Sample records for nonlinear networked control

  1. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  2. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Brown, Gerald; Johnson, Dexter

    1997-01-01

    Abstract Magnetic bearings offer significant advantages because of their noncontact operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. This paper discusses the use of a neural network as a nonlinear controller that circumvents system nonlinearity. A neural network controller was well trained and successfully demonstrated on a small magnetic bearing rig. This work demonstrated the feasibility of using a neural network to control nonlinear magnetic bearings and systems with unknown dynamics.

  3. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  4. The Life-Changing Magic of Nonlinearity in Network Control

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean

    The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.

  5. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  6. Robust nonlinear variable selective control for networked systems

    NASA Astrophysics Data System (ADS)

    Rahmani, Behrooz

    2016-10-01

    This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

  7. Neural networks for function approximation in nonlinear control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  8. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  9. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  10. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  11. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics

    PubMed Central

    Kashima, Kenji

    2016-01-01

    Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780

  12. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    PubMed

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  13. Prediction and control of chaotic processes using nonlinear adaptive networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Barnes, C.W.; Flake, G.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  14. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  15. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.

    PubMed

    Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua

    2014-10-01

    This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.

  17. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    PubMed

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  18. Neural dynamic programming and its application to control systems

    NASA Astrophysics Data System (ADS)

    Seong, Chang-Yun

    There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.

  19. Distributed Coordinated Control of Large-Scale Nonlinear Networks

    DOE PAGES

    Kundu, Soumya; Anghel, Marian

    2015-11-08

    We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less

  20. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  1. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    PubMed

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  2. Data-Driven Zero-Sum Neuro-Optimal Control for a Class of Continuous-Time Unknown Nonlinear Systems With Disturbance Using ADP.

    PubMed

    Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei

    2016-02-01

    This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.

  3. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei

    2017-11-01

    Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.

  5. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  6. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  7. Observability and Controllability of Networks: Symmetry in Representations of Brains and Controllers for Epidemics

    NASA Astrophysics Data System (ADS)

    Schiff, Steven

    Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. We present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. In addition to the topology of brain networks, we have advanced our ability to represent network nodes within the brain using conservation principles and more accurate biophysics that unifies the dynamics of spikes, seizures, and spreading depression. Lastly, we show how symmetries in controller design can be applied to infectious disease epidemics. NIH Grants 1R01EB014641, 1DP1HD086071.

  8. Neural networks for self-learning control systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Derrick H.; Widrow, Bernard

    1990-01-01

    It is shown how a neural network can learn of its own accord to control a nonlinear dynamic system. An emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. The controller, another multilayered neural network, next learns to control the emulator. The self-trained controller is then used to control the actual dynamic system. The learning process continues as the emulator and controller improve and track the physical process. An example is given to illustrate these ideas. The 'truck backer-upper,' a neural network controller that steers a trailer truck while the truck is backing up to a loading dock, is demonstrated. The controller is able to guide the truck to the dock from almost any initial position. The technique explored should be applicable to a wide variety of nonlinear control problems.

  9. A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control.

    PubMed

    Wang, Tong; Gao, Huijun; Qiu, Jianbin

    2016-02-01

    This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period T(d) is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period T(u) at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.

  10. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  11. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    PubMed

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  12. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  13. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGES

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  14. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    NASA Astrophysics Data System (ADS)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are collaborating in this network. The editors are grateful for the active participation of all colleagues in this network, in the network meeting, and in making this special issue a success. We also extend our thanks to a great Journal of Optics A staff that have supported the editing of this special issue, especially the Publishing Editor, Julia Dickinson. Among the active colleagues in our network was also Associate Professor Erik Fällman, Umea University, Sweden. It was with great sadness that we learnt of the death of our colleague and friend in June 2008. We dedicate this special issue to his memory, and the active and always engaged contribution he made both to our conference and to the field of optical micromanipulation and optical control. Erik will be particularly remembered for his applications of optical force measurements on bacterial pili adhesion, which has stimulated a worldwide experimental and theoretical interest in this field.

  15. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    PubMed Central

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  16. Bio-inspired spiking neural network for nonlinear systems control.

    PubMed

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. On the Control of Consensus Networks: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Hudoba de Badyn, Mathias

    Signed networks allow the study of positive and negative interactions between agents. In this thesis, three papers are presented that address controllability of networked dynamics. First, controllability of signed consensus networks is approached from a symmetry perspective, for both linear and nonlinear consensus protocols. It is shown that the graph-theoretic property of signed networks known as structural balance renders the consensus protocol uncontrollable when coupled with a certain type of symmetry. Stabilizability and output controllability of signed linear consensus is also examined, as well as a data-driven approach to finding bipartite consensus stemming from structural balance for signed nonlinear consensus. Second, an algorithm is constructed that allows one to grow a network while preserving controllability, and some generalizations of this algorithm are presented. Submodular optimization is used to analyze a second algorithm that adds nodes to a network to maximize the network connectivity.

  18. Algebraic and adaptive learning in neural control systems

    NASA Astrophysics Data System (ADS)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  19. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  20. H∞ output tracking control of uncertain and disturbed nonlinear systems based on neural network model

    NASA Astrophysics Data System (ADS)

    Li, Chengcheng; Li, Yuefeng; Wang, Guanglin

    2017-07-01

    The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.

  1. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  2. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  3. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE PAGES

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...

    2017-06-06

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  4. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Nonlinear adaptive networks: A little theory, a few applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Qian, S.; Barnes, C.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.

  6. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    PubMed

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  8. Design of optimal nonlinear network controllers for Alzheimer's disease.

    PubMed

    Sanchez-Rodriguez, Lazaro M; Iturria-Medina, Yasser; Baines, Erica A; Mallo, Sabela C; Dousty, Mehdy; Sotero, Roberto C

    2018-05-01

    Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer's disease (AD), having promising clinical benefit. However, all individuals with the same condition currently receive identical brain stimulation, with limited theoretical basis for this generic approach. In this study, we introduce a control theory framework for obtaining exogenous signals that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while reflecting patients' biological variability. We used anatomical networks obtained from diffusion magnetic resonance images acquired by the Alzheimer's Disease Neuroimaging Initiative (ADNI) as mediators for the interaction between Duffing oscillators. The nonlinear nature of the brain dynamics is preserved, given that we extend the so-called state-dependent Riccati equation control to reflect the stimulation objective in the high-dimensional neural system. By considering nonlinearities in our model, we identified regions for which control inputs fail to correct abnormal activity. There are changes to the way stimulated regions are ranked in terms of the energetic cost of controlling the entire network, from a linear to a nonlinear approach. We also found that limbic system and basal ganglia structures constitute the top target locations for stimulation in AD. Patients with highly integrated anatomical networks-namely, networks having low average shortest path length, high global efficiency-are the most suitable candidates for the propagation of stimuli and consequent success on the control task. Other diseases associated with alterations in brain dynamics and the self-control mechanisms of the brain can be addressed through our framework.

  9. Neural network controller development for a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.

    1994-01-01

    A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.

  10. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  11. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  12. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  13. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  14. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    NASA Astrophysics Data System (ADS)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  15. An adaptive Hinfinity controller design for bank-to-turn missiles using ridge Gaussian neural networks.

    PubMed

    Lin, Chuan-Kai; Wang, Sheng-De

    2004-11-01

    A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.

  16. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.

    PubMed

    Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi

    2018-01-01

    In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Adaptive critic designs for optimal control of uncertain nonlinear systems with unmatched interconnections.

    PubMed

    Yang, Xiong; He, Haibo

    2018-05-26

    In this paper, we develop a novel optimal control strategy for a class of uncertain nonlinear systems with unmatched interconnections. To begin with, we present a stabilizing feedback controller for the interconnected nonlinear systems by modifying an array of optimal control laws of auxiliary subsystems. We also prove that this feedback controller ensures a specified cost function to achieve optimality. Then, under the framework of adaptive critic designs, we use critic networks to solve the Hamilton-Jacobi-Bellman equations associated with auxiliary subsystem optimal control laws. The critic network weights are tuned through the gradient descent method combined with an additional stabilizing term. By using the newly established weight tuning rules, we no longer need the initial admissible control condition. In addition, we demonstrate that all signals in the closed-loop auxiliary subsystems are stable in the sense of uniform ultimate boundedness by using classic Lyapunov techniques. Finally, we provide an interconnected nonlinear plant to validate the present control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An LMI approach to design H(infinity) controllers for discrete-time nonlinear systems based on unified models.

    PubMed

    Liu, Meiqin; Zhang, Senlin

    2008-10-01

    A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.

  19. Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints.

    PubMed

    He, Pingan; Jagannathan, S

    2007-04-01

    A novel adaptive-critic-based neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of nonlinear systems in the presence of actuator constraints. The constraints of the actuator are treated in the controller design as the saturation nonlinearity. The adaptive critic NN controller architecture based on state feedback includes two NNs: the critic NN is used to approximate the "strategic" utility function, whereas the action NN is employed to minimize both the strategic utility function and the unknown nonlinear dynamic estimation errors. The critic and action NN weight updates are derived by minimizing certain quadratic performance indexes. Using the Lyapunov approach and with novel weight updates, the uniformly ultimate boundedness of the closed-loop tracking error and weight estimates is shown in the presence of NN approximation errors and bounded unknown disturbances. The proposed NN controller works in the presence of multiple nonlinearities, unlike other schemes that normally approximate one nonlinearity. Moreover, the adaptive critic NN controller does not require an explicit offline training phase, and the NN weights can be initialized at zero or random. Simulation results justify the theoretical analysis.

  20. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  1. Direct adaptive control of wind energy conversion systems using Gaussian networks.

    PubMed

    Mayosky, M A; Cancelo, I E

    1999-01-01

    Grid connected wind energy conversion systems (WECS) present interesting control demands, due to the intrinsic nonlinear characteristics of windmills and electric generators. In this paper a direct adaptive control strategy for WECS control is proposed. It is based on the combination of two control actions: a radial basis zfunction network-based adaptive controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the system's nonlinearities. The supervisory controller fires when the finite neural-network approximation properties cannot be guaranteed. The form of the supervisor control and the adaptation law for the neural controller are derived from a Lyapunov analysis of stability. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

  2. Zero-sum two-player game theoretic formulation of affine nonlinear discrete-time systems using neural networks.

    PubMed

    Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L

    2013-12-01

    In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.

  3. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  4. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  5. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  6. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    PubMed

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  8. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  9. A nonlinear control method based on ANFIS and multiple models for a class of SISO nonlinear systems and its application.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong

    2011-11-01

    This paper presents a novel nonlinear control strategy for a class of uncertain single-input and single-output discrete-time nonlinear systems with unstable zero-dynamics. The proposed method combines adaptive-network-based fuzzy inference system (ANFIS) with multiple models, where a linear robust controller, an ANFIS-based nonlinear controller and a switching mechanism are integrated using multiple models technique. It has been shown that the linear controller can ensure the boundedness of the input and output signals and the nonlinear controller can improve the dynamic performance of the closed loop system. Moreover, it has also been shown that the use of the switching mechanism can simultaneously guarantee the closed loop stability and improve its performance. As a result, the controller has the following three outstanding features compared with existing control strategies. First, this method relaxes the assumption of commonly-used uniform boundedness on the unmodeled dynamics and thus enhances its applicability. Second, since ANFIS is used to estimate and compensate the effect caused by the unmodeled dynamics, the convergence rate of neural network learning has been increased. Third, a "one-to-one mapping" technique is adapted to guarantee the universal approximation property of ANFIS. The proposed controller is applied to a numerical example and a pulverizing process of an alumina sintering system, respectively, where its effectiveness has been justified.

  10. INDIRECT INTELLIGENT SLIDING MODE CONTROL OF A SHAPE MEMORY ALLOY ACTUATED FLEXIBLE BEAM USING HYSTERETIC RECURRENT NEURAL NETWORKS.

    PubMed

    Hannen, Jennifer C; Crews, John H; Buckner, Gregory D

    2012-08-01

    This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.

  11. Neural networks for feedback feedforward nonlinear control systems.

    PubMed

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  12. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  13. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using their universal approximation property, neural networks have been introduced into nonlinear control designs in several ways. Unfortunately, little work has appeared that analyzes neural network control systems and establishes margins for stability and performance. One approach for this analysis is to set up neural network control systems in the framework presented above. For example, one neural network could be used to render a system to be dissipative, a second strictly dissipative neural network controller could be used to guarantee robust stability.

  14. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Zhang, Huaguang; Lin, Chong

    2016-01-01

    This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

  15. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    PubMed

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  16. Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

    PubMed

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2017-01-01

    This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

  17. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  18. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  19. A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Zhou, Miaolei

    2018-04-01

    Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.

  20. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    PubMed Central

    Chang, Chih-Hao

    2013-01-01

    This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583

  1. Deep Independence Network Analysis of Structural Brain Imaging: Application to Schizophrenia

    PubMed Central

    Castro, Eduardo; Hjelm, R. Devon; Plis, Sergey M.; Dinh, Laurent; Turner, Jessica A.; Calhoun, Vince D.

    2016-01-01

    Linear independent component analysis (ICA) is a standard signal processing technique that has been extensively used on neuroimaging data to detect brain networks with coherent brain activity (functional MRI) or covarying structural patterns (structural MRI). However, its formulation assumes that the measured brain signals are generated by a linear mixture of the underlying brain networks and this assumption limits its ability to detect the inherent nonlinear nature of brain interactions. In this paper, we introduce nonlinear independent component estimation (NICE) to structural MRI data to detect abnormal patterns of gray matter concentration in schizophrenia patients. For this biomedical application, we further addressed the issue of model regularization of nonlinear ICA by performing dimensionality reduction prior to NICE, together with an appropriate control of the complexity of the model and the usage of a proper approximation of the probability distribution functions of the estimated components. We show that our results are consistent with previous findings in the literature, but we also demonstrate that the incorporation of nonlinear associations in the data enables the detection of spatial patterns that are not identified by linear ICA. Specifically, we show networks including basal ganglia, cerebellum and thalamus that show significant differences in patients versus controls, some of which show distinct nonlinear patterns. PMID:26891483

  2. Distributed adaptive neural network control for a class of heterogeneous nonlinear multi-agent systems subject to actuation failures

    NASA Astrophysics Data System (ADS)

    Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi

    2017-02-01

    In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.

  3. Robust approximation-free prescribed performance control for nonlinear systems and its application

    NASA Astrophysics Data System (ADS)

    Sun, Ruisheng; Na, Jing; Zhu, Bin

    2018-02-01

    This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.

  4. Distributed robust adaptive control of high order nonlinear multi agent systems.

    PubMed

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Neural network based adaptive control for nonlinear dynamic regimes

    NASA Astrophysics Data System (ADS)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  6. Nonlinear identification using a B-spline neural network and chaotic immune approaches

    NASA Astrophysics Data System (ADS)

    dos Santos Coelho, Leandro; Pessôa, Marcelo Wicthoff

    2009-11-01

    One of the important applications of B-spline neural network (BSNN) is to approximate nonlinear functions defined on a compact subset of a Euclidean space in a highly parallel manner. Recently, BSNN, a type of basis function neural network, has received increasing attention and has been applied in the field of nonlinear identification. BSNNs have the potential to "learn" the process model from input-output data or "learn" fault knowledge from past experience. BSNN can be used as function approximators to construct the analytical model for residual generation too. However, BSNN is trained by gradient-based methods that may fall into local minima during the learning procedure. When using feed-forward BSNNs, the quality of approximation depends on the control points (knots) placement of spline functions. This paper describes the application of a modified artificial immune network inspired optimization method - the opt-aiNet - combined with sequences generate by Hénon map to provide a stochastic search to adjust the control points of a BSNN. The numerical results presented here indicate that artificial immune network optimization methods are useful for building good BSNN model for the nonlinear identification of two case studies: (i) the benchmark of Box and Jenkins gas furnace, and (ii) an experimental ball-and-tube system.

  7. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    PubMed

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.

  8. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  9. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  10. Open-closed-loop iterative learning control for a class of nonlinear systems with random data dropouts

    NASA Astrophysics Data System (ADS)

    Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH

    2018-05-01

    In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.

  11. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.

    PubMed

    Dai, Shi-Lu; Wang, Cong; Wang, Min

    2014-01-01

    This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.

  12. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    PubMed Central

    Li, YuHui; Jin, FeiTeng

    2017-01-01

    The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller. PMID:29410680

  13. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  14. Data based identification and prediction of nonlinear and complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.

  15. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    1998-01-01

    Magnetic bearings offer significant advantages because they do not come into contact with other parts during operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. At the NASA Lewis Research Center, a neural network was selected as a nonlinear controller because it generates a neural model without any detailed information regarding the internal working of the magnetic bearing system. It can be used even for systems that are too complex for an accurate system model to be derived. A feed-forward architecture with a back-propagation learning algorithm was selected because of its proven performance, accuracy, and relatively easy implementation.

  16. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  17. Flight control with adaptive critic neural network

    NASA Astrophysics Data System (ADS)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  18. Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach.

    PubMed

    Liu, Derong; Wang, Ding; Li, Hongliang

    2014-02-01

    In this paper, using a neural-network-based online learning optimal control approach, a novel decentralized control strategy is developed to stabilize a class of continuous-time nonlinear interconnected large-scale systems. First, optimal controllers of the isolated subsystems are designed with cost functions reflecting the bounds of interconnections. Then, it is proven that the decentralized control strategy of the overall system can be established by adding appropriate feedback gains to the optimal control policies of the isolated subsystems. Next, an online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman equations related to the optimal control problem. Through constructing a set of critic neural networks, the cost functions can be obtained approximately, followed by the control policies. Furthermore, the dynamics of the estimation errors of the critic networks are verified to be uniformly and ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness of the present decentralized control scheme.

  19. Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2016-08-31

    In this paper, an event-triggered near optimal control structure is developed for nonlinear continuous-time systems with control constraints. Due to the saturating actuators, a nonquadratic cost function is introduced and the Hamilton-Jacobi-Bellman (HJB) equation for constrained nonlinear continuous-time systems is formulated. In order to solve the HJB equation, an actor-critic framework is presented. The critic network is used to approximate the cost function and the action network is used to estimate the optimal control law. In addition, in the proposed method, the control signal is transmitted in an aperiodic manner to reduce the computational and the transmission cost. Both the networks are only updated at the trigger instants decided by the event-triggered condition. Detailed Lyapunov analysis is provided to guarantee that the closed-loop event-triggered system is ultimately bounded. Three case studies are used to demonstrate the effectiveness of the proposed method.

  20. Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Ding, Li; Liu, Yu-Jing; Hu, Ping

    2018-07-01

    In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac's criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.

  1. The application of immune genetic algorithm in main steam temperature of PID control of BP network

    NASA Astrophysics Data System (ADS)

    Li, Han; Zhen-yu, Zhang

    In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.

  2. Mitigation of epidemics in contact networks through optimal contact adaptation *

    PubMed Central

    Youssef, Mina; Scoglio, Caterina

    2013-01-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209

  3. Mitigation of epidemics in contact networks through optimal contact adaptation.

    PubMed

    Youssef, Mina; Scoglio, Caterina

    2013-08-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

  4. Comment on “Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems”

    NASA Astrophysics Data System (ADS)

    Pan, Yongping; Huang, Daoping

    2011-03-01

    In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.

  5. Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays.

    PubMed

    Tong, Shao Cheng; Li, Yong Ming; Zhang, Hua-Guang

    2011-07-01

    In this paper, two adaptive neural network (NN) decentralized output feedback control approaches are proposed for a class of uncertain nonlinear large-scale systems with immeasurable states and unknown time delays. Using NNs to approximate the unknown nonlinear functions, an NN state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping technique with decentralized control design principle, an adaptive NN decentralized output feedback control approach is developed. In order to overcome the problem of "explosion of complexity" inherent in the proposed control approach, the dynamic surface control (DSC) technique is introduced into the first adaptive NN decentralized control scheme, and a simplified adaptive NN decentralized output feedback DSC approach is developed. It is proved that the two proposed control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the observer errors and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approaches.

  6. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.

    PubMed

    Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L

    2017-10-11

    Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.

  7. Robust scalable stabilisability conditions for large-scale heterogeneous multi-agent systems with uncertain nonlinear interactions: towards a distributed computing architecture

    NASA Astrophysics Data System (ADS)

    Manfredi, Sabato

    2016-06-01

    Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.

  8. Direct estimations of linear and nonlinear functionals of a quantum state.

    PubMed

    Ekert, Artur K; Alves, Carolina Moura; Oi, Daniel K L; Horodecki, Michał; Horodecki, Paweł; Kwek, L C

    2002-05-27

    We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of some properties of quantum channels. Experimental realizations of the proposed network are within the reach of quantum technology that is currently being developed.

  9. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  10. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  11. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  12. A neural network controller of a flotation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durao, F.; Cortez, L.

    1995-12-31

    The dynamic control of a froth flotation section is simulated through a neural network feedback controller, trained in order to stabilize the concentrate metal grade and recovery by applying random step changes to the feed metal grade. The results of the application example show that this controller seems to be sufficiently robust and a good alternative to handle a non-linear process.

  13. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    PubMed

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  14. Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.

  15. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.

    PubMed

    Harper, Nicol S; Schoppe, Oliver; Willmore, Ben D B; Cui, Zhanfeng; Schnupp, Jan W H; King, Andrew J

    2016-11-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.

  17. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons

    PubMed Central

    Willmore, Ben D. B.; Cui, Zhanfeng; Schnupp, Jan W. H.; King, Andrew J.

    2016-01-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1–7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context. PMID:27835647

  18. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    PubMed

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  19. Neural control of magnetic suspension systems

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  20. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  1. A training rule which guarantees finite-region stability for a class of closed-loop neural-network control systems.

    PubMed

    Kuntanapreeda, S; Fullmer, R R

    1996-01-01

    A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.

  2. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  3. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    PubMed

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  4. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    PubMed Central

    Chen, Qihong; Long, Rong; Quan, Shuhai

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206

  5. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    NASA Astrophysics Data System (ADS)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  6. Inference of directed climate networks: role of instability of causality estimation methods

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan

    2013-04-01

    Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge weights in the networks is ~ 0.6. The networks constructed using nonlinear measures were in general less stable both in real data and stationarized surrogates. Interestingly, when the nonlinear method parameters are optimized with respect to temporal stability of the networks, the networks seem to converge close to those detected by linear Granger causality. This provides further evidence for the hypothesis of overall sparsity and weakness of nonlinear coupling in climate networks on this spatial and temporal scale [3] and sufficient support for the use of linear methods in this context, unless specific clearly detectable nonlinear phenomena are targeted. Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. [1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M. & Hwang, D. U.: Complex networks: Structure and dynamics, Physics Reports, 2006, 424, 175-308 [2] Barnett, L.; Barrett, A. B. & Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Physical Review Letters, 2009, 103, 238701 [3] Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M.: Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity, submitted preprint (http://arxiv.org/abs/1211.6688)

  7. Nonlinear neural control with power systems applications

    NASA Astrophysics Data System (ADS)

    Chen, Dingguo

    1998-12-01

    Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.

  8. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    PubMed

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  9. Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.

    PubMed

    Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen

    2018-05-01

    In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.

  10. Neural network applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Alspector, Joshua

    1994-01-01

    Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.

  11. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.

    PubMed

    Chang, Yeong-Chan

    2009-02-01

    This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.

  12. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  13. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  14. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  15. Neural-Network-Based Adaptive Decentralized Fault-Tolerant Control for a Class of Interconnected Nonlinear Systems.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2018-01-01

    This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.

  16. Insula Demonstrates a Non-Linear Response to Varying Demand for Cognitive Control and Weaker Resting Connectivity With the Executive Control Network in Smokers.

    PubMed

    Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A

    2016-09-01

    Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.

  17. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.

  18. Training trajectories by continuous recurrent multilayer networks.

    PubMed

    Leistritz, L; Galicki, M; Witte, H; Kochs, E

    2002-01-01

    This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.

  19. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  20. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.

    PubMed

    Yang, Qinmin; Jagannathan, Sarangapani

    2012-04-01

    In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.

  1. Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems.

    PubMed

    Liu, Derong; Wang, Ding; Wang, Fei-Yue; Li, Hongliang; Yang, Xiong

    2014-12-01

    In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.

  2. Optimal Fault-Tolerant Control for Discrete-Time Nonlinear Strict-Feedback Systems Based on Adaptive Critic Design.

    PubMed

    Wang, Zhanshan; Liu, Lei; Wu, Yanming; Zhang, Huaguang

    2018-06-01

    This paper investigates the problem of optimal fault-tolerant control (FTC) for a class of unknown nonlinear discrete-time systems with actuator fault in the framework of adaptive critic design (ACD). A pivotal highlight is the adaptive auxiliary signal of the actuator fault, which is designed to offset the effect of the fault. The considered systems are in strict-feedback forms and involve unknown nonlinear functions, which will result in the causal problem. To solve this problem, the original nonlinear systems are transformed into a novel system by employing the diffeomorphism theory. Besides, the action neural networks (ANNs) are utilized to approximate a predefined unknown function in the backstepping design procedure. Combined the strategic utility function and the ACD technique, a reinforcement learning algorithm is proposed to set up an optimal FTC, in which the critic neural networks (CNNs) provide an approximate structure of the cost function. In this case, it not only guarantees the stability of the systems, but also achieves the optimal control performance as well. In the end, two simulation examples are used to show the effectiveness of the proposed optimal FTC strategy.

  3. Distributed Adaptive Finite-Time Approach for Formation-Containment Control of Networked Nonlinear Systems Under Directed Topology.

    PubMed

    Wang, Yujuan; Song, Yongduan; Ren, Wei

    2017-07-06

    This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.

  4. Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design.

    PubMed

    Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve

    2016-10-01

    In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.

  5. Distributed cooperative control of AC microgrids

    NASA Astrophysics Data System (ADS)

    Bidram, Ali

    In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.

  6. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  7. Nonlinear time-series-based adaptive control applications

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.

    1991-01-01

    A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.

  8. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    PubMed

    Liu, Wei; Huang, Jie

    2018-03-01

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  9. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  10. An Adaptive B-Spline Neural Network and Its Application in Terminal Sliding Mode Control for a Mobile Satcom Antenna Inertially Stabilized Platform.

    PubMed

    Zhang, Xiaolei; Zhao, Yan; Guo, Kai; Li, Gaoliang; Deng, Nianmao

    2017-04-28

    The mobile satcom antenna (MSA) enables a moving vehicle to communicate with a geostationary Earth orbit satellite. To realize continuous communication, the MSA should be aligned with the satellite in both sight and polarization all the time. Because of coupling effects, unknown disturbances, sensor noises and unmodeled dynamics existing in the system, the control system should have a strong adaptability. The significant features of terminal sliding mode control method are robustness and finite time convergence, but the robustness is related to the large switching control gain which is determined by uncertain issues and can lead to chattering phenomena. Neural networks can reduce the chattering and approximate nonlinear issues. In this work, a novel B-spline curve-based B-spline neural network (BSNN) is developed. The improved BSNN has the capability of shape changing and self-adaption. In addition, the output of the proposed BSNN is applied to approximate the nonlinear function in the system. The results of simulations and experiments are also compared with those of PID method, non-singularity fast terminal sliding mode (NFTSM) control and radial basis function (RBF) neural network-based NFTSM. It is shown that the proposed method has the best performance, with reliable control precision.

  11. Cooperative learning neural network output feedback control of uncertain nonlinear multi-agent systems under directed topologies

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wang, D.; Peng, Z. H.

    2017-09-01

    Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.

  12. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  13. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.

    PubMed

    Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A

    2008-08-01

    A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.

  14. Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks.

    PubMed

    Hovakimyan, N; Nardi, F; Calise, A; Kim, Nakwan

    2002-01-01

    We consider adaptive output feedback control of uncertain nonlinear systems, in which both the dynamics and the dimension of the regulated system may be unknown. However, the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. The classical approach requires a state observer. Finding a good observer for an uncertain nonlinear system is not an obvious task. We argue that it is sufficient to build an observer for the output tracking error. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. The theoretical results are illustrated in the design of a controller for a fourth-order nonlinear system of relative degree two and a high-bandwidth attitude command system for a model R-50 helicopter.

  15. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang

    2016-12-01

    It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

    PubMed

    Chang, Yeong-Chan

    2005-12-01

    This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

  17. Adaptive near-optimal neuro controller for continuous-time nonaffine nonlinear systems with constrained input.

    PubMed

    Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali

    2017-09-01

    In this paper, an identifier-critic structure is introduced to find an online near-optimal controller for continuous-time nonaffine nonlinear systems having saturated control signal. By employing two Neural Networks (NNs), the solution of Hamilton-Jacobi-Bellman (HJB) equation associated with the cost function is derived without requiring a priori knowledge about system dynamics. Weights of the identifier and critic NNs are tuned online and simultaneously such that unknown terms are approximated accurately and the control signal is kept between the saturation bounds. The convergence of NNs' weights, identification error, and system states is guaranteed using Lyapunov's direct method. Finally, simulation results are performed on two nonlinear systems to confirm the effectiveness of the proposed control strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Minimal-Approximation-Based Distributed Consensus Tracking of a Class of Uncertain Nonlinear Multiagent Systems With Unknown Control Directions.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2017-03-28

    A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.

  19. Epigenetics and Why Biological Networks are More Controllable than Expected

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  20. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  1. Flexible timing by temporal scaling of cortical responses

    PubMed Central

    Wang, Jing; Narain, Devika; Hosseini, Eghbal A.; Jazayeri, Mehrdad

    2017-01-01

    Musicians can perform at different tempos, speakers can control the cadence of their speech, and children can flexibly vary their temporal expectations of events. To understand the neural basis of such flexibility, we recorded from the medial frontal cortex of nonhuman primates trained to produce different time intervals with different effectors. Neural responses were heterogeneous, nonlinear and complex, and exhibited a remarkable form of temporal invariance: firing rate profiles were temporally scaled to match the produced intervals. Recording from downstream neurons in the caudate and thalamic neurons projecting to the medial frontal cortex indicated that this phenomenon originates within cortical networks. Recurrent neural network models trained to perform the task revealed that temporal scaling emerges from nonlinearities in the network and degree of scaling is controlled by the strength of external input. These findings demonstrate a simple and general mechanism for conferring temporal flexibility upon sensorimotor and cognitive functions. PMID:29203897

  2. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    PubMed

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  3. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.

    PubMed

    Chen, Mou; Tao, Gang

    2016-08-01

    In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

  4. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction

    PubMed Central

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703

  5. On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.

    PubMed

    Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen

    2018-04-01

    In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.

  6. Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control.

    PubMed

    Guo, Zhenyuan; Yang, Shaofu; Wang, Jun

    2016-12-01

    This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks. Sufficient conditions are derived for ascertaining global exponential synchronization in mean square. In addition, a pinning adaptive control law is developed to achieve global exponential synchronization in mean square. Both pinning control laws utilize only partial state information received from the neighborhood of the controlled neural network. Simulation results are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Neural robust stabilization via event-triggering mechanism and adaptive learning technique.

    PubMed

    Wang, Ding; Liu, Derong

    2018-06-01

    The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  9. Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.

    PubMed

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua

    2016-09-01

    This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.

  10. Distributed Adaptive Containment Control for a Class of Nonlinear Multiagent Systems With Input Quantization.

    PubMed

    Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu

    2018-06-01

    This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.

  11. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

    PubMed Central

    Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797

  12. Feedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010

  13. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  14. Control of coupled oscillator networks with application to microgrid technologies.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  15. Control of coupled oscillator networks with application to microgrid technologies

    PubMed Central

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  16. Control of coupled oscillator networks with application to microgrid technologies

    NASA Astrophysics Data System (ADS)

    Arenas, Alex

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn- chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  17. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Optimal Control-Based Adaptive NN Design for a Class of Nonlinear Discrete-Time Block-Triangular Systems.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng

    2016-11-01

    In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.

  19. Viewing hybrid systems as products of control systems and automata

    NASA Technical Reports Server (NTRS)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  20. High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia

    PubMed Central

    Plis, Sergey M; Sui, Jing; Lane, Terran; Roy, Sushmita; Clark, Vincent P; Potluru, Vamsi K; Huster, Rene J; Michael, Andrew; Sponheim, Scott R; Weisend, Michael P; Calhoun, Vince D

    2013-01-01

    Identifying the complex activity relationships present in rich, modern neuroimaging data sets remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven by numerous latent factors. Further, modern experiments often produce data sets containing multiple stimulus contexts or tasks processed by the same subjects. Fusing such multi-session data sets may reveal additional structure, but raises further statistical challenges. We present a novel analysis method for extracting complex activity networks from such multifaceted imaging data sets. Compared to previous methods, we choose a new point in the trade-off space, sacrificing detailed generative probability models and explicit latent variable inference in order to achieve robust estimation of multivariate, nonlinear group factors (“network clusters”). We apply our method to identify relationships of task-specific intrinsic networks in schizophrenia patients and control subjects from a large fMRI study. After identifying network-clusters characterized by within- and between-task interactions, we find significant differences between patient and control groups in interaction strength among networks. Our results are consistent with known findings of brain regions exhibiting deviations in schizophrenic patients. However, we also find high-order, nonlinear interactions that discriminate groups but that are not detected by linear, pair-wise methods. We additionally identify high-order relationships that provide new insights into schizophrenia but that have not been found by traditional univariate or second-order methods. Overall, our approach can identify key relationships that are missed by existing analysis methods, without losing the ability to find relationships that are known to be important. PMID:23876245

  1. Output feedback control of a quadrotor UAV using neural networks.

    PubMed

    Dierks, Travis; Jagannathan, Sarangapani

    2010-01-01

    In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.

  2. Neural learning of constrained nonlinear transformations

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Gulati, Sandeep; Zak, Michail

    1989-01-01

    Two issues that are fundamental to developing autonomous intelligent robots, namely, rudimentary learning capability and dexterous manipulation, are examined. A powerful neural learning formalism is introduced for addressing a large class of nonlinear mapping problems, including redundant manipulator inverse kinematics, commonly encountered during the design of real-time adaptive control mechanisms. Artificial neural networks with terminal attractor dynamics are used. The rapid network convergence resulting from the infinite local stability of these attractors allows the development of fast neural learning algorithms. Approaches to manipulator inverse kinematics are reviewed, the neurodynamics model is discussed, and the neural learning algorithm is presented.

  3. Systematic construction and control of stereo nerve vision network in intelligent manufacturing

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Wang, Helong; Guo, Chunjie; Ding, Quanxin; Zhou, Liwei

    2017-10-01

    A system method of constructing stereo vision by using neural network is proposed, and the operation and control mechanism in actual operation are proposed. This method makes effective use of the neural network in learning and memory function, by after training with samples. Moreover, the neural network can learn the nonlinear relationship in the stereoscopic vision system and the internal and external orientation elements. These considerations are Worthy of attention, which includes limited constraints, the scientific of critical group, the operating speed and the operability in technical aspects. The results support our theoretical forecast.

  4. Predictive and Neural Predictive Control of Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.

  5. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    NASA Astrophysics Data System (ADS)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  6. Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Chih

    2010-12-01

    In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.

  7. Effect of control-beam polarization and power on optical time-domain demultiplexing in a new nonlinear optical loop mirror design

    NASA Astrophysics Data System (ADS)

    Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef

    2009-05-01

    A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.

  8. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.

    PubMed

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2017-06-01

    An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.

  9. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  10. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  11. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  12. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    PubMed

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Study on Coagulant Dosing Control System of Micro Vortex Water Treatment

    NASA Astrophysics Data System (ADS)

    Fengping, Hu; Qi, Fan; Wenjie, Hu; Xizhen, He; Hongling, Dai

    2018-03-01

    In view of the characteristics of nonlinearity, large time delay and multi disturbance in the process of coagulant dosing in water treatment, it is difficult to control the dosage of coagulant. According to the four indexes of raw water quality parameters (raw water flow, turbidity, pH value) and turbidity of sedimentation tank, the micro vortex coagulation dosing control model is constructed based on BP neural network and GA. The forecast results of BP neural network model are ideal, and after the optimization of GA, the prediction accuracy of the model is partly improved. The prediction error of the optimized network is ±0.5 mg/L, and has a better performance than non-optimized network.

  14. Hexacopter trajectory control using a neural network

    NASA Astrophysics Data System (ADS)

    Artale, V.; Collotta, M.; Pau, G.; Ricciardello, A.

    2013-10-01

    The modern flight control systems are complex due to their non-linear nature. In fact, modern aerospace vehicles are expected to have non-conventional flight envelopes and, then, they must guarantee a high level of robustness and adaptability in order to operate in uncertain environments. Neural Networks (NN), with real-time learning capability, for flight control can be used in applications with manned or unmanned aerial vehicles. Indeed, using proven lower level control algorithms with adaptive elements that exhibit long term learning could help in achieving better adaptation performance while performing aggressive maneuvers. In this paper we show a mathematical modeling and a Neural Network for a hexacopter dynamics in order to develop proper methods for stabilization and trajectory control.

  15. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.

    PubMed

    Li, Yuan-Xin; Yang, Guang-Hong

    2018-04-01

    This paper is concerned with the adaptive event-triggered control problem of nonlinear continuous-time systems in strict-feedback form. By using the event-sampled neural network (NN) to approximate the unknown nonlinear function, an adaptive model and an associated event-triggered controller are designed by exploiting the backstepping method. In the proposed method, the feedback signals and the NN weights are aperiodically updated only when the event-triggered condition is violated. A positive lower bound on the minimum intersample time is guaranteed to avoid accumulation point. The closed-loop stability of the resulting nonlinear impulsive dynamical system is rigorously proved via Lyapunov analysis under an adaptive event sampling condition. In comparing with the traditional adaptive backstepping design with a fixed sample period, the event-triggered method samples the state and updates the NN weights only when it is necessary. Therefore, the number of transmissions can be significantly reduced. Finally, two simulation examples are presented to show the effectiveness of the proposed control method.

  16. Adaptive control using neural networks and approximate models.

    PubMed

    Narendra, K S; Mukhopadhyay, S

    1997-01-01

    The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.

  17. Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding

    2017-08-29

    This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.

  18. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.

    PubMed

    Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu

    2015-01-01

    This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Synchronization of a Class of Switched Neural Networks with Time-Varying Delays via Nonlinear Feedback Control.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    2016-10-01

    This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.

  20. Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian

    2018-02-01

    This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space. Handcrafting test signals for efficient exploration is difficult even for input-output stable unknown processes. Virtual Reference Feedback Tuning can ensure an initial stabilizing controller to be learned from few input-output data and it can be next used to collect substantially more input-state data in a controlled mode, in a constrained environment, by compensating the process dynamics. This data is used to learn significantly superior nonlinear state feedback neural networks controllers for model reference tracking, using the proposed Batch Fitted Q-learning iterative tuning strategy, motivating the original combination of the two techniques. The mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach is experimentally validated for water level control of a multi input-multi output nonlinear constrained coupled two-tank system. Discussions on the observed control behavior are offered. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

    NASA Astrophysics Data System (ADS)

    Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian

    2018-06-01

    Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.

  2. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input.

    PubMed

    Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip

    2016-01-01

    In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.

  3. Nonlinear dynamical model of human gait

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.

  4. Approximately adaptive neural cooperative control for nonlinear multiagent systems with performance guarantee

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian

    2017-04-01

    This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.

  5. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  6. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    PubMed

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear H∞ control.

    PubMed

    Wu, Huai-Ning; Luo, Biao

    2012-12-01

    It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm.

  8. Optimal and Adaptive Control of Flow in a Thermal Convection Loop

    NASA Astrophysics Data System (ADS)

    Yuen, Po Ki; Bau, Haim

    1998-11-01

    In theory and experiment, we use nonlinear and linear optimal and adaptive controllers to suppress the naturally occurring chaotic convection in a thermal convection loop. The thermal convection loop is a simple experimental analog of the Lorenz equations, and it provides a convenient platform for testing and comparing the performance of various control strategies in a fluid mechanical setting. The performance of the optimal and adaptive controllers is compared with that of a previously developed simple feedback controller (Singer, J., Wang, Y., & Bau, H., H., 1991, Physical Review Letters, 66,123-1125.)(Wang, Y., Singer, J., & Bau, H., H., 1992, J. Fluid Mechanics, 237, 479-498.), a nonlinear controller with a cubic nonlinearity(Yuen, P., & Bau, H., H., 1996, J. Fluid Mechanics, 317, 91-109.), and a neural net controller(Yuen, P., & Bau, H., H., 1998, Neural Networks, 11, 557 - 569, 1998.). It is demonstrated that an adaptive controller can perform successfully even when the system's model is not known.

  9. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    PubMed

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    PubMed

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  11. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.

    PubMed

    Jagannathan, Sarangapani; He, Pingan

    2008-12-01

    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.

  12. Neural network fusion capabilities for efficient implementation of tracking algorithms

    NASA Astrophysics Data System (ADS)

    Sundareshan, Malur K.; Amoozegar, Farid

    1996-05-01

    The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.

  13. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights.

    PubMed

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  14. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    PubMed

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua; Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021; Wu, Songli

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in themore » closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.« less

  16. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    NASA Astrophysics Data System (ADS)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  17. Impulse position control algorithms for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  18. Robust leader-follower formation tracking control of multiple underactuated surface vessels

    NASA Astrophysics Data System (ADS)

    Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang

    2012-09-01

    This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.

  19. Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.

    PubMed

    Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido

    2018-03-23

    Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.

  20. On the new method for the control of discrete nonlinear dynamic systems using neural networks.

    PubMed

    Deng, Hua; Li, Han-Xiong

    2006-03-01

    This correspondence points out an incorrect statement in Adetona et al, 2000, and Adetona et al., 2004, about the application of the proposed control law to nonminimum phase systems. A counterexample shows the limitations of the control law and, furthermore, its control capability to nonminimum phase systems is explained.

  1. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  2. Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation.

    PubMed

    Zhu, Yuanming; Hou, Zhongsheng; Qian, Feng; Du, Wenli

    2017-03-01

    In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.

  3. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models

    PubMed Central

    Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos

    2018-01-01

    This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781

  4. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.

    PubMed

    Neilson, Peter D; Neilson, Megan D

    2005-09-01

    Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.

  5. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    PubMed

    Gao, Hui; Song, Yongduan; Wen, Changyun

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  7. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  8. Wave-variable framework for networked robotic systems with time delays and packet losses

    NASA Astrophysics Data System (ADS)

    Puah, Seng-Ming; Liu, Yen-Chen

    2017-05-01

    This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.

  9. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  10. Comparative Analysis on Nonlinear Models for Ron Gasoline Blending Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Aguilera, R. Carreño; Yu, Wen; Rodríguez, J. C. Tovar; Mosqueda, M. Elena Acevedo; Ortiz, M. Patiño; Juarez, J. J. Medel; Bautista, D. Pacheco

    The blending process always being a nonlinear process is difficult to modeling, since it may change significantly depending on the components and the process variables of each refinery. Different components can be blended depending on the existing stock, and the chemical characteristics of each component are changing dynamically, they all are blended until getting the expected specification in different properties required by the customer. One of the most relevant properties is the Octane, which is difficult to control in line (without the component storage). Since each refinery process is quite different, a generic gasoline blending model is not useful when a blending in line wants to be done in a specific process. A mathematical gasoline blending model is presented in this paper for a given process described in state space as a basic gasoline blending process description. The objective is to adjust the parameters allowing the blending gasoline model to describe a signal in its trajectory, representing in neural networks extreme learning machine method and also for nonlinear autoregressive-moving average (NARMA) in neural networks method, such that a comparative work be developed.

  11. Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks.

    PubMed

    Alfaro-Ponce, Mariel; Cruz, Amadeo Argüelles; Chairez, Isaac

    2014-03-01

    This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.

  12. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  13. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming.

    PubMed

    Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan

    2011-12-01

    In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.

  14. Nonlinearity in cytoplasm viscosity can generate an essential symmetry breaking in cellular behaviors.

    PubMed

    Tachikawa, Masashi; Mochizuki, Atsushi

    2015-01-07

    The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Distributed plug-and-play optimal generator and load control for power system frequency regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Mallada, Enrique; Low, Steven H.

    A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less

  16. Distributed plug-and-play optimal generator and load control for power system frequency regulation

    DOE PAGES

    Zhao, Changhong; Mallada, Enrique; Low, Steven H.; ...

    2018-03-14

    A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less

  17. Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    Electric power systems represent complex systems involving many electrical components whoseoperation has to be planned, analyzed, monitored and controlled. The time-scale of tasks in electricpower systems extends from long term planning years ahead to milliseconds in the area of control. The behavior of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements.

  18. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    PubMed

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  19. Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2017-03-01

    We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.

  20. A new approach for designing self-organizing systems and application to adaptive control

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song

    1993-01-01

    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.

  1. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  2. Impulse position control algorithms for nonlinear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesekin, A. N., E-mail: sesekin@list.ru; Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990; Nepp, A. N., E-mail: anepp@urfu.ru

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of suchmore » regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.« less

  3. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  4. Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin; Lv, Hui, E-mail: lvhui207@gmail.com

    In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.

  5. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.

    PubMed

    Schmitt, Michael

    2004-09-01

    We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.

  6. Uncovering Droop Control Laws Embedded Within the Nonlinear Dynamics of Van der Pol Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.

    This paper examines the dynamics of power-electronic inverters in islanded microgrids that are controlled to emulate the dynamics of Van der Pol oscillators. The general strategy of controlling inverters to emulate the behavior of nonlinear oscillators presents a compelling time-domain alternative to ubiquitous droop control methods which presume the existence of a quasistationary sinusoidal steady state and operate on phasor quantities. We present two main results in this paper. First, by leveraging the method of periodic averaging, we demonstrate that droop laws are intrinsically embedded within a slower time scale in the nonlinear dynamics of Van der Pol oscillators. Second,more » we establish the global convergence of amplitude and phase dynamics in a resistive network interconnecting inverters controlled as Van der Pol oscillators. Furthermore, under a set of nonrestrictive decoupling approximations, we derive sufficient conditions for local exponential stability of desirable equilibria of the linearized amplitude and phase dynamics.« less

  7. A new adaptive control strategy for a class of nonlinear system using RBF neuro-sliding-mode technique: application to SEIG wind turbine control system

    NASA Astrophysics Data System (ADS)

    Kenné, Godpromesse; Fotso, Armel Simo; Lamnabhi-Lagarrigue, Françoise

    2017-04-01

    In this paper, a new hybrid method which combines radial basis function (RBF) neural network with a sliding-mode technique to take advantage of their common features is used to control a class of nonlinear systems. A real-time dynamic nonlinear learning law of the weight vector is synthesized and the closed-loop stability has been demonstrated using Lyapunov theory. The solution presented in this work does not need the knowledge of the perturbation bounds, neither the knowledge of the full state of the nonlinear system. In addition, the bounds of the nonlinear functions are assumed to be unknown and the proposed RBF structure uses reduced number of hidden units. This hybrid control strategy is applied to extract the maximum available energy from a stand-alone self-excited variable low-wind speed energy conversion system and design the dc-voltage and rotor flux controllers as well as the load-side frequency and voltage regulators assuming that the measured outputs are the rotor speed, stator currents, load-side currents and voltages despite large variation of the rotor resistance and uncertainties on the inductances. Finally, simulation results compared with those obtained using the well-known second-order sliding-mode controller are given to show the effectiveness and feasibility of the proposed approach.

  8. Compensation of significant parametric uncertainties using sliding mode online learning

    NASA Astrophysics Data System (ADS)

    Schnetter, Philipp; Kruger, Thomas

    An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.

  9. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  10. Thermodynamics of Random Reaction Networks

    PubMed Central

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  11. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    PubMed Central

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  12. Controllability of complex networks for sustainable system dynamics

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often non-linear and non-intuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic un...

  13. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Modeling and simulation of permanent magnet synchronous motor based on neural network control strategy

    NASA Astrophysics Data System (ADS)

    Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao

    2017-03-01

    Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.

  15. The investigation of social networks based on multi-component random graphs

    NASA Astrophysics Data System (ADS)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  16. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects

    PubMed Central

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.

    2012-01-01

    Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108

  17. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant modelmore » and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.« less

  18. Enhanced damping for bridge cables using a self-sensing MR damper

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  19. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  20. Using artificial intelligence to predict permeability from petrographic data

    NASA Astrophysics Data System (ADS)

    Ali, Maqsood; Chawathé, Adwait

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate gradient method) was used to optimize the network weight matrix. The net was then successfully used to predict the permeability in the nearby South Lucky Lake field, also in the Shattuck Member. This study underscored various important aspects of using neural networks as non-linear estimators. The neural network learnt the complex relationships between petrographic control and permeability. By predicting permeability in a remotely-located, yet geologically similar field, the generalizing capability of the neural network was also demonstrated. In old fields, where conventional petrographic analysis was routine, this technique may be used to supplement core permeability estimates.

  1. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    PubMed

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  2. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  3. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  4. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  5. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  6. Neural network based adaptive output feedback control: Applications and improvements

    NASA Astrophysics Data System (ADS)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in simulation, a fictitious actuator model is developed that fits experimentally observed characteristics of flow control actuators in static flight conditions as well as possible coupling effects between actuation, the dynamics of flow field, and the rigid body dynamics of the vehicle.

  7. Decentralized robust nonlinear model predictive controller for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Garcia Garreton, Gonzalo A.

    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.

  8. Finite-time consensus for controlled dynamical systems in network

    NASA Astrophysics Data System (ADS)

    Zoghlami, Naim; Mlayeh, Rhouma; Beji, Lotfi; Abichou, Azgal

    2018-04-01

    The key challenges in networked dynamical systems are the component heterogeneities, nonlinearities, and the high dimension of the formulated vector of state variables. In this paper, the emphasise is put on two classes of systems in network include most controlled driftless systems as well as systems with drift. For each model structure that defines homogeneous and heterogeneous multi-system behaviour, we derive protocols leading to finite-time consensus. For each model evolving in networks forming a homogeneous or heterogeneous multi-system, protocols integrating sufficient conditions are derived leading to finite-time consensus. Likewise, for the networking topology, we make use of fixed directed and undirected graphs. To prove our approaches, finite-time stability theory and Lyapunov methods are considered. As illustrative examples, the homogeneous multi-unicycle kinematics and the homogeneous/heterogeneous multi-second order dynamics in networks are studied.

  9. International Neural Network Society Annual Meeting (1994) Held in San Diego, California on 5-9 June 1994. Volume 1

    DTIC Science & Technology

    1994-06-09

    Ethics and the Soul 1-221 P. Werbos A Net Program for Natural Language Comprehension 1-863 J. Weiss Applications Oral ANN Design of Image Processing...Controlling Nonlinear Dynamic Systems Using Neuro-Fuzzy Networks 1-787 E. Teixera, G. Laforga, H. Azevedo Neural Fuzzy Logics as a Tool for Design Ecological ...Discrete Neural Network 11-466 Z. Cheng-fu Representation of Number A Theory of Mathematical Modeling 11-479 J. Cristofano An Ecological Approach to

  10. A Novel Approach to Adaptive Flow Separation Control

    DTIC Science & Technology

    2016-09-03

    particular, it considers control of flow separation over a NACA-0025 airfoil using microjet actuators and develops Adaptive Sampling Based Model...Predictive Control ( Adaptive SBMPC), a novel approach to Nonlinear Model Predictive Control that applies the Minimal Resource Allocation Network...Distribution Unlimited UU UU UU UU 03-09-2016 1-May-2013 30-Apr-2016 Final Report: A Novel Approach to Adaptive Flow Separation Control The views, opinions

  11. A continually online-trained neural network controller for brushless DC motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubaai, A.; Kotaru, R.; Kankam, M.D.

    2000-04-01

    In this paper, a high-performance controller with simultaneous online identification and control is designed for brushless dc motor drives. The dynamics of the motor/load are modeled online, and controlled using two different neural network based identification and control schemes, as the system is in operation. In the first scheme, an attempt is made to control the rotor angular speed, utilizing a single three-hidden-layer network. The second scheme attempts to control the stator currents, using a predetermined control law as a function of the estimated states. This schemes incorporates three multilayered feedforward neural networks that are online trained, using the Levenburg-Marquadtmore » training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories after relatively short online training periods. The control strategy adapts to the uncertainties of the motor/load dynamics and, in addition, learns their inherent nonlinearities. Simulation results illustrated that a neurocontroller used in conjunction with adaptive control schemes can result in a flexible control device which may be utilized in a wide range of environments.« less

  12. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  13. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.

  14. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  15. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662

  16. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  17. Synchronization control in multiplex networks of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng

    2017-12-01

    This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.

  18. An artificial neural network controller based on MPSO-BFGS hybrid optimization for spherical flying robot

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Li, Lanfei; Sun, Hanxu

    2017-12-01

    Spherical flying robot can perform various tasks in the complex and varied environment to reduce labor costs. However, it is difficult to guarantee the stability of the spherical flying robot in the case of strong coupling and time-varying disturbance. In this paper, an artificial neural network controller (ANNC) based on MPSO-BFGS hybrid optimization algorithm is proposed. The MPSO algorithm is used to optimize the initial weights of the controller to avoid the local optimal solution. The BFGS algorithm is introduced to improve the convergence ability of the network. We use Lyapunov method to analyze the stability of ANNC. The controller is simulated under the condition of nonlinear coupling disturbance. The experimental results show that the proposed controller can obtain the expected value in shoter time compared with the other considered methods.

  19. Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning.

    PubMed

    Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai

    2014-07-01

    In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Application of artificial neural networks in nonlinear analysis of trusses

    NASA Technical Reports Server (NTRS)

    Alam, J.; Berke, L.

    1991-01-01

    A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.

  1. A hybrid linear/nonlinear training algorithm for feedforward neural networks.

    PubMed

    McLoone, S; Brown, M D; Irwin, G; Lightbody, A

    1998-01-01

    This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.

  2. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis.

    PubMed

    Liu, Zhi; Lai, Guanyu; Zhang, Yun; Chen, Xin; Chen, Chun Lung Philip

    2014-12-01

    This paper investigates the fusion of unknown direction hysteresis model with adaptive neural control techniques in face of time-delayed continuous time nonlinear systems without strict-feedback form. Compared with previous works on the hysteresis phenomenon, the direction of the modified Bouc-Wen hysteresis model investigated in the literature is unknown. To reduce the computation burden in adaptation mechanism, an optimized adaptation method is successfully applied to the control design. Based on the Lyapunov-Krasovskii method, two neural-network-based adaptive control algorithms are constructed to guarantee that all the system states and adaptive parameters remain bounded, and the tracking error converges to an adjustable neighborhood of the origin. In final, some numerical examples are provided to validate the effectiveness of the proposed control methods.

  3. Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.

    PubMed

    Su, Shize; Lin, Zongli; Garcia, Alfredo

    2016-01-01

    This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.

  4. Pinning synchronization of delayed complex dynamical networks with nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin

    2014-11-01

    In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.

  5. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  6. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  7. Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-04-01

    This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.

  8. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  9. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  10. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fuzzy distributed cooperative tracking for a swarm of unmanned aerial vehicles with heterogeneous goals

    NASA Astrophysics Data System (ADS)

    Kladis, Georgios P.; Menon, Prathyush P.; Edwards, Christopher

    2016-12-01

    This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of unmanned aerial vehicles (UAVs), modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly, feedback gains are synthesised using a parallel distributed compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law, the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as linear matrix inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.

  12. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    NASA Astrophysics Data System (ADS)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  13. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    NASA Astrophysics Data System (ADS)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  14. Network evolution by nonlinear preferential rewiring of edges

    NASA Astrophysics Data System (ADS)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  15. Numerical Nonlinear Robust Control with Applications to Humanoid Robots

    DTIC Science & Technology

    2015-07-01

    automatically. While optimization and optimal control theory have been widely applied in humanoid robot control, it is not without drawbacks . A blind... drawback of Galerkin-based approaches is the need to successively produce discrete forms, which is difficult to implement in practice. Related...universal function approx- imation ability, these approaches are not without drawbacks . In practice, while a single hidden layer neural network can

  16. Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.

    PubMed

    Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki

    2014-02-01

    This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.

  17. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  18. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  20. From Discrete Breathers to Many Body Localization and Flatbands

    NASA Astrophysics Data System (ADS)

    Flach, Sergej

    Discrete breathers (DB) and intrinsic localized modes (ILM) are synonymic dynamical states on nonlinear lattices - periodic in time and localized in space, and widely observed in many applications. I will discuss the connections between DBs and many-body localization (MBL) and the properties of DBs on flatband networks. A dense quantized gas of strongly excited DBs can lead to a MBL phase in a variety of different lattice models. Its classical counterpart corresponds to a 'nonergodic metal' in the MBL language, or to a nonGibbsean selftrapped state in the language of nonlinear dynamics. Flatband networks are lattices with small amplitude waves exhibiting macroscopic degeneracy in their band structure due to local symmetries, destructive interference, compact localized eigenstates and horizontal flat bands. DBs can preserve the compactness of localization in the presence of nonlinearity with properly tuned internal phase relationships, making them promising tools for control of the phase coherence of waves. Also at New Zealand Institute of Advanced Study, Massey University, Auckland, New Zealand.

  1. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  2. Dual adaptive dynamic control of mobile robots using neural networks.

    PubMed

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  3. Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.

    PubMed

    Liu, Xiaoyang; Cao, Jinde; Yu, Wenwu; Song, Qiang

    2016-10-01

    This paper is concerned with the finite-time synchronization (FTS) issue of switched coupled neural networks with discontinuous or continuous activations. Based on the framework of nonsmooth analysis, some discontinuous or continuous controllers are designed to force the coupled networks to synchronize to an isolated neural network. Some sufficient conditions are derived to ensure the FTS by utilizing the well-known finite-time stability theorem for nonlinear systems. Compared with the previous literatures, such synchronization objective will be realized when the activations and the controllers are both discontinuous. The obtained results in this paper include and extend the earlier works on the synchronization issue of coupled networks with Lipschitz continuous conditions. Moreover, an upper bound of the settling time for synchronization is estimated. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  4. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions.

    PubMed

    Li, Yanan; Yang, Chenguang; Ge, Shuzhi Sam; Lee, Tong Heng

    2011-04-01

    In this paper, adaptive neural network (NN) control is investigated for a class of block triangular multiinput-multioutput nonlinear discrete-time systems with each subsystem in pure-feedback form with unknown control directions. These systems are of couplings in every equation of each subsystem, and different subsystems may have different orders. To avoid the noncausal problem in the control design, the system is transformed into a predictor form by rigorous derivation. By exploring the properties of the block triangular form, implicit controls are developed for each subsystem such that the couplings of inputs and states among subsystems have been completely decoupled. The radial basis function NN is employed to approximate the unknown control. Each subsystem achieves a semiglobal uniformly ultimately bounded stability with the proposed control, and simulation results are presented to demonstrate its efficiency.

  5. Fuzzy fractional order sliding mode controller for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.

    2010-04-01

    In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.

  6. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

    PubMed

    Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K

    2009-05-01

    A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

  7. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  8. Aerial robot intelligent control method based on back-stepping

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Xue, Qian

    2018-05-01

    The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.

  9. Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.

    PubMed

    Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin

    2018-05-01

    The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.

  10. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  11. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    PubMed

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  12. Movement decoupling control for two-axis fast steering mirror

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Qiao, Yongming; Lv, Tao

    2017-02-01

    Based on flexure hinge and piezoelectric actuator of two-axis fast steering mirror is a complex system with time varying, uncertain and strong coupling. It is extremely difficult to achieve high precision decoupling control with the traditional PID control method. The feedback error learning method was established an inverse hysteresis model which was based inner product dynamic neural network nonlinear and no-smooth for piezo-ceramic. In order to improve the actuator high precision, a method was proposed, which was based piezo-ceramic inverse model of two dynamic neural network adaptive control. The experiment result indicated that, compared with two neural network adaptive movement decoupling control algorithm, static relative error is reduced from 4.44% to 0.30% and coupling degree is reduced from 12.71% to 0.60%, while dynamic relative error is reduced from 13.92% to 2.85% and coupling degree is reduced from 2.63% to 1.17%.

  13. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    NASA Astrophysics Data System (ADS)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  14. Two neural network algorithms for designing optimal terminal controllers with open final time

    NASA Technical Reports Server (NTRS)

    Plumer, Edward S.

    1992-01-01

    Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have been used successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques, however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two approaches which extend BPTT to open final-time problems are presented. In the first, a neural network learns a mapping from initial-state to time-to-go. In the second, the optimal number of steps for each trial run is found using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories compare favorably to optimal control results.

  15. Development of a neural network technique for KSTAR Thomson scattering diagnostics.

    PubMed

    Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ 2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ 2 method. The best results were obtained for 10 3 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ 2 method and performs the calculation twenty times faster.

  16. Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

    PubMed

    Yang, Guanxue; Wang, Lin; Wang, Xiaofan

    2017-06-07

    Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.

  17. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  18. Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances.

    PubMed

    Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang

    2018-06-01

    Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.

  19. Neuro-adaptive backstepping control of SISO non-affine systems with unknown gain sign.

    PubMed

    Ramezani, Zahra; Arefi, Mohammad Mehdi; Zargarzadeh, Hassan; Jahed-Motlagh, Mohammad Reza

    2016-11-01

    This paper presents two neuro-adaptive controllers for a class of uncertain single-input, single-output (SISO) nonlinear non-affine systems with unknown gain sign. The first approach is state feedback controller, so that a neuro-adaptive state-feedback controller is constructed based on the backstepping technique. The second approach is an observer-based controller and K-filters are designed to estimate the system states. The proposed method relaxes a priori knowledge of control gain sign and therefore by utilizing the Nussbaum-type functions this problem is addressed. In these methods, neural networks are employed to approximate the unknown nonlinear functions. The proposed adaptive control schemes guarantee that all the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB). Finally, the theoretical results are numerically verified through simulation examples. Simulation results show the effectiveness of the proposed methods. Copyright © 2016 ISA. All rights reserved.

  20. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network.

    PubMed

    Wang, K W; Deng, C; Li, J P; Zhang, Y Y; Li, X Y; Wu, M C

    2017-04-01

    Tuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.

  1. [Spectral quantitative analysis by nonlinear partial least squares based on neural network internal model for flue gas of thermal power plant].

    PubMed

    Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia

    2014-11-01

    To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.

  2. NEMS (Nanoelectromechanicsl Systems) Networks: A Novel Validation Platform for Controlling Interconnected Dynamical Networks

    DTIC Science & Technology

    2015-08-01

    power   power  grids  to...both  an   ultralow  intrinsic  dissipation   (high  Q)  and  a  low  threshold  onset  of  nonlinear  dynamics.  Q...of   nodes,   we  will   have   in   effect   a   powerful   simulator   for   large-­‐scale   real   world  

  3. Quasi-minimal active disturbance rejection control of MIMO perturbed linear systems based on differential neural networks and the attractive ellipsoid method.

    PubMed

    Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac

    2017-11-01

    This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Toward controlling perturbations in robotic sensor networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Ashis G.; Majumder, Saikat R.

    2014-06-01

    Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.

  5. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  6. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  7. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics

    PubMed Central

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-01-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998

  8. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-08-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.

  9. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  10. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    PubMed

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  11. Nonlinear model predictive control for chemical looping process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less

  12. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    PubMed

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  13. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  14. Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games.

    PubMed

    Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai

    2017-03-01

    This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.

  15. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  16. Anti-synchronization control of BAM memristive neural networks with multiple proportional delays and stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Yuan, Manman; Luo, Xiong; Liu, Linlin; Zhang, Yao

    2018-01-01

    Proportional delay is a class of unbounded time-varying delay. A class of bidirectional associative memory (BAM) memristive neural networks with multiple proportional delays is concerned in this paper. First, we propose the model of BAM memristive neural networks with multiple proportional delays and stochastic perturbations. Furthermore, by choosing suitable nonlinear variable transformations, the BAM memristive neural networks with multiple proportional delays can be transformed into the BAM memristive neural networks with constant delays. Based on the drive-response system concept, differential inclusions theory and Lyapunov stability theory, some anti-synchronization criteria are obtained. Finally, the effectiveness of proposed criteria are demonstrated through numerical examples.

  17. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

  18. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  19. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    NASA Technical Reports Server (NTRS)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  20. Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng

    2015-03-01

    In the paper, an adaptive tracking control design is studied for a class of nonlinear discrete-time systems with dead-zone input. The considered systems are of the nonaffine pure-feedback form and the dead-zone input appears nonlinearly in the systems. The contributions of the paper are that: 1) it is for the first time to investigate the control problem for this class of discrete-time systems with dead-zone; 2) there are major difficulties for stabilizing such systems and in order to overcome the difficulties, the systems are transformed into an n-step-ahead predictor but nonaffine function is still existent; and 3) an adaptive compensative term is constructed to compensate for the parameters of the dead-zone. The neural networks are used to approximate the unknown functions in the transformed systems. Based on the Lyapunov theory, it is proven that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of zero. Two simulation examples are provided to verify the effectiveness of the control approach in the paper.

  1. Robust synthetic biology design: stochastic game theory approach.

    PubMed

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  2. Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer.

    PubMed

    He, Wei; Yan, Zichen; Sun, Changyin; Chen, Yunan

    2017-10-01

    The research of this paper works out the attitude and position control of the flapping wing micro aerial vehicle (FWMAV). Neural network control with full state and output feedback are designed to deal with uncertainties in this complex nonlinear FWMAV dynamic system and enhance the system robustness. Meanwhile, we design disturbance observers which are exerted into the FWMAV system via feedforward loops to counteract the bad influence of disturbances. Then, a Lyapunov function is proposed to prove the closed-loop system stability and the semi-global uniform ultimate boundedness of all state variables. Finally, a series of simulation results indicate that proposed controllers can track desired trajectories well via selecting appropriate control gains. And the designed controllers possess potential applications in FWMAVs.

  3. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  4. Observer-Based Adaptive NN Control for a Class of Uncertain Nonlinear Systems With Nonsymmetric Input Saturation.

    PubMed

    Yong-Feng Gao; Xi-Ming Sun; Changyun Wen; Wei Wang

    2017-07-01

    This paper is concerned with the problem of adaptive tracking control for a class of uncertain nonlinear systems with nonsymmetric input saturation and immeasurable states. The radial basis function of neural network (NN) is employed to approximate unknown functions, and an NN state observer is designed to estimate the immeasurable states. To analyze the effect of input saturation, an auxiliary system is employed. By the aid of adaptive backstepping technique, an adaptive tracking control approach is developed. Under the proposed adaptive tracking controller, the boundedness of all the signals in the closed-loop system is achieved. Moreover, distinct from most of the existing references, the tracking error can be bounded by an explicit function of design parameters and saturation input error. Finally, an example is given to show the effectiveness of the proposed method.

  5. Impulse-induced localized control of chaos in starlike networks.

    PubMed

    Chacón, Ricardo; Palmero, Faustino; Cuevas-Maraver, Jesús

    2016-06-01

    Locally decreasing the impulse transmitted by periodic pulses is shown to be a reliable method of taming chaos in starlike networks of dissipative nonlinear oscillators, leading to both synchronous periodic states and equilibria (oscillation death). Specifically, the paradigmatic model of damped kicked rotators is studied in which it is assumed that when the rotators are driven synchronously, i.e., all driving pulses transmit the same impulse, the networks display chaotic dynamics. It is found that the taming effect of decreasing the impulse transmitted by the pulses acting on particular nodes strongly depends on their number and degree of connectivity. A theoretical analysis is given explaining the basic physical mechanism as well as the main features of the chaos-control scenario.

  6. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  7. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H.; Yamada, I.

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cyclesmore » and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.« less

  8. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  9. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  10. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

  11. Neural network adaptive control of wing-rock motion of aircraft model mounted on three-degree-of-freedom dynamic rig in wind tunnel

    NASA Astrophysics Data System (ADS)

    Ignatyev, D. I.

    2018-06-01

    High-angles-of-attack dynamics of aircraft are complicated with dangerous phenomena such as wing rock, stall, and spin. Autonomous dynamically scaled aircraft model mounted in three-degree-of-freedom (3DoF) dynamic rig is proposed for studying aircraft dynamics and prototyping of control laws in wind tunnel. Dynamics of the scaled aircraft model in 3DoF manoeuvre rig in wind tunnel is considered. The model limit-cycle oscillations are obtained at high angles of attack. A neural network (NN) adaptive control suppressing wing rock motion is designed. The wing rock suppression with the proposed control law is validated using nonlinear time-domain simulations.

  12. A Gradient Optimization Approach to Adaptive Multi-Robot Control

    DTIC Science & Technology

    2009-09-01

    implemented for deploying a group of three flying robots with downward facing cameras to monitor an environment on the ground. Thirdly, the multi-robot...theoretically proven, and implemented on multi-robot platforms. Thesis Supervisor: Daniela Rus Title: Professor of Electrical Engineering and Computer...often nonlinear, and they are coupled through a network which changes over time. Thirdly, implementing multi-robot controllers requires maintaining mul

  13. Dynamic neural network-based methods for compensation of nonlinear effects in multimode communication lines

    NASA Astrophysics Data System (ADS)

    Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.

    2017-12-01

    We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.

  14. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    NASA Technical Reports Server (NTRS)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  15. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  16. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  17. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  18. Stress-enhanced gelation: a dynamic nonlinearity of elasticity.

    PubMed

    Yao, Norman Y; Broedersz, Chase P; Depken, Martin; Becker, Daniel J; Pollak, Martin R; Mackintosh, Frederick C; Weitz, David A

    2013-01-04

    A hallmark of biopolymer networks is their sensitivity to stress, reflected by pronounced nonlinear elastic stiffening. Here, we demonstrate a distinct dynamical nonlinearity in biopolymer networks consisting of filamentous actin cross-linked by α-actinin-4. Applied stress delays the onset of relaxation and flow, markedly enhancing gelation and extending the regime of solidlike behavior to much lower frequencies. We show that this macroscopic network response can be accounted for at the single molecule level by the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior.

  19. Evaluation of crack status in a meter-size concrete structure using the ultrasonic nonlinear coda wave interferometry.

    PubMed

    Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent

    2017-10-01

    The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.

  20. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  1. Adaptive neural network motion control for aircraft under uncertainty conditions

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  2. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    PubMed

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  4. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    PubMed

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  5. Iterative Adaptive Dynamic Programming for Solving Unknown Nonlinear Zero-Sum Game Based on Online Data.

    PubMed

    Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun

    2017-03-01

    H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.

  6. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    PubMed

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  7. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    NASA Astrophysics Data System (ADS)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  8. Efficient self-organizing multilayer neural network for nonlinear system modeling.

    PubMed

    Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei

    2013-07-01

    It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  10. Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model

    PubMed Central

    Ehrens, Daniel; Sritharan, Duluxan; Sarma, Sridevi V.

    2015-01-01

    It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. Closed-loop therapy could therefore entail detecting when the network goes unstable, and then stimulating with an exogenous current to stabilize the network. In this study, a non-linear stochastic model of a neuronal network was used to simulate both seizure and non-seizure activity. In particular, synaptic weights between neurons were chosen such that the network's fixed point is stable during non-seizure periods, and a subset of these connections (the most fragile) were perturbed to make the same fixed point unstable to model seizure events; and, the model randomly transitions between these two modes. The goal of this study was to measure spike train observations from this epileptic network and then apply a feedback controller that (i) detects when the network goes unstable, and then (ii) applies a state-feedback gain control input to the network to stabilize it. The stability detector is based on a 2-state (stable, unstable) hidden Markov model (HMM) of the network, and detects the transition from the stable mode to the unstable mode from using the firing rate of the most fragile node in the network (which is the output of the HMM). When the unstable mode is detected, a state-feedback gain is applied to generate a control input to the fragile node bringing the network back to the stable mode. Finally, when the network is detected as stable again, the feedback control input is switched off. High performance was achieved for the stability detector, and feedback control suppressed seizures within 2 s after onset. PMID:25784851

  11. Adaptive Control of Truss Structures for Gossamer Spacecraft

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2007-01-01

    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.

  12. Identification and Control of Non-Linear Time-Varying Dynamical Systems Using Artificial Neural Networks

    DTIC Science & Technology

    1992-09-01

    finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the

  13. Distributed sensor networks: a cellular nonlinear network perspective.

    PubMed

    Haenggi, Martin

    2003-12-01

    Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware technology and engineering design have led to dramatic reductions in size, power consumption, and cost for digital circuitry, and wireless communications. Networking, self-organization, and distributed operation are crucial ingredients to harness the sensing, computing, and computational capabilities of the nodes into a complete system. This article shows that those networks can be considered as cellular nonlinear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical results available for CNNs.

  14. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE PAGES

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.; ...

    2017-10-03

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  15. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  16. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming.

    PubMed

    Christodoulou, Manolis A; Kontogeorgou, Chrysa

    2008-10-01

    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.

  17. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  18. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  19. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs

    PubMed Central

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479

  20. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs.

    PubMed

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.

  1. A heuristic neural network initialization scheme for modeling nonlinear functions in engineering mechanics: continuous development

    NASA Astrophysics Data System (ADS)

    Pei, Jin-Song; Mai, Eric C.

    2007-04-01

    This paper introduces a continuous effort towards the development of a heuristic initialization methodology for constructing multilayer feedforward neural networks to model nonlinear functions. In this and previous studies that this work is built upon, including the one presented at SPIE 2006, the authors do not presume to provide a universal method to approximate arbitrary functions, rather the focus is given to the development of a rational and unambiguous initialization procedure that applies to the approximation of nonlinear functions in the specific domain of engineering mechanics. The applications of this exploratory work can be numerous including those associated with potential correlation and interpretation of the inner workings of neural networks, such as damage detection. The goal of this study is fulfilled by utilizing the governing physics and mathematics of nonlinear functions and the strength of the sigmoidal basis function. A step-by-step graphical procedure utilizing a few neural network prototypes as "templates" to approximate commonly seen memoryless nonlinear functions of one or two variables is further developed in this study. Decomposition of complex nonlinear functions into a summation of some simpler nonlinear functions is utilized to exploit this prototype-based initialization methodology. Training examples are presented to demonstrate the rationality and effciency of the proposed methodology when compared with the popular Nguyen-Widrow initialization algorithm. Future work is also identfied.

  2. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  3. Information and material flows in complex networks

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Armbruster, Dieter; Mikhailov, Alexander S.; Lefeber, Erjen

    2006-04-01

    In this special issue, an overview of the Thematic Institute (TI) on Information and Material Flows in Complex Systems is given. The TI was carried out within EXYSTENCE, the first EU Network of Excellence in the area of complex systems. Its motivation, research approach and subjects are presented here. Among the various methods used are many-particle and statistical physics, nonlinear dynamics, as well as complex systems, network and control theory. The contributions are relevant for complex systems as diverse as vehicle and data traffic in networks, logistics, production, and material flows in biological systems. The key disciplines involved are socio-, econo-, traffic- and bio-physics, and a new research area that could be called “biologistics”.

  4. Chaos in a neural network circuit

    NASA Astrophysics Data System (ADS)

    Kepler, Thomas B.; Datt, Sumeet; Meyer, Robert B.; Abott, L. F.

    1990-12-01

    We have constructed a neural network circuit of four clipped, high-grain, integrating operational amplifiers coupled to each other through an array of digitally programmable resistor ladders (MDACs). In addition to fixed-point and cyclic behavior, the circuit exhibits chaotic behavior with complex strange attractors which are approached through period doubling, intermittent attractor expansion and/or quasiperiodic pathways. Couplings between the nonlinear circuit elements are controlled by a computer which can automatically search through the space of couplings for interesting phenomena. We report some initial statistical results relating the behavior of the network to properties of its coupling matrix. Through these results and further research the circuit should help resolve fundamental issues concerning chaos in neural networks.

  5. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  6. Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels.

    PubMed

    Zupke, Craig; Brady, Lowell J; Slade, Peter G; Clark, Philip; Caspary, R Guy; Livingston, Brittney; Taylor, Lisa; Bigham, Kyle; Morris, Arvia E; Bailey, Robert W

    2015-01-01

    Pressures for cost-effective new therapies and an increased emphasis on emerging markets require technological advancements and a flexible future manufacturing network for the production of biologic medicines. The safety and efficacy of a product is crucial, and consistent product quality is an essential feature of any therapeutic manufacturing process. The active control of product quality in a typical biologic process is challenging because of measurement lags and nonlinearities present in the system. The current study uses nonlinear model predictive control to maintain a critical product quality attribute at a predetermined value during pilot scale manufacturing operations. This approach to product quality control ensures a more consistent product for patients, enables greater manufacturing efficiency, and eliminates the need for extensive process characterization by providing direct measures of critical product quality attributes for real time release of drug product. © 2015 American Institute of Chemical Engineers.

  7. The algebraic criteria for the stability of control systems

    NASA Technical Reports Server (NTRS)

    Cremer, H.; Effertz, F. H.

    1986-01-01

    This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.

  8. Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-01-01

    This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.

  9. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Goettsche, A.; Niebur, D.; Friend, H.; Johnston, A.

    1991-01-01

    The first section of the report describes the AbNET system, a hardware and software communications system designed for distribution automation (it can also find application in substation monitoring and control). The topology of the power system fixes the topology of the communications network, which can therefore be expected to include a larger number of branch points, tap points, and interconnections. These features make this communications network unlike any other. The network operating software has to solve the problem of communicating to all the nodes of a very complex network in as reliable a way as possible even if the network is damaged, and it has to do so with minimum transmission delays and at minimum cost. The design of the operating protocols is described within the framework of the seven-layer Open System Interconnection hierarchy of the International Standards Organization. Section 2 of the report describes the development and testing of a high voltage sensor based on an electro-optic polymer. The theory of operation is reviewed. Bulk fabrication of the polymer is discussed, as well as results of testing of the electro-optic coefficient of the material. Fabrication of a complete prototype sensor suitable for use in the range 1-20 kV is described. The electro-optic polymer is shown to be an important material for fiber optic sensing applications. Appendix A is theoretical support for this work. The third section of the report presents the application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way preserving the topological order of the input vectors. These mappings are studied using a nonlinear power system model.

  10. Nonlinear rescaling of control values simplifies fuzzy control

    NASA Technical Reports Server (NTRS)

    Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.

    1993-01-01

    Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.

  11. Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    PubMed Central

    Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang

    2012-01-01

    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results. PMID:22368475

  12. Embarked electrical network robust control based on singular perturbation model.

    PubMed

    Abdeljalil Belhaj, Lamya; Ait-Ahmed, Mourad; Benkhoris, Mohamed Fouad

    2014-07-01

    This paper deals with an approach of modelling in view of control for embarked networks which can be described as strongly coupled multi-sources, multi-loads systems with nonlinear and badly known characteristics. This model has to be representative of the system behaviour and easy to handle for easy regulators synthesis. As a first step, each alternator is modelled and linearized around an operating point and then it is subdivided into two lower order systems according to the singular perturbation theory. RST regulators are designed for each subsystem and tested by means of a software test-bench which allows predicting network behaviour in both steady and transient states. Finally, the designed controllers are implanted on an experimental benchmark constituted by two alternators supplying loads in order to test the dynamic performances in realistic conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    PubMed

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  14. Using OPC technology to support the study of advanced process control.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2015-03-01

    OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed

    1996-01-01

    A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.

  16. An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Heydari, Ali; Balakrishnan, S. N.

    2014-12-01

    The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.

  17. Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design.

    PubMed

    Liu, Lei; Wang, Zhanshan; Zhang, Huaguang

    2018-04-01

    This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.

  18. Generalised Transfer Functions of Neural Networks

    NASA Astrophysics Data System (ADS)

    Fung, C. F.; Billings, S. A.; Zhang, H.

    1997-11-01

    When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.

  19. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities

    PubMed Central

    Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki

    2011-01-01

    Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543

  20. Growing complex network of citations of scientific papers: Modeling and measurements

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  1. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  2. Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks.

    PubMed

    Xue, Hongqi; Wu, Shuang; Wu, Yichao; Ramirez Idarraga, Juan C; Wu, Hulin

    2018-05-02

    Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Fractal dynamics in physiology: Alterations with disease and aging

    PubMed Central

    Goldberger, Ary L.; Amaral, Luis A. N.; Hausdorff, Jeffrey M.; Ivanov, Plamen Ch.; Peng, C.-K.; Stanley, H. Eugene

    2002-01-01

    According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era. PMID:11875196

  4. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  5. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley

    2017-08-01

    At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.

  6. Distributed ESO based cooperative tracking control for high-order nonlinear multiagent systems with lumped disturbance and application in multi flight simulators systems.

    PubMed

    Cong, Zhang

    2018-03-01

    Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. An Adaptive Critic Approach to Reference Model Adaptation

    NASA Technical Reports Server (NTRS)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  8. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    DOEpatents

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  9. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  10. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  11. Estimating phase synchronization in dynamical systems using cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Sowa, Robert; Chernihovskyi, Anton; Mormann, Florian; Lehnertz, Klaus

    2005-06-01

    We propose a method for estimating phase synchronization between time series using the parallel computing architecture of cellular nonlinear networks (CNN’s). Applying this method to time series of coupled nonlinear model systems and to electroencephalographic time series from epilepsy patients, we show that an accurate approximation of the mean phase coherence R —a bivariate measure for phase synchronization—can be achieved with CNN’s using polynomial-type templates.

  12. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  13. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  14. Inferring nonlinear gene regulatory networks from gene expression data based on distance correlation.

    PubMed

    Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin

    2014-01-01

    Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.

  15. Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation

    PubMed Central

    Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin

    2014-01-01

    Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference. PMID:24551058

  16. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  17. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  18. Nonlinear signaling on biological networks: The role of stochasticity and spectral clustering

    NASA Astrophysics Data System (ADS)

    Hernandez-Hernandez, Gonzalo; Myers, Jesse; Alvarez-Lacalle, Enrique; Shiferaw, Yohannes

    2017-03-01

    Signal transduction within biological cells is governed by networks of interacting proteins. Communication between these proteins is mediated by signaling molecules which bind to receptors and induce stochastic transitions between different conformational states. Signaling is typically a cooperative process which requires the occurrence of multiple binding events so that reaction rates have a nonlinear dependence on the amount of signaling molecule. It is this nonlinearity that endows biological signaling networks with robust switchlike properties which are critical to their biological function. In this study we investigate how the properties of these signaling systems depend on the network architecture. Our main result is that these nonlinear networks exhibit bistability where the network activity can switch between states that correspond to a low and high activity level. We show that this bistable regime emerges at a critical coupling strength that is determined by the spectral structure of the network. In particular, the set of nodes that correspond to large components of the leading eigenvector of the adjacency matrix determines the onset of bistability. Above this transition the eigenvectors of the adjacency matrix determine a hierarchy of clusters, defined by its spectral properties, which are activated sequentially with increasing network activity. We argue further that the onset of bistability occurs either continuously or discontinuously depending upon whether the leading eigenvector is localized or delocalized. Finally, we show that at low network coupling stochastic transitions to the active branch are also driven by the set of nodes that contribute more strongly to the leading eigenvector. However, at high coupling, transitions are insensitive to network structure since the network can be activated by stochastic transitions of a few nodes. Thus this work identifies important features of biological signaling networks that may underlie their biological function.

  19. Stable adaptive neurocontrollers for spacecraft and space robots

    NASA Technical Reports Server (NTRS)

    Sanner, Robert M.

    1995-01-01

    This paper reviews recently developed techniques of adaptive nonlinear control using neural networks, and demonstrates their application to two important practical problems in orbital operations. An adaptive neurocontroller is first developed for spacecraft attitude control applications, and then the same design, slightly modified, is shown to be effective in the control of free-floating orbital manipulators. The algorithms discussed have guaranteed stability and convergence properties, and thus constitute viable alternatives to existing control methodologies. Simulation results are presented demonstrating the performance of each algorithm with representative dynamic models.

  20. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    EPA Science Inventory

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  1. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, Thomas E.; Dallum, Gregory E.

    1998-01-01

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground.

  2. Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.

    PubMed

    Herzallah, Randa

    2015-03-01

    Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Optimal and robust control of a class of nonlinear systems using dynamically re-optimised single network adaptive critic design

    NASA Astrophysics Data System (ADS)

    Tiwari, Shivendra N.; Padhi, Radhakant

    2018-01-01

    Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.

  4. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  5. Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.

    PubMed

    Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong

    2017-10-01

    This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.

  6. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  7. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    PubMed

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.

  8. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  9. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  10. Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities.

    PubMed

    Zouari, Farouk; Ibeas, Asier; Boulkroune, Abdesselem; Cao, Jinde; Mehdi Arefi, Mohammad

    2018-06-01

    This study addresses the issue of the adaptive output tracking control for a category of uncertain nonstrict-feedback delayed incommensurate fractional-order systems in the presence of nonaffine structures, unmeasured pseudo-states, unknown control directions, unknown actuator nonlinearities and output constraints. Firstly, the mean value theorem and the Gaussian error function are introduced to eliminate the difficulties that arise from the nonaffine structures and the unknown actuator nonlinearities, respectively. Secondly, the immeasurable tracking error variables are suitably estimated by constructing a fractional-order linear observer. Thirdly, the neural network, the Razumikhin Lemma, the variable separation approach, and the smooth Nussbaum-type function are used to deal with the uncertain nonlinear dynamics, the unknown time-varying delays, the nonstrict feedback and the unknown control directions, respectively. Fourthly, asymmetric barrier Lyapunov functions are employed to overcome the violation of the output constraints and to tune online the parameters of the adaptive neural controller. Through rigorous analysis, it is proved that the boundedness of all variables in the closed-loop system and the semi global asymptotic tracking are ensured without transgression of the constraints. The principal contributions of this study can be summarized as follows: (1) based on Caputo's definitions and new lemmas, methods concerning the controllability, observability and stability analysis of integer-order systems are extended to fractional-order ones, (2) the output tracking objective for a relatively large class of uncertain systems is achieved with a simple controller and less tuning parameters. Finally, computer-simulation studies from the robotic field are given to demonstrate the effectiveness of the proposed controller. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking

    NASA Astrophysics Data System (ADS)

    Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye

    2017-03-01

    The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.

  12. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    PubMed

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  13. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, T.E.; Dallum, G.E.

    1998-09-08

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground. 5 figs.

  14. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  15. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    PubMed

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  16. Nonlinear multiplicative dendritic integration in neuron and network models

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Rasch, Malte J.; Wu, Si

    2013-01-01

    Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in artificial neural networks today still only describe the voltage potential of a single somatic compartment and assume a simple linear summation of all individual synaptic inputs. We here suggest a new biophysical motivated derivation of a single compartment model that integrates the non-linear effects of shunting inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic processing into the neuron model follows a simple multiplicative rule, suggested recently by experiments, and allows for strict mathematical treatment of network effects. Using our new formulation, we further devised a spiking network model where inhibitory neurons act as global shunting gates, and show that the network exhibits persistent activity in a low firing regime. PMID:23658543

  17. A Realtime Active Feedback Control System For Coupled Nonlinear Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan; Fraden, Seth

    2012-02-01

    We study the manipulation and control of oscillatory networks. As a model system we use an emulsion of Belousov-Zhabotinsky (BZ) oscillators packed on a hexagonal lattice. Each drop is observed and perturbed by a Programmable Illumination Microscope (PIM). The PIM allows us to track individual BZ oscillators, calculate the phase and order parameters of every drop, and selectively perturb specific drops with photo illumination, all in realtime. To date we have determined the native attractor patterns for drops in 1D arrays and 2D hexagonal packing as a function of coupling strength as well as determined methods to move the system from one attractor basin to another. Current work involves implementing these attractor control methods with our experimental system and future work will likely include implementing a model neural network for use with photo controllable BZ emulsions.

  18. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays.

    PubMed

    Tseng, Jui-Pin

    2017-02-01

    This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  20. Probabilistic atlases of default mode, executive control and salience network white matter tracts: an fMRI-guided diffusion tensor imaging and tractography study

    PubMed Central

    Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.

    2015-01-01

    Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930

  1. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  2. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  3. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  4. Progress in neuromorphic photonics

    NASA Astrophysics Data System (ADS)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  5. Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.

    PubMed

    Zhang, Qichao; Zhao, Dongbin; Wang, Ding

    2018-01-01

    In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  6. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  8. Information mining in weighted complex networks with nonlinear rating projection

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong

    2017-10-01

    Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.

  9. Topological data analysis of contagion maps for examining spreading processes on networks.

    PubMed

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  10. Topological data analysis of contagion maps for examining spreading processes on networks

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  11. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    USDA-ARS?s Scientific Manuscript database

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  12. Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks

    PubMed Central

    Lyamzin, Dmitry R.; Barnes, Samuel J.; Donato, Roberta; Garcia-Lazaro, Jose A.; Keck, Tara

    2015-01-01

    Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks. PMID:26019325

  13. Linking structure and activity in nonlinear spiking networks

    PubMed Central

    Josić, Krešimir; Shea-Brown, Eric

    2017-01-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities—including those of different cell types—combine with connectivity to shape population activity and function. PMID:28644840

  14. Off-policy reinforcement learning for H∞ control design.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen

    2015-01-01

    The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.

  15. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    PubMed

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  16. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  17. Network structure control of binary mixed langmuir monolayers of homo-PS and PS-b-P2VP.

    PubMed

    Wen, Gangyao

    2010-03-25

    Our recent work showed there existed a composition window for mixed Langmuir monolayers of homopolystyrene (h-PS) and a symmetric diblock copolymer polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) to form necklace-network structures at the air/water interface. In order to study further the possible mechanism and control the network structure (i.e., surface coverage and nanoaggregate diameter), effects of spreading solution concentration and volume, subphase temperature, and transfer pressure on the network structure were studied by the Langmuir monolayer technique and tapping mode atomic force microscopy. With the increase of transfer pressure, there existed a novel nonlinear behavior for the nanoaggregate diameter first to increase, then to decrease, and finally to increase again, while the surface coverage tended to increase step by step. Moreover, with the elevation of temperature, chain motion between the adjoining nanoaggregates tended to be improved and thus the nanoaggregate diameter tended to be more uniform.

  18. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.

    PubMed

    Kasap, Bahadir; van Opstal, A John

    2017-08-01

    Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

  19. Maximization of Learning Speed in the Motor Cortex Due to Neuronal Redundancy

    PubMed Central

    Takiyama, Ken; Okada, Masato

    2012-01-01

    Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a redundant neural network model makes it possible to investigate these functional roles while varying the number of model neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal redundancy is to maximize learning speed. PMID:22253586

  20. A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters

    NASA Astrophysics Data System (ADS)

    Weber, H.; Widemann, C.; Mathis, W.

    2013-07-01

    In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.

  1. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    NASA Astrophysics Data System (ADS)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.

  2. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    PubMed

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  3. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  4. A network model of successive partitioning-limited solute diffusion through the stratum corneum.

    PubMed

    Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon

    2010-02-07

    As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.

  5. On the stability, storage capacity, and design of nonlinear continuous neural networks

    NASA Technical Reports Server (NTRS)

    Guez, Allon; Protopopsecu, Vladimir; Barhen, Jacob

    1988-01-01

    The stability, capacity, and design of a nonlinear continuous neural network are analyzed. Sufficient conditions for existence and asymptotic stability of the network's equilibria are reduced to a set of piecewise-linear inequality relations that can be solved by a feedforward binary network, or by methods such as Fourier elimination. The stability and capacity of the network is characterized by the post synaptic firing rate function. An N-neuron network with sigmoidal firing function is shown to have up to 3N equilibrium points. This offers a higher capacity than the (0.1-0.2)N obtained in the binary Hopfield network. Moreover, it is shown that by a proper selection of the postsynaptic firing rate function, one can significantly extend the capacity storage of the network.

  6. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  7. Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Khrennikov, A.

    2017-10-01

    This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.

  8. Coordinated three-dimensional motion of the head and torso by dynamic neural networks.

    PubMed

    Kim, J; Hemami, H

    1998-01-01

    The problem of trajectory tracking control of a three dimensional (3D) model of the human upper torso and head is considered. The torso and the head are modeled as two rigid bodies connected at one point, and the Newton-Euler method is used to derive the nonlinear differential equations that govern the motion of the system. The two-link system is driven by six pairs of muscle like actuators that possess physiologically inspired alpha like and gamma like inputs, and spindle like and Golgi tendon organ like outputs. These outputs are utilized as reflex feedback for stability and stiffness control, in a long loop feedback for the purpose of estimating the state of the system (somesthesis), and as part of the input to the controller. Ideal delays of different duration are included in the feedforward and feedback paths of the system to emulate such delays encountered in physiological systems. Dynamical neural networks are trained to learn effective control of the desired maneuvers of the system. The feasibility of the controller is demonstrated by computer simulation of the successful execution of the desired maneuvers. This work demonstrates the capabilities of neural circuits in controlling highly nonlinear systems with multidelays in their feedforward and feedback paths. The ultimate long range goal of this research is toward understanding the working of the central nervous system in controlling movement. It is an interdisciplinary effort relying on mechanics, biomechanics, neuroscience, system theory, physiology and anatomy, and its short range relevance to rehabilitation must be noted.

  9. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  10. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Empirical modeling for intelligent, real-time manufacture control

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoshu

    1994-01-01

    Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.

  12. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    PubMed

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case

    PubMed Central

    Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique

    2017-01-01

    This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144

  14. First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS)

    NASA Astrophysics Data System (ADS)

    Carey-De La Torre, Olivia; Ewoldt, Randy H.

    2018-02-01

    We use first-harmonic MAOS nonlinearities from G 1' and G 1″ to test a predictive structure-rheology model for a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [ e 3] and [ v 3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.

  15. Part mutual information for quantifying direct associations in networks.

    PubMed

    Zhao, Juan; Zhou, Yiwei; Zhang, Xiujun; Chen, Luonan

    2016-05-03

    Quantitatively identifying direct dependencies between variables is an important task in data analysis, in particular for reconstructing various types of networks and causal relations in science and engineering. One of the most widely used criteria is partial correlation, but it can only measure linearly direct association and miss nonlinear associations. However, based on conditional independence, conditional mutual information (CMI) is able to quantify nonlinearly direct relationships among variables from the observed data, superior to linear measures, but suffers from a serious problem of underestimation, in particular for those variables with tight associations in a network, which severely limits its applications. In this work, we propose a new concept, "partial independence," with a new measure, "part mutual information" (PMI), which not only can overcome the problem of CMI but also retains the quantification properties of both mutual information (MI) and CMI. Specifically, we first defined PMI to measure nonlinearly direct dependencies between variables and then derived its relations with MI and CMI. Finally, we used a number of simulated data as benchmark examples to numerically demonstrate PMI features and further real gene expression data from Escherichia coli and yeast to reconstruct gene regulatory networks, which all validated the advantages of PMI for accurately quantifying nonlinearly direct associations in networks.

  16. Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation

    ERIC Educational Resources Information Center

    Hinton, Geoffrey; Osindero, Simon; Welling, Max; Teh, Yee-Whye

    2006-01-01

    We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connection weights that determine how the activity of…

  17. Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hsien

    2015-06-01

    This paper studies the dynamics of a network-based SIS epidemic model with nonmonotone incidence rate. This type of nonlinear incidence can be used to describe the psychological effect of certain diseases spread in a contact network at high infective levels. We first find a threshold value for the transmission rate. This value completely determines the dynamics of the model and interestingly, the threshold is not dependent on the functional form of the nonlinear incidence rate. Furthermore, if the transmission rate is less than or equal to the threshold value, the disease will die out. Otherwise, it will be permanent. Numerical experiments are given to illustrate the theoretical results. We also consider the effect of the nonlinear incidence on the epidemic dynamics.

  18. Dynamic weight evolution network with preferential attachment

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Xie, Qi; Li, Lei

    2014-12-01

    A dynamic weight evolution network with preferential attachment is introduced. The network includes two significant characteristics. (i) Topological growth: triggered by newly added node with M links at each time step, each new edge carries an initial weight growing nonlinearly with time. (ii) Weight dynamics: the weight between two existing nodes experiences increasing or decreasing in a nonlinear way. By using continuum theory and mean-field method, we study the strength, the degree, the weight and their distributions. We find that the distributions exhibit a power-law feature. In particular, the relationship between the degree and the strength is nonlinear, and the power-law exponents of the three are the same. All the theoretical predictions are successfully contrasted with numerical simulations.

  19. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    NASA Astrophysics Data System (ADS)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  20. Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wong, K. Y. Michael

    Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).

  1. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  2. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  3. The Role of Network Architecture in Collagen Mechanics.

    PubMed

    Jansen, Karin A; Licup, Albert J; Sharma, Abhinav; Rens, Robbie; MacKintosh, Fred C; Koenderink, Gijsje H

    2018-06-05

    Collagen forms fibrous networks that reinforce tissues and provide an extracellular matrix for cells. These networks exhibit remarkable strain-stiffening properties that tailor the mechanical functions of tissues and regulate cell behavior. Recent models explain this nonlinear behavior as an intrinsic feature of disordered networks of stiff fibers. Here, we experimentally validate this theoretical framework by measuring the elastic properties of collagen networks over a wide range of self-assembly conditions. We show that the model allows us to quantitatively relate both the linear and nonlinear elastic behavior of collagen networks to their underlying architecture. Specifically, we identify the local coordination number (or connectivity) 〈z〉 as a key architectural parameter that governs the elastic response of collagen. The network elastic response reveals that 〈z〉 decreases from 3.5 to 3 as the polymerization temperature is raised from 26 to 37°C while being weakly dependent on concentration. We furthermore infer a Young's modulus of 1.1 MPa for the collagen fibrils from the linear modulus. Scanning electron microscopy confirms that 〈z〉 is between three and four but is unable to detect the subtle changes in 〈z〉 with polymerization conditions that rheology is sensitive to. Finally, we show that, consistent with the model, the initial stress-stiffening response of collagen networks is controlled by the negative normal stress that builds up under shear. Our work provides a predictive framework to facilitate future studies of the regulatory effect of extracellular matrix molecules on collagen mechanics. Moreover, our findings can aid mechanobiological studies of wound healing, fibrosis, and cancer metastasis, which require collagen matrices with tunable mechanical properties. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Prediction Analysis of Weld-Bead and Heat Affected Zone in TIG welding using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Saldanha, Shamith L.; Kalaichelvi, V.; Karthikeyan, R.

    2018-04-01

    TIG Welding is a high quality form of welding which is very popular in industries. It is one of the few types of welding that can be used to join dissimilar metals. Here a weld joint is formed between stainless steel and monel alloy. It is desired to have control over the weld geometry of such a joint through the adjustment of experimental parameters which are welding current, wire feed speed, arc length and the shielding gas flow rate. To facilitate the automation of the same, a model of the welding system is needed. However the underlying welding process is complex and non-linear, and analytical methods are impractical for industrial use. Therefore artificial neural networks (ANN) are explored for developing the model, as they are well-suited for modelling non-linear multi-variate data. Feed-forward neural networks with backpropagation training algorithm are used, and the data for training the ANN taken from experimental work. There are four outputs corresponding to the weld geometry. Different training and testing phases were carried out using MATLAB software and ANN approximates the given data with minimum amount of error.

  5. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  6. Integrated network capacity analysis for freight railroads.

    DOT National Transportation Integrated Search

    2016-02-23

    Rail network capacity analysis should consider all network infrastructures in an integrated way, with the challenges of the nonlinear relationships at each network element, a link or a node, and complexity of the interaction between various network e...

  7. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.

    PubMed

    Destexhe, Alain

    2009-12-01

    Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

  8. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.

    PubMed

    Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong

    2018-03-28

    Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.

  9. The artificial neural network modelling of the piezoelectric actuator vibrations using laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Paralı, Levent; Sarı, Ali; Kılıç, Ulaş; Şahin, Özge; Pěchoušek, Jiří

    2017-09-01

    We report an improvement of the artificial neural network (ANN) modelling of a piezoelectric actuator vibration based on the experimental data. The controlled vibrations of an actuator were obtained by utilizing the swept-sine signal excitation. The peak value in the displacement signal response was measured by a laser displacement sensor. The piezoelectric actuator was modelled in both linear and nonlinear operating range. A consistency from 90.3 up to 98.9% of ANN modelled output values and experimental ones was reached. The obtained results clearly demonstrate exact linear relationship between the ANN model and experimental values.

  10. Stable modeling based control methods using a new RBF network.

    PubMed

    Beyhan, Selami; Alci, Musa

    2010-10-01

    This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion

    PubMed Central

    Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod

    2010-01-01

    Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146

  12. Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation.

    PubMed

    Nakamura, K; Sobirov, Z A; Matrasulov, D U; Sawada, S

    2011-08-01

    We elucidate the case in which the Ablowitz-Ladik (AL)-type discrete nonlinear Schrödinger equation (NLSE) on simple networks (e.g., star graphs and tree graphs) becomes completely integrable just as in the case of a simple one-dimensional (1D) discrete chain. The strength of cubic nonlinearity is different from bond to bond, and networks are assumed to have at least two semi-infinite bonds with one of them working as an incoming bond. The present work is a nontrivial extension of our preceding one [Sobirov et al., Phys. Rev. E 81, 066602 (2010)] on the continuum NLSE to the discrete case. We find (1) the solution on each bond is a part of the universal (bond-independent) AL soliton solution on the 1D discrete chain, but it is multiplied by the inverse of the square root of bond-dependent nonlinearity; (2) nonlinearities at individual bonds around each vertex must satisfy a sum rule; and (3) under findings 1 and 2, there exist an infinite number of constants of motion. As a practical issue, with the use of an AL soliton injected through the incoming bond, we obtain transmission probabilities inversely proportional to the strength of nonlinearity on the outgoing bonds.

  13. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  14. Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators.

    PubMed

    Goto, Hayato; Lin, Zhirong; Nakamura, Yasunobu

    2018-05-08

    A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.

  15. The quadriceps muscle of knee joint modelling Using Hybrid Particle Swarm Optimization-Neural Network (PSO-NN)

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad

    2017-03-01

    Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.

  16. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  17. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance rejection and noise suppression for nonnegative and compartmental dynamical systems with noise and exogenous system disturbances. We then use the developed framework to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of continuing hemorrhage and hemodilution. Critical care patients, whether undergoing surgery or recovering in intensive care units, require drug administration to regulate physiological variables such as blood pressure, cardiac output, heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical, requiring constant monitoring and frequent adjustments. In this dissertation, we develop a neuroadaptive output feedback control framework for nonlinear uncertain nonnegative and compartmental systems with nonnegative control inputs and noisy measurements. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals. In addition, the neuroadaptive controller guarantees that the physical system states remain in the nonnegative orthant of the state space. Finally, the developed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of noisy electroencephalographic (EEG) measurements. Clinical trials demonstrate excellent regulation of unconsciousness allowing for a safe and effective administration of the anesthetic agent propofol. Furthermore, a neuroadaptive output feedback control architecture for nonlinear nonnegative dynamical systems with input amplitude and integral constraints is developed. Specifically, the neuroadaptive controller guarantees that the imposed amplitude and integral input constraints are satisfied and the physical system states remain in the nonnegative orthant of the state space. The proposed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for noncardiac surgery in the face of infusion rate constraints and a drug dosing constraint over a specified period. In addition, the aforementioned control architecture is used to control lung volume and minute ventilation with input pressure constraints that also accounts for spontaneous breathing by the patient. Specifically, we develop a pressure- and work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear multi-compartmental lung model. The control framework does not rely on any averaged data and is designed to automatically adjust the input pressure to the patient's physiological characteristics capturing lung resistance and compliance modeling uncertainty. Moreover, the controller accounts for input pressure constraints as well as work of breathing constraints. The effect of spontaneous breathing is incorporated within the lung model and the control framework. Finally, a neural network hybrid adaptive control framework for nonlinear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov-based and guarantees partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic stability with respect to part of the closed-loop system states associated with the hybrid plant states. A numerical example is provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach.

  18. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  19. Evaluation and prediction of solar radiation for energy management based on neural networks

    NASA Astrophysics Data System (ADS)

    Aldoshina, O. V.; Van Tai, Dinh

    2017-08-01

    Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

  20. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

Top