A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Applications
NASA Technical Reports Server (NTRS)
Phan, Minh Q.
1998-01-01
This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.
A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Application
NASA Technical Reports Server (NTRS)
Phan, Minh Q.
1997-01-01
This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringler, Todd; Ju, Lili; Gunzburger, Max
2008-11-14
During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoimore » tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multiresolution method and the challenges ahead.« less
A qualitative multiresolution model for counterterrorism
NASA Astrophysics Data System (ADS)
Davis, Paul K.
2006-05-01
This paper describes a prototype model for exploring counterterrorism issues related to the recruiting effectiveness of organizations such as al Qaeda. The prototype demonstrates how a model can be built using qualitative input variables appropriate to representation of social-science knowledge, and how a multiresolution design can allow a user to think and operate at several levels - such as first conducting low-resolution exploratory analysis and then zooming into several layers of detail. The prototype also motivates and introduces a variety of nonlinear mathematical methods for representing how certain influences combine. This has value for, e.g., representing collapse phenomena underlying some theories of victory, and for explanations of historical results. The methodology is believed to be suitable for more extensive system modeling of terrorism and counterterrorism.
NASA Technical Reports Server (NTRS)
Hodel, A. S.; Whorton, Mark; Zhu, J. Jim
2008-01-01
Due to a need for improved reliability and performance in aerospace systems, there is increased interest in the use of adaptive control or other nonlinear, time-varying control designs in aerospace vehicles. While such techniques are built on Lyapunov stability theory, they lack an accompanying set of metrics for the assessment of stability margins such as the classical gain and phase margins used in linear time-invariant systems. Such metrics must both be physically meaningful and permit the user to draw conclusions in a straightforward fashion. We present in this paper a roadmap to the development of metrics appropriate to nonlinear, time-varying systems. We also present two case studies in which frozen-time gain and phase margins incorrectly predict stability or instability. We then present a multi-resolution analysis approach that permits on-line real-time stability assessment of nonlinear systems.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Dynamically re-configurable CMOS imagers for an active vision system
NASA Technical Reports Server (NTRS)
Yang, Guang (Inventor); Pain, Bedabrata (Inventor)
2005-01-01
A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2001 PerMIS Workshop
2001-09-04
35 1.1 Interval Mathematics for Analysis of Multiresolutional Systems V. Kreinovich, Univ. of Texas, R. Alo, Univ. of Houston-Downtown...the possible combinations. In non-deterministic real- time systems , the problem is compounded by the uncertainty in the execution times of various...multiresolutional, multiscale ) in their essence because of multiresolutional character of the meaning of words [Rieger, 01]. In integrating systems , the presence of a
Techniques and potential capabilities of multi-resolutional information (knowledge) processing
NASA Technical Reports Server (NTRS)
Meystel, A.
1989-01-01
A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.
Hexagonal wavelet processing of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Multiresolution MR elastography using nonlinear inversion
McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.
2012-01-01
Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
NASA Astrophysics Data System (ADS)
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.
Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang
2017-01-01
Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.
Torres, M E; Añino, M M; Schlotthauer, G
2003-12-01
It is well known that, from a dynamical point of view, sudden variations in physiological parameters which govern certain diseases can cause qualitative changes in the dynamics of the corresponding physiological process. The purpose of this paper is to introduce a technique that allows the automated temporal localization of slight changes in a parameter of the law that governs the nonlinear dynamics of a given signal. This tool takes, from the multiresolution entropies, the ability to show these changes as statistical variations at each scale. These variations are held in the corresponding principal component. Appropriately combining these techniques with a statistical changes detector, a complexity change detection algorithm is obtained. The relevance of the approach, together with its robustness in the presence of moderate noise, is discussed in numerical simulations and the automatic detector is applied to real and simulated biological signals.
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-02-01
Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.
NASA Astrophysics Data System (ADS)
Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana
2018-01-01
This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.
Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H
2012-12-01
This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.
Multi-resolution extension for transmission of geodata in a mobile context
NASA Astrophysics Data System (ADS)
Follin, Jean-Michel; Bouju, Alain; Bertrand, Frédéric; Boursier, Patrice
2005-03-01
A solution is proposed for the management of multi-resolution vector data in a mobile spatial information visualization system. The client-server architecture and the models of data and transfer of the system are presented first. The aim of this system is to reduce data exchanged between client and server by reusing data already present on the client side. Then, an extension of this system to multi-resolution data is proposed. Our solution is based on the use of increments in a multi-scale database. A database architecture where data sets for different predefined scales are precomputed and stored on the server side is adopted. In this model, each object representing the same real world entities at different levels of detail has to be linked beforehand. Increments correspond to the difference between two datasets with different levels of detail. They are transmitted in order to increase (or decrease) the detail to the client upon request. They include generalization and refinement operators allowing transitions between the different levels. Finally, a framework suited to the transfer of multi-resolution data in a mobile context is presented. This allows reuse of data locally available at different levels of detail and, in this way, reduces the amount of data transferred between client and server.
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.
Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong
2016-05-01
In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.
Proof-of-concept demonstration of a miniaturized three-channel multiresolution imaging system
NASA Astrophysics Data System (ADS)
Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo
2014-05-01
Multichannel imaging systems have several potential applications such as multimedia, surveillance, medical imaging and machine vision, and have therefore been a hot research topic in recent years. Such imaging systems, inspired by natural compound eyes, have many channels, each covering only a portion of the total field-of-view of the system. As a result, these systems provide a wide field-of-view (FOV) while having a small volume and a low weight. Different approaches have been employed to realize a multichannel imaging system. We demonstrated that the different channels of the imaging system can be designed in such a way that they can have each different imaging properties (angular resolution, FOV, focal length). Using optical ray-tracing software (CODE V), we have designed a miniaturized multiresolution imaging system that contains three channels each consisting of four aspherical lens surfaces fabricated from PMMA material through ultra-precision diamond tooling. The first channel possesses the largest angular resolution (0.0096°) and narrowest FOV (7°), whereas the third channel has the widest FOV (80°) and the smallest angular resolution (0.078°). The second channel has intermediate properties. Such a multiresolution capability allows different image processing algorithms to be implemented on the different segments of an image sensor. This paper presents the experimental proof-of-concept demonstration of the imaging system using a commercial CMOS sensor and gives an in-depth analysis of the obtained results. Experimental images captured with the three channels are compared with the corresponding simulated images. The experimental MTF of the channels have also been calculated from the captured images of a slanted edge target test. This multichannel multiresolution approach opens the opportunity for low-cost compact imaging systems that can be equipped with smart imaging capabilities.
An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets
NASA Astrophysics Data System (ADS)
Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.
2016-06-01
Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.
Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.
Cowlagi, Raghvendra V; Tsiotras, Panagiotis
2012-10-01
We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.
MR-CDF: Managing multi-resolution scientific data
NASA Technical Reports Server (NTRS)
Salem, Kenneth
1993-01-01
MR-CDF is a system for managing multi-resolution scientific data sets. It is an extension of the popular CDF (Common Data Format) system. MR-CDF provides a simple functional interface to client programs for storage and retrieval of data. Data is stored so that low resolution versions of the data can be provided quickly. Higher resolutions are also available, but not as quickly. By managing data with MR-CDF, an application can be relieved of the low-level details of data management, and can easily trade data resolution for improved access time.
Ray, J.; Lee, J.; Yadav, V.; ...
2014-08-20
We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
Multiscale geometric modeling of macromolecules I: Cartesian representation
NASA Astrophysics Data System (ADS)
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.
NASA Astrophysics Data System (ADS)
Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng
2018-02-01
Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.
On the wavelet optimized finite difference method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1994-01-01
When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.
Parallel object-oriented, denoising system using wavelet multiresolution analysis
Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.
2005-04-12
The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.
NASA Astrophysics Data System (ADS)
Soni, V.; Hadjadj, A.; Roussel, O.
2017-12-01
In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.
Wang, Kun-Ching
2015-01-14
The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
Multiresolution analysis of Bursa Malaysia KLCI time series
NASA Astrophysics Data System (ADS)
Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed
2017-05-01
In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.
Wang, Kun-Ching
2015-01-01
The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590
SHORT-TERM SOLAR FLARE PREDICTION USING MULTIRESOLUTION PREDICTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Daren; Huang Xin; Hu Qinghua
2010-01-20
Multiresolution predictors of solar flares are constructed by a wavelet transform and sequential feature extraction method. Three predictors-the maximum horizontal gradient, the length of neutral line, and the number of singular points-are extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. A maximal overlap discrete wavelet transform is used to decompose the sequence of predictors into four frequency bands. In each band, four sequential features-the maximum, the mean, the standard deviation, and the root mean square-are extracted. The multiresolution predictors in the low-frequency band reflect trends in the evolution of newly emerging fluxes. The multiresolution predictors in the high-frequencymore » band reflect the changing rates in emerging flux regions. The variation of emerging fluxes is decoupled by wavelet transform in different frequency bands. The information amount of these multiresolution predictors is evaluated by the information gain ratio. It is found that the multiresolution predictors in the lowest and highest frequency bands contain the most information. Based on these predictors, a C4.5 decision tree algorithm is used to build the short-term solar flare prediction model. It is found that the performance of the short-term solar flare prediction model based on the multiresolution predictors is greatly improved.« less
Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław
2017-01-01
Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Wavelet bases on the L-shaped domain
NASA Astrophysics Data System (ADS)
Jouini, Abdellatif; Lemarié-Rieusset, Pierre Gilles
2013-07-01
We present in this paper two elementary constructions of multiresolution analyses on the L-shaped domain D. In the first one, we shall describe a direct method to define an orthonormal multiresolution analysis. In the second one, we use the decomposition method for constructing a biorthogonal multiresolution analysis. These analyses are adapted for the study of the Sobolev spaces Hs(D)(s∈N).
WAKES: Wavelet Adaptive Kinetic Evolution Solvers
NASA Astrophysics Data System (ADS)
Mardirian, Marine; Afeyan, Bedros; Larson, David
2016-10-01
We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.
Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation
NASA Technical Reports Server (NTRS)
Lacaze, Alberto; Meystel, Michael; Meystel, Alex
1994-01-01
This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.
A Multi-Resolution Data Structure for Two-Dimensional Morse Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, P-T; Edelsbrunner, H; Hamann, B
2003-07-30
The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.
NASA Astrophysics Data System (ADS)
He, Liming; Wu, Lixin; Pulinets, Sergey; Liu, Shanjun; Yang, Fan
2012-07-01
A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26-34 nm (EUV26-34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
Morphological filtering and multiresolution fusion for mammographic microcalcification detection
NASA Astrophysics Data System (ADS)
Chen, Lulin; Chen, Chang W.; Parker, Kevin J.
1997-04-01
Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
NASA Astrophysics Data System (ADS)
Sangireddy, H.; Passalacqua, P.; Stark, C. P.
2013-12-01
Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.
Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound
NASA Astrophysics Data System (ADS)
Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.
2015-12-01
Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.
Analyzing gene expression time-courses based on multi-resolution shape mixture model.
Li, Ying; He, Ye; Zhang, Yu
2016-11-01
Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.
Corner-point criterion for assessing nonlinear image processing imagers
NASA Astrophysics Data System (ADS)
Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory
2017-10-01
Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to color imaging is proposed, with a discussion about the choice of the working color space depending on the type of image enhancement processing used.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.
2016-01-01
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
Multiresolution 3-D reconstruction from side-scan sonar images.
Coiras, Enrique; Petillot, Yvan; Lane, David M
2007-02-01
In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.
A multi-resolution approach to electromagnetic modelling
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-07-01
We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...
2016-01-01
We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
Multiresolution strategies for the numerical solution of optimal control problems
NASA Astrophysics Data System (ADS)
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2014-12-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.
Networks for image acquisition, processing and display
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1990-01-01
The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.
Framework for multi-resolution analyses of advanced traffic management strategies.
DOT National Transportation Integrated Search
2016-11-01
Demand forecasting models and simulation models have been developed, calibrated, and used in isolation of each other. However, the advancement of transportation system technologies and strategies, the increase in the availability of data, and the unc...
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
NASA Astrophysics Data System (ADS)
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
Multiscale image contrast amplification (MUSICA)
NASA Astrophysics Data System (ADS)
Vuylsteke, Pieter; Schoeters, Emile P.
1994-05-01
This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.
Multiresolution With Super-Compact Wavelets
NASA Technical Reports Server (NTRS)
Lee, Dohyung
2000-01-01
The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.
Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie
2016-03-01
Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.
2016-09-01
other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for
A multi-resolution approach to electromagnetic modeling.
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-04-01
We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-01-01
A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2015-01-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475
DOT National Transportation Integrated Search
2016-06-01
In this project the researchers developed a hierarchical multi-resolution traffic simulation system for metropolitan areas, referred to as MetroSim. Categorically, the focus is on integrating two types of simulation: microscopic simulation in which i...
NASA Astrophysics Data System (ADS)
Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin
2018-01-01
Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.
OpenCL-based vicinity computation for 3D multiresolution mesh compression
NASA Astrophysics Data System (ADS)
Hachicha, Soumaya; Elkefi, Akram; Ben Amar, Chokri
2017-03-01
3D multiresolution mesh compression systems are still widely addressed in many domains. These systems are more and more requiring volumetric data to be processed in real-time. Therefore, the performance is becoming constrained by material resources usage and an overall reduction in the computational time. In this paper, our contribution entirely lies on computing, in real-time, triangles neighborhood of 3D progressive meshes for a robust compression algorithm based on the scan-based wavelet transform(WT) technique. The originality of this latter algorithm is to compute the WT with minimum memory usage by processing data as they are acquired. However, with large data, this technique is considered poor in term of computational complexity. For that, this work exploits the GPU to accelerate the computation using OpenCL as a heterogeneous programming language. Experiments demonstrate that, aside from the portability across various platforms and the flexibility guaranteed by the OpenCL-based implementation, this method can improve performance gain in speedup factor of 5 compared to the sequential CPU implementation.
NASA Technical Reports Server (NTRS)
Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.
1996-01-01
We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.
Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu
2015-01-01
It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146
Cui, Peiling; Zhang, Huijuan
2010-01-01
In this paper, the problem of estimating the attitude of a micro-nano satellite, obtaining geomagnetic field measurements via a three-axis magnetometer and obtaining angle rate via gyro, is considered. For this application, a QMRPF-UKF master-slave filtering method is proposed, which uses the QMRPF and UKF algorithms to estimate the rotation quaternion and the gyro bias parameters, respectively. The computational complexicity related to the particle filtering technique is eliminated by introducing a multiresolution approach that permits a significant reduction in the number of particles. This renders QMRPF-UKF master-slave filter computationally efficient and enables its implementation with a remarkably small number of particles. Simulation results by using QMRPF-UKF are given, which demonstrate the validity of the QMRPF-UKF nonlinear filter. PMID:22163448
Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk
Ramirez-Villegas, Juan F.; Lam-Espinosa, Eric; Ramirez-Moreno, David F.; Calvo-Echeverry, Paulo C.; Agredo-Rodriguez, Wilfredo
2011-01-01
Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. PMID:21386966
Survey and analysis of multiresolution methods for turbulence data
Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; ...
2015-11-10
This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 512 3 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Re t = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisonsmore » between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.« less
Multiresolution saliency map based object segmentation
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Xin; Dai, ZhenYou
2015-11-01
Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.
Localized contourlet features in vehicle make and model recognition
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, B. S.
2009-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.
MULTI-RESOLUTION LAND CHARACTERISTICS FOR THE MID-ATLANTIC INTEGRATED ASSESMENT (MAIA) STUDY AREA
This data set is a Geographic Information System (GIS) coverage of the land use and land cover for the United States Environmental Protection Agency (USEPA) Mid-Atlantic Integrated Assessment (MAIA) Project region. The coverage was produced using 1988, 1989, 1991,1992, and 1993...
Vector coding of wavelet-transformed images
NASA Astrophysics Data System (ADS)
Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua
1998-09-01
Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.
USDA-ARS?s Scientific Manuscript database
In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources all...
The Multi-Resolution Land Characteristics (MRLC) Consortium is a good example of the national benefits of federal collaboration. It started in the mid-1990s as a small group of federal agencies with the straightforward goal of compiling a comprehensive national Landsat dataset t...
Quantification of frequency-components contributions to the discharge of a karst spring
NASA Astrophysics Data System (ADS)
Taver, V.; Johannet, A.; Vinches, M.; Borrell, V.; Pistre, S.; Bertin, D.
2013-12-01
Karst aquifers represent important underground resources for water supplies, providing it to 25% of the population. Nevertheless such systems are currently underexploited because of their heterogeneity and complexity, which make work fields and physical measurements expensive, and frequently not representative of the whole aquifer. The systemic paradigm appears thus at a complementary approach to study and model karst aquifers in the framework of non-linear system analysis. Its input and output signals, namely rainfalls and discharge contain information about the function performed by the physical process. Therefore, improvement of knowledge about the karst system can be provided using time series analysis, for example Fourier analysis or orthogonal decomposition [1]. Another level of analysis consists in building non-linear models to identify rainfall/discharge relation, component by component [2]. In this context, this communication proposes to use neural networks to first model the rainfall-runoff relation using frequency components, and second to analyze the models, using the KnoX method [3], in order to quantify the importance of each component. Two different neural models were designed: (i) the recurrent model which implements a non-linear recurrent model fed by rainfalls, ETP and previous estimated discharge, (ii) the feed-forward model which implements a non-linear static model fed by rainfalls, ETP and previous observed discharges. The first model is known to better represent the rainfall-runoff relation; the second one to better predict the discharge based on previous discharge observations. KnoX method is based on a variable selection method, which simply considers values of parameters after the training without taking into account the non-linear behavior of the model during functioning. An amelioration of the KnoX method, is thus proposed in order to overcome this inadequacy. The proposed method, leads thus to both a hierarchization and a quantification of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.
Multiresolution forecasting for futures trading using wavelet decompositions.
Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B
2001-01-01
We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.
Perceptual compression of magnitude-detected synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Gorman, John D.; Werness, Susan A.
1994-01-01
A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.
Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin
2017-01-03
High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin
High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less
Automatic brain tumor detection in MRI: methodology and statistical validation
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert
2005-04-01
Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.
LOD map--A visual interface for navigating multiresolution volume visualization.
Wang, Chaoli; Shen, Han-Wei
2006-01-01
In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to examine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measurement, we introduce the LOD map--an alternative representation of LOD quality and a visual interface for navigating multiresolution data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.
NASA Astrophysics Data System (ADS)
Barrineau, C. P.; Dobreva, I. D.; Bishop, M. P.; Houser, C.
2014-12-01
Aeolian systems are ideal natural laboratories for examining self-organization in patterned landscapes, as certain wind regimes generate certain morphologies. Topographic information and scale dependent analysis offer the opportunity to study such systems and characterize process-form relationships. A statistically based methodology for differentiating aeolian features would enable the quantitative association of certain surface characteristics with certain morphodynamic regimes. We conducted a multi-resolution analysis of LiDAR elevation data to assess scale-dependent morphometric variations in an aeolian landscape in South Texas. For each pixel, mean elevation values are calculated along concentric circles moving outward at 100-meter intervals (i.e. 500 m, 600 m, 700 m from pixel). The calculated average elevation values plotted against distance from the pixel of interest as curves are used to differentiate multi-scalar variations in elevation across the landscape. In this case, it is hypothesized these curves may be used to quantitatively differentiate certain morphometries from others like a spectral signature may be used to classify paved surfaces from natural vegetation, for example. After generating multi-resolution curves for all the pixels in a selected area of interest (AOI), a Principal Components Analysis is used to highlight commonalities and singularities between generated curves from pixels across the AOI. Our findings suggest that the resulting components could be used for identification of discrete aeolian features like open sands, trailing ridges and active dune crests, and, in particular, zones of deflation. This new approach to landscape characterization not only works to mitigate bias introduced when researchers must select training pixels for morphometric investigations, but can also reveal patterning in aeolian landscapes that would not be as obvious without quantitative characterization.
NASA Astrophysics Data System (ADS)
Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid
2018-04-01
In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.
Multiresolution and Explicit Methods for Vector Field Analysis and Visualization
NASA Technical Reports Server (NTRS)
Nielson, Gregory M.
1997-01-01
This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.
Spider-web inspired multi-resolution graphene tactile sensor.
Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin
2018-05-08
Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn
2017-06-25
In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.
Multi-Resolution Rapid Prototyping of Vehicle Cooling Systems: Approach and Test Results
2014-08-01
where the A/C was working. Figure 21: Comparison model/experiment for condenser refrigerant power; heat transfer factor = 0.8 The figure...previously. To demonstrate stable interactions with a more realistic environment, we have connected the four heat exchangers (two radiators, condenser ...simulations of any vehicle (or other) cooling systems. It can be seen that the underHood heat exchangers (transaxle radiator, condenser and ICE
NASA Astrophysics Data System (ADS)
Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man
2012-03-01
We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.
NASA Astrophysics Data System (ADS)
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-01
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-10
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Boundary element based multiresolution shape optimisation in electrostatics
NASA Astrophysics Data System (ADS)
Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan
2015-09-01
We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.
A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.
De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc
2010-09-01
In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.
2012-10-24
representative pdf’s via the Kullback - Leibler divergence (KL). Species turnover, or b diversity, is estimated using both this KL divergence and the...multiresolution analysis provides a means for estimating divergence between two textures, specifically the Kullback - Leibler divergence between the pair of ...and open challenges. Ecological Informatics 5: 318–329. 19. Ludovisi A, TaticchiM(2006) Investigating beta diversity by kullback - leibler information
Multiresolution persistent homology for excessively large biomolecular datasets
NASA Astrophysics Data System (ADS)
Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei
2015-10-01
Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.
NASA Astrophysics Data System (ADS)
Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David
2015-04-01
In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).
M3RSM: Many-to-Many Multi-Resolution Scan Matching
2015-05-01
a localization problem), or may be derived from a LIDAR scan earlier in the robot’s trajectory (a SLAM problem). The reference map is generally...Mapping ( SLAM ) systems prevent the unbounded accumulation of error. A typical approach with laser range-finder data is to compute the posterior...even greater bottleneck than the SLAM optimiza- tion itself. In our multi-robot mapping system, over a dozen robots explored an area simultaneously [14
James Wickham; Collin Homer; James Vogelmann; Alexa McKerrow; Rick Mueler; Nate Herold; John Coulston
2014-01-01
The Multi-Resolution Land Characteristics (MRLC) Consortium demonstrates the national benefits of USA Federal collaboration. Starting in the mid-1990s as a small group with the straightforward goal of compiling a comprehensive national Landsat dataset that could be used to meet agenciesâ needs, MRLC has grown into a group of 10 USA Federal Agencies that coordinate the...
A study on multiresolution lossless video coding using inter/intra frame adaptive prediction
NASA Astrophysics Data System (ADS)
Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro
2003-06-01
Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.
A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors
Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner
2014-01-01
The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255
A multi-resolution approach for an automated fusion of different low-cost 3D sensors.
Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner
2014-04-24
The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.
NASA Astrophysics Data System (ADS)
Campo, D.; Quintero, O. L.; Bastidas, M.
2016-04-01
We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Mather, Barry A
A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less
Multiresolution texture analysis applied to road surface inspection
NASA Astrophysics Data System (ADS)
Paquis, Stephane; Legeay, Vincent; Konik, Hubert; Charrier, Jean
1999-03-01
Technological advances provide now the opportunity to automate the pavement distress assessment. This paper deals with an approach for achieving an automatic vision system for road surface classification. Road surfaces are composed of aggregates, which have a particular grain size distribution and a mortar matrix. From various physical properties and visual aspects, four road families are generated. We present here a tool using a pyramidal process with the assumption that regions or objects in an image rise up because of their uniform texture. Note that the aim is not to compute another statistical parameter but to include usual criteria in our method. In fact, the road surface classification uses a multiresolution cooccurrence matrix and a hierarchical process through an original intensity pyramid, where a father pixel takes the minimum gray level value of its directly linked children pixels. More precisely, only matrix diagonal is taken into account and analyzed along the pyramidal structure, which allows the classification to be made.
Anisoplanatic Imaging through Turbulence
2016-10-07
is degraded by atmospheric turbulence when observing vertically (e.g. astronomy ) or horizontally (e.g. surveillance, military reconnaissance). This...achieved in this area: in astronomy almost every major observatory is now equipped with first-generation AO systems and some second-generation...Imaging: The Multiresolution Approach," Astronomy & Astrophysics, 555, A69, (2013). 12. Jolissaint, L., Véran, J.-P. and Conan, R., Analytical modeling
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.
2002-01-01
their expression profile and for classification of cells into tumerous and non- tumerous classes. Then we will present a parallel tree method for... cancerous cells. We will use the same dataset and use tree structured classifiers with multi-resolution analysis for classifying cancerous from non- cancerous ...cells. We have the expressions of 4096 genes from 98 different cell types. Of these 98, 72 are cancerous while 26 are non- cancerous . We are interested
Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery
NASA Astrophysics Data System (ADS)
Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.
2016-06-01
The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2007-12-01
We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiolo, M., E-mail: massimo.maiolo@zhaw.ch; ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil; Vancheri, A., E-mail: alberto.vancheri@supsi.ch
In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficientmore » orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.« less
NASA Astrophysics Data System (ADS)
Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko
2011-03-01
Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.
Ray Casting of Large Multi-Resolution Volume Datasets
NASA Astrophysics Data System (ADS)
Lux, C.; Fröhlich, B.
2009-04-01
High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.
Adaptive multiscale processing for contrast enhancement
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.
1993-07-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
NASA Astrophysics Data System (ADS)
Hloupis, George; Stavrakas, Ilias; Vallianatos, Filippos; Triantis, Dimos
2013-04-01
The current study deals with preliminary results of characteristic patterns derived from acoustic emissions during compressional stress. Two loading cycles were applied to a specimen of 4cm x 4cm x 10 cm Dionysos marble while acoustic emissions (AE) were recorded using one acoustic sensor coupled at the expected direction of the main crack (at the center of the specimen). The produced time series comprised from the number of counts per AE hit under increasing and constant load. Processing took place in two domains: in conventional time domain (t), using multiresolution wavelet analysis for the study of temporal variation of the wavelet-coefficients' standard deviation (SDEV) [1] and in natural time domain (χ), using the variance (κ1) of natural-time transformed time-series [2,3]. Results in both cases, dictate that identification of the region where the increasing stress (σ), exceeds 40% of the ultimate compressional strength (σ*), is possible. More specific, in conventional time domain, the temporal evolution of SDEV presents a sharp change around σ* during first loading cycle and less than σ* during second loading cycle. In natural time domain, the κ1 value clearly oscillate around 0.07 at natural time indexes corresponding to σ* during first loading cycle. Merging both results leads to a preliminary observation that we have an identification of the time when the compressional stress exceeds σ*. References [1] Telesca, L., Hloupis, G., Nikolintaga, I., Vallianatos, F.,."Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis", Communications in Nonlinear Science and Numerical Simulation, vol. 12, issue 8, pp 1418-1426, 2007 [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, "Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series", Springer-Verlag, Berlin, Heidelberg, 2011. [3] N. V. Sarlis, P. A. Varotsos, and E. S. Skordas, "Flux Avalances in YBa2Cu307-x films and rice piles: natural time domain analysis", Physical Review B, 73, 054504, 2006. Acknowledgements This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC".
An efficient multi-resolution GA approach to dental image alignment
NASA Astrophysics Data System (ADS)
Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany
2006-02-01
Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.
The Incremental Multiresolution Matrix Factorization Algorithm
Ithapu, Vamsi K.; Kondor, Risi; Johnson, Sterling C.; Singh, Vikas
2017-01-01
Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices – an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct “global” factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision. PMID:29416293
Community detection for fluorescent lifetime microscopy image segmentation
NASA Astrophysics Data System (ADS)
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar
2014-03-01
Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.
Multiscale wavelet representations for mammographic feature analysis
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu
1992-12-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
NASA Astrophysics Data System (ADS)
Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei
2017-07-01
Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.
NASA Astrophysics Data System (ADS)
Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.
2012-03-01
Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.
Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes
NASA Astrophysics Data System (ADS)
Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.
2016-12-01
The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.
Terascale Visualization: Multi-resolution Aspirin for Big-Data Headaches
NASA Astrophysics Data System (ADS)
Duchaineau, Mark
2001-06-01
Recent experience on the Accelerated Strategic Computing Initiative (ASCI) computers shows that computational physicists are successfully producing a prodigious collection of numbers on several thousand processors. But with this wealth of numbers comes an unprecedented difficulty in processing and moving them to provide useful insight and analysis. In this talk, a few simulations are highlighted where recent advancements in multiple-resolution mathematical representations and algorithms have provided some hope of seeing most of the physics of interest while keeping within the practical limits of the post-simulation storage and interactive data-exploration resources. A whole host of visualization research activities was spawned by the 1999 Gordon Bell Prize-winning computation of a shock-tube experiment showing Richtmyer-Meshkov turbulent instabilities. This includes efforts for the entire data pipeline from running simulation to interactive display: wavelet compression of field data, multi-resolution volume rendering and slice planes, out-of-core extraction and simplification of mixing-interface surfaces, shrink-wrapping to semi-regularize the surfaces, semi-structured surface wavelet compression, and view-dependent display-mesh optimization. More recently on the 12 TeraOps ASCI platform, initial results from a 5120-processor, billion-atom molecular dynamics simulation showed that 30-to-1 reductions in storage size can be achieved with no human-observable errors for the analysis required in simulations of supersonic crack propagation. This made it possible to store the 25 trillion bytes worth of simulation numbers in the available storage, which was under 1 trillion bytes. While multi-resolution methods and related systems are still in their infancy, for the largest-scale simulations there is often no other choice should the science require detailed exploration of the results.
Li, Jia-Han; Webb, Kevin J; Burke, Gerald J; White, Daniel A; Thompson, Charles A
2006-05-01
A multiresolution direct binary search iterative procedure is used to design small dielectric irregular diffractive optical elements that have subwavelength features and achieve near-field focusing below the diffraction limit. Designs with a single focus or with two foci, depending on wavelength or polarization, illustrate the possible functionalities available from the large number of degrees of freedom. These examples suggest that the concept of such elements may find applications in near-field lithography, wavelength-division multiplexing, spectral analysis, and polarization beam splitters.
Multiresolution image gathering and restoration
NASA Technical Reports Server (NTRS)
Fales, Carl L.; Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1992-01-01
In this paper we integrate multiresolution decomposition with image gathering and restoration. This integration leads to a Wiener-matrix filter that accounts for the aliasing, blurring, and noise in image gathering, together with the digital filtering and decimation in signal decomposition. Moreover, as implemented here, the Wiener-matrix filter completely suppresses the blurring and raster effects of the image-display device. We demonstrate that this filter can significantly improve the fidelity and visual quality produced by conventional image reconstruction. The extent of this improvement, in turn, depends on the design of the image-gathering device.
Adaptation of a multi-resolution adversarial model for asymmetric warfare
NASA Astrophysics Data System (ADS)
Rosenberg, Brad; Gonsalves, Paul G.
2006-05-01
Recent military operations have demonstrated the use by adversaries of non-traditional or asymmetric military tactics to offset US military might. Rogue nations with links to trans-national terrorists have created a highly unpredictable and potential dangerous environment for US military operations. Several characteristics of these threats include extremism in beliefs, global in nature, non-state oriented, and highly networked and adaptive, thus making these adversaries less vulnerable to conventional military approaches. Additionally, US forces must also contend with more traditional state-based threats that are further evolving their military fighting strategies and capabilities. What are needed are solutions to assist our forces in the prosecution of operations against these diverse threat types and their atypical strategies and tactics. To address this issue, we present a system that allows for the adaptation of a multi-resolution adversarial model. The developed model can then be used to support both training and simulation based acquisition requirements to effectively respond to such an adversary. The described system produces a combined adversarial model by merging behavior modeling at the individual level with aspects at the group and organizational level via network analysis. Adaptation of this adversarial model is performed by means of an evolutionary algorithm to build a suitable model for the chosen adversary.
A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less
WaveJava: Wavelet-based network computing
NASA Astrophysics Data System (ADS)
Ma, Kun; Jiao, Licheng; Shi, Zhuoer
1997-04-01
Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.
NASA Astrophysics Data System (ADS)
Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime
2017-04-01
Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.
NASA Astrophysics Data System (ADS)
McGuire, M. P.; Welty, C.; Gangopadhyay, A.; Karabatis, G.; Chen, Z.
2006-05-01
The urban environment is formed by complex interactions between natural and human dominated systems, the study of which requires the collection and analysis of very large datasets that span many disciplines. Recent advances in sensor technology and automated data collection have improved the ability to monitor urban environmental systems and are making the idea of an urban environmental observatory a reality. This in turn has created a number of potential challenges in data management and analysis. We present the design of an end-to-end system to store, analyze, and visualize data from a prototype urban environmental observatory based at the Baltimore Ecosystem Study, a National Science Foundation Long Term Ecological Research site (BES LTER). We first present an object-relational design of an operational database to store high resolution spatial datasets as well as data from sensor networks, archived data from the BES LTER, data from external sources such as USGS NWIS, EPA Storet, and metadata. The second component of the system design includes a spatiotemporal data warehouse consisting of a data staging plan and a multidimensional data model designed for the spatiotemporal analysis of monitoring data. The system design also includes applications for multi-resolution exploratory data analysis, multi-resolution data mining, and spatiotemporal visualization based on the spatiotemporal data warehouse. Also the system design includes interfaces with water quality models such as HSPF, SWMM, and SWAT, and applications for real-time sensor network visualization, data discovery, data download, QA/QC, and backup and recovery, all of which are based on the operational database. The system design includes both internet and workstation-based interfaces. Finally we present the design of a laboratory for spatiotemporal analysis and visualization as well as real-time monitoring of the sensor network.
Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...
2015-02-25
Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less
Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean
2015-01-01
At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.
An ROI multi-resolution compression method for 3D-HEVC
NASA Astrophysics Data System (ADS)
Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan
2017-09-01
3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.
Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean
2015-01-01
At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148
NASA Astrophysics Data System (ADS)
Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.
2016-12-01
25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is better to predict threshold surpassing. In a second step, the implementation of wavelet decomposition within the neural network model to better apprehend slow and fast dynamics is tested and discussed, which could also allows accounting for non-linearity of the turbid response to some extent. This second approach is still under realization so far.
Sawall, Mathias; Kubis, Christoph; Börner, Armin; Selent, Detlef; Neymeyr, Klaus
2015-09-03
Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data. Such accurate measurements rise special computational challenges for multivariate curve resolution techniques since pure component factorizations are often solved via constrained minimization problems. The computational costs for these calculations rapidly grow with an increased time or frequency resolution of the spectral measurements. The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure component factorization for the coarsest problem with the lowest resolution. Then the factorization results are used as initial values for the next problem with a higher resolution. Good initial values result in a fast solution on the next refined level. This procedure is repeated and finally a factorization is determined for the highest level of resolution. The described multiresolution approach allows a considerable convergence acceleration. The computational procedure is analyzed and is tested for experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various soft and hard models. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam
2018-07-01
Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.
Knowledge-based low-level image analysis for computer vision systems
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.
1988-01-01
Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.
Joint Services Electronics Program. Electronics Research at the University of Texas at Austin.
1986-09-30
L.S. Davis and J.K. Aggarwal, "Region Correspondence in Multi-Resolution Images Taken from Dynamic Scenes." Mexican Polytechnic Institute Mexico...Estimation and Control of Stochastic Systems ,", ’ Dept. of Mathematics Mexican Polytechnic Institute ,,, 1 Mexico City, Mexico March 27, 1985 * S.I...surface with well known stoichiometry. We have observed interesting new phenomena asociated with the 0__ local surface crystal field (splitting of the
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Morton, J. J.; Carbotte, S. M.
2016-02-01
The Marine Geoscience Data System (MGDS: www.marine-geo.org) provides a suite of tools and services for free public access to data acquired throughout the global oceans including maps, grids, near-bottom photos, and geologic interpretations that are essential for habitat characterization and marine spatial planning. Users can explore, discover, and download data through a combination of APIs and front-end interfaces that include dynamic service-driven maps, a geospatially enabled search engine, and an easy to navigate user interface for browsing and discovering related data. MGDS offers domain-specific data curation with a team of scientists and data specialists who utilize a suite of back-end tools for introspection of data files and metadata assembly to verify data quality and ensure that data are well-documented for long-term preservation and re-use. Funded by the NSF as part of the multi-disciplinary IEDA Data Facility, MGDS also offers Data DOI registration and links between data and scientific publications. MGDS produces and curates the Global Multi-Resolution Topography Synthesis (GMRT: gmrt.marine-geo.org), a continuously updated Digital Elevation Model that seamlessly integrates multi-resolutional elevation data from a variety of sources including the GEBCO 2014 ( 1 km resolution) and International Bathymetric Chart of the Southern Ocean ( 500 m) compilations. A significant component of GMRT includes ship-based multibeam sonar data, publicly available through NOAA's National Centers for Environmental Information, that are cleaned and quality controlled by the MGDS Team and gridded at their full spatial resolution (typically 100 m resolution in the deep sea). Additional components include gridded bathymetry products contributed by individual scientists (up to meter scale resolution in places), publicly accessible regional bathymetry, and high-resolution terrestrial elevation data. New data are added to GMRT on an ongoing basis, with two scheduled releases per year. GMRT is available as both gridded data and images that can be viewed and downloaded directly through the Java application GeoMapApp (www.geomapapp.org) and the web-based GMRT MapTool. In addition, the GMRT GridServer API provides programmatic access to grids, imagery, profiles, and single point elevation values.
Rapid production of optimal-quality reduced-resolution representations of very large databases
Sigeti, David E.; Duchaineau, Mark; Miller, Mark C.; Wolinsky, Murray; Aldrich, Charles; Mineev-Weinstein, Mark B.
2001-01-01
View space representation data is produced in real time from a world space database representing terrain features. The world space database is first preprocessed. A database is formed having one element for each spatial region corresponding to a finest selected level of detail. A multiresolution database is then formed by merging elements and a strict error metric is computed for each element at each level of detail that is independent of parameters defining the view space. The multiresolution database and associated strict error metrics are then processed in real time for real time frame representations. View parameters for a view volume comprising a view location and field of view are selected. The error metric with the view parameters is converted to a view-dependent error metric. Elements with the coarsest resolution are chosen for an initial representation. Data set first elements from the initial representation data set are selected that are at least partially within the view volume. The first elements are placed in a split queue ordered by the value of the view-dependent error metric. If the number of first elements in the queue meets or exceeds a predetermined number of elements or whether the largest error metric is less than or equal to a selected upper error metric bound, the element at the head of the queue is force split and the resulting elements are inserted into the queue. Force splitting is continued until the determination is positive to form a first multiresolution set of elements. The first multiresolution set of elements is then outputted as reduced resolution view space data representing the terrain features.
Multi-Resolution Playback of Network Trace Files
2015-06-01
a com- plete MySQL database, C++ developer tools and the libraries utilized in the development of the system (Boost and Libcrafter), and Wireshark...XE suite has a limit to the allowed size of each database. In order to be scalable, the project had to switch to the MySQL database suite. The...programs that access the database use the MySQL C++ connector, provided by Oracle, and the supplied methods and libraries. 4.4 Flow Generator Chapter 3
Fully automated analysis of multi-resolution four-channel micro-array genotyping data
NASA Astrophysics Data System (ADS)
Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.
2006-03-01
We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.
Multiresolution analysis over graphs for a motor imagery based online BCI game.
Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy
2016-01-01
Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved optical flow motion estimation for digital image stabilization
NASA Astrophysics Data System (ADS)
Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao
2015-11-01
Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.
Active pixel sensor array with multiresolution readout
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)
2000-01-01
In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct numerical simulation or large eddy simulation of compressible turbulent flows at various speeds including high-speed shock-turbulence interactions, and general long time wave propagation problems. These schemes, including entropy splitting, have also been extended to freestream preserving schemes on curvilinear moving grids for a thermally perfect gas (Vinokur & Yee 2000).
Massive stereo-based DTM production for Mars on cloud computers
NASA Astrophysics Data System (ADS)
Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Xiong, Si-Ting; Putri, A. R. D.; Walter, S. H. G.; Veitch-Michaelis, J.; Yershov, V.
2018-05-01
Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system.
NASA Astrophysics Data System (ADS)
Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.
2017-03-01
In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.
Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT
Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster
2016-01-01
Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view. PMID:27694701
HiPS - Hierarchical Progressive Survey Version 1.0
NASA Astrophysics Data System (ADS)
Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre
2017-05-01
This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.
A Subband Coding Method for HDTV
NASA Technical Reports Server (NTRS)
Chung, Wilson; Kossentini, Faouzi; Smith, Mark J. T.
1995-01-01
This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity.
A novel neural-wavelet approach for process diagnostics and complex system modeling
NASA Astrophysics Data System (ADS)
Gao, Rong
Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.
NASA Astrophysics Data System (ADS)
Litjens, G.; Ehteshami Bejnordi, B.; Timofeeva, N.; Swadi, G.; Kovacs, I.; Hulsbergen-van de Kaa, C.; van der Laak, J.
2015-03-01
Automated detection of prostate cancer in digitized H and E whole-slide images is an important first step for computer-driven grading. Most automated grading algorithms work on preselected image patches as they are too computationally expensive to calculate on the multi-gigapixel whole-slide images. An automated multi-resolution cancer detection system could reduce the computational workload for subsequent grading and quantification in two ways: by excluding areas of definitely normal tissue within a single specimen or by excluding entire specimens which do not contain any cancer. In this work we present a multi-resolution cancer detection algorithm geared towards the latter. The algorithm methodology is as follows: at a coarse resolution the system uses superpixels, color histograms and local binary patterns in combination with a random forest classifier to assess the likelihood of cancer. The five most suspicious superpixels are identified and at a higher resolution more computationally expensive graph and gland features are added to refine classification for these superpixels. Our methods were evaluated in a data set of 204 digitized whole-slide H and E stained images of MR-guided biopsy specimens from 163 patients. A pathologist exhaustively annotated the specimens for areas containing cancer. The performance of our system was evaluated using ten-fold cross-validation, stratified according to patient. Image-based receiver operating characteristic (ROC) analysis was subsequently performed where a specimen containing cancer was considered positive and specimens without cancer negative. We obtained an area under the ROC curve of 0.96 and a 0.4 specificity at a 1.0 sensitivity.
NASA Astrophysics Data System (ADS)
Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.
1998-02-01
We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.
Ray, J.; Lee, J.; Yadav, V.; ...
2015-04-29
Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, J.; Lee, J.; Yadav, V.
Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
Using multi-resolution proxies to assess ENSO impacts on the mean state of the tropical Pacific.
NASA Astrophysics Data System (ADS)
Karamperidou, C.; Conroy, J. L.
2016-12-01
Observations and model simulations indicate that the relationship between ENSO and the mean state of the tropical Pacific is a two-way interaction. On one hand, a strong zonal SST gradient (dSST) in the Pacific (colder cold tongue) increases the potential intensity of upcoming ENSO events and may lead to increased ENSO variance. On the other hand, in a period of increased ENSO activity, large events can warm the cold tongue at decadal scales via residual heating, and thus lead to reduced zonal SST gradient (ENSO rectification mechanism). The short length of the observational record hinders our ability to confidently evaluate which mechanism dominates in each period, and whether it is sensitive to external climate forcing. This question is effectively a question of interaction between two timescales: interannual and decadal. Paleoclimate proxies of different resolutions can help elucidate this question, since they can be independent records of variability in these separate timescales. Here, we use coral proxies of ENSO variability from across the Pacific and multi-proxy records of dSST at longer timescales. Proxies, models, and observations indicate that in periods of increased ENSO activity, dSST is negatively correlated with ENSO variance at decadal timescales, indicating that strong ENSO events may affect the decadal mean state via warming the cold tongue. Using climate model simulations we attribute this effect to residual nonlinear dynamical heating, thus supporting the ENSO rectification mechanism. On the contrary, in periods without strong events, ENSO variance and dSST are positively correlated, which indicates that the primary mechanism at work is the effect of the mean state on ENSO. Our analysis also quantitatively identifies the regions where paleoclimate proxies are needed in order to reduce the existing uncertainties in ENSO-mean state interactions. Hence, this study is a synthesis of observations, model simulations and paleoclimate proxy evidence guided by the fundamental and open question of multi-scale interactions in the tropical Pacific, and illustrates the need for multi-resolution paleoclimate proxies and their potential uses.
Wavelet processing techniques for digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu
1992-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei, E-mail: wei@math.msu.edu
Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topologicalmore » analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.« less
The effect of different control point sampling sequences on convergence of VMAT inverse planning
NASA Astrophysics Data System (ADS)
Pardo Montero, Juan; Fenwick, John D.
2011-04-01
A key component of some volumetric-modulated arc therapy (VMAT) optimization algorithms is the progressive addition of control points to the optimization. This idea was introduced in Otto's seminal VMAT paper, in which a coarse sampling of control points was used at the beginning of the optimization and new control points were progressively added one at a time. A different form of the methodology is also present in the RapidArc optimizer, which adds new control points in groups called 'multiresolution levels', each doubling the number of control points in the optimization. This progressive sampling accelerates convergence, improving the results obtained, and has similarities with the ordered subset algorithm used to accelerate iterative image reconstruction. In this work we have used a VMAT optimizer developed in-house to study the performance of optimization algorithms which use different control point sampling sequences, most of which fall into three different classes: doubling sequences, which add new control points in groups such that the number of control points in the optimization is (roughly) doubled; Otto-like progressive sampling which adds one control point at a time, and equi-length sequences which contain several multiresolution levels each with the same number of control points. Results are presented in this study for two clinical geometries, prostate and head-and-neck treatments. A dependence of the quality of the final solution on the number of starting control points has been observed, in agreement with previous works. We have found that some sequences, especially E20 and E30 (equi-length sequences with 20 and 30 multiresolution levels, respectively), generate better results than a 5 multiresolution level RapidArc-like sequence. The final value of the cost function is reduced up to 20%, such reductions leading to small improvements in dosimetric parameters characterizing the treatments—slightly more homogeneous target doses and better sparing of the organs at risk.
A multiresolution prostate representation for automatic segmentation in magnetic resonance images.
Alvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2017-04-01
Accurate prostate delineation is necessary in radiotherapy processes for concentrating the dose onto the prostate and reducing side effects in neighboring organs. Currently, manual delineation is performed over magnetic resonance imaging (MRI) taking advantage of its high soft tissue contrast property. Nevertheless, as human intervention is a consuming task with high intra- and interobserver variability rates, (semi)-automatic organ delineation tools have emerged to cope with these challenges, reducing the time spent for these tasks. This work presents a multiresolution representation that defines a novel metric and allows to segment a new prostate by combining a set of most similar prostates in a dataset. The proposed method starts by selecting the set of most similar prostates with respect to a new one using the proposed multiresolution representation. This representation characterizes the prostate through a set of salient points, extracted from a region of interest (ROI) that encloses the organ and refined using structural information, allowing to capture main relevant features of the organ boundary. Afterward, the new prostate is automatically segmented by combining the nonrigidly registered expert delineations associated to the previous selected similar prostates using a weighted patch-based strategy. Finally, the prostate contour is smoothed based on morphological operations. The proposed approach was evaluated with respect to the expert manual segmentation under a leave-one-out scheme using two public datasets, obtaining averaged Dice coefficients of 82% ± 0.07 and 83% ± 0.06, and demonstrating a competitive performance with respect to atlas-based state-of-the-art methods. The proposed multiresolution representation provides a feature space that follows a local salient point criteria and a global rule of the spatial configuration among these points to find out the most similar prostates. This strategy suggests an easy adaptation in the clinical routine, as supporting tool for annotation. © 2017 American Association of Physicists in Medicine.
SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.
Li, Dengwang; Yin, Yong
2012-06-01
In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.
Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund
2012-01-01
Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629
Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri
2018-07-01
This paper deals with the implementation of high order semi-Lagrangian particle methods to handle high dimensional Vlasov-Poisson systems. It is based on recent developments in the numerical analysis of particle methods and the paper focuses on specific algorithmic features to handle large dimensions. The methods are tested with uniform particle distributions in particular against a recent multi-resolution wavelet based method on a 4D plasma instability case and a 6D gravitational case. Conservation properties, accuracy and computational costs are monitored. The excellent accuracy/cost trade-off shown by the method opens new perspective for accurate simulations of high dimensional kinetic equations by particle methods.
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
Towards Online Multiresolution Community Detection in Large-Scale Networks
Huang, Jianbin; Sun, Heli; Liu, Yaguang; Song, Qinbao; Weninger, Tim
2011-01-01
The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks. PMID:21887325
Multiresolution Distance Volumes for Progressive Surface Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, D E; Bertram, M; Duchaineau, M A
2002-04-18
We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less
NASA Technical Reports Server (NTRS)
Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.
1996-01-01
Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.
Edge directed image interpolation with Bamberger pyramids
NASA Astrophysics Data System (ADS)
Rosiles, Jose Gerardo
2005-08-01
Image interpolation is a standard feature in digital image editing software, digital camera systems and printers. Classical methods for resizing produce blurred images with unacceptable quality. Bamberger Pyramids and filter banks have been successfully used for texture and image analysis. They provide excellent multiresolution and directional selectivity. In this paper we present an edge-directed image interpolation algorithm which takes advantage of the simultaneous spatial-directional edge localization at the subband level. The proposed algorithm outperform classical schemes like bilinear and bicubic schemes from the visual and numerical point of views.
Analysis of Visual Illusions Using Multiresolution Wavelet Decomposition Based Models
1991-12-01
1962). 22. Hubel , David H. "The Visual Cortex of The Brain," Scientific American, 209(5):54-62 (November 1963). 23. Hubel , David H. and Torsten N...model the visual system. In 1990, Oberndorf, a masters student at the Air Force Institrt, of Technology, tested the Gabor theo y on visual illusion...represento d by x2 + y2 = r 2 in Cartesian space is now more easily expressed by p = r in polar space. The coordinates x and y or p and 0 provide alternate
On uncertainty quantification in hydrogeology and hydrogeophysics
NASA Astrophysics Data System (ADS)
Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud
2017-12-01
Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.
Iterative filtering decomposition based on local spectral evolution kernel
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-01-01
The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559
Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis.
Taherisadr, Mojtaba; Dehzangi, Omid; Parsaei, Hossein
2017-12-13
As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is specifically an issue during continuous EEG recording sessions, and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis or brain-computer interface to identify such artifacts from useful EEG components. In this study, we aim to design a new generic framework in order to process and characterize EEG recording as a multi-component and non-stationary signal with the aim of localizing and identifying its component (e.g., artifact). In the proposed method, we gather three complementary algorithms together to enhance the efficiency of the system. Algorithms include time-frequency (TF) analysis and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction and classification. Then, a combination of spectro-temporal and geometric features are extracted by combining key instantaneous TF space descriptors, which enables the system to characterize the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D TF representation of EEG segments to decompose the given space to various levels of resolution. Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics (e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space, analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is effective in enhancing the EEG artifact identification performance. We also compare the performance of the designed system with another common EEG signal processing technique-namely, 1D wavelet transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.
Extraction of texture features with a multiresolution neural network
NASA Astrophysics Data System (ADS)
Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.
1992-09-01
Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.
Music Identification System Using MPEG-7 Audio Signature Descriptors
You, Shingchern D.; Chen, Wei-Hwa; Chen, Woei-Kae
2013-01-01
This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query) audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system's database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control. PMID:23533359
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Abdessetar, M.; Zhong, Y.
2017-09-01
Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
Multisensor multiresolution data fusion for improvement in classification
NASA Astrophysics Data System (ADS)
Rubeena, V.; Tiwari, K. C.
2016-04-01
The rapid advancements in technology have facilitated easy availability of multisensor and multiresolution remote sensing data. Multisensor, multiresolution data contain complementary information and fusion of such data may result in application dependent significant information which may otherwise remain trapped within. The present work aims at improving classification by fusing features of coarse resolution hyperspectral (1 m) LWIR and fine resolution (20 cm) RGB data. The classification map comprises of eight classes. The class names are Road, Trees, Red Roof, Grey Roof, Concrete Roof, Vegetation, bare Soil and Unclassified. The processing methodology for hyperspectral LWIR data comprises of dimensionality reduction, resampling of data by interpolation technique for registering the two images at same spatial resolution, extraction of the spatial features to improve classification accuracy. In the case of fine resolution RGB data, the vegetation index is computed for classifying the vegetation class and the morphological building index is calculated for buildings. In order to extract the textural features, occurrence and co-occurence statistics is considered and the features will be extracted from all the three bands of RGB data. After extracting the features, Support Vector Machine (SVMs) has been used for training and classification. To increase the classification accuracy, post processing steps like removal of any spurious noise such as salt and pepper noise is done which is followed by filtering process by majority voting within the objects for better object classification.
Multi-resolution model-based traffic sign detection and tracking
NASA Astrophysics Data System (ADS)
Marinas, Javier; Salgado, Luis; Camplani, Massimo
2012-06-01
In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.
Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M
2014-10-01
Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
A general CFD framework for fault-resilient simulations based on multi-resolution information fusion
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-10-01
We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.
NASA Astrophysics Data System (ADS)
Zhu, Aichun; Wang, Tian; Snoussi, Hichem
2018-03-01
This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.
Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng
2016-09-01
Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
NASA Astrophysics Data System (ADS)
Muller, J.-P.; Yershov, V.; Sidiropoulos, P.; Gwinner, K.; Willner, K.; Fanara, L.; Waelisch, M.; van Gasselt, S.; Walter, S.; Ivanov, A.; Cantini, F.; Morley, J. G.; Sprinks, J.; Giordano, M.; Wardlaw, J.; Kim, J.-R.; Chen, W.-T.; Houghton, R.; Bamford, S.
2015-10-01
Understanding the role of different solid surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 8 years, especially in 3D imaging of surface shape (down to resolutions of 10s of cms) and subsequent terrain correction of imagery from orbiting spacecraft. This has led to the potential to be able to overlay different epochs back to the mid-1970s. Within iMars, a processing system has been developed to generate 3D Digital Terrain Models (DTMs) and corresponding OrthoRectified Images (ORIs) fully automatically from NASA MRO HiRISE and CTX stereo-pairs which are coregistered to corresponding HRSC ORI/DTMs. In parallel, iMars has developed a fully automated processing chain for co-registering level-1 (EDR) images from all previous NASA orbital missions to these HRSC ORIs and in the case of HiRISE these are further co-registered to previously co-registered CTX-to-HRSC ORIs. Examples will be shown of these multi-resolution ORIs and the application of different data mining algorithms to change detection using these co-registered images. iMars has recently launched a citizen science experiment to evaluate best practices for future citizen scientist validation of such data mining processed results. An example of the iMars website will be shown along with an embedded Version 0 prototype of a webGIS based on OGC standards.
Multiresolution molecular mechanics: Implementation and efficiency
NASA Astrophysics Data System (ADS)
Biyikli, Emre; To, Albert C.
2017-01-01
Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.
Solar System Visualization (SSV) Project
NASA Technical Reports Server (NTRS)
Todd, Jessida L.
2005-01-01
The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.
Computer Science Techniques Applied to Parallel Atomistic Simulation
NASA Astrophysics Data System (ADS)
Nakano, Aiichiro
1998-03-01
Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.
The LSST Data Mining Research Agenda
NASA Astrophysics Data System (ADS)
Borne, K.; Becla, J.; Davidson, I.; Szalay, A.; Tyson, J. A.
2008-12-01
We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night) multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.
Advanced flight computers for planetary exploration
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1988-01-01
Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.
NASA Astrophysics Data System (ADS)
Huang, Yadong; Gao, Kun; Gong, Chen; Han, Lu; Guo, Yue
2016-03-01
During traditional multi-resolution infrared and visible image fusion processing, the low contrast ratio target may be weakened and become inconspicuous because of the opposite DN values in the source images. So a novel target pseudo-color enhanced image fusion algorithm based on the modified attention model and fast discrete curvelet transformation is proposed. The interesting target regions are extracted from source images by introducing the motion features gained from the modified attention model, and source images are performed the gray fusion via the rules based on physical characteristics of sensors in curvelet domain. The final fusion image is obtained by mapping extracted targets into the gray result with the proper pseudo-color instead. The experiments show that the algorithm can highlight dim targets effectively and improve SNR of fusion image.
Marker optimization for facial motion acquisition and deformation.
Le, Binh H; Zhu, Mingyang; Deng, Zhigang
2013-11-01
A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts. Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh skinning and multiresolution facial performance capture.
Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation
NASA Technical Reports Server (NTRS)
Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R
2006-01-01
The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, Takeshi; Fann, George I.; Beylkin, Gregory
Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
NASA Astrophysics Data System (ADS)
LIU, Yiping; XU, Qing; ZhANG, Heng; LV, Liang; LU, Wanjie; WANG, Dandi
2016-11-01
The purpose of this paper is to solve the problems of the traditional single system for interpretation and draughting such as inconsistent standards, single function, dependence on plug-ins, closed system and low integration level. On the basis of the comprehensive analysis of the target elements composition, map representation and similar system features, a 3D interpretation and draughting integrated service platform for multi-source, multi-scale and multi-resolution geospatial objects is established based on HTML5 and WebGL, which not only integrates object recognition, access, retrieval, three-dimensional display and test evaluation but also achieves collection, transfer, storage, refreshing and maintenance of data about Geospatial Objects and shows value in certain prospects and potential for growth.
Multi-resolution analysis for ear recognition using wavelet features
NASA Astrophysics Data System (ADS)
Shoaib, M.; Basit, A.; Faye, I.
2016-11-01
Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.
3D reconstruction of the final PHILAE landing site: Abydos
NASA Astrophysics Data System (ADS)
Capanna, Claire; Jorda, Laurent; Lamy, Philippe; Gesquière, Gilles; Delmas, Cédric; Durand, Joëlle; Gaudon, Philippe; Jurado, Eric
2015-11-01
The Abydos region is the region of the final landing site of the PHILAE lander. The landing site has been potentially identified on images of this region acquired by the OSIRIS imaging system aboard the orbiter before (Oct 22, 2014) and after (Dec 6-13, 2014) the landing of PHILAE (Lamy et al., in prep.). Assuming that this identification is correct, we reconstructed the topography of Abydos in 3D using a method called ``multiresolution photoclinometry by deformation'' (MPCD, Capanna et al., The Visual Computer, 29(6-8): 825-835, 2013). The method works in two steps: (a) a DTM of this region is extracted from the global MPCD shape model, (b) the resulting triangular mesh is progressively deformed at increasing spatial resolution in order to match a set of 14 images of Abydos at pixel resolutions between 1 and 8 m. The method used to perform the image matching is the L-BFGS-b non-linear optimization (Morales et al., ACM Trans. Math. Softw., 38(1): 1-4, 2011).In spite of the very unfavourable illumination conditions, we achieve a vertical accuracy of about 3 m, while the horizontal sampling is 0.5 m. The accuracy is limited by high incidence angles on the images (about 60 deg on average) combined with a complex topography including numerous cliffs and a few overhangs. We also check the compatibility of the local DTM with the images obtained by the CIVA-P instrument aboard PHILAE. If the Lamy et al. identification is correct, our DTM shows that PHILAE landed in a cavity at the bottom of a small cliff of 8 m height.
A wavelet based method for automatic detection of slow eye movements: a pilot study.
Magosso, Elisa; Provini, Federica; Montagna, Pasquale; Ursino, Mauro
2006-11-01
Electro-oculographic (EOG) activity during the wake-sleep transition is characterized by the appearance of slow eye movements (SEM). The present work describes an algorithm for the automatic localisation of SEM events from EOG recordings. The algorithm is based on a wavelet multiresolution analysis of the difference between right and left EOG tracings, and includes three main steps: (i) wavelet decomposition down to 10 detail levels (i.e., 10 scales), using Daubechies order 4 wavelet; (ii) computation of energy in 0.5s time steps at any level of decomposition; (iii) construction of a non-linear discriminant function expressing the relative energy of high-scale details to both high- and low-scale details. The main assumption is that the value of the discriminant function increases above a given threshold during SEM episodes due to energy redistribution toward higher scales. Ten EOG recordings from ten male patients with obstructive sleep apnea syndrome were used. All tracings included a period from pre-sleep wakefulness to stage 2 sleep. Two experts inspected the tracings separately to score SEMs. A reference set of SEM (gold standard) were obtained by joint examination by both experts. Parameters of the discriminant function were assigned on three tracings (design set) to minimize the disagreement between the system classification and classification by the two experts; the algorithm was then tested on the remaining seven tracings (test set). Results show that the agreement between the algorithm and the gold standard was 80.44+/-4.09%, the sensitivity of the algorithm was 67.2+/-7.37% and the selectivity 83.93+/-8.65%. However, most errors were not caused by an inability of the system to detect intervals with SEM activity against NON-SEM intervals, but were due to a different localisation of the beginning and end of some SEM episodes. The proposed method may be a valuable tool for computerized EOG analysis.
NASA Astrophysics Data System (ADS)
Thenozhi, Suresh; Tang, Yu
2018-01-01
Frequency response functions (FRF) are often used in the vibration controller design problems of mechanical systems. Unlike linear systems, the FRF derivation for nonlinear systems is not trivial due to their complex behaviors. To address this issue, the convergence property of nonlinear systems can be studied using convergence analysis. For a class of time-invariant nonlinear systems termed as convergent systems, the nonlinear FRF can be obtained. The present paper proposes a nonlinear FRF based adaptive vibration controller design for a mechanical system with cubic damping nonlinearity and a satellite system. Here the controller gains are tuned such that a desired closed-loop frequency response for a band of harmonic excitations is achieved. Unlike the system with cubic damping, the satellite system is not convergent, therefore an additional controller is utilized to achieve the convergence property. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller.
Framework for multi-resolution analyses of advanced traffic management strategies [summary].
DOT National Transportation Integrated Search
2017-01-01
Transportation planning relies extensively on software that can simulate and predict travel behavior in response to alternative transportation networks. However, different software packages view traffic at different scales. Some programs are based on...
Machine Learning Predictions of a Multiresolution Climate Model Ensemble
NASA Astrophysics Data System (ADS)
Anderson, Gemma J.; Lucas, Donald D.
2018-05-01
Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.
A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data
NASA Astrophysics Data System (ADS)
Chen, Chuanfa; Li, Yanyan; Li, Wei; Dai, Honglei
2013-08-01
We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.
NASA Astrophysics Data System (ADS)
Goossens, Bart; Aelterman, Jan; Luong, Hi"p.; Pižurica, Aleksandra; Philips, Wilfried
2011-09-01
The shearlet transform is a recent sibling in the family of geometric image representations that provides a traditional multiresolution analysis combined with a multidirectional analysis. In this paper, we present a fast DFT-based analysis and synthesis scheme for the 2D discrete shearlet transform. Our scheme conforms to the continuous shearlet theory to high extent, provides perfect numerical reconstruction (up to floating point rounding errors) in a non-iterative scheme and is highly suitable for parallel implementation (e.g. FPGA, GPU). We show that our discrete shearlet representation is also a tight frame and the redundancy factor of the transform is around 2.6, independent of the number of analysis directions. Experimental denoising results indicate that the transform performs the same or even better than several related multiresolution transforms, while having a significantly lower redundancy factor.
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-08-01
The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry I
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less
NASA Technical Reports Server (NTRS)
Young, G.
1982-01-01
A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.
A Multi-resolution, Multi-epoch Low Radio Frequency Survey of the Kepler K2 Mission Campaign 1 Field
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Hancock, P. J.; Wayth, R. B.; Intema, H.; Jagannathan, P.; Mooley, K.
2016-10-01
We present the first dedicated radio continuum survey of a Kepler K2 mission field, Field 1, covering the North Galactic Cap. The survey is wide field, contemporaneous, multi-epoch, and multi-resolution in nature and was conducted at low radio frequencies between 140 and 200 MHz. The multi-epoch and ultra wide field (but relatively low resolution) part of the survey was provided by 15 nights of observation using the Murchison Widefield Array (MWA) over a period of approximately a month, contemporaneous with K2 observations of the field. The multi-resolution aspect of the survey was provided by the low resolution (4‧) MWA imaging, complemented by non-contemporaneous but much higher resolution (20″) observations using the Giant Metrewave Radio Telescope (GMRT). The survey is, therefore, sensitive to the details of radio structures across a wide range of angular scales. Consistent with other recent low radio frequency surveys, no significant radio transients or variables were detected in the survey. The resulting source catalogs consist of 1085 and 1468 detections in the two MWA observation bands (centered at 154 and 185 MHz, respectively) and 7445 detections in the GMRT observation band (centered at 148 MHz), over 314 square degrees. The survey is presented as a significant resource for multi-wavelength investigations of the more than 21,000 target objects in the K2 field. We briefly examine our survey data against K2 target lists for dwarf star types (stellar types M and L) that have been known to produce radio flares.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
DOT National Transportation Integrated Search
2014-07-01
Pavement Condition surveys are carried out periodically to gather information on pavement distresses that will guide decision-making for maintenance and preservation. Traditional methods involve manual pavement inspections which are time-consuming : ...
A new national mosaic of state landcover data
Thomas, I.; Handley, Lawrence R.; D'Erchia, Frank J.; Charron, Tammy M.
2000-01-01
This presentation reviewed current landcover mapping efforts and presented a new preliminary, national mosaic of Gap Analysis Program (GAP) and Multi-Resolution Land Characteristics Consortium (MRLC) landcover data with a discussion of techniques, problems faced, and future refinements.
Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Torres, Aaron
2015-10-20
Techniques are provided for storing files in a parallel computing system using different resolutions. A method is provided for storing at least one file generated by a distributed application in a parallel computing system. The file comprises one or more of a complete file and a sub-file. The method comprises the steps of obtaining semantic information related to the file; generating a plurality of replicas of the file with different resolutions based on the semantic information; and storing the file and the plurality of replicas of the file in one or more storage nodes of the parallel computing system. The different resolutions comprise, for example, a variable number of bits and/or a different sub-set of data elements from the file. A plurality of the sub-files can be merged to reproduce the file.
Weighted least squares phase unwrapping based on the wavelet transform
NASA Astrophysics Data System (ADS)
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.
Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode
NASA Astrophysics Data System (ADS)
Wu, Gaomin; Long, Yang; Ren, Jie
2018-05-01
We demonstrate symmetric wave propagations in asymmetric nonlinear systems. By solving the nonlinear Schördinger equation, we first analytically prove the existence of symmetric transmission in asymmetric systems with a single nonlinear delta-function interface. We then point out that a finite width of the nonlinear interface region is necessary to produce nonreciprocity in asymmetric systems. However, a geometrical resonant condition for breaking nonreciprocal propagation is then identified theoretically and verified numerically. With such a resonant condition, the nonlinear interface region of finite width behaves like a single nonlinear delta-barrier so that wave propagations in the forward and backward directions are identical under arbitrary incident wave intensity. As such, reciprocity reemerges periodically in the asymmetric nonlinear system when changing the width of interface region. Finally, similar resonant conditions of discrete nonlinear Schördinger equation are discussed. Therefore, we have identified instances of reciprocity that breaking spatial symmetry in nonlinear interface systems is not sufficient to produce nonreciprocal wave propagation.
Zhou, Shengxi; Yan, Bo; Inman, Daniel J
2018-05-09
This paper presents a novel nonlinear piezoelectric energy harvesting system which consists of linear piezoelectric energy harvesters connected by linear springs. In principle, the presented nonlinear system can improve broadband energy harvesting efficiency where magnets are forbidden. The linear spring inevitably produces the nonlinear spring force on the connected harvesters, because of the geometrical relationship and the time-varying relative displacement between two adjacent harvesters. Therefore, the presented nonlinear system has strong nonlinear characteristics. A theoretical model of the presented nonlinear system is deduced, based on Euler-Bernoulli beam theory, Kirchhoff’s law, piezoelectric theory and the relevant geometrical relationship. The energy harvesting enhancement of the presented nonlinear system (when n = 2, 3) is numerically verified by comparing with its linear counterparts. In the case study, the output power area of the presented nonlinear system with two and three energy harvesters is 268.8% and 339.8% of their linear counterparts, respectively. In addition, the nonlinear dynamic response characteristics are analyzed via bifurcation diagrams, Poincare maps of the phase trajectory, and the spectrum of the output voltage.
Nonlinear Flying Qualities Criteria for Large-Amplitude Maneuvers
1984-12-01
theory which are pertinent to the formation of a nonlinear flying qualities methodology. This report surveys nonlinear system theory and describes...the development of an applied flying qualities methodology based on a canonical system theory and using research in relative controllability...The Nonlinear Flying Qualities (NFQ) for Large-Amplitude Maneuvers Program examined promising techniques from nonlinear analysis and nonlinear system
NASA Astrophysics Data System (ADS)
Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea
2014-05-01
The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level-set-based optimization have been developed for the qualitative reconstruction of multiple and disconnected homogeneous scatterers [5]. Finally, the real-time detection and classification of subsurface scatterers has been investigated by means of learning-by-examples (LBE) techniques, such as Support Vector Machines (SVM) [6]. Acknowledgment - This work was partially supported by COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' References [1] M. Salucci, D. Sartori, N. Anselmi, A. Randazzo, G. Oliveri, and A. Massa, 'Imaging Buried Objects within the Second-Order Born Approximation through a Multiresolution Regularized Inexact-Newton Method', 2013 International Symposium on Electromagnetic Theory (EMTS), (Hiroshima, Japan), May 20-24 2013 (invited). [2] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax', Construct. Build. Mater., vol. 19, no. 10, pp.755 -762 2005 [3] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May. 2013. [4] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a Local Shape Function Bayesian Compressive Sensing approach," Journal of Optical Society of America A, vol. 30, no. 6, pp. 1261-1272, 2013. [5] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, "Multiple shapes reconstruction by means of multi-region level sets," IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 5, pp. 2330-2342, May 2010. [6] L. Lizzi, F. Viani, P. Rocca, G. Oliveri, M. Benedetti and A. Massa, "Three-dimensional real-time localization of subsurface objects - From theory to experimental validation," 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-121-II-124, 12-17 July 2009.
FRF decoupling of nonlinear systems
NASA Astrophysics Data System (ADS)
Kalaycıoğlu, Taner; Özgüven, H. Nevzat
2018-03-01
Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure
NASA Astrophysics Data System (ADS)
Huang, Xing-Rong; Jézéquel, Louis; Besset, Sébastien; Li, Lin; Sauvage, Olivier
2018-01-01
This paper describes a simple and fast numerical procedure to study the steady state responses of assembled structures with nonlinearities along continuous interfaces. The proposed strategy is based on a generalized nonlinear modal superposition approach supplemented by a double modal synthesis strategy. The reduced nonlinear modes are derived by combining a single nonlinear mode method with reduction techniques relying on branch modes. The modal parameters containing essential nonlinear information are determined and then employed to calculate the stationary responses of the nonlinear system subjected to various types of excitation. The advantages of the proposed nonlinear modal synthesis are mainly derived in three ways: (1) computational costs are considerably reduced, when analyzing large assembled systems with weak nonlinearities, through the use of reduced nonlinear modes; (2) based on the interpolation models of nonlinear modal parameters, the nonlinear modes introduced during the first step can be employed to analyze the same system under various external loads without having to reanalyze the entire system; and (3) the nonlinear effects can be investigated from a modal point of view by analyzing these nonlinear modal parameters. The proposed strategy is applied to an assembled system composed of plates and nonlinear rubber interfaces. Simulation results have proven the efficiency of this hybrid nonlinear modal synthesis, and the computation time has also been significantly reduced.
Hammerstein system represention of financial volatility processes
NASA Astrophysics Data System (ADS)
Capobianco, E.
2002-05-01
We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.
A Merged IQC/SOS Theory for Analysis and Synthesis of Nonlinear Control Systems
2015-06-23
constraints. As mentioned previously, this enables new applications of IQCs to analyze the robustness of time-varying and nonlinear systems . This...enables new applications of IQCs to analyze the robustness of time-varying and nonlinear systems . This section considers the analysis of nonlinear systems ...AFRL-AFOSR-VA-TR-2016-0008 A Merged IQC/SOS Theory for Analysis and Synthesis of Nonlinear Control Systems Gary Balas REGENTS OF THE UNIVERSITY OF
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
INTEGRATING MESO-AND MICRO-SIMULATION MODELS TO EVALUATE TRAFFIC MANAGEMENT STRATEGIES, YEAR 2
DOT National Transportation Integrated Search
2017-07-04
In the Year 1 Report, the Arizona State University (ASU) Project Team described the development of a hierarchical multi-resolution simulation platform to test proactive traffic management strategies. The scope was to integrate an easily available mic...
MRLC-LAND COVER MAPPING, ACCURACY ASSESSMENT AND APPLICATION RESEARCH
The National Land Cover Database (NLCD), produced by the Multi-Resolution Land Characteristics (MRLC) provides consistently classified land-cover and ancillary data for the United States. These data support many of the modeling and monitoring efforts related to GPRA goals of Cle...
Verma, Gyanendra K; Tiwary, Uma Shanker
2014-11-15
The purpose of this paper is twofold: (i) to investigate the emotion representation models and find out the possibility of a model with minimum number of continuous dimensions and (ii) to recognize and predict emotion from the measured physiological signals using multiresolution approach. The multimodal physiological signals are: Electroencephalogram (EEG) (32 channels) and peripheral (8 channels: Galvanic skin response (GSR), blood volume pressure, respiration pattern, skin temperature, electromyogram (EMG) and electrooculogram (EOG)) as given in the DEAP database. We have discussed the theories of emotion modeling based on i) basic emotions, ii) cognitive appraisal and physiological response approach and iii) the dimensional approach and proposed a three continuous dimensional representation model for emotions. The clustering experiment on the given valence, arousal and dominance values of various emotions has been done to validate the proposed model. A novel approach for multimodal fusion of information from a large number of channels to classify and predict emotions has also been proposed. Discrete Wavelet Transform, a classical transform for multiresolution analysis of signal has been used in this study. The experiments are performed to classify different emotions from four classifiers. The average accuracies are 81.45%, 74.37%, 57.74% and 75.94% for SVM, MLP, KNN and MMC classifiers respectively. The best accuracy is for 'Depressing' with 85.46% using SVM. The 32 EEG channels are considered as independent modes and features from each channel are considered with equal importance. May be some of the channel data are correlated but they may contain supplementary information. In comparison with the results given by others, the high accuracy of 85% with 13 emotions and 32 subjects from our proposed method clearly proves the potential of our multimodal fusion approach. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alderliesten, Tanja; Bosman, Peter A. N.; Sonke, Jan-Jakob; Bel, Arjan
2014-03-01
Currently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is one of the reasons why, despite significant progress, clinical implementation of such techniques has proven to be difficult. The second challenge is to account for large anatomical differences (e.g. large deformations, (dis)appearing structures) that occurred between image acquisitions. In this paper, we study a framework based on multi-objective optimization to improve registration robustness and to simplify tuning for specific applications. Within this framework we specifically consider the use of an advanced model-based evolutionary algorithm for optimization and a dual-dynamic transformation model (i.e. two "non-fixed" grids: one for the source- and one for the target image) to accommodate for large anatomical differences. The framework computes and presents multiple outcomes that represent efficient trade-offs between the different objectives (a so-called Pareto front). In image processing it is common practice, for reasons of robustness and accuracy, to use a multi-resolution strategy. This is, however, only well-established for single-objective registration methods. Here we describe how such a strategy can be realized for our multi-objective approach and compare its results with a single-resolution strategy. For this study we selected the case of prone-supine breast MRI registration. Results show that the well-known advantages of a multi-resolution strategy are successfully transferred to our multi-objective approach, resulting in superior (i.e. Pareto-dominating) outcomes.
Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images
Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong
2015-01-01
In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-09-01
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.
Integrated Multiscale Modeling of Molecular Computing Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Beylkin
2012-03-23
Significant advances were made on all objectives of the research program. We have developed fast multiresolution methods for performing electronic structure calculations with emphasis on constructing efficient representations of functions and operators. We extended our approach to problems of scattering in solids, i.e. constructing fast algorithms for computing above the Fermi energy level. Part of the work was done in collaboration with Robert Harrison and George Fann at ORNL. Specific results (in part supported by this grant) are listed here and are described in greater detail. (1) We have implemented a fast algorithm to apply the Green's function for themore » free space (oscillatory) Helmholtz kernel. The algorithm maintains its speed and accuracy when the kernel is applied to functions with singularities. (2) We have developed a fast algorithm for applying periodic and quasi-periodic, oscillatory Green's functions and those with boundary conditions on simple domains. Importantly, the algorithm maintains its speed and accuracy when applied to functions with singularities. (3) We have developed a fast algorithm for obtaining and applying multiresolution representations of periodic and quasi-periodic Green's functions and Green's functions with boundary conditions on simple domains. (4) We have implemented modifications to improve the speed of adaptive multiresolution algorithms for applying operators which are represented via a Gaussian expansion. (5) We have constructed new nearly optimal quadratures for the sphere that are invariant under the icosahedral rotation group. (6) We obtained new results on approximation of functions by exponential sums and/or rational functions, one of the key methods that allows us to construct separated representations for Green's functions. (7) We developed a new fast and accurate reduction algorithm for obtaining optimal approximation of functions by exponential sums and/or their rational representations.« less
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-01-01
Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037
Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.
Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong
2015-12-12
In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.
Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.
Shen, Lin; Hu, Hao
2014-06-10
We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
On the benefit of DMT modulation in nonlinear VLC systems.
Qian, Hua; Cai, Sunzeng; Yao, Saijie; Zhou, Ting; Yang, Yang; Wang, Xudong
2015-02-09
In a visible light communication (VLC) system, the nonlinear characteristic of the light emitting diode (LED) in transmitter is a limiting factor of system performance. Modern modulation signals with large peak-to-power-ratio (PAPR) suffers uneven distortion. The nonlinear response directly impacts the intensity modulation and direct detection VLC system with pulse-amplitude modulation (PAM). The amplitude of the PAM signal is distorted unevenly and large signal is vulnerable to noise. Orthogonal linear transformations, such as discrete multi-tone (DMT) modulation, can spread the nonlinear effects evenly to each data symbol, thus perform better than PAM signals. In this paper, we provide theoretical analysis on the benefit of DMT modulation in nonlinear VLC system. We show that the DMT modulation is a better choice than the PAM modulation for the VLC system as the DMT modulation is more robust against nonlinearity. We also show that the post-distortion nonlinear elimination method, which is applied at the receiver, can be a reliable solution to the nonlinear VLC system. Simulation results show that the post-distortion greatly improves the system performance for the DMT modulation.
2004 Army Research Office in Review
2004-01-01
23 Uncool Tunable LWIR Microbolometer...but also for speech in multimedia applications. ELECTRONICS Uncooled Tunable LWIR Microbolometer – Multi- or hyper- spectral images contain...Analysis of NURBS Curves and Surfaces Jian-Ao Lian, Prairie View A&M University The multiresolution structure of NURBS ( nonuniform rational B
THEMATIC ACCURACY OF MRLC LAND COVER FOR THE EASTERN UNITED STATES
One objective of the MultiResolution Land Characteristics (MRLC) consortium is to map general land-cover categories for the conterminous United States using Landsat Thematic Mapper (TM) data. Land-cover mapping and classification accuracy assessment are complete for the e...
THEMATIC ACCURACY ASSESSMENT OF REGIONAL SCALE LAND COVER DATA
The Multi-Resolution Land Characteristics (MRLC) consortium, a cooperative effort of several U .S. federal agencies, including. the U.S. Geological Survey (USGS) EROS Data Center (EDC) and the U.S. Environmental Protection Agency (EP A), have jointly conducted the National Land C...
US LAND-COVER MONITORING AND DETECTION OF CHANGES IN SCALE AND CONTEXT OF FOREST
Disparate land-cover mapping programs, previously focused solely on mission-oriented goals, have organized themselves as the Multi-Resolution Land Characteristics (MRLC) Consortium with a unified goal of producing land-cover nationwide at routine intervals. Under MRLC, United Sta...
Multiresolution Analysis by Infinitely Differentiable Compactly Supported Functions
1992-09-01
Math. Surveys 45:1 (1990), 87-120. [I] (;. Strang and G. Fix, A Fourier analysis of the finite element variational method. C.I.M.F. I 1 Ciclo 1971, in Constructi’c Aspects of Functional Analyszs ed. G. Geymonat 1973, 793-840. 10
Learning target masks in infrared linescan imagery
NASA Astrophysics Data System (ADS)
Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter
1997-04-01
In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.
NASA Astrophysics Data System (ADS)
Barajas-Solano, D. A.; Tartakovsky, A. M.
2017-12-01
We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.
On analysis of electroencephalogram by multiresolution-based energetic approach
NASA Astrophysics Data System (ADS)
Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer
2013-10-01
Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.
Multiresolution multiscale active mask segmentation of fluorescence microscope images
NASA Astrophysics Data System (ADS)
Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena
2009-08-01
We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.
Progressive simplification and transmission of building polygons based on triangle meshes
NASA Astrophysics Data System (ADS)
Li, Hongsheng; Wang, Yingjie; Guo, Qingsheng; Han, Jiafu
2010-11-01
Digital earth is a virtual representation of our planet and a data integration platform which aims at harnessing multisource, multi-resolution, multi-format spatial data. This paper introduces a research framework integrating progressive cartographic generalization and transmission of vector data. The progressive cartographic generalization provides multiple resolution data from coarse to fine as key scales and increments between them which is not available in traditional generalization framework. Based on the progressive simplification algorithm, the building polygons are triangulated into meshes and encoded according to the simplification sequence of two basic operations, edge collapse and vertex split. The map data at key scales and encoded increments between them are stored in a multi-resolution file. As the client submits requests to the server, the coarsest map is transmitted first and then the increments. After data decoding and mesh refinement the building polygons with more details will be visualized. Progressive generalization and transmission of building polygons is demonstrated in the paper.
NASA Astrophysics Data System (ADS)
Maslova, I.; Ticlavilca, A. M.; McKee, M.
2012-12-01
There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.
Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F
2014-11-21
Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.
Design of a nonlinear torsional vibration absorber
NASA Astrophysics Data System (ADS)
Tahir, Ammaar Bin
Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is larger than that in the latter. A nonlinear absorber design has been proposed comprising of thin beams as elastic elements. The geometric configuration of the proposed design has been shown to provide cubic stiffness nonlinearity in torsion. The values of design variables, namely the strength of nonlinearity alpha and torsional stiffness kalpha, were obtained by optimizing dimensions and material properties of the beams for a maximum vibration energy dissipation in the nonlinear absorber. A parametric study has also been conducted to analyze the effect of the magnitude of excitation provided to the system on the performance of a nonlinear absorber. It has been shown that the nonlinear absorber turns out to be more effective in terms of energy dissipation as compared to a linear absorber with an increase in the excitation level applied to the system.
Spatial nonlinearities: Cascading effects in the earth system
Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.
2006-01-01
Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).
2D-3D registration using gradient-based MI for image guided surgery systems
NASA Astrophysics Data System (ADS)
Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James
2011-03-01
Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.
Telescopic multi-resolution augmented reality
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold
2014-05-01
To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.
Liao, Ke; Zhu, Min; Ding, Lei
2013-08-01
The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng
2015-01-12
A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
NASA Astrophysics Data System (ADS)
Stevanović Hedrih, K.
2008-02-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadtke, J.B.; Bulsara, A.
These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)
Forecasting short-term data center network traffic load with convolutional neural networks.
Mozo, Alberto; Ordozgoiti, Bruno; Gómez-Canaval, Sandra
2018-01-01
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.
Forecasting short-term data center network traffic load with convolutional neural networks
Ordozgoiti, Bruno; Gómez-Canaval, Sandra
2018-01-01
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution. PMID:29408936
Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; LeMoigne, Jacqueline
2003-01-01
The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry
2011-11-14
Engineering, accepted, 2011. [6] M. S. Floater . Parametrization and smooth approximation of surface triangulations. Com- puter Aided Geometric Design...14(3):231 – 250, 1997. [7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Advances in Multiresolution for Geometric
Completion of the National Land Cover Database (NLCD) 1992-2001 Land Cover Change Retrofit Product
The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods betwe...
Asymptotic Stability of Interconnected Passive Non-Linear Systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
NASA Technical Reports Server (NTRS)
Gunter, E. J.; Humphris, R. R.; Springer, H.
1983-01-01
In this paper, some of the effects of unbalance on the nonlinear response and stability of flexible rotor-bearing systems is presented from both a theoretical and experimental standpoint. In a linear system, operating above its stability threshold, the amplitude of motion grows exponentially with time and the orbits become unbounded. In an actual system, this is not necessarily the case. The actual amplitudes of motion may be bounded due to various nonlinear effects in the system. These nonlinear effects cause limit cycles of motion. Nonlinear effects are inherent in fluid film bearings and seals. Other contributors to nonlinear effects are shafts, couplings and foundations. In addition to affecting the threshold of stability, the nonlinear effects can cause jump phenomena to occur at not only the critical speeds, but also at stability onset or restabilization speeds.
NASA Astrophysics Data System (ADS)
Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.
2018-01-01
In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.
NASA Astrophysics Data System (ADS)
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
The effect of system nonlinearities on system noise statistics
NASA Technical Reports Server (NTRS)
Robinson, L. H., Jr.
1971-01-01
The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.
Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor
Dostal, Petr
2015-01-01
Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
Investigation of a Nonlinear Control System
NASA Technical Reports Server (NTRS)
Flugge-Lotz, I; Taylor, C F; Lindberg, H E
1958-01-01
A discontinuous variation of coefficients of the differential equation describing the linear control system before nonlinear elements are added is studied in detail. The nonlinear feedback is applied to a second-order system. Simulation techniques are used to study performance of the nonlinear control system and to compare it with the linear system for a wide variety of inputs. A detailed quantitative study of the influence of relay delays and of a transport delay is presented.
Completion of the 2006 National Land Cover Database Update for the Conterminous United States
Under the organization of the Multi-Resolution Land Characteristics (MRLC) Consortium, the National Land Cover Database (NLCD) has been updated to characterize both land cover and land cover change from 2001 to 2006. An updated version of NLCD 2001 (Version 2.0) is also provided....
SAMPLE SELECTION OF MRLC'S NLCD LAND COVER DATA FOR THEMATIC ACCURACY ASSESSMENT
The Multi-Resolution Land Characteristics (MRLC) consortium was formed in the early 1990s to cost- effectively acquire Landsat TM satellite data for the conterminous United States. One of the MRLC's objectives was to develop national land-cover data (NLCD) for the conterminous Un...
Low-Latency Embedded Vision Processor (LLEVS)
2016-03-01
26 3.2.3 Task 3 Projected Performance Analysis of FPGA- based Vision Processor ........... 31 3.2.3.1 Algorithms Latency Analysis ...Programmable Gate Array Custom Hardware for Real- Time Multiresolution Analysis . ............................................... 35...conduct data analysis for performance projections. The data acquired through measurements , simulation and estimation provide the requisite platform for
Solving Large Problems with a Small Working Memory
ERIC Educational Resources Information Center
Pizlo, Zygmunt; Stefanov, Emil
2013-01-01
We describe an important elaboration of our multiscale/multiresolution model for solving the Traveling Salesman Problem (TSP). Our previous model emulated the non-uniform distribution of receptors on the human retina and the shifts of visual attention. This model produced near-optimal solutions of TSP in linear time by performing hierarchical…
Linear and nonlinear schemes applied to pitch control of wind turbines.
Geng, Hua; Yang, Geng
2014-01-01
Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
INSIGHT: RFID and Bluetooth enabled automated space for the blind and visually impaired.
Ganz, Aura; Gandhi, Siddhesh Rajan; Wilson, Carole; Mullett, Gary
2010-01-01
In this paper we introduce INSIGHT, an indoor location tracking and navigation system to help the blind and visually impaired to easily navigate to their chosen destination in a public building. INSIGHT makes use of RFID and Bluetooth technology deployed within the building to locate and track the users. The PDA based user device interacts with INSIGHT server and provides the user navigation instructions in an audio form. The proposed system provides multi-resolution localization of the users, facilitating the provision of accurate navigation instructions when the user is in the vicinity of the RFID tags as well as accommodating a PANIC button which provides navigation instructions when the user is anywhere in the building. Moreover, the system will continuously monitor the zone in which the user walks. This will enable the system to identify if the user is located in the wrong zone of the building which may not lead to the desired destination.
NASA Astrophysics Data System (ADS)
Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.
2017-10-01
Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.
NASA Astrophysics Data System (ADS)
Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.
2017-10-01
In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.
NASA Astrophysics Data System (ADS)
Koo, Min-Sung; Choi, Ho-Lim
2018-01-01
In this paper, we consider a control problem for a class of uncertain nonlinear systems in which there exists an unknown time-varying delay in the input and lower triangular nonlinearities. Usually, in the existing results, input delays have been coupled with feedforward (or upper triangular) nonlinearities; in other words, the combination of lower triangular nonlinearities and input delay has been rare. Motivated by the existing controller for input-delayed chain of integrators with nonlinearity, we show that the control of input-delayed nonlinear systems with two particular types of lower triangular nonlinearities can be done. As a control solution, we propose a newly designed feedback controller whose main features are its dynamic gain and non-predictor approach. Three examples are given for illustration.
Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives
NASA Astrophysics Data System (ADS)
Yao, Jianyong
2018-06-01
Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.
NASA Astrophysics Data System (ADS)
Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat
2018-07-01
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.
Nonlinear dynamics and control of a vibrating rectangular plate
NASA Technical Reports Server (NTRS)
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
Optimization-Based Robust Nonlinear Control
2006-08-01
ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in
Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems
Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...
Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?
Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A
2017-12-01
Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.
Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background
NASA Astrophysics Data System (ADS)
Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo
2016-06-01
A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.
Nonlinear normal modes in electrodynamic systems: A nonperturbative approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudrin, A. V., E-mail: kud@rf.unn.ru; Kudrina, O. A.; Petrov, E. Yu.
2016-06-15
We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytic solutions of the nonlinear field equations are employed to study the mode properties in detail. Based on such a nonperturbative approach, we rigorously prove that the total energy of free nonlinear oscillations in a distributed conservative system, such as that considered in our work, can exactly coincide with the sum of energies of the normal modes of the system. This fact implies that the energy orthogonality property, which has so far been known tomore » hold only for linear oscillations and fields, can also be observed in a nonlinear oscillatory system.« less
Linear and non-linear dynamic models of a geared rotor-bearing system
NASA Technical Reports Server (NTRS)
Kahraman, Ahmet; Singh, Rajendra
1990-01-01
A three degree of freedom non-linear model of a geared rotor-bearing system with gear backlash and radial clearances in rolling element bearings is proposed here. This reduced order model can be used to describe the transverse-torsional motion of the system. It is justified by comparing the eigen solutions yielded by corresponding linear model with the finite element method results. Nature of nonlinearities in bearings is examined and two approximate nonlinear stiffness functions are proposed. These approximate bearing models are verified by comparing their frequency responses with the results given by the exact form of nonlinearity. The proposed nonlinear dynamic model of the geared rotor-bearing system can be used to investigate the dynamic behavior and chaos.
NASA Astrophysics Data System (ADS)
Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.
2013-12-01
Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.
NASA Astrophysics Data System (ADS)
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Robust nonlinear variable selective control for networked systems
NASA Astrophysics Data System (ADS)
Rahmani, Behrooz
2016-10-01
This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
Short-Time Nonlinear Effects in the Exciton-Polariton System
NASA Astrophysics Data System (ADS)
Guevara, Cristi D.; Shipman, Stephen P.
2018-04-01
In the exciton-polariton system, a linear dispersive photon field is coupled to a nonlinear exciton field. Short-time analysis of the lossless system shows that, when the photon field is excited, the time required for that field to exhibit nonlinear effects is longer than the time required for the nonlinear Schrödinger equation, in which the photon field itself is nonlinear. When the initial condition is scaled by ɛ ^α , it is found that the relative error committed by omitting the nonlinear term in the exciton-polariton system remains within ɛ for all times up to t=Cɛ ^β , where β =(1-α (p-1))/(p+2). This is in contrast to β =1-α (p-1) for the nonlinear Schrödinger equation. The result is proved for solutions in H^s(R^n) for s>n/2. Numerical computations indicate that the results are sharp and also hold in L^2(R^n).
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
Equivalent reduced model technique development for nonlinear system dynamic response
NASA Astrophysics Data System (ADS)
Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet
2013-04-01
The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.
Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina
2017-10-11
Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.
2009-06-01
Center Geotechnical and Structures Laboratory (ERDC-GSL). Their contributions include the technical integration work of ANVEL , OneSAF, and MATREX...6 3.1 ANVEL Overview...15 4.4.3. OneSAF Tasks ................................................................................. 16 4.4.4. OneSAF/ ANVEL Scenario Execution
Stratum Weight Determination Using Shortest Path Algorithm
Susan L. King
2005-01-01
Forest Inventory and Analysis uses poststratification to calculate resource estimates. Each county has a different stratification, and the stratification may differ depending on the number of panels of data available. A ?5 by 5 sum? filter was passed over the reclassified forest/nonforest Multi-Resolution Landscape Characterization image used in Phase 1, generating an...
Remote Sensing Precision Requirements For FIA Estimation
Mark H. Hansen
2001-01-01
In this study the National Land Cover Data (NLCD) available from the Multi-Resolution Land Characteristics Consortium (MRLC) is used for stratification in the estimation of forest area, timberland area, and growing-stock volume from the first year (1999) of annual FIA data collected in Indiana, Iowa, Minnesota, and Missouri. These estimates show that with improvements...
NASA Astrophysics Data System (ADS)
Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.
2013-12-01
Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.
Multi-resolution Land Characteristics Consortium ...
... ui com 'D-' I OCX i) ai ae > • i — ci bio i ..... KM ki o.^-«-minm t-uiwoj • in «ii k _._, o LIU ll»- 4^UI ii a: OC k • k • O « -iff Ok i- OO • cc k •• o* tl II •o ii k k ...
Wavelet-based hierarchical surface approximation from height fields
Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2004-01-01
This paper presents a novel hierarchical approach to triangular mesh generation from height fields. A wavelet-based multiresolution analysis technique is used to estimate local shape information at different levels of resolution. Using predefined templates at the coarsest level, the method constructs an initial triangulation in which underlying object shapes are well...
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
USDA-ARS?s Scientific Manuscript database
Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal ...
A multiresolution halftoning algorithm for progressive display
NASA Astrophysics Data System (ADS)
Mukherjee, Mithun; Sharma, Gaurav
2005-01-01
We describe and implement an algorithmic framework for memory efficient, 'on-the-fly' halftoning in a progressive transmission environment. Instead of a conventional approach which repeatedly recalls the continuous tone image from memory and subsequently halftones it for display, the proposed method achieves significant memory efficiency by storing only the halftoned image and updating it in response to additional information received through progressive transmission. Thus the method requires only a single frame-buffer of bits for storage of the displayed binary image and no additional storage is required for the contone data. The additional image data received through progressive transmission is accommodated through in-place updates of the buffer. The method is thus particularly advantageous for high resolution bi-level displays where it can result in significant savings in memory. The proposed framework is implemented using a suitable multi-resolution, multi-level modification of error diffusion that is motivated by the presence of a single binary frame-buffer. Aggregates of individual display bits constitute the multiple output levels at a given resolution. This creates a natural progression of increasing resolution with decreasing bit-depth.
Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-09-01
Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Probabilistic multi-resolution human classification
NASA Astrophysics Data System (ADS)
Tu, Jun; Ran, H.
2006-02-01
Recently there has been some interest in using infrared cameras for human detection because of the sharply decreasing prices of infrared cameras. The training data used in our work for developing the probabilistic template consists images known to contain humans in different poses and orientation but having the same height. Multiresolution templates are performed. They are based on contour and edges. This is done so that the model does not learn the intensity variations among the background pixels and intensity variations among the foreground pixels. Each template at every level is then translated so that the centroid of the non-zero pixels matches the geometrical center of the image. After this normalization step, for each pixel of the template, the probability of it being pedestrian is calculated based on the how frequently it appears as 1 in the training data. We also use periodicity gait to verify the pedestrian in a Bayesian manner for the whole blob in a probabilistic way. The videos had quite a lot of variations in the scenes, sizes of people, amount of occlusions and clutter in the backgrounds as is clearly evident. Preliminary experiments show the robustness.
Uncertainty Quantification in Multi-Scale Coronary Simulations Using Multi-resolution Expansion
NASA Astrophysics Data System (ADS)
Tran, Justin; Schiavazzi, Daniele; Ramachandra, Abhay; Kahn, Andrew; Marsden, Alison
2016-11-01
Computational simulations of coronary flow can provide non-invasive information on hemodynamics that can aid in surgical planning and research on disease propagation. In this study, patient-specific geometries of the aorta and coronary arteries are constructed from CT imaging data and finite element flow simulations are carried out using the open source software SimVascular. Lumped parameter networks (LPN), consisting of circuit representations of vascular hemodynamics and coronary physiology, are used as coupled boundary conditions for the solver. The outputs of these simulations depend on a set of clinically-derived input parameters that define the geometry and boundary conditions, however their values are subjected to uncertainty. We quantify the effects of uncertainty from two sources: uncertainty in the material properties of the vessel wall and uncertainty in the lumped parameter models whose values are estimated by assimilating patient-specific clinical and literature data. We use a generalized multi-resolution chaos approach to propagate the uncertainty. The advantages of this approach lies in its ability to support inputs sampled from arbitrary distributions and its built-in adaptivity that efficiently approximates stochastic responses characterized by steep gradients.
NASA Astrophysics Data System (ADS)
Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng
2009-02-01
Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.
Nonrigid Image Registration in Digital Subtraction Angiography Using Multilevel B-Spline
2013-01-01
We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026
Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoa T. Nguyen; Stone, Daithi; E. Wes Bethel
2016-01-01
An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different casemore » studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.« less
Multiresolution generalized N dimension PCA for ultrasound image denoising
2014-01-01
Background Ultrasound images are usually affected by speckle noise, which is a type of random multiplicative noise. Thus, reducing speckle and improving image visual quality are vital to obtaining better diagnosis. Method In this paper, a novel noise reduction method for medical ultrasound images, called multiresolution generalized N dimension PCA (MR-GND-PCA), is presented. In this method, the Gaussian pyramid and multiscale image stacks on each level are built first. GND-PCA as a multilinear subspace learning method is used for denoising. Each level is combined to achieve the final denoised image based on Laplacian pyramids. Results The proposed method is tested with synthetically speckled and real ultrasound images, and quality evaluation metrics, including MSE, SNR and PSNR, are used to evaluate its performance. Conclusion Experimental results show that the proposed method achieved the lowest noise interference and improved image quality by reducing noise and preserving the structure. Our method is also robust for the image with a much higher level of speckle noise. For clinical images, the results show that MR-GND-PCA can reduce speckle and preserve resolvable details. PMID:25096917
Multiresolution molecular mechanics: Surface effects in nanoscale materials
NASA Astrophysics Data System (ADS)
Yang, Qingcheng; To, Albert C.
2017-05-01
Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
General implementation of arbitrary nonlinear quadrature phase gates
NASA Astrophysics Data System (ADS)
Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.
NASA Astrophysics Data System (ADS)
Wu, R. Q.; Zhang, W.; Yao, M. H.
2018-02-01
In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.
Nonlinear analysis of a rotor-bearing system using describing functions
NASA Astrophysics Data System (ADS)
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
Hołowko, Elwira; Januszkiewicz, Kamil; Bolewicki, Paweł; Sitnik, Robert; Michoński, Jakub
2016-10-01
In forensic documentation with bloodstain pattern analysis (BPA) it is highly desirable to obtain non-invasively overall documentation of a crime scene, but also register in high resolution single evidence objects, like bloodstains. In this study, we propose a hierarchical 3D scanning platform designed according to the top-down approach known from the traditional forensic photography. The overall 3D model of a scene is obtained via integration of laser scans registered from different positions. Some parts of a scene being particularly interesting are documented using midrange scanner, and the smallest details are added in the highest resolution as close-up scans. The scanning devices are controlled using developed software equipped with advanced algorithms for point cloud processing. To verify the feasibility and effectiveness of multi-resolution 3D scanning in crime scene documentation, our platform was applied to document a murder scene simulated by the BPA experts from the Central Forensic Laboratory of the Police R&D, Warsaw, Poland. Applying the 3D scanning platform proved beneficial in the documentation of a crime scene combined with BPA. The multi-resolution 3D model enables virtual exploration of a scene in a three-dimensional environment, distance measurement, and gives a more realistic preservation of the evidences together with their surroundings. Moreover, high-resolution close-up scans aligned in a 3D model can be used to analyze bloodstains revealed at the crime scene. The result of BPA such as trajectories, and the area of origin are visualized and analyzed in an accurate model of a scene. At this stage, a simplified approach considering the trajectory of blood drop as a straight line is applied. Although the 3D scanning platform offers a new quality of crime scene documentation with BPA, some of the limitations of the technique are also mentioned. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Le; Mao, Xiaobing; Ma, Zhexuan
2018-02-01
This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
NASA Astrophysics Data System (ADS)
Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.
2018-05-01
In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.
Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A
2008-08-01
A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.
An experimental study of nonlinear dynamic system identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1990-01-01
A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Grunberg, D. B.
1986-01-01
A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
NASA Astrophysics Data System (ADS)
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Controllability in nonlinear systems
NASA Technical Reports Server (NTRS)
Hirschorn, R. M.
1975-01-01
An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.
A Teaching and Learning Sequence about the Interplay of Chance and Determinism in Nonlinear Systems
ERIC Educational Resources Information Center
Stavrou, D.; Duit, R.; Komorek, M.
2008-01-01
A teaching and learning sequence aimed at introducing upper secondary school students to the interplay between chance and determinism in nonlinear systems is presented. Three experiments concerning nonlinear systems (deterministic chaos, self-organization and fractals) and one experiment concerning linear systems are introduced. Thirty upper…
Reservoir Computing Beyond Memory-Nonlinearity Trade-off.
Inubushi, Masanobu; Yoshimura, Kazuyuki
2017-08-31
Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be expected to shed light on how information is stored and processed in nonlinear dynamical systems, potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir endowed with both linear and nonlinear dynamics and show that it improves the performance of information processing. Interestingly, for some tasks, significant improvements are observed by adding a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, the effect of the mixture reservoir is numerically verified for a simple function approximation task and for more complex tasks.
The influence of and the identification of nonlinearity in flexible structures
NASA Technical Reports Server (NTRS)
Zavodney, Lawrence D.
1988-01-01
Several models were built at NASA Langley and used to demonstrate the following nonlinear behavior: internal resonance in a free response, principal parametric resonance and subcritical instability in a cantilever beam-lumped mass structure, combination resonance in a parametrically excited flexible beam, autoparametric interaction in a two-degree-of-freedom system, instability of the linear solution, saturation of the excited mode, subharmonic bifurcation, and chaotic responses. A video tape documenting these phenomena was made. An attempt to identify a simple structure consisting of two light-weight beams and two lumped masses using the Eigensystem Realization Algorithm showed the inherent difficulty of using a linear based theory to identify a particular nonlinearity. Preliminary results show the technique requires novel interpretation, and hence may not be useful for structural modes that are coupled by a guadratic nonlinearity. A literature survey was also completed on recent work in parametrically excited nonlinear system. In summary, nonlinear systems may possess unique behaviors that require nonlinear identification techniques based on an understanding of how nonlinearity affects the dynamic response of structures. In this was, the unique behaviors of nonlinear systems may be properly identified. Moreover, more accutate quantifiable estimates can be made once the qualitative model has been determined.
Nonlinear stability research on the hydraulic system of double-side rolling shear.
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
Nonlinear stability research on the hydraulic system of double-side rolling shear
NASA Astrophysics Data System (ADS)
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
Nonlinear vibration of a coupled high- Tc superconducting levitation system
NASA Astrophysics Data System (ADS)
Sugiura, T.; Inoue, T.; Ura, H.
2004-10-01
High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.
Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system
NASA Astrophysics Data System (ADS)
Kurt, Mehmet; Moore, Keegan J.; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-05-01
We consider the application of a new nonlinear model updating strategy to a computational benchmark system. The approach relies on analyzing system response time series in the frequency-energy domain by constructing both Hamiltonian and forced and damped frequency-energy plots (FEPs). The system parameters are then characterized and updated by matching the backbone branches of the FEPs with the frequency-energy wavelet transforms of experimental and/or computational time series. The main advantage of this method is that no nonlinearity model is assumed a priori, and the system model is updated solely based on simulation and/or experimental measured time series. By matching the frequency-energy plots of the benchmark system and its reduced-order model, we show that we are able to retrieve the global strongly nonlinear dynamics in the frequency and energy ranges of interest, identify bifurcations, characterize local nonlinearities, and accurately reconstruct time series. We apply the proposed methodology to a benchmark problem, which was posed to the system identification community prior to the IMAC XXXII (2014) and XXXIII (2015) Conferences as a "Round Robin Exercise on Nonlinear System Identification". We show that we are able to identify the parameters of the non-linear element in the problem with a priori knowledge about its position.
Robust approximation-free prescribed performance control for nonlinear systems and its application
NASA Astrophysics Data System (ADS)
Sun, Ruisheng; Na, Jing; Zhu, Bin
2018-02-01
This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.
Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan
2013-10-01
A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.
Tunneling induced absorption with competing Nonlinearities.
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-12-13
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play
NASA Astrophysics Data System (ADS)
Huang, Rui; Hu, Haiyan; Zhao, Yonghui
2013-10-01
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.
Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong
2017-09-01
In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.
Global Optimal Trajectory in Chaos and NP-Hardness
NASA Astrophysics Data System (ADS)
Latorre, Vittorio; Gao, David Yang
This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
NASA Astrophysics Data System (ADS)
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized by the cantilever-surface mechanism. The optimization results show that the 2DOF nonlinear system presents the best average performance when the excitation signals have three possible forms. Moreover, we observe that while for the linear systems the optimal performance is obtained for small values of the electromagnetic damping, for the 2DOF nonlinear system optimal performance is achieved for large values of damping. This feature is of particular importance for the system's robustness to parasitic damping.
properties, a number of intriguing observations have also been noted in the dependencies of transport properties upon the physicochemical parameters...addition of (non-conducting) particles would block the diffusion pathways (by a factor which depends only the loading of the fillers) and lead to reduction in the conductivity of the ions.
This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ) model simulations for 2002 - 2006 using both 36-km and 12-km horizontal grid spacing, with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (...
Multi-Resolution Imaging of Electron Dynamics in Nanostructure Interfaces
2010-07-27
metallic carbon nanotubes from semiconducting ones. In pentacene transistors, we used scanning photocurrent microscopy to study spatially resolved...photoelectric response of pentacene thin films, which showed that point contacts formed near the hole injection points limit the overall performance of the...photothermal current microscopy, carbon nanotube transistor, pentacene transistor, contact resistance, hole injection 16. SECURITY CLASSIFICATION OF
NASA Astrophysics Data System (ADS)
Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent
2018-02-01
We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.
2003-01-01
The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.
Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity
NASA Astrophysics Data System (ADS)
Jeevarekha, A.; Paul Asir, M.; Philominathan, P.
2016-06-01
This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Li, Yongming; Tong, Shaocheng
2017-06-28
In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.
Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-05-01
Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1974-01-01
A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.
2017-01-01
In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less
Parameter and Structure Inference for Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Neural Network Control of a Magnetically Suspended Rotor System
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Brown, Gerald; Johnson, Dexter
1997-01-01
Abstract Magnetic bearings offer significant advantages because of their noncontact operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. This paper discusses the use of a neural network as a nonlinear controller that circumvents system nonlinearity. A neural network controller was well trained and successfully demonstrated on a small magnetic bearing rig. This work demonstrated the feasibility of using a neural network to control nonlinear magnetic bearings and systems with unknown dynamics.
Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob
2007-01-01
For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.
Tunneling induced absorption with competing Nonlinearities
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-01-01
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303
Special class of nonlinear damping models in flexible space structures
NASA Technical Reports Server (NTRS)
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
Li, Yongming; Ma, Zhiyao; Tong, Shaocheng
2017-09-01
The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Fan, Quan-Yong; Yang, Guang-Hong
2017-01-01
The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Automated reverse engineering of nonlinear dynamical systems
Bongard, Josh; Lipson, Hod
2007-01-01
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated “reverse engineering” approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future. PMID:17553966
Automated reverse engineering of nonlinear dynamical systems.
Bongard, Josh; Lipson, Hod
2007-06-12
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated "reverse engineering" approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.
Geng, Qi; Zhu, Ka-Di
2016-07-10
We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.
Irrationality and Quasiperiodicity in Driven Nonlinear Systems
NASA Astrophysics Data System (ADS)
Cubero, David; Casado-Pascual, Jesús; Renzoni, Ferruccio
2014-05-01
We analyze the relationship between irrationality and quasiperiodicity in nonlinear driven systems. To that purpose, we consider a nonlinear system whose steady-state response is very sensitive to the periodic or quasiperiodic character of the input signal. In the infinite time limit, an input signal consisting of two incommensurate frequencies will be recognized by the system as quasiperiodic. We show that this is, in general, not true in the case of finite interaction times. An irrational ratio of the driving frequencies of the input signal is not sufficient for it to be recognized by the nonlinear system as quasiperiodic, resulting in observations which may differ by several orders of magnitude from the expected quasiperiodic behavior. Thus, the system response depends on the nature of the irrational ratio, as well as the observation time. We derive a condition for the input signal to be identified by the system as quasiperiodic. Such a condition also takes into account the sub-Fourier response of the nonlinear system.
General purpose nonlinear system solver based on Newton-Krylov method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-12-01
KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].
Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Martin, Corless
2004-01-01
We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.
Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua
2016-11-14
In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.
Graph configuration model based evaluation of the education-occupation match
2018-01-01
To study education—occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education. PMID:29509783
Land cover characterization and land surface parameterization research
Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.
1997-01-01
The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.
NASA Astrophysics Data System (ADS)
Magazù, S.; Migliardo, F.; Vertessy, B. G.; Caccamo, M. T.
2013-10-01
In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å-1 ÷ 4.27 Å-1. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.
Graph configuration model based evaluation of the education-occupation match.
Gadar, Laszlo; Abonyi, Janos
2018-01-01
To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.
Liborg: a lidar-based robot for efficient 3D mapping
NASA Astrophysics Data System (ADS)
Vlaminck, Michiel; Luong, Hiep; Philips, Wilfried
2017-09-01
In this work we present Liborg, a spatial mapping and localization system that is able to acquire 3D models on the y using data originated from lidar sensors. The novelty of this work is in the highly efficient way we deal with the tremendous amount of data to guarantee fast execution times while preserving sufficiently high accuracy. The proposed solution is based on a multi-resolution technique based on octrees. The paper discusses and evaluates the main benefits of our approach including its efficiency regarding building and updating the map and its compactness regarding compressing the map. In addition, the paper presents a working prototype consisting of a robot equipped with a Velodyne Lidar Puck (VLP-16) and controlled by a Raspberry Pi serving as an independent acquisition platform.
Microhartree precision in density functional theory calculations
NASA Astrophysics Data System (ADS)
Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia
2018-04-01
To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.
NASA Astrophysics Data System (ADS)
Avitabile, Peter; O'Callahan, John
2009-01-01
Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.
Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.
Zhao, Ling; Cheng, Haiyan; Wang, Tao
2018-02-01
A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of framelets for breast cancer diagnosis.
Thivya, K S; Sakthivel, P; Venkata Sai, P M
2016-01-01
Breast cancer is the second threatening tumor among the women. The effective way of reducing breast cancer is its early detection which helps to improve the diagnosing process. Digital mammography plays a significant role in mammogram screening at earlier stage of breast carcinoma. Even though, it is very difficult to find accurate abnormality in prevalent screening by radiologists. But the possibility of precise breast cancer screening is encouraged by predicting the accurate type of abnormality through Computer Aided Diagnosis (CAD) systems. The two most important indicators of breast malignancy are microcalcifications and masses. In this study, framelet transform, a multiresolutional analysis is investigated for the classification of the above mentioned two indicators. The statistical and co-occurrence features are extracted from the framelet decomposed mammograms with different resolution levels and support vector machine is employed for classification with k-fold cross validation. This system achieves 94.82% and 100% accuracy in normal/abnormal classification (stage I) and benign/malignant classification (stage II) of mass classification system and 98.57% and 100% for microcalcification system when using the MIAS database.
Final Project Report. Scalable fault tolerance runtime technology for petascale computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Sriram; Sadayappan, P
With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been amore » considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.« less
NASA Astrophysics Data System (ADS)
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
NASA Technical Reports Server (NTRS)
Callier, F. M.; Desoer, C. A.
1973-01-01
A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.
A deep belief network with PLSR for nonlinear system modeling.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli
2018-08-01
Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems
NASA Astrophysics Data System (ADS)
Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai
2017-09-01
In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.
Simulation and measurement of nonlinear behavior in a high-power test cell.
Harvey, Gerald; Gachagan, Anthony
2011-04-01
High-power ultrasound has many diverse uses in process applications in industries ranging from food to pharmaceutical. Because cavitation is frequently a desirable effect within many high-power, low-frequency systems, these systems are commonly expected to feature highly nonlinear acoustic propagation because of the high input levels employed. This generation of harmonics significantly alters the field profile compared with that of a linear system, making accurate field modeling difficult. However, when the short propagation distances involved are considered, it is not unreasonable to assume that these systems may remain largely linear until the onset of cavitation, in terms of classical acoustic propagation. The purpose of this paper is to investigate the possible nonlinear effects within such systems before the onset of cavitation. A theoretical description of nonlinear propagation will be presented and the merits of common analytical models will be discussed. Following this, a numerical model of nonlinearity will be outlined and the advantages it presents for representing nonlinear effects in bounded fields will be discussed. Next, the driving equipment and transducers will be evaluated for linearity to disengage any effects from those formed in the transmission load. Finally, the linearity of the system will be measured using an acoustic hydrophone and compared with finite element analysis to confirm that nonlinear effects are not prevalent in such systems at the onset of cavitation. © 2011 IEEE
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials
Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane
2014-01-01
In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293
Nonlinear modes of snap-through motions of a shallow arch
NASA Astrophysics Data System (ADS)
Breslavsky, I.; Avramov, K. V.; Mikhlin, Yu.; Kochurov, R.
2008-03-01
Nonlinear modes of snap-through motions of a shallow arch are analyzed. Dynamics of shallow arch is modeled by a two-degree-of-freedom system. Two nonlinear modes of this discrete system are treated. The methods of Ince algebraization and Hill determinants are used to study stability of nonlinear modes. The analytical results are compared with the data of the numerical simulations.
Identification of limit cycles in multi-nonlinearity, multiple path systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Barron, O. L.
1979-01-01
A method of analysis which identifies limit cycles in autonomous systems with multiple nonlinearities and multiple forward paths is presented. The FORTRAN code for implementing the Harmonic Balance Algorithm is reported. The FORTRAN code is used to identify limit cycles in multiple path and nonlinearity systems while retaining the effects of several harmonic components.
Robust model predictive control for constrained continuous-time nonlinear systems
NASA Astrophysics Data System (ADS)
Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong
2018-02-01
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan
2016-01-01
In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.
Plastic and Large-Deflection Analysis of Nonlinear Structures
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.
1982-01-01
Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.
Geospatial Representation, Analysis and Computing Using Bandlimited Functions
2010-02-19
navigation of aircraft and missiles require detailed representations of gravity and efficient methods for determining orbits and trajectories. However, many...efficient on today’s computers. Under this grant new, computationally efficient, localized representations of gravity have been developed and tested. As a...step in developing a new approach to estimating gravitational potentials, a multiresolution representation for gravity estimation has been proposed
Multispectral Image Enhancement Through Adaptive Wavelet Fusion
2016-09-14
13. SUPPLEMENTARY NOTES 14. ABSTRACT This research developed a multiresolution image fusion scheme based on guided filtering . Guided filtering can...effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale...details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at
Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.
Nonlinear modal resonances in low-gravity slosh-spacecraft systems
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1991-01-01
Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.
NASA Astrophysics Data System (ADS)
McEver, Jimmie; Davis, Paul K.; Bigelow, James H.
2000-06-01
We have developed and used families of multiresolution and multiple-perspective models (MRM and MRMPM), both in our substantive analytic work for the Department of Defense and to learn more about how such models can be designed and implemented. This paper is a brief case history of our experience with a particular family of models addressing the use of precision fires in interdicting and halting an invading army. Our models were implemented as closed-form analytic solutions, in spreadsheets, and in the more sophisticated AnalyticaTM environment. We also drew on an entity-level simulation for data. The paper reviews the importance of certain key attributes of development environments (visual modeling, interactive languages, friendly use of array mathematics, facilities for experimental design and configuration control, statistical analysis tools, graphical visualization tools, interactive post-processing, and relational database tools). These can go a long way towards facilitating MRMPM work, but many of these attributes are not yet widely available (or available at all) in commercial model-development tools--especially for use with personal computers. We conclude with some lessons learned from our experience.
Segmentation-based wavelet transform for still-image compression
NASA Astrophysics Data System (ADS)
Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.
1996-10-01
In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.
Multiresolution image registration in digital x-ray angiography with intensity variation modeling.
Nejati, Mansour; Pourghassem, Hossein
2014-02-01
Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.
LOD-based clustering techniques for efficient large-scale terrain storage and visualization
NASA Astrophysics Data System (ADS)
Bao, Xiaohong; Pajarola, Renato
2003-05-01
Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.
Generation of an Atlas of the Proximal Femur and Its Application to Trabecular Bone Analysis
Carballido-Gamio, Julio; Folkesson, Jenny; Karampinos, Dimitrios C.; Baum, Thomas; Link, Thomas M.; Majumdar, Sharmila; Krug, Roland
2013-01-01
Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations. PMID:21432904
TransCut: interactive rendering of translucent cutouts.
Li, Dongping; Sun, Xin; Ren, Zhong; Lin, Stephen; Tong, Yiying; Guo, Baining; Zhou, Kun
2013-03-01
We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent interior, as well as edit material properties through painting on cross sections and recombining the broken pieces—all with immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-quality results comparable to the state-of-art finite element method (FEM) of Arbree et al. but at substantially higher speeds. This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multiresolution algorithm to significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The entire multiresolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.
Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.
NASA Astrophysics Data System (ADS)
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2014-03-01
We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Li, Guannan; Raza, Shan E Ahmed; Rajpoot, Nasir M
2017-04-01
It has been recently shown that recurrent miscarriage can be caused by abnormally high ratio of number of uterine natural killer (UNK) cells to the number of stromal cells in human female uterus lining. Due to high workload, the counting of UNK and stromal cells needs to be automated using computer algorithms. However, stromal cells are very similar in appearance to epithelial cells which must be excluded in the counting process. To exclude the epithelial cells from the counting process it is necessary to identify epithelial regions. There are two types of epithelial layers that can be encountered in the endometrium: luminal epithelium and glandular epithelium. To the best of our knowledge, there is no existing method that addresses the segmentation of both types of epithelium simultaneously in endometrial histology images. In this paper, we propose a multi-resolution Cell Orientation Congruence (COCo) descriptor which exploits the fact that neighbouring epithelial cells exhibit similarity in terms of their orientations. Our experimental results show that the proposed descriptors yield accurate results in simultaneously segmenting both luminal and glandular epithelium. Copyright © 2017 Elsevier B.V. All rights reserved.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Analyses of Multishaft Rotor-Bearing Response
NASA Technical Reports Server (NTRS)
Nelson, H. D.; Meacham, W. L.
1985-01-01
Method works for linear and nonlinear systems. Finite-element-based computer program developed to analyze free and forced response of multishaft rotor-bearing systems. Acronym, ARDS, denotes Analysis of Rotor Dynamic Systems. Systems with nonlinear interconnection or support bearings or both analyzed by numerically integrating reduced set of coupledsystem equations. Linear systems analyzed in closed form for steady excitations and treated as equivalent to nonlinear systems for transient excitation. ARDS is FORTRAN program developed on an Amdahl 470 (similar to IBM 370).
Davidović, A; Huntington, E H; Frater, M R
2009-07-01
For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.
NASA Astrophysics Data System (ADS)
Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo
2016-12-01
In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.
Databases for the Global Dynamics of Multiparameter Nonlinear Systems
2014-03-05
AFRL-OSR-VA-TR-2014-0078 DATABASES FOR THE GLOBAL DYNAMICS OF MULTIPARAMETER NONLINEAR SYSTEMS Konstantin Mischaikow RUTGERS THE STATE UNIVERSITY OF...University of New Jersey ASB III, Rutgers Plaza New Brunswick, NJ 08807 DATABASES FOR THE GLOBAL DYNAMICS OF MULTIPARAMETER NONLINEAR SYSTEMS ...dynamical systems . We refer to the output as a Database for Global Dynamics since it allows the user to query for information about the existence and
Integrability and correspondence of classical and quantum non-linear three-mode systems
NASA Astrophysics Data System (ADS)
Odzijewicz, A.; Wawreniuk, E.
2018-04-01
The relationship between classical and quantum three one-mode systems interacting in a non-linear way is described. We investigate the integrability of these systems by using the reduction procedure. The reduced coherent states for the quantum system are constructed. We find the explicit formulas for the reproducing measure for these states. Examples of some applications of the obtained results in non-linear quantum optics are presented.
Nonlinear control for a class of hydraulic servo system.
Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong
2004-11-01
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.
Photonic single nonlinear-delay dynamical node for information processing
NASA Astrophysics Data System (ADS)
Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel
2012-06-01
An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.
Research on the Diesel Engine with Sliding Mode Variable Structure Theory
NASA Astrophysics Data System (ADS)
Ma, Zhexuan; Mao, Xiaobing; Cai, Le
2018-05-01
This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
System Identification for Nonlinear Control Using Neural Networks
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Linse, Dennis J.
1990-01-01
An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.
NASA Technical Reports Server (NTRS)
Smith, G. A.; Meyer, G.
1981-01-01
A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.
Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays
NASA Astrophysics Data System (ADS)
Koo, Min-Sung; Choi, Ho-Lim
2016-08-01
This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.
Finding all solutions of nonlinear equations using the dual simplex method
NASA Astrophysics Data System (ADS)
Yamamura, Kiyotaka; Fujioka, Tsuyoshi
2003-03-01
Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.
Spectral analysis for nonstationary and nonlinear systems: a discrete-time-model-based approach.
He, Fei; Billings, Stephen A; Wei, Hua-Liang; Sarrigiannis, Ptolemaios G; Zhao, Yifan
2013-08-01
A new frequency-domain analysis framework for nonlinear time-varying systems is introduced based on parametric time-varying nonlinear autoregressive with exogenous input models. It is shown how the time-varying effects can be mapped to the generalized frequency response functions (FRFs) to track nonlinear features in frequency, such as intermodulation and energy transfer effects. A new mapping to the nonlinear output FRF is also introduced. A simulated example and the application to intracranial electroencephalogram data are used to illustrate the theoretical results.
Zero Forcing Conditions for Nonlinear channel Equalisation using a pre-coding scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arfa, Hichem; Belghith, Safya; El Asmi, Sadok
2009-03-05
This paper shows how we can present a zero forcing conditions for a nonlinear channel equalisation. These zero forcing conditions based on the rank of nonlinear system are issued from an algebraic approach based on the module theoretical approach, in which the rank of nonlinear channel is clearly defined. In order to improve the performance of equalisation and reduce the complexity of used nonlinear systems, we will apply a pre-coding scheme. Theoretical results are given and computer simulation is used to corroborate the theory.
NASA Astrophysics Data System (ADS)
Donoso, Guillermo; Ladera, Celso L.
2012-11-01
We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet-coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels.
Joint nonlinearity effects in the design of a flexible truss structure control system
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1986-01-01
Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
Li, Yongming; Sui, Shuai; Tong, Shaocheng
2017-02-01
This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.
NASA Astrophysics Data System (ADS)
Olszewski, R.; Pillich-Kolipińska, A.; Fiedukowicz, A.
2013-12-01
Implementation of INSPIRE Directive in Poland requires not only legal transposition but also development of a number of technological solutions. The one of such tasks, associated with creation of Spatial Information Infrastructure in Poland, is developing a complex model of georeference database. Significant funding for GBDOT project enables development of the national basic topographical database as a multiresolution database (MRDB). Effective implementation of this type of database requires developing procedures for generalization of geographic information (generalization of digital landscape model - DLM), which, treating TOPO10 component as the only source for creation of TOPO250 component, will allow keeping conceptual and classification consistency between those database elements. To carry out this task, the implementation of the system's concept (prepared previously for Head Office of Geodesy and Cartography) is required. Such system is going to execute the generalization process using constrained-based modeling and allows to keep topological relationships between the objects as well as between the object classes. Full implementation of the designed generalization system requires running comprehensive tests which would help with its calibration and parameterization of the generalization procedures (related to the character of generalized area). Parameterization of this process will allow determining the criteria of specific objects selection, simplification algorithms as well as the operation order. Tests with the usage of differentiated, related to the character of the area, generalization process parameters become nowadays the priority issue. Parameters are delivered to the system in the form of XML files, which, with the help of dedicated tool, are generated from the spreadsheet files (XLS) filled in by user. Using XLS file makes entering and modifying the parameters easier. Among the other elements defined by the external parametric files there are: criteria of object selection, metric parameters of generalization algorithms (e.g. simplification or aggregation) and the operations' sequence. Testing on the trial areas of diverse character will allow developing the rules of generalization process' realization, its parameterization with the proposed tool within the multiresolution reference database. The authors have attempted to develop a generalization process' parameterization for a number of different trial areas. The generalization of the results will contribute to the development of a holistic system of generalized reference data stored in the national geodetic and cartographic resources.
Karwowski, Waldemar
2012-12-01
In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.
Altet, J; Mateo, D; Perpiñà, X; Grauby, S; Dilhaire, S; Jordà, X
2011-09-01
This work presents an alternative characterization strategy to quantify the nonlinear behavior of temperature sensing systems. The proposed approach relies on measuring the temperature under thermal sinusoidal steady state and observing the intermodulation products that are generated within the sensing system itself due to its nonlinear temperature-output voltage characteristics. From such intermodulation products, second-order interception points can be calculated as a figure of merit of the measuring system nonlinear behavior. In this scenario, the present work first shows a theoretical analysis. Second, it reports the experimental results obtained with three thermal sensing techniques used in integrated circuits. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Boski, Marcin; Paszke, Wojciech
2017-01-01
This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.
Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.
2014-01-01
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application. PMID:24999715
Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu
2014-07-04
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application.
Application of Contraction Mappings to the Control of Nonlinear Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Killingsworth, W. R., Jr.
1972-01-01
The theoretical and applied aspects of successive approximation techniques are considered for the determination of controls for nonlinear dynamical systems. Particular emphasis is placed upon the methods of contraction mappings and modified contraction mappings. It is shown that application of the Pontryagin principle to the optimal nonlinear regulator problem results in necessary conditions for optimality in the form of a two point boundary value problem (TPBVP). The TPBVP is represented by an operator equation and functional analytic results on the iterative solution of operator equations are applied. The general convergence theorems are translated and applied to those operators arising from the optimal regulation of nonlinear systems. It is shown that simply structured matrices and similarity transformations may be used to facilitate the calculation of the matrix Green functions and the evaluation of the convergence criteria. A controllability theory based on the integral representation of TPBVP's, the implicit function theorem, and contraction mappings is developed for nonlinear dynamical systems. Contraction mappings are theoretically and practically applied to a nonlinear control problem with bounded input control and the Lipschitz norm is used to prove convergence for the nondifferentiable operator. A dynamic model representing community drug usage is developed and the contraction mappings method is used to study the optimal regulation of the nonlinear system.
NASA Astrophysics Data System (ADS)
Novak, A.; Simon, L.; Lotton, P.
2018-04-01
Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.
Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting
Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart
2015-02-14
Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less
Mathematical Techniques for Nonlinear System Theory.
1981-09-01
This report deals with research results obtained in the following areas: (1) Finite-dimensional linear system theory by algebraic methods--linear...Infinite-dimensional linear systems--realization theory of infinite-dimensional linear systems; (3) Nonlinear system theory --basic properties of
NASA Astrophysics Data System (ADS)
Coudeyras, N.; Sinou, J.-J.; Nacivet, S.
2009-01-01
Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system. The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm. Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness and structural damping.
Ultralong relaxation times in bistable hybrid quantum systems.
Angerer, Andreas; Putz, Stefan; Krimer, Dmitry O; Astner, Thomas; Zens, Matthias; Glattauer, Ralph; Streltsov, Kirill; Munro, William J; Nemoto, Kae; Rotter, Stefan; Schmiedmayer, Jörg; Majer, Johannes
2017-12-01
Nonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many interesting and important phenomena that have profoundly changed our technological landscape over the last 50 years. Recently, the ability to engineer quantum metamaterials through hybridization has allowed us to explore these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively coupled to an ensemble of nitrogen-vacancy centers. One of the exciting properties of this spin system is its long spin lifetime, which is many orders of magnitude longer than other relevant time scales of the hybrid system. This allows us to dynamically explore this nonlinear regime of cavity quantum electrodynamics and demonstrate a critical slowing down of the cavity population on the order of several tens of thousands of seconds-a time scale much longer than observed so far for this effect. Our results provide a foundation for future quantum technologies based on nonlinear phenomena.
Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information
NASA Astrophysics Data System (ADS)
Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David
2018-05-01
The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant.
Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.
Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian
2018-06-01
In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.
Nonlinear dynamic phenomena in the space shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Housner, J. M.; Edighoffer, H. H.; Park, K. C.
1981-01-01
The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.
NASA Astrophysics Data System (ADS)
Latrach, Chedia; Kchaou, Mourad; Guéguen, Hervé
2017-05-01
In this study, a decentralised output learning control strategy for a class of nonlinear interconnected systems is studied. Based on Takagi-Sugeno fuzzy (TS) model to approximate the considered interconnected nonlinear systems, a decentralised observer-based control scheme is designed to override the external disturbances such that the ? performance is achieved. The appealing attributes of this approach include: (1) the closed-loop system exhibits a robustness against nonlinear interconnections and external disturbance, (2) by one-step procedure, the gain matrices of observer and controller are obtained on a single step. In simulation results, the controller design is evaluated on the steering stability of a car where the nonlinear model describes the side slip, roll and yaw motions of the automotive vehicle equipped with four-wheel-steering and active suspension.
Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems
NASA Astrophysics Data System (ADS)
Cveticanin, L.; Zukovic, M.
2017-10-01
In this paper the dynamics of the nonlinear mass-in-mass system as the basic subsystem of the acoustic metamaterial is investigated. The excitation of the system is in the form of the Jacobi elliptic function. The corresponding model to this forcing is the mass-in-mass system with cubic nonlinearity of the Duffing type. Mathematical model of the motion is a system of two coupled strong nonlinear and nonhomogeneous second order differential equations. Particular solution to the system is obtained. The analytical solution of the problem is based on the simple and double integral of the cosine Jacobi function. In the paper the integrals are given in the form of series of trigonometric functions. These results are new one. After some modification the simplified solution in the first approximation is obtained. The result is convenient for discussion. Conditions for elimination of the motion of the mass 1 by connection of the nonlinear dynamic absorber (mass - spring system) are defined. In the consideration the effective mass ratio is introduced in the nonlinear mass-in-mass system. Negative effective mass ratio gives the absorption of vibrations with certain frequencies. The advantage of the nonlinear subunit in comparison to the linear one is that the frequency gap is significantly wider. Nevertheless, it has to be mentioned that the amplitude of vibration differs from zero for a small value. In the paper the analytical results are compared with numerical one and are in agreement.
Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2015-03-01
Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.
NASA Astrophysics Data System (ADS)
Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min
2017-10-01
This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian Piero; Meo, Michele
2018-03-01
Two non-contact methods were evaluated to address the reliability and reproducibility concerns affecting industry adoption of nonlinear ultrasound techniques for non-destructive testing and evaluation (NDT/E) purposes. A semi and a fully air-coupled linear and nonlinear ultrasound method was evaluated by testing for barely visible impact damage (BVID) in composite materials. Air coupled systems provide various advantages over contact driven systems; such as: ease of inspection, no contact and lubrication issues and a great potential for non-uniform geometry evaluation. The semi air-coupled setup used a suction attached piezoelectric transducer to excite the sample and an array of low-cost microphones to capture the signal over the inspection area, while the second method focused on a purely air-coupled setup, using an air-coupled transducer to excite the structure and capture the signal. One of the issues facing nonlinear and any air-coupled systems is transferring enough energy to stimulate wave propagation and in the case of nonlinear ultrasound; damage regions. Results for both methods provided nonlinear imaging (NIM) of damage regions using a sweep excitation methodology, with the semi aircoupled system providing clearer results.
Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form
NASA Astrophysics Data System (ADS)
Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.
2018-06-01
In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.
A method for reducing the order of nonlinear dynamic systems
NASA Astrophysics Data System (ADS)
Masri, S. F.; Miller, R. K.; Sassi, H.; Caughey, T. K.
1984-06-01
An approximate method that uses conventional condensation techniques for linear systems together with the nonparametric identification of the reduced-order model generalized nonlinear restoring forces is presented for reducing the order of discrete multidegree-of-freedom dynamic systems that possess arbitrary nonlinear characteristics. The utility of the proposed method is demonstrated by considering a redundant three-dimensional finite-element model half of whose elements incorporate hysteretic properties. A nonlinear reduced-order model, of one-third the order of the original model, is developed on the basis of wideband stationary random excitation and the validity of the reduced-order model is subsequently demonstrated by its ability to predict with adequate accuracy the transient response of the original nonlinear model under a different nonstationary random excitation.
Simulation program of nonlinearities applied to telecommunication systems
NASA Technical Reports Server (NTRS)
Thomas, C.
1979-01-01
In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
New Nonlinear Multigrid Analysis
NASA Technical Reports Server (NTRS)
Xie, Dexuan
1996-01-01
The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.
Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system
NASA Technical Reports Server (NTRS)
Leifer, Joel; Gross, Michael
1987-01-01
The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.
Li, Yongming; Tong, Shaocheng
2017-12-01
In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Shultz, Louis A.
1994-01-01
The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Linear approximations of nonlinear systems
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Su, R.
1983-01-01
The development of a method for designing an automatic flight controller for short and vertical take off aircraft is discussed. This technique involves transformations of nonlinear systems to controllable linear systems and takes into account the nonlinearities of the aircraft. In general, the transformations cannot always be given in closed form. Using partial differential equations, an approximate linear system called the modified tangent model was introduced. A linear transformation of this tangent model to Brunovsky canonical form can be constructed, and from this the linear part (about a state space point x sub 0) of an exact transformation for the nonlinear system can be found. It is shown that a canonical expansion in Lie brackets about the point x sub 0 yields the same modified tangent model.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Static Methods in the Design of Nonlinear Automatic Control Systems,
1984-06-27
227 Chapter VI. Ways of Decrease of the Number of Statistical Nodes During the Research of Nonlinear Systems...at present occupies the central place. This region of research was called the statistical dynamics of nonlinear H automatic control systems...receives further development in the numerous research of Soviet and C foreign scientists. Special role in the development of the statistical dynamics of
The analysis on nonlinear control of the aircraft arresting system
NASA Astrophysics Data System (ADS)
Song, Jinchun; Du, Tianrong
2005-12-01
The aircraft arresting system is a complicated nonlinear system. This paper analyzes the mechanical-hydraulic structure of aircraft arresting system composed of electro hydraulic valve and establishes the dynamic equation of the aircraft arresting system. Based on the state-feedback linearization of nonlinear system, a PD-based controller is synthesized. Simulation studies indicate, while arresting the different type aircraft, the proposed controller has fast response, good tracking performance and strong robustness. By tuning the parameters of the PD controller, a satisfactory control performance can be guaranteed.
Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan
2016-01-01
In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740
Features of tuned mass damper behavior under strong earthquakes
NASA Astrophysics Data System (ADS)
Nesterova, Olga; Uzdin, Alexander; Fedorova, Maria
2018-05-01
Plastic deformations, cracks and destruction of structure members appear in the constructions under strong earthquakes. Therefore constructions are characterized by a nonlinear deformation diagram. Two types of construction non-linearity are considered in the paper. The first type of nonlinearity is elastoplastic one. In this case, plastic deformations occur in the structural elements, and when the element is unloaded, its properties restores. Among such diagrams are the Prandtl diagram, the Prandtl diagram with hardening, the Ramberg-Osgood diagram and others. For systems with such nonlinearity there is an amplitude-frequency characteristic and resonance oscillation frequencies. In this case one can pick up the most dangerous accelerograms for the construction. The second type of nonlinearity is nonlinearity with degrading rigidity and dependence of behavior on the general loading history. The Kirikov-Amankulov model is one of such ones. Its behavior depends on the maximum displacement in the stress history. Such systems do not have gain frequency characteristic and resonance frequency. The period of oscillation of such system is increasing during the system loading, and the system eigen frequency decreases to zero at the time of collapse. In the cases under consideration, when investigating the system with MD behavior, the authors proposed new efficiency criteria. These include the work of plastic deformation forces for the first type of nonlinearity, which determines the possibility of progressive collapse or low cycle fatigue of the structure members. The period of system oscillations and the time to collapse of the structural support members are the criterion for systems with degrading rigidity. In the case of non-linear system behavior, the efficiency of MD application decreases, because the fundamental structure period is reduced because of structure damages and the MD will be rebound from the blanking regime. However, the MD using can significantly reduce the damageability of the protected object.
NASA Astrophysics Data System (ADS)
Průša, Vít; Řehoř, Martin; Tůma, Karel
2017-02-01
The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
Chen, Mou; Tao, Gang
2016-08-01
In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
A new method for analysis of limit cycle behavior of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
A piecewise linear method of analyzing the effects of discontinuous nonlinearities on control system performance is described. The limit cycle oscillatory behavior of the system resulting from the nonlinearities is described in terms of a sequence of linear system transient responses. The equations are derived which relate the initial and the terminal conditions of successive transients and the boundary conditions imposed by the non-linearities. The method leads to a convenient computation algorithm for prediction of limit cycle characteristics resulting from discontinuous nonlinearities such as friction, deadzones, and hysteresis.
NASA Technical Reports Server (NTRS)
Laurenson, R. M.; Baumgarten, J. R.
1975-01-01
An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Krishna
2014-11-01
This paper presents two novel observer concepts. First, it develops a globally exponentially stable nonlinear observer for noise-free dissipative nonlinear systems. Second, for a dissipative nonlinear system with measurement noise, the paper develops an observer to guarantee a desired performance, namely an upper limit on the ratio of the square of the weighted L2 norm of the error to the square of the weighted L2 norm of the measurement noise. The necessary and sufficient conditions for both observers are reformulated as algebraic Riccati equations (AREs) so that standard solvers can be utilised. In addition, the paper presents necessary and sufficient conditions to be satisfied by the nonlinear system in order to ensure that the ARE (and hence the observer design problem) has a solution. The use of the methodology developed in this paper is demonstrated through illustrative examples. In literature, there is no previous observer for dissipative system that provides both necessary and sufficient conditions. Results for noisy system either rely on linearising the system about state trajectory (requiring initial estimates to be close to the actual states) or are for specialised systems that cannot be extended to dissipative systems.
Paul, Rimi; Sengupta, Anindita
2017-11-01
A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification
2006-09-01
spectral bands, but also with different pixel resolutions . The overall goal... the total water surface. Due to the constraint that high spatial resolution satellite images are low temporal resolution , one needs a reliable method...at 15 m resolution , were processed. We used MODIS reflectance data from MOD02 Level 1B data. Even the spatial resolution of the 1240 nm
Multi-Resolution Planning in Large Uncertain Domains
NASA Technical Reports Server (NTRS)
Kaelbling, Leslie Pack
2005-01-01
This project spanned three and one half years of research. This report covers three major lines of work that were done most recently and reported on in a talk given by the PI at NASA Ames on March 23, 2004. There are have been additional publications related to this work (Lane & Kaelbling, 2001a, 2001b, 2002; Zettlemoyer, Pasula, & Kaelbling, 2003; Gardiol & Kaelbling, 2003; Pasula, Zettlemoyer, & Kaelbling, 2004).
NASA Technical Reports Server (NTRS)
Chiavassa, G.; Liandrat, J.
1996-01-01
We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.
Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith
2009-01-01
Maine (ME), New Hampshire (NH), and Vermont (VT) are three of the four most heavily forested states in the United States. In these states, we examined how land-use change, at the Anderson Level I classification, affected regional forest carbon using the 30-m Multi-Resolution Land Characteristics Consortium 1992/2001 Retrofit Land Cover Change product coupled with...
Nonlinearity measure and internal model control based linearization in anti-windup design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perev, Kamen
2013-12-18
This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequencymore » ranges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjung; Kovacic, Gregor; Cai, David
Using the (1+1)D Majda-McLaughlin-Tabak model as an example, we present an extension of the wave turbulence (WT) theory to systems with strong nonlinearities. We demonstrate that nonlinear wave interactions renormalize the dynamics, leading to (i) a possible destruction of scaling structures in the bare wave systems and a drastic deformation of the resonant manifold even at weak nonlinearities, and (ii) creation of nonlinear resonance quartets in wave systems for which there would be no resonances as predicted by the linear dispersion relation. Finally, we derive an effective WT kinetic equation and show that our prediction of the renormalized Rayleigh-Jeans distributionmore » is in excellent agreement with the simulation of the full wave system in equilibrium.« less
Real-time dose computation: GPU-accelerated source modeling and superposition/convolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, Robert; Wong, John; Taylor, Russell
Purpose: To accelerate dose calculation to interactive rates using highly parallel graphics processing units (GPUs). Methods: The authors have extended their prior work in GPU-accelerated superposition/convolution with a modern dual-source model and have enhanced performance. The primary source algorithm supports both focused leaf ends and asymmetric rounded leaf ends. The extra-focal algorithm uses a discretized, isotropic area source and models multileaf collimator leaf height effects. The spectral and attenuation effects of static beam modifiers were integrated into each source's spectral function. The authors introduce the concepts of arc superposition and delta superposition. Arc superposition utilizes separate angular sampling for themore » total energy released per unit mass (TERMA) and superposition computations to increase accuracy and performance. Delta superposition allows single beamlet changes to be computed efficiently. The authors extended their concept of multi-resolution superposition to include kernel tilting. Multi-resolution superposition approximates solid angle ray-tracing, improving performance and scalability with a minor loss in accuracy. Superposition/convolution was implemented using the inverse cumulative-cumulative kernel and exact radiological path ray-tracing. The accuracy analyses were performed using multiple kernel ray samplings, both with and without kernel tilting and multi-resolution superposition. Results: Source model performance was <9 ms (data dependent) for a high resolution (400{sup 2}) field using an NVIDIA (Santa Clara, CA) GeForce GTX 280. Computation of the physically correct multispectral TERMA attenuation was improved by a material centric approach, which increased performance by over 80%. Superposition performance was improved by {approx}24% to 0.058 and 0.94 s for 64{sup 3} and 128{sup 3} water phantoms; a speed-up of 101-144x over the highly optimized Pinnacle{sup 3} (Philips, Madison, WI) implementation. Pinnacle{sup 3} times were 8.3 and 94 s, respectively, on an AMD (Sunnyvale, CA) Opteron 254 (two cores, 2.8 GHz). Conclusions: The authors have completed a comprehensive, GPU-accelerated dose engine in order to provide a substantial performance gain over CPU based implementations. Real-time dose computation is feasible with the accuracy levels of the superposition/convolution algorithm.« less