spatial fluctuations of the local transition temperature and thus to the percolative nature of the thermal superconductive transition.
Feigel'man, M V; Skvortsov, M A
2012-10-05
In disordered superconductors, the local pairing field fluctuates in space, leading to the smearing of the BCS peak in the density of states and the appearance of the subgap tail states. We analyze the universal mesoscopic contributions to these effects and show that they are enhanced by the Coulomb repulsion. In the vicinity of the quantum critical point, where superconductivity is suppressed by the "fermionic mechanism," strong smearing of the peak due to mesoscopic fluctuations is predicted.
Disorder-Enhanced Dielectric Response of Nanoscale and Mesoscopic Insulators
NASA Astrophysics Data System (ADS)
Onoda, Shigeki; Chern, Chyh-Hong; Murakami, Shuichi; Ogimoto, Yasushi; Nagaosa, Naoto
2006-12-01
Enhancement of the dielectric response of insulators by disorder is theoretically proposed, where the quantum interference of electronic waves through the nanoscale or mesoscopic system and its change due to external perturbations control the polarization. In the disordered case with all the states being localized, the resonant tunneling, which is topologically protected, plays a crucial role, and enhances the dielectric response by a factor 30 40 compared with the pure case. The realization of this idea with accessible materials or structures is also discussed.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
NASA Astrophysics Data System (ADS)
Biller, A. M.; Stolbov, O. V.; Raikher, Yu L.
2017-06-01
A pair of magnetizable solid particles embedded in a cylinder made of high-elasticity material is considered as a model of a mesoscopic structure element of a magnetorheological elastomer. An applied magnetic field induces ponderomotive interaction of the particles making them to move relative to one another so as to balance the counteracting magnetic and elastic forces. In a certain parameter range, the system exhibits bistability due to which under the increase / decrease of the field, the interparticle distance changes in a hysteretic manner. This behavior has a significant effect on the ability of the mesoscopic element to resist external load. Using the developed two-particle model prone to the magnetomechanical hysteresis, we extend it to the case of a virtually macroscopic sample presenting the latter as a superposition of such elements with distributed interparticle distances. In spite of its simplicity, this scheme in a generally correct way describes the field-induced changes of the internal structure and elastic modulus of the magnetorheological composites.
Mesohysteresis model for ferromagnetic materials by minimization of the micromagnetic free energy
NASA Astrophysics Data System (ADS)
van den Berg, A.; Dupré, L.; Van de Wiele, B.; Crevecoeur, G.
2009-04-01
To study the connection between macroscopic hysteretic behavior and the microstructural properties, this paper presents and validates a new material dependent three-dimensional mesoscopic magnetic hysteresis model. In the presented mesoscopic description, the different micromagnetic energy terms are reformulated on the space scale of the magnetic domains. The sample is discretized in cubic cells, each with a local stress state, local bcc crystallographic axes, etc. The magnetization is assumed to align with one of the three crystallographic axes, in positive or negative sense, defining six volume fractions within each cell. The micromagnetic Gibbs free energy is described in terms of these volume fractions. Hysteresis loops are computed by minimizing the mesoscopic Gibbs free energy using a modified gradient search for a sequence of external applied fields. To validate the mesohysteresis model, we studied the magnetic memory properties. Numerical experiments reveal that (1) minor hysteresis loops are indeed closed and (2) the closed minor loops are erased from the memory.
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2012-11-01
J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.
NASA Astrophysics Data System (ADS)
Ramos-Rodríguez, Daniel-Apolinar; Rodríguez-Hidalgo, María-del-Rosario; Soto-Figueroa, César; Vicente, Luis
2010-03-01
This work explores the diffusivity of the drug albendazole contained in a polymeric vehicle, Styrene-Divinylbenzene (ST-DVD), when it is subject to different environments. The environments consist of water and three different ionic liquids. First, the solubility parameters of these ionic liquids, [BMIM][PF6], [HMIM][Br] and [BMIM][BF4], and albendazole were evaluated by means of molecular dynamics employing COMPASS force-field and a NPT ensemble at 298 K. Then a mesoscopic simulation using Dissipative Particle Dynamics (DPD) was used. In the presence of ionic liquids the albendazole exhibits a diffusivity in [BMIM][PF6] around ten times that shown in [BMIM][BF4] or [HMIM][Br]. This is connected with the corresponding solvent power. The results obtained from these molecular and mesoscopic simulations are consistent with reported experimental results and are useful to predict and evaluate the solvent power of ionic liquids applied to drugs of pharmaceutical use.
Sánchez, R; Carreras, B A; van Milligen, B Ph
2005-01-01
The fluid limit of a recently introduced family of nonintegrable (nonlinear) continuous-time random walks is derived in terms of fractional differential equations. In this limit, it is shown that the formalism allows for the modeling of the interaction between multiple transport mechanisms with not only disparate spatial scales but also different temporal scales. For this reason, the resulting fluid equations may find application in the study of a large number of nonlinear multiscale transport problems, ranging from the study of self-organized criticality to the modeling of turbulent transport in fluids and plasmas.
NASA Astrophysics Data System (ADS)
Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.
2018-02-01
This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas-liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas-liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.
Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials
Li, Nianbei; Ren, Jie
2014-01-01
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations
NASA Astrophysics Data System (ADS)
Flegg, Mark B.; Hellander, Stefan; Erban, Radek
2015-05-01
In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory
Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing
2017-01-01
This paper attempted to provide a method to calculate progressive failure of the cohesive-frictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, E1E2E3E1E2E3. The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight E3 repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution. PMID:28772596
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
NASA Astrophysics Data System (ADS)
Stam, Samantha; Gardel, Margaret
Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.
Investigation of a Nonlinear Control System
NASA Technical Reports Server (NTRS)
Flugge-Lotz, I; Taylor, C F; Lindberg, H E
1958-01-01
A discontinuous variation of coefficients of the differential equation describing the linear control system before nonlinear elements are added is studied in detail. The nonlinear feedback is applied to a second-order system. Simulation techniques are used to study performance of the nonlinear control system and to compare it with the linear system for a wide variety of inputs. A detailed quantitative study of the influence of relay delays and of a transport delay is presented.
Quantum transport with long-range steps on Watts-Strogatz networks
NASA Astrophysics Data System (ADS)
Wang, Yan; Xu, Xin-Jian
2016-07-01
We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.
Transport processes in magnetically confined plasmas in the nonlinear regime.
Sonnino, Giorgio
2006-06-01
A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.
Dispersion in tidally averaged transport equation
Cheng, R.T.; Casulli, V.
1992-01-01
A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature
NASA Astrophysics Data System (ADS)
Webb, R. A.
1998-03-01
A variety of experiments are discussed where, at low temperatures, it appears that the non-interacting picture of electrons in a Fermi liquid description of a mesoscopic sample is breaking down. Specifically, experiments on the temperature dependence of the phase-coherence time, energy relaxation rate, spin-flip scattering time, persistent currents in normal metals and transmission through a barrier in the fractional quantum Hall regime all display low-temperature properties which can not be accounted for in the independent electron picture.
Unexpected mechanical properties of very dry Berea sandstone near 45°C
NASA Astrophysics Data System (ADS)
Miller, R. A.; Darling, T. W.; TenCate, J. A.; Johnson, P. A.
2011-12-01
An understanding of the nonlinear and hysteretic behavior of porous rocks is important for seismic studies and geologic carbon sequestration applications. However, the fundamental processes responsible for such behavior are poorly understood, including interactions involving adsorbed water and bulk carbon dioxide. Water has been shown to affect the nonlinear mechanical properties of porous rocks, both in high humidity conditions and in low pressure conditions where only a monolayer of water is present on rock grain surfaces [1, 2]. To study the impact of small quantities of adsorbed water on the nonlinear behavior of sandstone, we compare nonlinear resonant ultrasound spectroscopy (NRUS) and time-of-flight modulation (TOFM) measurements [3] on a Berea sandstone core before and after removing bulk water from the sample. Water is removed through extended exposure to ultra high vacuum (UHV) conditions. At the sample's driest state, we achieve a partial pressure of water below 10-8 Torr at room temperature. Periodic measurements record acoustic data as the rock is slowly heated from room temperature to 55°C in UHV. Measurements made after several months of exposure to UHV conditions show behavior we have not previously observed. We report an unexpected sharp increase in Q-1 above 45°C, suggesting we have reduced the concentration of water to a low enough level to affect the sample's mechanical properties. Nonlinear effects are still present when the sample is at its driest state below 45°C, in agreement with previous work [4], which indicates water is not the sole contributor to nonlinearity in porous rock. We are also studying the effect of adding carbon dioxide or argon gas to the dry specimen. We present our acoustic data and propose a model for the impact of adsorbed water on the attenuation of porous rock. [We gratefully acknowledge support from the Nevada Terawatt Facility at the University of Nevada, Reno, and from the Geosciences Research Program of the DOE Office of Basic Energy Sciences]. [1] B. R. Tittmann, L. Ahlberg, and J. Curnow, "Internal friction and velocity measurements," Proc. of 7th Lunar Science Conference , pp. 3123-3132, 1997. [2] K. E.-A. Van Den Abeele, J. Carmeliet, P. A. Johnson, and B. Zinszner, "Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity," Journal of Geophysical Research 107, p. 2121, June 2002. [3] "Dynamic Measures of Elastic Nonlinear (Anelastic) Behavior: Dynamic Acousto-Elasticity Testing (DAET)," G. Renaud, P-Y Le Bas, J. A. TenCate, T. J. Ulrich, J. W. Carey, J. Han, T.W. Darling and P. A. Johnson, AGU Fall Meeting, Dec. 2011. [4] "Water and CO2 chemistry influences on the mechanical integrity of rocks," T.W. Darling, P-Y Le Bas, J. W. Carey, P. A. Johnson and R. A. Miller, AGU Fall Meeting, Dec. 2010.
NASA Astrophysics Data System (ADS)
Texier, Christophe; Mitscherling, Johannes
2018-02-01
We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and
Application of nonlinear adaptive motion washout to transport ground-handling simulation
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Martin, D. J., Jr.
1983-01-01
The application of a nonlinear coordinated adaptive motion washout to the transport ground-handling environment is documented. Additions to both the aircraft math model and the motion washout system are discussed. The additions to the simulated-aircraft math model provided improved modeling fidelity for braking and reverse-thrust application, and the additions to the motion-base washout system allowed transition from the desired flight parameters to the less restrictive ground parameters of the washout.
LaPlace Transform1 Adaptive Control Law in Support of Large Flight Envelope Modeling Work
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira
2011-01-01
This paper presents results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are in support of nonlinear aerodynamic modeling and instrumentation calibration.
Equilibration in finite Bose systems
NASA Astrophysics Data System (ADS)
Wolschin, Georg
2018-06-01
The equilibration of a finite Bose system is modeled using a gradient expansion of the collision integral that leads to a nonlinear transport equation. For constant transport coefficients, it is solved in closed form through a nonlinear transformation. Using schematic initial conditions, the exact solution and the equilibration time are derived and compared to the corresponding case for fermions. Applications to the fast equilibration of the gluon system created initially in relativistic heavy-ion collisions, and to cold quantum gases are envisaged.
Numerical study on inter-tidal transports in coastal seas
NASA Astrophysics Data System (ADS)
Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo
2016-06-01
Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.
Umeyama, Tomokazu; Imahori, Hiroshi
2017-11-21
Over the past several years, organometal halide perovskite solar cells (PSCs) have attracted considerable interest from the scientific research community because of their potential as promising photovoltaic devices for use in renewable energy production. To date, high power conversion efficiencies (PCEs) of more than 20% have been primarily achieved with mesoscopic-structured PSCs, where a mesoporous TiO 2 (mTiO 2 ) layer is incorporated as an electron-transporting mesoporous scaffold into the perovskite crystal, in addition to a compact TiO 2 (cTiO 2 ) as an electron-transporting layer (ETL). In this Perspective, we first summarize recent research on the preparation strategies of the mTiO 2 layer with a high electron transport capability by facile sol-gel methods instead of the conventional nanoparticle approach. The importance of the control of the pore size and grain boundaries of the mTiO 2 in achieving high PCEs for PSCs is discussed. In addition, an alternative method to improve the electron transport in the mTiO 2 layer via the incorporation of highly conductive nanocarbon materials, such as two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes, is also summarized. Finally, we highlight the utilization of zero-dimensional (0D) nanocarbon, i.e., fullerenes, as an n-type semiconducting material in mesostructure-free planar PSCs, which avoids high-temperature sintering during the fabrication of an ETL.
Hegna, Chris C.; Terry, Paul W.; Faber, Ben J.
2018-02-01
A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3Dmore » geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegna, Chris C.; Terry, Paul W.; Faber, Ben J.
A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3Dmore » geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.« less
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
NASA Astrophysics Data System (ADS)
Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi
2016-09-01
We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.
Self-sustained peristaltic waves: Explicit asymptotic solutions
NASA Astrophysics Data System (ADS)
Dudchenko, O. A.; Guria, G. Th.
2012-02-01
A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.
Weak measurements and quantum weak values for NOON states
NASA Astrophysics Data System (ADS)
Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.
2018-03-01
Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.
Neuronal synchrony: Peculiarity and generality
Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I.
2008-01-01
Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their “dynamical repertoire” includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). PMID:19045493
Khani, Shaghayegh; Yamanoi, Mikio; Maia, Joao
2013-05-07
Dissipative Particle Dynamics (DPD) has shown a great potential in studying the dynamics and rheological properties of soft matter; however, it is associated with deficiencies in describing the characteristics of entangled polymer melts. DPD deficiencies are usually correlated to the time integrating method and the unphysical bond crossings due to utilization of soft potentials. One shortcoming of DPD thermostat is the inability to produce real values of Schmidt number for fluids. In order to overcome this, an alternative Lowe-Anderson (LA) method, which successfully stabilizes the temperature, is used in the present work. Additionally, a segmental repulsive potential was introduced to avoid unphysical bond crossings. The performance of the method in simulating polymer systems is discussed by monitoring the static and dynamic characteristics of polymer chains and the results from the LA method are compared to standard DPD simulations. The performance of the model is evaluated on capturing the main shear flow properties of entangled polymer systems. Finally the linear and nonlinear viscoelastic properties of such systems are discussed.
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo, Mario, E-mail: mario.leo@le.infn.it; Leo, Rosario Antonio, E-mail: leora@le.infn.it; Tempesta, Piergiulio, E-mail: p.tempesta@fis.ucm.es
2013-06-15
In a recent paper [M. Leo, R.A. Leo, P. Tempesta, C. Tsallis, Phys. Rev. E 85 (2012) 031149], the existence of quasi-stationary states for the Fermi–Pasta–Ulam β system has been shown numerically, by analyzing the stability properties of the N/4-mode exact nonlinear solution. Here we study the energy distribution of the modes N/4, N/3 and N/2, when they are unstable, as a function of N and of the initial excitation energy. We observe that the classical Boltzmann weight is replaced by a different weight, expressed by a q-exponential function. -- Highlights: ► New statistical properties of the Fermi–Pasta–Ulam beta systemmore » are found. ► The energy distribution of specific observables are studied: a deviation from the standard Boltzmann behavior is found. ► A q-exponential weight should be used instead. ► The classical exponential weight is restored in the large particle limit (mesoscopic nature of the phenomenon)« less
Lin, Naibo; Liu, Xiang Yang
2015-11-07
This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.
Estimation of π-π Electronic Couplings from Current Measurements.
Trasobares, J; Rech, J; Jonckheere, T; Martin, T; Aleveque, O; Levillain, E; Diez-Cabanes, V; Olivier, Y; Cornil, J; Nys, J P; Sivakumarasamy, R; Smaali, K; Leclere, P; Fujiwara, A; Théron, D; Vuillaume, D; Clément, N
2017-05-10
The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.
Traveling wave to a reaction-hyperbolic system for axonal transport
NASA Astrophysics Data System (ADS)
Huang, Feimin; Li, Xing; Zhang, Yinglong
2017-07-01
In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.
Fundamental aspects of steady-state conversion of heat to work at the nanoscale
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.
2017-06-01
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?
Nonlinear Electromagnetic Stabilization of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Whelan, G. G.; Pueschel, M. J.; Terry, P. W.
2018-04-01
The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2017-12-21
The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.
NASA Astrophysics Data System (ADS)
Qin, Chuan; Chen, Shuhan; Cai, Yunjiao; Kandaz, Fatih; Ji, Yi
2017-10-01
Spin accumulation generated by the anomalous Hall effect (AHE) in mesoscopic ferromagnetic N i81F e19 (permalloy, Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, the inverse spin Hall effect (ISHE), can also be generated and detected all electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in situ. By exploring Py thicknesses of 4, 8, and 12 nm, the Py spin diffusion length λPy is found to be much shorter than the film thicknesses. The product of λPy and the Py spin Hall angle αSH is determined to be independent of thickness and resistivity: αSHλPy=(0.066 ±0.009 ) nm at 5 K and (0.041 ±0.010 )nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.
Spatial and mesoscopic fluctuations in glassy dynamics
NASA Astrophysics Data System (ADS)
Chamon, Claudio C.; Cugliandolo, Leticia F.
2004-05-01
One of the striking properties of a glassy system is that many material properties depend on its age, i.e., the time since the system entered its glassy phase. In this this talk we shall review some recent progress (work in collaboration with H. E. Castillo, P. Charbonneau, J. L. Iguain, M. P. Kennett, D. R. Reichman and M. Sellitto) in understanding local aging, through the study of local observable quantities, which reveal that there are spatial heterogeneities and fluctuations in the aging process of macroscopic systems. We show that a number of universal properties are shared by many non-equilibrium systems, both with and without quenched disorder, such as the 3D Edwards-Anderson model and some kinetically constrained non-interacting 2D and 3D spin models, for example. Similar scaling relations are found for mesoscopic sample-to-sample fluctuations of global quantities in small size systems. We discuss how the emergence of a symmetry in aging systems, time-reparametrization invariance, could be responsible for the observed universal behavior of the local and mesoscopic non-equilibrium fluctuations.
Reid, Christopher Alan; Rollo, Ben; Petrou, Steven; Berkovic, Samuel F
2018-05-01
Epilepsy has a strong genetic component, with an ever-increasing number of disease-causing genes being discovered. Most epilepsy-causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here we review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub-mesoscopic structural changes in GGE is also reviewed. Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub-mesoscopic structural changes occur in GGE. The existence of sub-mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. We also propose that presymptomatic treatment may be essential for limiting the long-term consequences of disease-causing mutations in genetic epilepsies. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Mesoscopic structure conditions the emergence of cooperation on social networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, S.; Arenas, A.; Sanchez, A.
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement withmore » the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.« less
Nonlinear structures and anomalous transport in partially magnetized E×B plasmas
Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr; ...
2017-12-29
Nonlinear dynamics of the electron-cyclotron instability driven by the electron E x B current in a crossed electric and magnetic field is studied. In the nonlinear regime, the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of a high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. Here, it is shown that the anomalous electron transport (along the direction of themore » applied electric field) is dominated by the long wavelength part of the turbulent spectrum.« less
NASA Astrophysics Data System (ADS)
Dridi, W.; Dangla, P.; Foct, F.; Petre-Lazar, I.
2006-11-01
This paper deals with numerical modelling of rebar corrosion kinetics in unsaturated concrete structures. The corrosion kinetics is investigated in terms of mechanistic coupling between reaction rates at the steel surface and the ionic transport processes in the concrete pore system. The ionic and mass transport model consists of time-dependent equations for the concentration of dissolved species, the liquid pressure and the electrical potential. The complete set of nonlinear equations is solved using the finite-volume method. The nonlinear boundary conditions dealing with corrosion are introduced at the steel-concrete interface where they are implicitly coupled with the mass transport model in the concrete structure. Both the case of free corrosion and potentiostatic polarisation are discussed in a one dimensional model.
Kwon, Hyeok-Chan; Yang, Wooseok; Lee, Daehee; Ahn, Jihoon; Lee, Eunsong; Ma, Sunihl; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho
2018-05-22
Organometal halide perovskite materials have become an exciting research topic as manifested by intense development of thin film solar cells. Although high-performance solar-cell-based planar and mesoscopic configurations have been reported, one-dimensional (1-D) nanostructured perovskite solar cells are rarely investigated despite their expected promising optoelectrical properties, such as enhanced charge transport/extraction. Herein, we have analyzed the 1-D nanostructure effects of organometal halide perovskite (CH 3 NH 3 PbI 3- x Cl x ) on recombination and charge carrier dynamics by utilizing a nanoporous anodized alumina oxide scaffold to fabricate a vertically aligned 1-D nanopillared array with controllable diameters. It was observed that the 1-D perovskite exhibits faster charge transport/extraction characteristics, lower defect density, and lower bulk resistance than the planar counterpart. As the aspect ratio increases in the 1-D structures, in addition, the charge transport/extraction rate is enhanced and the resistance further decreases. However, when the aspect ratio reaches 6.67 (diameter ∼30 nm), the recombination rate is aggravated due to high interface-to-volume ratio-induced defect generation. To obtain the full benefits of 1-D perovskite nanostructuring, our study provides a design rule to choose the appropriate aspect ratio of 1-D perovskite structures for improved photovoltaic and other optoelectrical applications.
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Nonlinear and Nonequilibrium Spin Injection in Magnetic Tunneling Junctions
NASA Astrophysics Data System (ADS)
Guo, Hong
2007-03-01
Quantitative analysis of charge and spin quantum transport in spintronic devices requires an atomistic first principles approach that can handle nonlinear and nonequilibrium transport conditions. We have developed an approach for this purpose based on real space density functional theory (DFT) carried out within the Keldysh nonequilibrium Green's function formalism (NEGF). We report theoretical analysis of nonlinear and nonequilibrium spin injection and quantum transport in Fe/MgO/Fe trilayer structures as a function of external bias voltage. Devices with well relaxed atomic structures and with FeO oxidization layers are investigated as a function of external bias voltage. We also report calculations of nonequilibrium spin injection into molecular layers and graphene. Comparisons to experimental data will be presented. Work in collaborations with: Derek Waldron, Vladimir Timochevski (McGill University); Ke Xia (Institute of Physics, Chinese Academy of Science, Beijing, China); Eric Zhu, Jian Wang (University of Hong Kong); Paul Haney, and Allan MacDonald (University of Texas at Austin).
Li, Fangting
2017-01-01
The notion of an attractor has been widely employed in thinking about the nonlinear dynamics of organisms and biological phenomena as systems and as processes. The notion of a landscape with valleys and mountains encoding multiple attractors, however, has a rigorous foundation only for closed, thermodynamically non-driven, chemical systems, such as a protein. Recent advances in the theory of nonlinear stochastic dynamical systems and its applications to mesoscopic reaction networks, one reaction at a time, have provided a new basis for a landscape of open, driven biochemical reaction systems under sustained chemostat. The theory is equally applicable not only to intracellular dynamics of biochemical regulatory networks within an individual cell but also to tissue dynamics of heterogeneous interacting cell populations. The landscape for an individual cell, applicable to a population of isogenic non-interacting cells under the same environmental conditions, is defined on the counting space of intracellular chemical compositions x = (x1,x2, … ,xN) in a cell, where xℓ is the concentration of the ℓth biochemical species. Equivalently, for heterogeneous cell population dynamics xℓ is the number density of cells of the ℓth cell type. One of the insights derived from the landscape perspective is that the life history of an individual organism, which occurs on the hillsides of a landscape, is nearly deterministic and ‘programmed’, while population-wise an asynchronous non-equilibrium steady state resides mostly in the lowlands of the landscape. We argue that a dynamic ‘blue-sky’ bifurcation, as a representation of Waddington's landscape, is a more robust mechanism for a cell fate decision and subsequent differentiation than the widely pictured pitch-fork bifurcation. We revisit, in terms of the chemostatic driving forces upon active, living matter, the notions of near-equilibrium thermodynamic branches versus far-from-equilibrium states. The emergent landscape perspective permits a quantitative discussion of a wide range of biological phenomena as nonlinear, stochastic dynamics. PMID:28490602
Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA
Noble, Marlene A.; Burt Jones,; Peter Hamilton,; Xu, Jingping; George Robertson,; Rosenfeld, Leslie; John Largier,
2009-01-01
In the summer of 2001, a coastal ocean measurement program in the southeastern portion of San Pedro Bay, CA, was designed and carried out. One aim of the program was to determine the strength and effectiveness of local cross-shelf transport processes. A particular objective was to assess the ability of semidiurnal internal tidal currents to move suspended material a net distance across the shelf. Hence, a dense array of moorings was deployed across the shelf to monitor the transport patterns associated with fluctuations in currents, temperature and salinity. An associated hydrographic program periodically monitored synoptic changes in the spatial patterns of temperature, salinity, nutrients and bacteria. This set of measurements show that a series of energetic internal tides can, but do not always, transport subthermocline water, dissolved and suspended material from the middle of the shelf into the surfzone. Effective cross-shelf transport occurs only when (1) internal tides at the shelf break are strong and (2) subtidal currents flow strongly downcoast. The subtidal downcoast flow causes isotherms to tilt upward toward the coast, which allows energetic, nonlinear internal tidal currents to carry subthermocline waters into the surfzone. During these events, which may last for several days, the transported water remains in the surfzone until the internal tidal current pulses and/or the downcoast subtidal currents disappear. This nonlinear internal tide cross-shelf transport process was capable of carrying water and the associated suspended or dissolved material from the mid-shelf into the surfzone, but there were no observation of transport from the shelf break into the surfzone. Dissolved nutrients and suspended particulates (such as phytoplankton) transported from the mid-shelf into the nearshore region by nonlinear internal tides may contribute to nearshore algal blooms, including harmful algal blooms that occur off local beaches.
The role of mass transport in protein crystallization.
García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso
2016-02-01
Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments.
Bennemann, K
2010-06-23
Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. © 2010 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.
2018-05-01
In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.
Physics at the FMQT’08 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.
2010-01-01
This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.
NASA Astrophysics Data System (ADS)
Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.
2005-05-01
It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.
Photon transport in a dissipative chain of nonlinear cavities
NASA Astrophysics Data System (ADS)
Biella, Alberto; Mazza, Leonardo; Carusotto, Iacopo; Rossini, Davide; Fazio, Rosario
2015-05-01
By means of numerical simulations and the input-output formalism, we study photon transport through a chain of coupled nonlinear optical cavities subject to uniform dissipation. Photons are injected from one end of the chain by means of a coherent source. The propagation through the array of cavities is sensitive to the interplay between the photon hopping strength and the local nonlinearity in each cavity. We characterize photon transport by studying the populations and the photon correlations as a function of the cavity position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single-photon and multiphoton resonances directly reflects the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. The numerical algorithm we use, based on the time-evolving block decimation scheme adapted to mixed states, allows us to simulate large arrays (up to 60 cavities). The scaling of photon transmission with the number of cavities does depend on the structure of the many-body photon states inside the array.
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.
Simulation of electron transport across charged grain boundaries
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.; Evans, P. V.
1996-09-01
The I-V (current density-electric field) characteristics of low-angle grain boundaries consisting of periodic arrays of charged dislocations are computed using a quasiclassical molecular dynamics approach. Below a critical value of the grain boundary misorientation, the computed I-V characteristics are linear whereas above they are nonlinear. The degree of nonlinearity and the voltage onset of nonlinearity are found to be dependent on the grain boundary misorientation.
Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, N. T.; White, A. E.; Greenwald, M.
2013-03-15
A so-called 'transport shortfall,' where ion and electron heat fluxes and turbulence are underpredicted by gyrokinetic codes, has been robustly identified in DIII-D L-mode plasmas for {rho}>0.55[T. L. Rhodes et al., Nucl. Fusion 51(6), 063022 (2011); and C. Holland et al., Phys. Plasmas 16(5), 052301 (2009)]. To probe the existence of a transport shortfall across different tokamaks, a dedicated scan of auxiliary heated L-mode discharges in Alcator C-Mod are studied in detail with nonlinear gyrokinetic simulations for the first time. Two discharges, only differing by the amount of auxiliary heating are investigated using both linear and nonlinear simulation of themore » GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. Nonlinear gyrokinetic simulation of the low and high input power discharges reveals a discrepancy between simulation and experiment in only the electron heat flux channel of the low input power discharge. However, both discharges demonstrate excellent agreement in the ion heat flux channel, and the high input power discharge demonstrates simultaneous agreement with experiment in both the electron and ion heat flux channels. A summary of linear and nonlinear gyrokinetic results and a discussion of possible explanations for the agreement/disagreement in each heat flux channel is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Eric M.; Waltz, R. E.
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Bass, Eric M.; Waltz, R. E.
2017-12-08
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Solitons in a nonlinear model of spin transport in helical molecules
NASA Astrophysics Data System (ADS)
Albares, P.; Díaz, E.; Cerveró, Jose M.; Domínguez-Adame, F.; Diez, E.; Estévez, P. G.
2018-02-01
We study an effective integrable nonlinear model describing an electron moving along the axis of a deformable helical molecule. The helical conformation of dipoles in the molecular backbone induces an unconventional Rashba-like interaction that couples the electron spin with its linear momentum. In addition, a focusing nonlinearity arises from the electron-lattice interaction, enabling the formation of a variety of stable solitons such as bright solitons, breathers, and rogue waves. A thorough study of the soliton solutions for both focusing and defocusing nonlinear interaction is presented and discussed.
Modeling spin magnetization transport in a spatially varying magnetic field
NASA Astrophysics Data System (ADS)
Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).
From conservative to reactive transport under diffusion-controlled conditions
NASA Astrophysics Data System (ADS)
Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.
2016-05-01
We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.; Voss, Clifford I.; Gill, Philip E.; Murray, Walter; Saunders, Michael A.; Wright, Margaret H.
1984-04-01
A simulation-management methodology is demonstrated for the rehabilitation of aquifers that have been subjected to chemical contamination. Finite element groundwater flow and contaminant transport simulation are combined with nonlinear optimization. The model is capable of determining well locations plus pumping and injection rates for groundwater quality control. Examples demonstrate linear or nonlinear objective functions subject to linear and nonlinear simulation and water management constraints. Restrictions can be placed on hydraulic heads, stresses, and gradients, in addition to contaminant concentrations and fluxes. These restrictions can be distributed over space and time. Three design strategies are demonstrated for an aquifer that is polluted by a constant contaminant source: they are pumping for contaminant removal, water injection for in-ground dilution, and a pumping, treatment, and injection cycle. A transient model designs either contaminant plume interception or in-ground dilution so that water quality standards are met. The method is not limited to these cases. It is generally applicable to the optimization of many types of distributed parameter systems.
Viscoelastic representation of surface waves in patchy saturated poroelastic media
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi
2014-08-01
Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.
NASA Astrophysics Data System (ADS)
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
Stochastic nonlinear electrical characteristics of graphene
NASA Astrophysics Data System (ADS)
Jun Shin, Young; Gopinadhan, Kalon; Narayanapillai, Kulothungasagaran; Kalitsov, Alan; Bhatia, Charanjit S.; Yang, Hyunsoo
2013-01-01
A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 103. It is found that graphene channel experiences the topological change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.
Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei
2016-12-01
Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.
Tracing the evolution of the two energy gaps in magnesium diboride under pressure
NASA Astrophysics Data System (ADS)
Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.
2015-04-01
We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.
Towards a wave theory of charged beam transport: A collection of thoughts
NASA Technical Reports Server (NTRS)
Dattoli, G.; Mari, C.; Torre, A.
1992-01-01
We formulate in a rigorous way a wave theory of charged beam linear transport. The Wigner distribution function is introduced and provides the link with classical mechanics. Finally, the von Neumann equation is shown to coincide with the Liouville equation for the nonlinear transport.
Non-linear hydraulic properties of woodchips necessary to design denitrification beds
USDA-ARS?s Scientific Manuscript database
Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
DOT National Transportation Integrated Search
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Rice piles and sticky deltas: Sediment transport fluctuations in threshold-dominated systems
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.
2008-12-01
Sediment transport is an intermittent process. Even under perfectly steady boundary conditions, sediment flux in systems as diverse as rivers and rice piles undergoes wild fluctuations as a result of the inherent nonlinear dynamics of transport. This variability confounds geologic interpretation and prediction: "mean" transport rates may be dominated by rare but extreme events such that short-term measurements are not directly comparable to longer-time integrated measurements; autogenic (internally-generated) erosion and depositon events may be mistaken for changes in climate and tectonics where their temporal and spatial scales overlap; and sediment transport may act as a nonlinear filter that obliterates signals of environmental forcing. Sediment transport fluctuations generally result from slow storage and rapid release of sediment within the transport system itself. We hypothesize that the presence of a strong process threshold, and a high degree of internal friction (or "stickiness"), are sufficient conditions to generate intermittent sediment transport behavior. We present experimental data showing similarities in transport fluctuations from three very different systems: gravel bed load transport in a large flume, avalanching in a table-top pile of rice, and shoreline migration in an experimental river delta. Numerical models of a rice pile and an avulsing river delta reproduce these fluctuations, and are used to explore both their origin and also their influence on environmental perturbations. We impose an environmental perturbation on our model systems in the form of cyclically-varying sediment supply. Physical and numerical experiments demonstrate that when the timescale of environmental forcing overlaps with the timescales of autogenic sediment transport fluctuations, the input signal is obliterated and cannot be detected in sediment output from the system. We also demonstrate how variability in transport introduces a dependence of mean transport rate on the time interval over which it is measured, which finds support in compilations of sedimentation rate from the field. Results suggest that the nonlinear dynamics of sediment transport sets a hard lower limit on our ability to resolve environmental forcing in sedimentary systems. The ubiquity of autogenic sediment storage and release in river systems suggests a new interpretation for common stacking patterns of stratigraphic sequences.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Probing eukaryotic cell mechanics via mesoscopic simulations
NASA Astrophysics Data System (ADS)
Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck
2017-11-01
We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.
Observable consequences of zero-point energy
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar S.
2017-12-01
Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.
A mesoscopic approach for draping simulation of preforms manufactured by direct fibre placement
NASA Astrophysics Data System (ADS)
Engelfried, Mathias; Fial, Julian; Tartler, Manuel; Böhler, Patrick; Hägele, Dominik; Middendorf, Peter
2017-10-01
The draping of preforms made by automated fibre placement is a suitable way to generate complex, three-dimensional preforms. The absence of weaving or sewing yarns leads to a high tendency towards defects, such as gaps. To predict those defects a detailed simulation model of the material is necessary. This work deals with a method to describe the inter-ply friction of preforms that consists of carbon fibre yarns joined by a thermoplastic binder. Therefore, a friction model which is customised to the partial presence of molten binder is proposed. This model is used in a mesoscopic draping simulation and is validated by draping experiments.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
A novel grid-based mesoscopic model for evacuation dynamics
NASA Astrophysics Data System (ADS)
Shi, Meng; Lee, Eric Wai Ming; Ma, Yi
2018-05-01
This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.
Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly.
Wong, Hua; Prévoteau-Jonquet, Jessica; Baud, Stéphanie; Dauchez, Manuel; Belloy, Nicolas
2018-06-11
The extracellular matrix (ECM) plays an important role in supporting tissues and organs. It even has a functional role in morphogenesis and differentiation by acting as a source of active molecules (matrikines). Many diseases are linked to dysfunction of ECM components and fragments or changes in their structures. As such it is a prime target for drugs. Because of technological limitations for observations at mesoscopic scales, the precise structural organisation of the ECM is not well-known, with sparse or fuzzy experimental observables. Based on the Unity3D game and physics engines, along with rigid body dynamics, we propose a virtual sandbox to model large biological molecules as dynamic chains of rigid bodies interacting together to gain insight into ECM components behaviour in the mesoscopic range. We have preliminary results showing how parameters such as fibre flexibility or the nature and number of interactions between molecules can induce different structures in the basement membrane. Using the Unity3D game engine and virtual reality headset coupled with haptic controllers, we immerse the user inside the corresponding simulation. Untrained users are able to navigate a complex virtual sandbox crowded with large biomolecules models in a matter of seconds.
Quasi-lattice of qubits and its mesoscopic features
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-Xi
2014-03-01
In a circuit quantum electrodynamic system, both the size of superconducting qubits and the length scale of the inter-qubit spacing in a chain of such qubits are mesoscopic. As a result, the qubit-field coupling is inhomogeneous. The excitation on the qubits is described by a projection-deformation model and this set of qubits exhibit unique mesoscopic features of what we termed a quasi-lattice. A quasi-lattice in a circuit cavity has a spacing-dependent excitation spectrum. Inhomogeneous coupling giving rise to asynchronously excited qubits, the probability of multi-photon resonance on the quasi-lattice as a whole has increased. This induces simultaneous generations of GHZ-type and W-type entanglements among the qubits. Moreover, the polaritons formed by the mixing of the quasi-lattice excitation and the cavity photon has a selective spontaneous radiation. The spectrum of the radiation has a periodicity governed by the spacing and the variation of the decay rate over the spacing coincides with the cooperation of atoms predicted by Dicke model. We present the theory behinds these effects of the quasi-lattice and discuss how the spacing affects the delay and life time of a superfluorescent pulse arising from it. Supported by Univ. of Macau and FDCT Macau.
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.
2014-03-01
Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).
Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato
2008-10-01
Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.
NASA Astrophysics Data System (ADS)
Xiong, Daxing
2017-06-01
We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.
Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Gregory, Irene
2007-01-01
This paper presents an application of robust gain-scheduled control concepts using a linear parameter-varying (LPV) control synthesis method to design fault tolerant controllers for a civil transport aircraft. To apply the robust LPV control synthesis method, the nonlinear dynamics must be represented by an LPV model, which is developed using the function substitution method over the entire flight envelope. The developed LPV model associated with the aerodynamic coefficient uncertainties represents nonlinear dynamics including those outside the equilibrium manifold. Passive and active fault tolerant controllers (FTC) are designed for the longitudinal dynamics of the Boeing 747-100/200 aircraft in the presence of elevator failure. Both FTC laws are evaluated in the full nonlinear aircraft simulation in the presence of the elevator fault and the results are compared to show pros and cons of each control law.
A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem
NASA Astrophysics Data System (ADS)
Willert, Jeffrey; Park, H.; Knoll, D. A.
2014-10-01
Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.
Polarization Shaping for Control of Nonlinear Propagation.
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-12-02
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Electronic transport in disordered chains with saturable nonlinearity
NASA Astrophysics Data System (ADS)
dos Santos, J. L. L.; Nguyen, Ba Phi; de Moura, F. A. B. F.
2015-10-01
In this work we study numerically the dynamics of an initially localized wave packet in one-dimensional disordered chains with saturable nonlinearity. By using the generalized discrete nonlinear Schrödinger equation, we calculate two different physical quantities as a function of time, which are the participation number and the mean square displacement from the excitation site. From detailed numerical analysis, we find that the saturable nonlinearity can promote a sub-diffusive spreading of the wave packet even in the presence of diagonal disorder for a long time. In addition, we also investigate the effect of the saturated nonlinearity for initial times of the electronic evolution thus showing the possibility of mobile breather-like modes.
Modeling Plankton Aggregation and Transport by Nonlinear Internal Waves Propagating Onshore.
NASA Astrophysics Data System (ADS)
Garwood, J. C.; Musgrave, R. C.; Franks, P. J. S.
2016-02-01
Many coastal benthic species have planktonic larval forms. These larvae must return to suitable adult habitat to allow recruitment to the breeding population. To a large extent these larvae are at the mercy of the ambient currents. However, simple vertical swimming behaviors may significantly enhance onshore or offshore transport of these organisms in certain coastal flows. Here we use models to investigate the interaction of nonlinear internal waves (NLIW) and swimming behaviors in determining plankton aggregation and cross-shelf transport. In a 2D, non-hydrostatic MITgcm with particle tracking, NLIW are generated and propagate onshore into a region of sloping bottom topography. Lagrangian and swimming particles representing plankton are introduced in the flow field to quantify transport and dispersion. Characteristics of the environment (bottom slope and stratification), as well as of the particles (source, depth, and swimming vs. passive) were varied to identify scenarios that would maximize transport or accumulation. Our results will be used to design experiments using swarms of autonomous buoyancy-controlled drifters to quantify transport and accumulation in the field.
Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas
NASA Astrophysics Data System (ADS)
Snyder, Philip Benjamin
1999-11-01
Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
NASA Astrophysics Data System (ADS)
Yamagishi, Osamu; Sugama, Hideo
2016-03-01
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
Dielectric Characterization of a Nonlinear Optical Material
Lunkenheimer, P.; Krohns, S.; Gemander, F.; Schmahl, W. W.; Loidl, A.
2014-01-01
Batisite was reported to be a nonlinear optical material showing second harmonic generation. Using dielectric spectroscopy and polarization measurements, we provide a thorough investigation of the dielectric and charge-transport properties of this material. Batisite shows the typical characteristics of a linear lossy dielectric. No evidence for ferro- or antiferroelectric polarization is found. As the second-harmonic generation observed in batisite points to a non-centrosymmetric structure, this material is piezoelectric, but most likely not ferroelectric. In addition, we found evidence for hopping charge transport of localized charge carriers and a relaxational process at low temperatures. PMID:25109553
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
NASA Technical Reports Server (NTRS)
Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.
2006-01-01
Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.
Fractional calculus phenomenology in two-dimensional plasma models
NASA Astrophysics Data System (ADS)
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
Zarazúa, Isaac; Sidhik, Siraj; Lopéz-Luke, Tzarara; Esparza, Diego; De la Rosa, Elder; Reyes-Gomez, Juan; Mora-Seró, Iván; Garcia-Belmonte, Germà
2017-12-21
The performance of perovskite solar cell (PSC) is highly sensitive to deposition conditions, the substrate, humidity, and the efficiency of solvent extraction. However, the physical mechanism involved in the observed changes of efficiency with different deposition conditions has not been elucidated yet. In this work, PSCs were fabricated by the antisolvent deposition (AD) and recently proposed air-extraction antisolvent (AAD) process. Impedance analysis and J-V curve fitting were used to analyze the photogeneration, charge transportation, recombination, and leakage properties of PSCs. It can be elucidated that the improvement in morphology of perovskite film promoted by AAD method leads to increase in light absorption, reduction in recombination sites, and interstitial defects, thus enhancing the short-circuit current density, open-circuit voltage, and fill factor. This study will open up doors for further improvement of device and help in understanding its physical mechanism and its relation to the deposition methods.
Graphene Nanoribbons Fabricated by Helium Ion microscope
NASA Astrophysics Data System (ADS)
Pickard, D.; Oezyilmaz, B.; Thong, J.; Loh, K. P.; Viswanathan, V.; Zhongkai, A.; Mathew, S.; Kundu, T.; Park, C.; Yi, Z.; Xu, X.; Zhang, K.; Tat, T. C.; Wang, H.; Venkatesan, T.; Botton, G.; Couillard, M.
2010-03-01
Graphene, a monolayer graphitic lattice of carbon atoms has tremendous promise for a variety of applications on account of the zero mass of electrons, high mobility and the sensitivity of transport to perturbations at the interface. Patterning graphene is an obvious challenge and mesoscopic devices based on graphene require high spatial resolution patterning that will induce as little damage as possible. We use a helium ion microscope with its 0.4nm spot size beam to directly write patterns on free standing graphene films. TEM images of the patterns reveal holes as small as 4 nm and ribbons with line widths as narrow as 3 nm. The images show recovery of the graphene lattice at a distance of about a nm from the patterned edge. The linewidths of the ribbon can be varied considerably in a controllable fashion over ribbon lengths of the order of microns. . .
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-13
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
Moon, Byoung Hee; Bae, Jung Jun; Joo, Min-Kyu; Choi, Homin; Han, Gang Hee; Lim, Hanjo; Lee, Young Hee
2018-05-24
Quantum localization-delocalization of carriers are well described by either carrier-carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensional layered materials are ideal in describing such mesoscopic critical phenomena as they have both strong interactions and disorder. The transport in the insulating phase is well described by the soft Coulomb gap picture, which demonstrates the contribution of both interactions and disorder. Using this picture, we demonstrate the critical power law behavior of the localization length, supporting quantum criticality. We observe asymmetric critical exponents around the metal-insulator transition through temperature scaling analysis, which originates from poor screening in insulating regime and conversely strong screening in metallic regime due to free carriers. The effect of asymmetric scaling behavior is weakened in monolayer MoS 2 due to a dominating disorder.
Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions
Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.
2017-01-01
The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition. PMID:28401951
Tomonaga-Luttinger physics in electronic quantum circuits.
Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F
2013-01-01
In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.
Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.
Kim, Dong Hoe; Han, Gill Sang; Seong, Won Mo; Lee, Jin-Wook; Kim, Byeong Jo; Park, Nam-Gyu; Hong, Kug Sun; Lee, Sangwook; Jung, Hyun Suk
2015-07-20
Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2
NASA Astrophysics Data System (ADS)
Svetin, Damjan; Vaskivskyi, Igor; Brazovskii, Serguei; Mihailovic, Dragan
2017-04-01
Recent demonstrations of controlled switching between different ordered macroscopic states by impulsive electromagnetic perturbations in complex materials have opened some fundamental questions on the mechanisms responsible for such remarkable behavior. Here we experimentally address the question of whether two-dimensional (2D) Mott physics can be responsible for unusual switching between states of different electronic order in the layered dichalcogenide 1T-TaS2, or it is a result of subtle inter-layer “orbitronic” re-ordering of its stacking structure. We report on in-plane (IP) and out-of-plane (OP) resistance switching by current-pulse injection at low temperatures. Elucidating the controversial theoretical predictions, we also report on measurements of the anisotropy of the electrical resistivity below room temperature. From the T-dependence of ρ⊥ and ρ||, we surmise that the resistivity is more consistent with collective motion than single particle diffusive or band-like transport. The relaxation dynamics of the metastable state for both IP and OP electron transport are seemingly governed by the same mesoscopic quantum re-ordering process. We conclude that 1T-TaS2 shows resistance switching arising from an interplay of both IP and OP correlations.
Interactive, graphical processing unitbased evaluation of evacuation scenarios at the state scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Aaby, Brandon G; Yoginath, Srikanth B
2011-01-01
In large-scale scenarios, transportation modeling and simulation is severely constrained by simulation time. For example, few real- time simulators scale to evacuation traffic scenarios at the level of an entire state, such as Louisiana (approximately 1 million links) or Florida (2.5 million links). New simulation approaches are needed to overcome severe computational demands of conventional (microscopic or mesoscopic) modeling techniques. Here, a new modeling and execution methodology is explored that holds the potential to provide a tradeoff among the level of behavioral detail, the scale of transportation network, and real-time execution capabilities. A novel, field-based modeling technique and its implementationmore » on graphical processing units are presented. Although additional research with input from domain experts is needed for refining and validating the models, the techniques reported here afford interactive experience at very large scales of multi-million road segments. Illustrative experiments on a few state-scale net- works are described based on an implementation of this approach in a software system called GARFIELD. Current modeling cap- abilities and implementation limitations are described, along with possible use cases and future research.« less
Transport in a disordered ν = 2 / 3 fractional quantum Hall junction
NASA Astrophysics Data System (ADS)
Protopopov, I. V.; Gefen, Yuval; Mirlin, A. D.
2017-10-01
Electric and thermal transport properties of a ν = 2 / 3 fractional quantum Hall junction are analyzed. We investigate the evolution of the electric and thermal two-terminal conductances, G and GQ, with system size L and temperature T. This is done both for the case of strong interaction between the 1 and 1/ 3 modes (when the low-temperature physics of the interacting segment of the device is controlled by the vicinity of the strong-disorder Kane-Fisher-Polchinski fixed point) and for relatively weak interaction, for which the disorder is irrelevant at T = 0 in the renormalization-group sense. The transport properties in both cases are similar in several respects. In particular, G(L) is close to 4/3 (in units of e2 / h) and GQ to 2 (in units of πT / 6 ħ) for small L, independently of the interaction strength. For large L the system is in an incoherent regime, with G given by 2/3 and GQ showing the Ohmic scaling, GQ ∝ 1 / L, again for any interaction strength. The hallmark of the strong-disorder fixed point is the emergence of an intermediate range of L, in which the electric conductance shows strong mesoscopic fluctuations and the thermal conductance is GQ = 1. The analysis is extended also to a device with floating 1/3 mode, as studied in a recent experiment (Grivnin et al. 2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, P S
2006-09-27
We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
Joint Services Electronics Program
NASA Astrophysics Data System (ADS)
Tinkham, Michael
1989-07-01
Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.
Ingber, Lester; Nunez, Paul L
2011-02-01
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.
Waves, particles, and interactions in reduced dimensions
NASA Astrophysics Data System (ADS)
Zhang, Yiming
This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport is disorder dominated. The next two experiments study magnetoresistance oscillations in electronic Fabry-Perot interferometers in the integer quantum Hall regime. Two types of resistance oscillations, as a function of perpendicular magnetic field and gate voltages, in two interferometers of different sizes can be distinguished by three experimental signatures. The oscillations observed in the small (2.0 mum2) device are understood to arise from Coulomb blockade, and those observed in the big (18 mum2) device from Aharonov-Bohm interference. Nonlinear transport in the big device reveals a checkerboard-like pattern of conductance oscillations as a function of dc bias and magnetic field. Edge-state velocities extracted from the checkerboard data are compared to model calculations and found to be consistent with a crossover from skipping orbits at low fields to E⃗ x B⃗ drift at high fields. Suppression of visibility as a function of bias and magnetic field is accounted for by including energy- and field-dependent dephasing of edge electrons.
Towards large-scale, human-based, mesoscopic neurotechnologies.
Chang, Edward F
2015-04-08
Direct human brain recordings have transformed the scope of neuroscience in the past decade. Progress has relied upon currently available neurophysiological approaches in the context of patients undergoing neurosurgical procedures for medical treatment. While this setting has provided precious opportunities for scientific research, it also has presented significant constraints on the development of new neurotechnologies. A major challenge now is how to achieve high-resolution spatiotemporal neural recordings at a large scale. By narrowing the gap between current approaches, new directions tailored to the mesoscopic (intermediate) scale of resolution may overcome the barriers towards safe and reliable human-based neurotechnology development, with major implications for advancing both basic research and clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Modeling snow-crystal growth: a three-dimensional mesoscopic approach.
Gravner, Janko; Griffeath, David
2009-01-01
We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.
NASA Astrophysics Data System (ADS)
Elgh, Björn; Yuan, Ning; Cho, Hae Sung; Magerl, David; Philipp, Martine; Roth, Stephan V.; Yoon, Kyung Byung; Müller-Buschbaum, Peter; Terasaki, Osamu; Palmqvist, Anders E. C.
2014-11-01
Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.
Balanced double-loop mesoscopic interferometer based on Josephson proximity nanojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzani, Alberto, E-mail: alberto.ronzani@nano.cnr.it; Altimiras, Carles; Giazotto, Francesco
We report on the fabrication and characterization of a two-terminal mesoscopic interferometer based on three V/Cu/V Josephson junctions having nanoscale cross-section. The junctions have been arranged in a double-ring geometry realized by metallic thin film deposition through a suspended mask defined by electron beam lithography. Although a significant amount of asymmetry between the critical current of each junction is observed, we show that the interferometer is able to suppress the supercurrent to a level lower than 6 parts per thousand, being here limited by measurement resolution. The present nano-device is suitable for low-temperature magnetometric and gradiometric measurements over the micrometricmore » scale.« less
Structure and rheology of star polymers in confined geometries: a mesoscopic simulation study.
Zheng, Feiwo; Goujon, Florent; Mendonça, Ana C F; Malfreyt, Patrice; Tildesley, Dominic J
2015-11-28
Mesoscopic simulations of star polymer melts adsorbed onto solid surfaces are performed using the dissipative particle dynamics (DPD) method. A set of parameters is developed to study the low functionality star polymers under shear. The use of a new bond-angle potential between the arms of the star creates more rigid chains and discriminates between different functionalities at equilibrium, but still allows the polymers to deform appropriately under shear. The rheology of the polymer melts is studied by calculating the kinetic friction and viscosity and there is good agreement with experimental properties of these systems. The study is completed with predictive simulations of star polymer solutions in an athermal solvent.
Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2018-04-01
We develop a new method to study electrical circuits at quantum nanoscale by introducing a heat momentum operator which reproduces quantum effects similar to those obtained in Suykens's nonlocal-in-time kinetic energy approach for the case of reversible motion. The series expansion of the heat momentum operator is similar to the momentum operator obtained in the framework of minimal length phenomenologies characterized by the deformation of Heisenberg algebra. The quantization of both LC and mesoscopic circuits revealed a number of motivating features like the emergence of a generalized uncertainty relation and a minimal charge similar to those obtained in the framework of minimal length theories. Additional features were obtained and discussed accordingly.
Chrysocolla Redefined as Spertiniite
NASA Astrophysics Data System (ADS)
Farges, François; Benzerara, Karim; Brown, Gordon E.
2007-02-01
XAFS and μ-XAFS spectra were collected at the Cu K-edge for seven chrysocolla samples (Peru, USA, and Congo). The results suggest that that the local structure around Cu is similar to that in Cu(OH)2 (spertiniite). Cu-L3 STXM imaging and spectroscopy confirm that the chrysocolla samples examined here consist of mesoscopic Cu(II)-rich domains surrounded by Si-rich domains (in agreement with results from infra-red spectroscopy). Hence, we suggest that chrysocolla, which is generally considered to be orthorhombic with composition (Cu,Al)2H2Si2O5(OH)4ṡnH2O, is in actually a mesoscopic assemblage composed dominantly of spertiniite (Cu(OH)2), water and amorphous silica (SiO2).
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Energy utilization in fluctuating biological energy converters
Szőke, Abraham; Hajdu, Janos
2016-01-01
We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems. PMID:27191009
Effects of finite size on spin glass dynamics
NASA Astrophysics Data System (ADS)
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.
2018-04-01
Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.
Vlad, Marcel Ovidiu; Ross, John
2002-12-01
We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.
Steady State Global Simulations of Microturbulence
NASA Astrophysics Data System (ADS)
Lee, W. W.
2004-11-01
Critical physics issues for the steady state simulation of ion temperature gradient (ITG) drift instabilities are associated with collisionless and collisional dissipation processes. In this paper, we will report on recent investigations involving the inclusion of velocity-space nonlinearity term in our global Gyrokinetic Toroidal Code (GTC) [1]. It is important to point out that this term has not been critically examined in the turbulence simulation community [2], although it has attracted some recent interest for energy conservation considerations as well as for its effect on transport [3]. The nonlinearity in question is actually of the same order as the nonlinear zonal flow, and it can also play an interesting role in entropy balance for steady state transport [4]. Our initial results with adiabatic electrons have shown that the velocity-space nonlinearity for the ions can have a small but non-negligible effect at the early nonlinear stage of the ITG simulation. In the later stage, it can actually enhance the level of zonal flow and, in turn, can reduce the steady state thermal flux. The enhanced fluctuation of (n=0, m=1) mode has also been observed. More detailed simulation results including also collisions [5] as well as the theoretical attempt to understand the nonlinear physics of mode-coupling and entropy balance will be reported. The implication of the present work on transport time scale simulation including Alfven kinetic-MHD physics [6] will also be discussed. [1] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. White, Science, <281>, 1835 (1998). [2] W. M. Nevins et al., Plasma Microturbulence Project, this conference. [3] L. Villard et al., Nuclear Fusion <44>, 172 (2004). [4] W. W. Lee and W. M. Tang, Phys. Fluids <31>, 612 (1988). [5] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. White, Phys. Plasmas <7>, 1857 (2000). [6] W. W. Lee and H. Qin, Phys. Plasmas <10>, 3196 (2003).
Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft
NASA Technical Reports Server (NTRS)
Khong, Thuan H.; Shin, Jong-Yeob
2007-01-01
This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.
Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment
NASA Astrophysics Data System (ADS)
Ernst, D. R.
2012-10-01
A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).
Instabilities and transport in Hall plasmas with ExB drift
NASA Astrophysics Data System (ADS)
Smolyakov, Andrei
2016-10-01
Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Capturing the Large Scale Behavior of Many Particle Systems Through Coarse-Graining
NASA Astrophysics Data System (ADS)
Punshon-Smith, Samuel
This dissertation is concerned with two areas of investigation: the first is understanding the mathematical structures behind the emergence of macroscopic laws and the effects of small scales fluctuations, the second involves the rigorous mathematical study of such laws and related questions of well-posedness. To address these areas of investigation the dissertation involves two parts: Part I concerns the theory of coarse-graining of many particle systems. We first investigate the mathematical structure behind the Mori-Zwanzig (projection operator) formalism by introducing two perturbative approaches to coarse-graining of systems that have an explicit scale separation. One concerns systems with little dissipation, while the other concerns systems with strong dissipation. In both settings we obtain an asymptotic series of `corrections' to the limiting description which are small with respect to the scaling parameter, these corrections represent the effects of small scales. We determine that only certain approximations give rise to dissipative effects in the resulting evolution. Next we apply this framework to the problem of coarse-graining the locally conserved quantities of a classical Hamiltonian system. By lumping conserved quantities into a collection of mesoscopic cells, we obtain, through a series of approximations, a stochastic particle system that resembles a discretization of the non-linear equations of fluctuating hydrodynamics. We study this system in the case that the transport coefficients are constant and prove well-posedness of the stochastic dynamics. Part II concerns the mathematical description of models where the underlying characteristics are stochastic. Such equations can model, for instance, the dynamics of a passive scalar in a random (turbulent) velocity field or the statistical behavior of a collection of particles subject to random environmental forces. First, we study general well-posedness properties of stochastic transport equation with rough diffusion coefficients. Our main result is strong existence and uniqueness under certain regularity conditions on the coefficients, and uses the theory of renormalized solutions of transport equations adapted to the stochastic setting. Next, in a work undertaken with collaborator Scott-Smith we study the Boltzmann equation with a stochastic forcing. The noise describing the forcing is white in time and colored in space and describes the effects of random environmental forces on a rarefied gas undergoing instantaneous, binary collisions. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. Tightness of the appropriate quantities is proved by an extension of the Skorohod theorem to non-metric spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Liang; Wang, Jigang
Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less
Luo, Liang; Wang, Jigang
2016-01-01
Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less
Tachikawa, Masashi; Mochizuki, Atsushi
2015-01-07
The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruss, D. E.; Morel, J. E.; Ragusa, J. C.
2013-07-01
Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime
NASA Astrophysics Data System (ADS)
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.
Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)
NASA Astrophysics Data System (ADS)
Kulik, I. O.
2004-07-01
We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.
Pramanik, Malay; Patra, Astam K; Bhaumik, Asim
2013-04-14
Here we report the synthesis of a new crystalline titanium phosphonate material (HTiP-7) having a self-assembled nanostructure and a mesoscopic void space without the aid of any surfactant or templating agent. The material has been synthesized hydrothermally through the reaction between benzene-1,3,5-triphosphonic acid (BTPA) and titanium(iv) isopropoxide at neutral pH at 453 K for 24 h. This hybrid phosphonate material has been thoroughly characterized by powder X-ray diffraction, N2 sorption, HR TEM, FE SEM, TG-DTA, FT IR and UV-Vis diffuse reflectance spectroscopic studies. Two very well-known software packages, REFLEX and CELSIZ unit cell refinement programs, are employed to establish the triclinic crystal phase of this hybrid material (HTiP-7). Very tiny nanocrystals of HTiP-7 self-aggregated to form spherical nanoparticles of dimension ca. 25 nm together with a mesoscopic void space and good BET surface area (255 m(2) g(-1)). The framework is thermally stable up to 650 K. The material showed excellent carrier mobility for photocurrent generation in the presence of a photosensitizer molecule (Rose Bengal). To the best of our knowledge this is the first report of a photon-to-electron energy transfer process over a dye doped titanium phosphonate nanomaterial.
Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.
Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza
2015-01-01
A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena
NASA Astrophysics Data System (ADS)
Cottet, Audrey; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Cubaynes, Tino; Contamin, Lauriane C.; Delbecq, Matthieu; Viennot, Jérémie J.; Bruhat, Laure E.; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
NASA Astrophysics Data System (ADS)
Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.
2017-11-01
In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.
NASA Astrophysics Data System (ADS)
Masson, Y. J.; Pride, S. R.
2007-03-01
Seismic attenuation and dispersion are numerically determined for computer-generated porous materials that contain arbitrary amounts of mesoscopic-scale heterogeneity in the porous continuum properties. The local equations used to determine the poroelastic response within such materials are those of Biot (1962). Upon applying a step change in stress to samples containing mesoscopic-scale heterogeneity, the poroelastic response is determined using finite difference modeling, and the average strain throughout the sample computed, along with the effective complex and frequency-dependent elastic moduli of the sample. The ratio of the imaginary and real parts of these moduli determines the attenuation as a function of frequency associated with the modes of applied stress (pure compression and pure shear). By having a wide range of heterogeneity present, there exists a wide range of relaxation frequencies in the response with the result that the curves of attenuation as a function of frequency are broader than in existing analytical theories based on a single relaxation frequency. Analytical explanations are given for the various high-frequency and low-frequency asymptotic behavior observed in the numerical simulations. It is also shown that the overall level of attenuation of a given sample is proportional to the square of the incompressibility contrasts locally present.
A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.
Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L
2016-11-05
The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena.
Cottet, Audrey; Dartiailh, Matthieu C; Desjardins, Matthieu M; Cubaynes, Tino; Contamin, Lauriane C; Delbecq, Matthieu; Viennot, Jérémie J; Bruhat, Laure E; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
DEVELOPMENT OF SPLIT-OPERATOR, PETROV-GALERKIN METHODS TO SIMULATE TRANSPORT AND DIFFUSION PROBLEMS
The rate at which contaminants in groundwater undergo sorption and desorption is routinely described using diffusion models. Such approaches, when incorporated into transport models, lead to large systems of coupled equations, often nonlinear. This has restricted applications of ...
Real-time simulation program for De Havilland (Canada) "Buffalo" and "Twin Otter" STOL transports
DOT National Transportation Integrated Search
1971-06-25
Simulation models of two representative STOL aircraft - the DeHavilland (Canada) "Buffalo" and "Twin Otter" transports - have been generated. The aircraft are described by means of nonlinear equations that will accommodate gross changes in angle of a...
Duret, Alexis; Grätzel, Michael
2005-09-15
Alpha-Fe(2)O(3) films having a mesoscopic leaflet type structure were produced for the first time by ultrasonic spray pyrolysis (USP) to explore their potential as oxygen-evolving photoanodes. The target of these studies is to use translucent hematite films deposited on conducting fluorine doped tin oxide (FTO) glass as top electrodes in a tandem cell that accomplishes the cleavage of water into hydrogen and oxygen by sunlight. The properties of layers made by USP were compared to those deposited by conventional spray pyrolysis (SP). Although both types of films show similar XRD and UV-visible and Raman spectra, they differ greatly in their morphology. The mesoscopic alpha-Fe(2)O(3) layers produced by USP consist mainly of 100 nm-sized platelets with a thickness of 5-10 nm. These nanosheets are oriented mainly perpendicularly to the FTO support, their flat surface exposing (001) facets. The mesoscopic leaflet structure has the advantage that it allows for efficient harvesting of visible light, while offering at the same time the very short distance required for the photogenerated holes to reach the electrolyte interface before recombining with conduction band electrons. This allows for water oxidation by the valence band holes even though their diffusion length is only a few nanometers. Distances are longer in the particles produced by SP favoring recombination of photoinduced charge carriers. Open-circuit photovoltage measurements indicate a lower surface state density for the nanoplatelets as compared to the round particles. These factors explain the much higher photoactivity of the USP compared to the SP deposited alpha-Fe(2)O(3) layers. Addition of hydrogen peroxide to the alkaline electrolyte further improves the photocurrent-voltage characteristics of films generated by USP indicating the hole transfer from the valence band of the semiconductor oxide to the adsorbed water to be the rate-limiting kinetic step in the oxygen generation reaction.
NASA Astrophysics Data System (ADS)
López, Luis I. A.; Mendoza, Michel; Ujevic, Sebastian
2013-09-01
We have systematically studied the conductance σ( E,B) and the electronic current line shapes J( V ex ) through complex mesoscopic molecules in an elastic resonant tunneling regime. The studied systems are based on GaAs/AlGaAs hetero-structures, with several discrete states in each coupled mesoscopic molecule. The molecules were formed using different wells and barrier widths. These systems allow effective couplings and uncouplings that lead to elastic processes as a function of the electronic potential V ex and magnetic field B. In this situation, the J( V ex ) and σ( E, B) curves exhibit a sequence of peaks of difficult interpretation, in which crossings and anti-crossings (a splitting if it is generated in the resonance condition) of states contribute in a way that they cannot be easily identified. Performing a systematic analysis of the evolution of these states (before the resonance condition), we were able to determine the origin of these current peaks. We have found that the coupling of states (anti-crossing) around the resonance region can be identified as a broad mirrored- D line shape in the J( V ex ) curves. The mirrored- D line shape peaks can be clearly differentiated from the neighboring peaks because the last ones follow a very defined increasing sequence in their intensities and widths. Also, this behavior (fingerprint) can be used to identify possible splitting of states in the J( V ex ). The splittings that are generated between states with different quantum numbers (quantum numbers associated to the individual well) follow an unexpected opposite behavior when compared with those generated between states with the same quantum numbers (quasi-miniband). All these results are also observed in the conductance σ( E, B) associated with complex mesoscopic molecules based on a two-dimensional electron gas.
Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira
2011-01-01
This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.
Time-domain measurement of optical transport in silicon micro-ring resonators.
Pernice, Wolfram H P; Li, Mo; Tang, Hong X
2010-08-16
We perform time-domain measurements of optical transport dynamics in silicon nano-photonic devices. Using pulsed optical excitation the thermal and carrier induced optical nonlinearities of micro-ring resonators are investigated, allowing for identification of their individual contributions. Under pulsed excitation build-up of free carriers and heat in the waveguides leads to a beating oscillation of the cavity resonance frequency. When employing a burst of pulse trains shorter than the carrier life-time, the slower heating effect can be separated from the faster carrier effect. Our scheme provides a convenient way to thermally stabilize optical resonators for high-power time-domain applications and nonlinear optical conversion.
SIERRA Multimechanics Module: Aria User Manual Version 4.44
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
2017-04-01
Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrarymore » Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
Anomalous transport from holography: part II
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2017-03-01
This is a second study of chiral anomaly-induced transport within a holographic model consisting of anomalous U(1)_V× U(1)_A Maxwell theory in Schwarzschild-AdS_5 spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in the presence of a static spatially inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative B^2-correction to the diffusion constant. We also find modifications to the chiral magnetic wave nonlinear in B. In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (b) weak electric field limit but resuming all orders in the derivative expansion. A non-vanishing nonlinear axial current (CSE) is found in the first case. The dependence on magnetic field and frequency of linear transport coefficient functions is explored in the second.
Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque
NASA Astrophysics Data System (ADS)
Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.
2018-02-01
We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2014-01-01
This paper presents the numerical simulations of confined three dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS) with and without invoking the APDF or DWFDF equation. When the APDF or DWFDF equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galperin, Michael
The progress of experimental techniques at the nanoscale in the last decade made optical measurements in current-carrying nanojunctions a reality, thus indicating the emergence of a new field of research coined optoelectronics. Optical spectroscopy of open nonequilibrium systems is a natural meeting point for (at least) two research areas: nonlinear optical spectroscopy and quantum transport, each with its own theoretical toolbox. We review recent progress in the field comparing theoretical treatments of optical response in nanojunctions as is accepted in nonlinear spectroscopy and quantum transport communities. A unified theoretical description of spectroscopy in nanojunctions is presented. Here, we argue thatmore » theoretical approaches of the quantum transport community (and in particular, the Green function based considerations) yield a convenient tool for optoelectronics when the radiation field is treated classically, and that differences between the toolboxes may become critical when studying the quantum radiation field in junctions.« less
Nonlinear transport of soft droplets in pore networks
NASA Astrophysics Data System (ADS)
Vernerey, Franck; Benet Cerda, Eduard; Koo, Kanghyeon
A large number of biological and technological processes depend on the transport of soft colloidal particles through porous media; this includes the transport and separation of cells, viruses or drugs through tissues, membranes and microfluidic devices. In these systems, the interactions between soft particles, background fluid and the surrounding pore space yield complex, nonlinear behaviors such as non-Darcy flows, localization and jamming. We devise a computational strategy to investigate the transport of non-wetting and deformable water droplets in a microfluidic device made of a random distribution of cylindrical obstacles. We first derive scaling laws for the entry of the droplet in a single pore and discuss the role of surface tension, contact angle and size in this process. This information is then used to study the transport of multiple droplets in an obstacle network. We find that when the droplet size is close to the pore size, fluid flow and droplet trafficking strongly interact, leading to local redistributions in pressure fields, intermittent clogging and jamming. Importantly, it is found that the overall droplet and fluid transport display three different scaling regimes depending on the forcing pressure, and that these regimes can be related to droplet properties.
Design of transportation and distribution Oil Palm Trunk of (OPT) in Indonesia
NASA Astrophysics Data System (ADS)
Norita, Defi; Arkeman, Yandra
2018-03-01
This research initiated from the area of oil palm plantations in Indonesia 13 million hectares, triggering consternation of abundance of oil palm trunk when garden regeneration is done. If 4 percent of the area is rehabilitated every year, almost 100 million cubic feet of oil palm will be trash. Biomass in the form of pellets can be processed from oil palm trunk. It is then disseminated back to the palm oil processing area into biomass. The amount of transportation cost of the used ships and trucks was defined as parameters. So the objective function determined the type and number of ship and truck trips that provide the minimum transportation cost. To optimize logistics transportation network in regional port cluster, combining hub-and-spoke transportation system among regional port with consolidation and dispersing transportation systems between ports and their own hinterlands, a nonlinear optimization model for two-stage logistics system in regional port cluster was introduced to simultaneously determine the following factors: the hinterlands serviced by individual ports and transportation capacity operated between each port and its hinterland, cargo transportation volume and corresponding transportation capacity allocated via a hub port from an original port to a destination port, cargo transportation volume and corresponding transportation capacity allocated directly from an original port to a destination port. Finally, a numerical example is given to demonstrate the application of the proposed model. It can be shown that the solution to the proposed non-linear model can be obtained by transforming it into linear programming models.
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
Asymmetric Differential Resistance of Current Biased Mesoscopic AuFe Wires
NASA Astrophysics Data System (ADS)
Eom, J.; Chandrasekhar, V.; Neuttiens, G.; Strunk, C.; van Haesendonck, C.; Bruynseraede, Y.
1996-03-01
An anomalous asymmetry is found in the differential resistance dV/dI of mesoscopic AuFe wires as a function of dc bias current at low temperatures. The samples are fabricated by ion implanting Au wires of length 1.0 - 35.0 μ m and of width 0.1 - 1.0 μ m with Fe at two different concentrations, 0.2 at.% and 0.4 at.%. The asymmetry is more pronounced in narrow and short samples. The asymmetric component of dV/dI increases with decreasing temperature, and saturates below the maximum in the spin glass resistance. It is found that the lead configuration for the four-terminal measurement also affects the asymmetric component of dV/dI.
A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics
NASA Astrophysics Data System (ADS)
Li, Jiangyu; Bhattacharya, Kaushik
2002-08-01
We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.
Mesoscopic Simulations of Crosslinked Polymer Networks
NASA Astrophysics Data System (ADS)
Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.
2016-08-01
A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.