Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.
Sun, Kangkang; Sui, Shuai; Tong, Shaocheng
2018-04-01
This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.
NASA Astrophysics Data System (ADS)
Popescu, Mihaela; Shyy, Wei; Garbey, Marc
2005-12-01
In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Modular and configurable optimal sequence alignment software: Cola.
Zamani, Neda; Sundström, Görel; Höppner, Marc P; Grabherr, Manfred G
2014-01-01
The fundamental challenge in optimally aligning homologous sequences is to define a scoring scheme that best reflects the underlying biological processes. Maximising the overall number of matches in the alignment does not always reflect the patterns by which nucleotides mutate. Efficiently implemented algorithms that can be parameterised to accommodate more complex non-linear scoring schemes are thus desirable. We present Cola, alignment software that implements different optimal alignment algorithms, also allowing for scoring contiguous matches of nucleotides in a nonlinear manner. The latter places more emphasis on short, highly conserved motifs, and less on the surrounding nucleotides, which can be more diverged. To illustrate the differences, we report results from aligning 14,100 sequences from 3' untranslated regions of human genes to 25 of their mammalian counterparts, where we found that a nonlinear scoring scheme is more consistent than a linear scheme in detecting short, conserved motifs. Cola is freely available under LPGL from https://github.com/nedaz/cola.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1991-01-01
Two matched filter theory based schemes are described and illustrated for obtaining maximized and time correlated gust loads for a nonlinear aircraft. The first scheme is computationally fast because it uses a simple 1-D search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multi-dimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.
1991-01-01
This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
Guidance and Control strategies for aerospace vehicles
NASA Technical Reports Server (NTRS)
Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.
1989-01-01
A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Spline approximations for nonlinear hereditary control systems
NASA Technical Reports Server (NTRS)
Daniel, P. L.
1982-01-01
A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.
Liu, Tao; Djordjevic, Ivan B
2014-12-29
In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1982-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.
Optimal second order sliding mode control for nonlinear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-07-01
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
Robot-Arm Dynamic Control by Computer
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
Fan, Quan-Yong; Yang, Guang-Hong
2017-01-01
The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Liu, Yan-Jun; Tong, Shaocheng
2016-11-01
In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Nonlinear Model Predictive Control for Cooperative Control and Estimation
NASA Astrophysics Data System (ADS)
Ru, Pengkai
Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.
Prado, Igor Afonso Acampora; Pereira, Mateus de Freitas Virgílio; de Castro, Davi Ferreira; Dos Santos, Davi Antônio; Balthazar, Jose Manoel
2018-06-01
The present paper is concerned with the design and experimental evaluation of optimal control laws for the nonlinear attitude dynamics of a multirotor aerial vehicle. Three design methods based on Hamilton-Jacobi-Bellman equation are taken into account. The first one is a linear control with guarantee of stability for nonlinear systems. The second and third are a nonlinear suboptimal control techniques. These techniques are based on an optimal control design approach that takes into account the nonlinearities present in the vehicle dynamics. The stability Proof of the closed-loop system is presented. The performance of the control system designed is evaluated via simulations and also via an experimental scheme using the Quanser 3-DOF Hover. The experiments show the effectiveness of the linear control method over the nonlinear strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A hybrid linear/nonlinear training algorithm for feedforward neural networks.
McLoone, S; Brown, M D; Irwin, G; Lightbody, A
1998-01-01
This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.
An efficient flexible-order model for 3D nonlinear water waves
NASA Astrophysics Data System (ADS)
Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O.
2009-04-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.
An all-at-once reduced Hessian SQP scheme for aerodynamic design optimization
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1995-01-01
This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution.
Yang, Xiong; He, Haibo
2018-05-26
In this paper, we develop a novel optimal control strategy for a class of uncertain nonlinear systems with unmatched interconnections. To begin with, we present a stabilizing feedback controller for the interconnected nonlinear systems by modifying an array of optimal control laws of auxiliary subsystems. We also prove that this feedback controller ensures a specified cost function to achieve optimality. Then, under the framework of adaptive critic designs, we use critic networks to solve the Hamilton-Jacobi-Bellman equations associated with auxiliary subsystem optimal control laws. The critic network weights are tuned through the gradient descent method combined with an additional stabilizing term. By using the newly established weight tuning rules, we no longer need the initial admissible control condition. In addition, we demonstrate that all signals in the closed-loop auxiliary subsystems are stable in the sense of uniform ultimate boundedness by using classic Lyapunov techniques. Finally, we provide an interconnected nonlinear plant to validate the present control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.
NASA Astrophysics Data System (ADS)
Havasi, Ágnes; Kazemi, Ehsan
2018-04-01
In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.
André, Nuno Sequeira; Habel, Kai; Louchet, Hadrien; Richter, André
2013-11-04
We report experimental validations of an adaptive 2nd order Volterra equalization scheme for cost effective IMDD OFDM systems. This equalization scheme was applied to both uplink and downlink transmission. Downlink settings were optimized for maximum bitrate where we achieved 34 Gb/s over 10 km of SSMF using an EML with 10 GHz bandwidth. For the uplink, maximum reach was optimized achieving 14 Gb/s using a low-cost DML with 2.5 GHz bandwidth.
3D early embryogenesis image filtering by nonlinear partial differential equations.
Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O
2010-08-01
We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which are artificially connected due to acquisition error intrinsically linked to physics of LSM. In all studied aspects it turned out that the nonlinear diffusion filter which is called geodesic mean curvature flow (GMCF) has the best performance. Copyright 2010 Elsevier B.V. All rights reserved.
Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ku, R. T.
1972-01-01
The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.
NASA Astrophysics Data System (ADS)
Alimohammadi, Shahrouz; Cavaglieri, Daniele; Beyhaghi, Pooriya; Bewley, Thomas R.
2016-11-01
This work applies a recently developed Derivative-free optimization algorithm to derive a new mixed implicit-explicit (IMEX) time integration scheme for Computational Fluid Dynamics (CFD) simulations. This algorithm allows imposing a specified order of accuracy for the time integration and other important stability properties in the form of nonlinear constraints within the optimization problem. In this procedure, the coefficients of the IMEX scheme should satisfy a set of constraints simultaneously. Therefore, the optimization process, at each iteration, estimates the location of the optimal coefficients using a set of global surrogates, for both the objective and constraint functions, as well as a model of the uncertainty function of these surrogates based on the concept of Delaunay triangulation. This procedure has been proven to converge to the global minimum of the constrained optimization problem provided the constraints and objective functions are twice differentiable. As a result, a new third-order, low-storage IMEX Runge-Kutta time integration scheme is obtained with remarkably fast convergence. Numerical tests are then performed leveraging the turbulent channel flow simulations to validate the theoretical order of accuracy and stability properties of the new scheme.
Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System
NASA Astrophysics Data System (ADS)
Agarwal, Ruchi; Singh, Sanjeev
2017-12-01
The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.
NASA Astrophysics Data System (ADS)
Tian, Yuexin; Gao, Kun; Liu, Ying; Han, Lu
2015-08-01
Aiming at the nonlinear and non-Gaussian features of the real infrared scenes, an optimal nonlinear filtering based algorithm for the infrared dim target tracking-before-detecting application is proposed. It uses the nonlinear theory to construct the state and observation models and uses the spectral separation scheme based Wiener chaos expansion method to resolve the stochastic differential equation of the constructed models. In order to improve computation efficiency, the most time-consuming operations independent of observation data are processed on the fore observation stage. The other observation data related rapid computations are implemented subsequently. Simulation results show that the algorithm possesses excellent detection performance and is more suitable for real-time processing.
Robust and transferable quantification of NMR spectral quality using IROC analysis
NASA Astrophysics Data System (ADS)
Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.
2017-12-01
Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.
NASA Astrophysics Data System (ADS)
Al-Asadi, H. A.
2013-02-01
We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-05-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-01-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.
Duarte, Belmiro P M; Wong, Weng Kee
2015-08-01
This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach
Duarte, Belmiro P. M.; Wong, Weng Kee
2014-01-01
Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159
General Results in Optimal Control of Discrete-Time Nonlinear Stochastic Systems
1988-01-01
P. J. McLane, "Optimal Stochastic Control of Linear System. with State- and Control-Dependent Distur- bances," ZEEE Trans. 4uto. Contr., Vol. 16, No...Vol. 45, No. 1, pp. 359-362, 1987 (9] R. R. Mohler and W. J. Kolodziej, "An Overview of Stochastic Bilinear Control Processes," ZEEE Trans. Syst...34 J. of Math. anal. App.:, Vol. 47, pp. 156-161, 1974 [14) E. Yaz, "A Control Scheme for a Class of Discrete Nonlinear Stochastic Systems," ZEEE Trans
On the regularization for nonlinear tomographic absorption spectroscopy
NASA Astrophysics Data System (ADS)
Dai, Jinghang; Yu, Tao; Xu, Lijun; Cai, Weiwei
2018-02-01
Tomographic absorption spectroscopy (TAS) has attracted increased research efforts recently due to the development in both hardware and new imaging concepts such as nonlinear tomography and compressed sensing. Nonlinear TAS is one of the emerging modality that bases on the concept of nonlinear tomography and has been successfully demonstrated both numerically and experimentally. However, all the previous demonstrations were realized using only two orthogonal projections simply for ease of implementation. In this work, we examine the performance of nonlinear TAS using other beam arrangements and test the effectiveness of the beam optimization technique that has been developed for linear TAS. In addition, so far only smoothness prior has been adopted and applied in nonlinear TAS. Nevertheless, there are also other useful priors such as sparseness and model-based prior which have not been investigated yet. This work aims to show how these priors can be implemented and included in the reconstruction process. Regularization through Bayesian formulation will be introduced specifically for this purpose, and a method for the determination of a proper regularization factor will be proposed. The comparative studies performed with different beam arrangements and regularization schemes on a few representative phantoms suggest that the beam optimization method developed for linear TAS also works for the nonlinear counterpart and the regularization scheme should be selected properly according to the available a priori information under specific application scenarios so as to achieve the best reconstruction fidelity. Though this work is conducted under the context of nonlinear TAS, it can also provide useful insights for other tomographic modalities.
Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries
NASA Technical Reports Server (NTRS)
Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)
2000-01-01
Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.
Third-harmonic generation in tunable nonlinear hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Wicharn, Surawut; Buranasiri, Prathan
2018-03-01
In this research, a third-harmonic generation (THG) in a tunable nonlinear hyperbolic metamaterial (TNHM) has been investigated numerically. The TNHM is consisted of periodically arranging of multilayered graphene layers system for controlled optical properties purpose, and ordinary nonlinear dielectric layer. The possibility of TNHM permittivity dispersion controlled by number of graphene layers and external bias voltage to graphene layers was satisfied, then the structure has created the nearly perfect phase-matching scheme based on epsilon-near-zero (ENZ) behavior of the nonlinear medium. Finally, the optimal designed TNHM structure with sufficient bias voltage have given the forwardand backward-direction TH pulses, which the backward-forward TH intensity ratio is closely unity. The THG conversion efficiencies have been maximized after increasing the pumping level to 800 MW/cm2 . From this study, the optimal designed TNHM can be applied as a bi-directional nonlinear frequency converters in nanophotonic systems.
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin
2007-02-01
This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.
An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Heydari, Ali; Balakrishnan, S. N.
2014-12-01
The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers
NASA Astrophysics Data System (ADS)
Anderson, Brian E.; Schmittberger, Bonnie L.; Gupta, Prasoon; Jones, Kevin M.; Lett, Paul D.
2017-06-01
The SU(1,1) interferometer can be thought of as a Mach-Zehnder interferometer with its linear beam splitters replaced with parametric nonlinear optical processes. We consider the cases of bright- and vacuum-seeded SU(1,1) interferometers using intensity or homodyne detectors. A simplified truncated scheme with only one nonlinear interaction is introduced, which not only beats conventional intensity detection with a bright seed, but can saturate the phase-sensitivity bound set by the quantum Fisher information. We also show that the truncated scheme achieves a sub-shot-noise phase sensitivity in the vacuum-seeded case, despite the phase-sensing optical beams having no well-defined phase.
NASA Astrophysics Data System (ADS)
Liao, Haitao; Wu, Wenwang; Fang, Daining
2018-07-01
A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong
2011-12-01
In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858
Towards information-optimal simulation of partial differential equations.
Leike, Reimar H; Enßlin, Torsten A
2018-03-01
Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.
Optimally cloned binary coherent states
NASA Astrophysics Data System (ADS)
Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.
2017-10-01
Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations
Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.
2015-01-01
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C
2016-02-15
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.
NASA Astrophysics Data System (ADS)
Ba, Seydou N.; Waheed, Khurram; Zhou, G. Tong
2010-12-01
Digital predistortion is an effective means to compensate for the nonlinear effects of a memoryless system. In case of a cellular transmitter, a digital baseband predistorter can mitigate the undesirable nonlinear effects along the signal chain, particularly the nonlinear impairments in the radiofrequency (RF) amplifiers. To be practically feasible, the implementation complexity of the predistorter must be minimized so that it becomes a cost-effective solution for the resource-limited wireless handset. This paper proposes optimizations that facilitate the design of a low-cost high-performance adaptive digital baseband predistorter for memoryless systems. A comparative performance analysis of the amplitude and power lookup table (LUT) indexing schemes is presented. An optimized low-complexity amplitude approximation and its hardware synthesis results are also studied. An efficient LUT predistorter training algorithm that combines the fast convergence speed of the normalized least mean squares (NLMSs) with a small hardware footprint is proposed. Results of fixed-point simulations based on the measured nonlinear characteristics of an RF amplifier are presented.
Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin
2015-01-01
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively. PMID:26184195
Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin
2015-07-08
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.
Optimizing Cubature for Efficient Integration of Subspace Deformations
An, Steven S.; Kim, Theodore; James, Doug L.
2009-01-01
We propose an efficient scheme for evaluating nonlinear subspace forces (and Jacobians) associated with subspace deformations. The core problem we address is efficient integration of the subspace force density over the 3D spatial domain. Similar to Gaussian quadrature schemes that efficiently integrate functions that lie in particular polynomial subspaces, we propose cubature schemes (multi-dimensional quadrature) optimized for efficient integration of force densities associated with particular subspace deformations, particular materials, and particular geometric domains. We support generic subspace deformation kinematics, and nonlinear hyperelastic materials. For an r-dimensional deformation subspace with O(r) cubature points, our method is able to evaluate subspace forces at O(r2) cost. We also describe composite cubature rules for runtime error estimation. Results are provided for various subspace deformation models, several hyperelastic materials (St.Venant-Kirchhoff, Mooney-Rivlin, Arruda-Boyce), and multimodal (graphics, haptics, sound) applications. We show dramatically better efficiency than traditional Monte Carlo integration. CR Categories: I.6.8 [Simulation and Modeling]: Types of Simulation—Animation, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling G.1.4 [Mathematics of Computing]: Numerical Analysis—Quadrature and Numerical Differentiation PMID:19956777
NASA Astrophysics Data System (ADS)
Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao
2017-12-01
Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.
Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587
Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2014-05-01
The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.
Distributed plug-and-play optimal generator and load control for power system frequency regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Mallada, Enrique; Low, Steven H.
A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
Distributed plug-and-play optimal generator and load control for power system frequency regulation
Zhao, Changhong; Mallada, Enrique; Low, Steven H.; ...
2018-03-14
A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes
NASA Astrophysics Data System (ADS)
Don, Wai-Sun; Borges, Rafael
2013-10-01
In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of βk. We also show that numerical oscillations can be further attenuated by increasing the power parameter 2⩽p⩽r-1, at the cost of increased numerical dissipation. Compact formulas of βk for WENO schemes are also presented.
Noise removal in extended depth of field microscope images through nonlinear signal processing.
Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J
2013-04-01
Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.
NASA Astrophysics Data System (ADS)
Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn
2015-03-01
Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.
NASA Astrophysics Data System (ADS)
Luy, N. T.
2018-04-01
The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Leake, R. J.; Sain, M. K.
1978-01-01
General goals of the research were classified into two categories. The first category involves the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a quiescent point. The second category involves the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. In the frequency domain category, works were published in the areas of low-interaction design, polynomial design, and multiple setpoint studies. A number of these ideas progressed to the point at which they are starting to attract practical interest. In the nonlinear category, advances were made both in engine modelling and in the details associated with software for determination of time optimal controls. Nonlinear models for a two spool turbofan engine were expanded and refined; and a promising new approach to automatic model generation was placed under study. A two time scale scheme was developed to do two-dimensional dynamic programming, and an outward spiral sweep technique has greatly speeded convergence times in time optimal calculations.
Xia, Youshen; Kamel, Mohamed S
2007-06-01
Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.
Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George
2017-08-15
A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
Locally optimum nonlinearities for DCT watermark detection.
Briassouli, Alexia; Strintzis, Michael G
2004-12-01
The issue of copyright protection of digital multimedia data has attracted a lot of attention during the last decade. An efficient copyright protection method that has been gaining popularity is watermarking, i.e., the embedding of a signature in a digital document that can be detected only by its rightful owner. Watermarks are usually blindly detected using correlating structures, which would be optimal in the case of Gaussian data. However, in the case of DCT-domain image watermarking, the data is more heavy-tailed and the correlator is clearly suboptimal. Nonlinear receivers have been shown to be particularly well suited for the detection of weak signals in heavy-tailed noise, as they are locally optimal. This motivates the use of the Gaussian-tailed zero-memory nonlinearity, as well as the locally optimal Cauchy nonlinearity for the detection of watermarks in DCT transformed images. We analyze the performance of these schemes theoretically and compare it to that of the traditionally used Gaussian correlator, but also to the recently proposed generalized Gaussian detector, which outperforms the correlator. The theoretical analysis and the actual performance of these systems is assessed through experiments, which verify the theoretical analysis and also justify the use of nonlinear structures for watermark detection. The performance of the correlator and the nonlinear detectors in the presence of quantization is also analyzed, using results from dither theory, and also verified experimentally.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Liu, Derong; Wang, Ding; Li, Hongliang
2014-02-01
In this paper, using a neural-network-based online learning optimal control approach, a novel decentralized control strategy is developed to stabilize a class of continuous-time nonlinear interconnected large-scale systems. First, optimal controllers of the isolated subsystems are designed with cost functions reflecting the bounds of interconnections. Then, it is proven that the decentralized control strategy of the overall system can be established by adding appropriate feedback gains to the optimal control policies of the isolated subsystems. Next, an online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman equations related to the optimal control problem. Through constructing a set of critic neural networks, the cost functions can be obtained approximately, followed by the control policies. Furthermore, the dynamics of the estimation errors of the critic networks are verified to be uniformly and ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness of the present decentralized control scheme.
An upstream burst-mode equalization scheme for 40 Gb/s TWDM PON based on optimized SOA cascade
NASA Astrophysics Data System (ADS)
Sun, Xiao; Chang, Qingjiang; Gao, Zhensen; Ye, Chenhui; Xiao, Simiao; Huang, Xiaoan; Hu, Xiaofeng; Zhang, Kaibin
2016-02-01
We present a novel upstream burst-mode equalization scheme based on optimized SOA cascade for 40 Gb/s TWDMPON. The power equalizer is placed at the OLT which consists of two SOAs, two circulators, an optical NOT gate, and a variable optical attenuator. The first SOA operates in the linear region which acts as a pre-amplifier to let the second SOA operate in the saturation region. The upstream burst signals are equalized through the second SOA via nonlinear amplification. From theoretical analysis, this scheme gives sufficient dynamic range suppression up to 16.7 dB without any dynamic control or signal degradation. In addition, a total power budget extension of 9.3 dB for loud packets and 26 dB for soft packets has been achieved to allow longer transmission distance and increased splitting ratio.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...
2014-12-15
In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less
Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Padovan, Joe; Krishna, Lala
1986-01-01
To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.
NASA Astrophysics Data System (ADS)
Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.
2016-10-01
A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.
On decentralized control of large-scale systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1978-01-01
A scheme is presented for decentralized control of large-scale linear systems which are composed of a number of interconnected subsystems. By ignoring the interconnections, local feedback controls are chosen to optimize each decoupled subsystem. Conditions are provided to establish compatibility of the individual local controllers and achieve stability of the overall system. Besides computational simplifications, the scheme is attractive because of its structural features and the fact that it produces a robust decentralized regulator for large dynamic systems, which can tolerate a wide range of nonlinearities and perturbations among the subsystems.
Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.
Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq
2016-01-01
This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
NASA Astrophysics Data System (ADS)
Soldner, Dominic; Brands, Benjamin; Zabihyan, Reza; Steinmann, Paul; Mergheim, Julia
2017-10-01
Computing the macroscopic material response of a continuum body commonly involves the formulation of a phenomenological constitutive model. However, the response is mainly influenced by the heterogeneous microstructure. Computational homogenisation can be used to determine the constitutive behaviour on the macro-scale by solving a boundary value problem at the micro-scale for every so-called macroscopic material point within a nested solution scheme. Hence, this procedure requires the repeated solution of similar microscopic boundary value problems. To reduce the computational cost, model order reduction techniques can be applied. An important aspect thereby is the robustness of the obtained reduced model. Within this study reduced-order modelling (ROM) for the geometrically nonlinear case using hyperelastic materials is applied for the boundary value problem on the micro-scale. This involves the Proper Orthogonal Decomposition (POD) for the primary unknown and hyper-reduction methods for the arising nonlinearity. Therein three methods for hyper-reduction, differing in how the nonlinearity is approximated and the subsequent projection, are compared in terms of accuracy and robustness. Introducing interpolation or Gappy-POD based approximations may not preserve the symmetry of the system tangent, rendering the widely used Galerkin projection sub-optimal. Hence, a different projection related to a Gauss-Newton scheme (Gauss-Newton with Approximated Tensors- GNAT) is favoured to obtain an optimal projection and a robust reduced model.
Optimal nonlinear information processing capacity in delay-based reservoir computers
NASA Astrophysics Data System (ADS)
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-11
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-01-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528
Neural robust stabilization via event-triggering mechanism and adaptive learning technique.
Wang, Ding; Liu, Derong
2018-06-01
The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scheduled Relaxation Jacobi method: Improvements and applications
NASA Astrophysics Data System (ADS)
Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.
2016-09-01
Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.
Consensus-based distributed cooperative learning from closed-loop neural control systems.
Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang
2015-02-01
In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.
DNS of Supersonic Turbulent Flows in a DLR Scramjet Intake
NASA Astrophysics Data System (ADS)
Li, Xinliang; Yu, Changping
2014-11-01
Direct numerical simulation (DNS) of supersonic/hypersonic flow through a DLR scramjet intake GK01 is performed. The free stream Mach numbers are 3, 5 and 7, and the angle of attack is zero degree. The DNS cases are performed by using an optimized MP scheme with adaptive dissipation (OMP-AD) developed by the authors, and the blow-and-suction perturbations near the leading edge are used to trigger the transition. To stabilize the simulation, locally non-linear flittering is used in high-Mach-number case. The transition, separation, and shock-turbulent boundary layer interaction are studied by using both flow visualization and statistical analysis. A new method, OMP-AD, is also addressed in this paper. The OMP-AD scheme is developed by using joint MP method and optimized technique, and the coefficients in the scheme are flexible to show low dissipation in the smoothing region, and to show high robust (but high dissipation) in the large gradient region. Numerical tests show that the OMP-AD is more robust than the original MP schemes, and the numerical dissipation of OMP-AD is very low.
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
NASA Astrophysics Data System (ADS)
Marinelli, Agostino; Pellegrini, Claudio; Giannessi, Luca; Reiche, Sven
2010-07-01
In this paper we investigate and compare the properties of two narrow-bandwidth free-electron laser (FEL) schemes, one using self-seeding and the other high gain harmonic generation (HGHG). The two systems have been thoroughly studied analytically and numerically in the past. The aim of this work is to compare their performances when the FEL is driven by an electron beam with nonideal properties, thus including effects such as shot-to-shot energy fluctuations and nonlinear energy chirp. In both cases nonlinearities produce a bandwidth larger than the Fourier transform limited value. However, our analysis indicates that, for approximately the same output power levels, the self-seeding scheme is less affected than the HGHG scheme by quadratic energy chirps in the electron beam longitudinal phase space. This is confirmed by a specific numerical example corresponding to SPARX parameters where the electron beam was optimized to minimize the FEL gain length. The work has been carried out with the aid of the time dependent FEL codes GENESIS 1.3 (3D) and PERSEO (1D).
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
Investigation of nonlinear motion simulator washout schemes
NASA Technical Reports Server (NTRS)
Riedel, S. A.; Hofmann, L. G.
1978-01-01
An overview is presented of some of the promising washout schemes which have been devised. The four schemes presented fall into two basic configurations; crossfeed and crossproduct. Various nonlinear modifications further differentiate the four schemes. One nonlinear scheme is discussed in detail. This washout scheme takes advantage of subliminal motions to speed up simulator cab centering. It exploits so-called perceptual indifference thresholds to center the simulator cab at a faster rate whenever the input to the simulator is below the perceptual indifference level. The effect is to reduce the angular and translational simulation motion by comparison with that for the linear washout case. Finally, the conclusions and implications for further research in the area of nonlinear washout filters are presented.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-09-07
In this paper, a distributed control scheme for an interconnected system composed of uncertain input affine nonlinear subsystems with event triggered state feedback is presented by using a novel hybrid learning scheme-based approximate dynamic programming with online exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman equation is generated with event sampled neural network (NN) approximation and subsequently, a near optimal control policy for each subsystem is derived. Artificial NNs are utilized as function approximators to develop a suite of identifiers and learn the dynamics of each subsystem. The NN weight tuning rules for the identifier and event-triggering condition are derived using Lyapunov stability theory. Taking into account, the effects of NN approximation of system dynamics and boot-strapping, a novel NN weight update is presented to approximate the optimal value function. Finally, a novel strategy to incorporate exploration in online control framework, using identifiers, is introduced to reduce the overall cost at the expense of additional computations during the initial online learning phase. System states and the NN weight estimation errors are regulated and local uniformly ultimately bounded results are achieved. The analytical results are substantiated using simulation studies.
2011-04-07
predictor - corrector scheme. Such an approach for the solution of time-dependent PDEs, which is some- times referred to as the “method of lines,” is studied...particular, λj = i j |λj |. We define the self -adjoint operator Qc : L 2([−1, 1]) → L2([−1, 1]) by the formula Qc(φ) = 1 π ∫ 1 −1 sin( c (x− t)) x− t φ...Gaussian quadratures for bandlimited functions is to use the Newton-type nonlinear optimization algorithm of [14]. Specifically, for bandlimit c and
Sparse 4D TomoSAR imaging in the presence of non-linear deformation
NASA Astrophysics Data System (ADS)
Khwaja, Ahmed Shaharyar; ćetin, Müjdat
2018-04-01
In this paper, we present a sparse four-dimensional tomographic synthetic aperture radar (4D TomoSAR) imaging scheme that can estimate elevation and linear as well as non-linear seasonal deformation rates of scatterers using the interferometric phase. Unlike existing sparse processing techniques that use fixed dictionaries based on a linear deformation model, we use a variable dictionary for the non-linear deformation in the form of seasonal sinusoidal deformation, in addition to the fixed dictionary for the linear deformation. We estimate the amplitude of the sinusoidal deformation using an optimization method and create the variable dictionary using the estimated amplitude. We show preliminary results using simulated data that demonstrate the soundness of our proposed technique for sparse 4D TomoSAR imaging in the presence of non-linear deformation.
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long
The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can bemore » utilized for optimizing and controlling the optical switching process.« less
Comparisons of linear and nonlinear pyramid schemes for signal and image processing
NASA Astrophysics Data System (ADS)
Morales, Aldo W.; Ko, Sung-Jea
1997-04-01
Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.
Convenient total variation diminishing conditions for nonlinear difference schemes
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1986-01-01
Convenient conditions for nonlinear difference schemes to be total-variation diminishing (TVD) are reviewed. It is shown that such schemes share the TVD property, provided their numerical fluxes meet a certain positivity condition at extrema values but can be arbitrary otherwise. The conditions are invariant under different incremental representations of the nonlinear schemes, and thus provide a simplified generalization of the TVD conditions due to Harten and others.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A computationally efficient scheme for the non-linear diffusion equation
NASA Astrophysics Data System (ADS)
Termonia, P.; Van de Vyver, H.
2009-04-01
This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.
Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela
2016-01-01
In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.
Linear and nonlinear schemes applied to pitch control of wind turbines.
Geng, Hua; Yang, Geng
2014-01-01
Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.
NASA Astrophysics Data System (ADS)
Truong, Bui Ngoc Minh; Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan
2013-09-01
Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals.
On the Modeling of Shells in Multibody Dynamics
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.
2000-01-01
Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2014-07-01
This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.
Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
Idkaidek, Ashraf; Jasiuk, Iwona
2015-12-01
We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.
NASA Astrophysics Data System (ADS)
Kim, Sungtae; Lee, Soogab; Kim, Kyu Hong
2008-04-01
A new numerical method toward accurate and efficient aeroacoustic computations of multi-dimensional compressible flows has been developed. The core idea of the developed scheme is to unite the advantages of the wavenumber-extended optimized scheme and M-AUSMPW+/MLP schemes by predicting a physical distribution of flow variables more accurately in multi-space dimensions. The wavenumber-extended optimization procedure for the finite volume approach based on the conservative requirement is newly proposed for accuracy enhancement, which is required to capture the acoustic portion of the solution in the smooth region. Furthermore, the new distinguishing mechanism which is based on the Gibbs phenomenon in discontinuity, between continuous and discontinuous regions is introduced to eliminate the excessive numerical dissipation in the continuous region by the restricted application of MLP according to the decision of the distinguishing function. To investigate the effectiveness of the developed method, a sequence of benchmark simulations such as spherical wave propagation, nonlinear wave propagation, shock tube problem and vortex preservation test problem are executed. Also, throughout more realistic shock-vortex interaction and muzzle blast flow problems, the utility of the new method for aeroacoustic applications is verified by comparing with the previous numerical or experimental results.
Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi
2018-01-01
In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciarrino, Fabio; Dipartimento di Fisica and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Universita 'La Sapienza', Rome 00185; De Martini, Francesco
The optimal phase-covariant quantum cloning machine (PQCM) broadcasts the information associated to an input qubit into a multiqubit system, exploiting a partial a priori knowledge of the input state. This additional a priori information leads to a higher fidelity than for the universal cloning. The present article first analyzes different innovative schemes to implement the 1{yields}3 PQCM. The method is then generalized to any 1{yields}M machine for an odd value of M by a theoretical approach based on the general angular momentum formalism. Finally different experimental schemes based either on linear or nonlinear methods and valid for single photon polarizationmore » encoded qubits are discussed.« less
Jagannathan, Sarangapani; He, Pingan
2008-12-01
In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.
Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P
2015-11-01
This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Channel modeling, signal processing and coding for perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Wu, Zheng
With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.
Combinatorial approaches to gene recognition.
Roytberg, M A; Astakhova, T V; Gelfand, M S
1997-01-01
Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.
Variable structure control of spacecraft reorientation maneuvers
NASA Technical Reports Server (NTRS)
Sira-Ramirez, H.; Dwyer, T. A. W., III
1986-01-01
A Variable Structure Control (VSC) approach is presented for multi-axial spacecraft reorientation maneuvers. A nonlinear sliding surface is proposed which results in an asymptotically stable, ideal linear sliding motion of Cayley-Rodriques attitude parameters. By imposing a desired equivalent dynamics on the attitude parameters, the approach is devoid of optimal control considerations. The single axis case provides a design scheme for the multiple axes design problem. Illustrative examples are presented.
Convergence Estimates for Multidisciplinary Analysis and Optimization
NASA Technical Reports Server (NTRS)
Arian, Eyal
1997-01-01
A quantitative analysis of coupling between systems of equations is introduced. This analysis is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity and optimization problems both multidisciplinary and single discipline feasibility schemes are considered. In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system, thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence factor is identified with the measure for the "coupling" between the disciplines in the system. Applications to algorithm development are discussed. Demonstration of the convergence estimates and numerical results are given for a system composed of two non-linear algebraic equations, and for a system composed of two PDEs modeling aeroelasticity.
Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant
NASA Astrophysics Data System (ADS)
Alsova, O. K.; Artamonova, A. V.
2018-05-01
This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.
Double emittance exchanger as a bunch compressor for the MaRIE XFEL electron beam line at 1 GeV
NASA Astrophysics Data System (ADS)
Malyzhenkov, Alexander; Carlsten, Bruce E.; Yampolsky, Nikolai A.
2017-03-01
We demonstrate an alternative realization of a bunch compressor (specifically, the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space. We compare our results with a traditional bunch compressor realized via a chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beamline, and analyze the evolution of the eigen-emittances to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR effects in our scheme, resulting in critical emittance growth, and introduce an alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.
Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander; Yampolsky, Nikolai; Carlsten, Bruce Eric
We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters tomore » reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.« less
NASA Astrophysics Data System (ADS)
Keene, Scott T.; Melianas, Armantas; Fuller, Elliot J.; van de Burgt, Yoeri; Talin, A. Alec; Salleo, Alberto
2018-06-01
Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non-idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write-selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (~170 fJ · µm‑2). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.
Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.
Wang, Wei; Tong, Shaocheng
2018-02-01
This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2005-01-01
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.
A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system
NASA Astrophysics Data System (ADS)
Lee, Hyun Geun; Choi, Jeong-Whan; Kim, Junseok
2012-02-01
We present a practically unconditionally gradient stable conservative nonlinear numerical scheme for the N-component Cahn-Hilliard system modeling the phase separation of an N-component mixture. The scheme is based on a nonlinear splitting method and is solved by an efficient and accurate nonlinear multigrid method. The scheme allows us to convert the N-component Cahn-Hilliard system into a system of N-1 binary Cahn-Hilliard equations and significantly reduces the required computer memory and CPU time. We observe that our numerical solutions are consistent with the linear stability analysis results. We also demonstrate the efficiency of the proposed scheme with various numerical experiments.
Designing stellarator coils by a modified Newton method using FOCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
Designing stellarator coils by a modified Newton method using FOCUS
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-06-01
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
Designing stellarator coils by a modified Newton method using FOCUS
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2018-03-22
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei
2015-01-01
Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004
A neural network strategy for end-point optimization of batch processes.
Krothapally, M; Palanki, S
1999-01-01
The traditional way of operating batch processes has been to utilize an open-loop "golden recipe". However, there can be substantial batch to batch variation in process conditions and this open-loop strategy can lead to non-optimal operation. In this paper, a new approach is presented for end-point optimization of batch processes by utilizing neural networks. This strategy involves the training of two neural networks; one to predict switching times and the other to predict the input profile in the singular region. This approach alleviates the computational problems associated with the classical Pontryagin's approach and the nonlinear programming approach. The efficacy of this scheme is illustrated via simulation of a fed-batch fermentation.
Li, Yongming; Tong, Shaocheng
2017-06-28
In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.
Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen
1997-01-01
The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
The nonlinear modified equation approach to analyzing finite difference schemes
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1981-01-01
The nonlinear modified equation approach is taken in this paper to analyze the generalized Lax-Wendroff explicit scheme approximation to the unsteady one- and two-dimensional equations of gas dynamics. Three important applications of the method are demonstrated. The nonlinear modified equation analysis is used to (1) generate higher order accurate schemes, (2) obtain more accurate estimates of the discretization error for nonlinear systems of partial differential equations, and (3) generate an adaptive mesh procedure for the unsteady gas dynamic equations. Results are obtained for all three areas. For the adaptive mesh procedure, mesh point requirements for equal resolution of discontinuities were reduced by a factor of five for a 1-D shock tube problem solved by the explicit MacCormack scheme.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.
Multilevel adaptive control of nonlinear interconnected systems.
Motallebzadeh, Farzaneh; Ozgoli, Sadjaad; Momeni, Hamid Reza
2015-01-01
This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.
2013-06-01
Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that the effect of uncertainties associated with the geostatistical parameters on the spatial prediction might be significantly alleviated (by up to 80% of the prior uncertainty in K and by 90% of the prior uncertainty in H) by sampling evenly distributed measurements with a spatial measurement density of more than 1 observation per 60 m × 60 m grid block. In addition, exploration of the interaction of objective functions indicates that the ability of head measurements to reduce the uncertainty associated with the correlation scale is comparable to the effect of hydraulic conductivity measurements.
Receptors as a master key for synchronization of rhythms
NASA Astrophysics Data System (ADS)
Nagano, Seido
2004-03-01
A simple, but general scheme to achieve synchronization of rhythms was derived. The scheme has been inductively generalized from the modelling study of cellular slime mold. It was clarified that biological receptors work as apparatuses that can convert external stimulus to the form of nonlinear interaction within individual oscillators. Namely, the mathematical model receptor works as a nonlinear coupling apparatus between nonlinear oscillators. Thus, synchronization is achieved as a result of competition between two kinds of non-linearities, and to achieve synchronization, even a small external stimulation via model receptors can change the characteristics of individual oscillators significantly. The derived scheme is very simple mathematically, but it is a very powerful scheme as numerically demonstrated. The biological receptor scheme should significantly help understanding of synchronization phenomena in biology since groups of limit cycle oscillators and receptors are ubiquitous in biological systems. Reference: S. Nagano, Phys Rev. E67, 056215(2003)
NASA Astrophysics Data System (ADS)
Wei, Jing; Wang, Jin-Yun; Zhang, Min-Yi; Chai, Guo-Liang; Lin, Chen-Sheng; Cheng, Wen-Dan
2013-01-01
We investigate the effect of side chain on the first-order hyperpolarizability in α-helical polyalanine peptide with the 10th alanine mutation (Acetyl(ala)9X(ala)7NH2). Structures of various substituted peptides are optimized by ONIOM (DFT: AM1) scheme, and then linear and nonlinear optical properties are calculated by SOS//CIS/6-31G∗ method. The polarizability and first-order hyperpolarizability increase obviously only when 'X' represents phenylalanine, tyrosine and tryptophan. We also discuss the origin of nonlinear optical response and determine what caused the increase of first-order hyperpolarizability. Our results strongly suggest that side chains containing benzene, phenol and indole have important contributions to first-order hyperpolarizability.
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
NASA Astrophysics Data System (ADS)
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
A multilevel control system for the large space telescope. [numerical analysis/optimal control
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.
1975-01-01
A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
MONSS: A multi-objective nonlinear simplex search approach
NASA Astrophysics Data System (ADS)
Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.
2016-01-01
This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Liu, Lei; Wang, Zhanshan; Zhang, Huaguang
2018-04-01
This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.
A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
1996-01-01
Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.
NASA Astrophysics Data System (ADS)
Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann
2016-01-01
We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.
Enhanced method of fast re-routing with load balancing in software-defined networks
NASA Astrophysics Data System (ADS)
Lemeshko, Oleksandr; Yeremenko, Oleksandra
2017-11-01
A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de
2016-01-28
We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show howmore » adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.« less
NASA Astrophysics Data System (ADS)
Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi
2017-02-01
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.
Multiuser receiver for DS-CDMA signals in multipath channels: an enhanced multisurface method.
Mahendra, Chetan; Puthusserypady, Sadasivan
2006-11-01
This paper deals with the problem of multiuser detection in direct-sequence code-division multiple-access (DS-CDMA) systems in multipath environments. The existing multiuser detectors can be divided into two categories: (1) low-complexity poor-performance linear detectors and (2) high-complexity good-performance nonlinear detectors. In particular, in channels where the orthogonality of the code sequences is destroyed by multipath, detectors with linear complexity perform much worse than the nonlinear detectors. In this paper, we propose an enhanced multisurface method (EMSM) for multiuser detection in multipath channels. EMSM is an intermediate piecewise linear detection scheme with a run-time complexity linear in the number of users. Its bit error rate performance is compared with existing linear detectors, a nonlinear radial basis function detector trained by the new support vector learning algorithm, and Verdu's optimal detector. Simulations in multipath channels, for both synchronous and asynchronous cases, indicate that it always outperforms all other linear detectors, performing nearly as well as nonlinear detectors.
NASA Astrophysics Data System (ADS)
Mann, Nishan; Hughes, Stephen
2018-02-01
We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.
NASA Astrophysics Data System (ADS)
Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza
2016-06-01
This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.
NASA Astrophysics Data System (ADS)
Boski, Marcin; Paszke, Wojciech
2017-01-01
This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.
Water-quality trading: Can we get the prices of pollution right?
NASA Astrophysics Data System (ADS)
Konishi, Yoshifumi; Coggins, Jay S.; Wang, Bin
2015-05-01
Water-quality trading requires inducing permit prices that account properly for spatially explicit damage relationships. We compare recent work by Hung and Shaw (2005) and Farrow et al. (2005) for river systems exhibiting branching and nonlinear damages. The Hung-Shaw scheme is robust to nonlinear damages, but not to hot spots occurring at the confluence of two branches. The Farrow et al. (2005) scheme is robust to branching, but not to nonlinear damages. We also compare the two schemes to each other. Neither dominates from a welfare perspective, but the comparison appears to tilt in favor of the Farrow et al. scheme.
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Harmonic Optimization in Voltage Source Inverter for PV Application using Heuristic Algorithms
NASA Astrophysics Data System (ADS)
Kandil, Shaimaa A.; Ali, A. A.; El Samahy, Adel; Wasfi, Sherif M.; Malik, O. P.
2016-12-01
Selective Harmonic Elimination (SHE) technique is the fundamental switching frequency scheme that is used to eliminate specific order harmonics. Its application to minimize low order harmonics in a three level inverter is proposed in this paper. The modulation strategy used here is SHEPWM and the nonlinear equations, that characterize the low order harmonics, are solved using Harmony Search Algorithm (HSA) to obtain the optimal switching angles that minimize the required harmonics and maintain the fundamental at the desired value. Total Harmonic Distortion (THD) of the output voltage is minimized maintaining selected harmonics within allowable limits. A comparison has been drawn between HSA, Genetic Algorithm (GA) and Newton Raphson (NR) technique using MATLAB software to determine the effectiveness of getting optimized switching angles.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Xuemei; Deng, Mingliang; Zeng, Dengke; Yang, Heming; Qiu, Kun
2015-08-01
We propose a novel ICI cancellation using opposite weighting on symmetric subcarrier pairs to combat the linear phase noise of laser source and the nonlinear phase noise resulted from the fiber nonlinearity. We compare the proposed ICI cancellation scheme with conventional OFDM and the ICI self-cancellation at the same raw bit rate of 35.6 Gb/s. In simulations, the proposed ICI cancellation scheme shows better phase noise tolerance compared with conventional OFDM and has similar phase noise tolerance with the ICI self-cancellation. The laser linewidth is about 13 MHz at BER of 2 × 10-3 with ICI cancellation scheme while it is 5 MHz in conventional OFDM. We also study the nonlinearity tolerance and find that the proposed ICI cancellation scheme is better compared with the other two schemes which due to the first order nonlinearity mitigation. The launch power is 7 dBm for the proposed ICI cancellation scheme and its SNR improves by 4 dB or 3 dB compared with the ICI self-cancellation or conventional OFDM at BER of 1.1 × 10-3, respectively.
NASA Astrophysics Data System (ADS)
Edjlali, Ehsan; Bérubé-Lauzière, Yves
2018-01-01
We present the first Lq -Lp optimization scheme for fluorescence tomographic imaging. This is then applied to small animal imaging. Fluorescence tomography is an ill-posed, and in full generality, a nonlinear problem that seeks to image the 3D concentration distribution of a fluorescent agent inside a biological tissue. Standard candidates for regularization to deal with the ill-posedness of the image reconstruction problem include L1 and L2 regularization. In this work, a general Lq -Lp regularization framework (Lq discrepancy function - Lp regularization term) is introduced for fluorescence tomographic imaging. A method to calculate the gradient for this general framework is developed which allows evaluating the performance of different cost functions/regularization schemes in solving the fluorescence tomographic problem. The simplified spherical harmonics approximation is used to accurately model light propagation inside the tissue. Furthermore, a multigrid mesh is utilized to decrease the dimension of the inverse problem and reduce the computational cost of the solution. The inverse problem is solved iteratively using an lm-BFGS quasi-Newton optimization method. The simulations are performed under different scenarios of noisy measurements. These are carried out on the Digimouse numerical mouse model with the kidney being the target organ. The evaluation of the reconstructed images is performed both qualitatively and quantitatively using several metrics including QR, RMSE, CNR, and TVE under rigorous conditions. The best reconstruction results under different scenarios are obtained with an L1.5 -L1 scheme with premature termination of the optimization process. This is in contrast to approaches commonly found in the literature relying on L2 -L2 schemes.
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
Large scale nonlinear programming for the optimization of spacecraft trajectories
NASA Astrophysics Data System (ADS)
Arrieta-Camacho, Juan Jose
Despite the availability of high fidelity mathematical models, the computation of accurate optimal spacecraft trajectories has never been an easy task. While simplified models of spacecraft motion can provide useful estimates on energy requirements, sizing, and cost; the actual launch window and maneuver scheduling must rely on more accurate representations. We propose an alternative for the computation of optimal transfers that uses an accurate representation of the spacecraft dynamics. Like other methodologies for trajectory optimization, this alternative is able to consider all major disturbances. In contrast, it can handle explicitly equality and inequality constraints throughout the trajectory; it requires neither the derivation of costate equations nor the identification of the constrained arcs. The alternative consist of two steps: (1) discretizing the dynamic model using high-order collocation at Radau points, which displays numerical advantages, and (2) solution to the resulting Nonlinear Programming (NLP) problem using an interior point method, which does not suffer from the performance bottleneck associated with identifying the active set, as required by sequential quadratic programming methods; in this way the methodology exploits the availability of sound numerical methods, and next generation NLP solvers. In practice the methodology is versatile; it can be applied to a variety of aerospace problems like homing, guidance, and aircraft collision avoidance; the methodology is particularly well suited for low-thrust spacecraft trajectory optimization. Examples are presented which consider the optimization of a low-thrust orbit transfer subject to the main disturbances due to Earth's gravity field together with Lunar and Solar attraction. Other example considers the optimization of a multiple asteroid rendezvous problem. In both cases, the ability of our proposed methodology to consider non-standard objective functions and constraints is illustrated. Future research directions are identified, involving the automatic scheduling and optimization of trajectory correction maneuvers. The sensitivity information provided by the methodology is expected to be invaluable in such research pursuit. The collocation scheme and nonlinear programming algorithm presented in this work, complement other existing methodologies by providing reliable and efficient numerical methods able to handle large scale, nonlinear dynamic models.
Fuzzy self-learning control for magnetic servo system
NASA Technical Reports Server (NTRS)
Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.
1994-01-01
It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
Multi-scale Eulerian model within the new National Environmental Modeling System
NASA Astrophysics Data System (ADS)
Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko
2010-05-01
The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.
Computational analysis of nonlinearities within dynamics of cable-based driving systems
NASA Astrophysics Data System (ADS)
Anghelache, G. D.; Nastac, S.
2017-08-01
This paper deals with computational nonlinear dynamics of mechanical systems containing some flexural parts within the actuating scheme, and, especially, the situations of the cable-based driving systems were treated. It was supposed both functional nonlinearities and the real characteristic of the power supply, in order to obtain a realistically computer simulation model being able to provide very feasible results regarding the system dynamics. It was taken into account the transitory and stable regimes during a regular exploitation cycle. The authors present a particular case of a lift system, supposed to be representatively for the objective of this study. The simulations were made based on the values of the essential parameters acquired from the experimental tests and/or the regular practice in the field. The results analysis and the final discussions reveal the correlated dynamic aspects within the mechanical parts, the driving system, and the power supply, whole of these supplying potential sources of particular resonances, within some transitory phases of the working cycle, and which can affect structural and functional dynamics. In addition, it was underlines the influences of computational hypotheses on the both quantitative and qualitative behaviour of the system. Obviously, the most significant consequence of this theoretical and computational research consist by developing an unitary and feasible model, useful to dignify the nonlinear dynamic effects into the systems with cable-based driving scheme, and hereby to help an optimization of the exploitation regime including a dynamics control measures.
Constrained Multi-Level Algorithm for Trajectory Optimization
NASA Astrophysics Data System (ADS)
Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi
The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in diagonalised methods, being the only single update with quadratic convergence. For a single level, the diagonalised multiplier method (DMM) is described in Ref.5. The main advantage of the two-level analogue of the DMM approach is that it avoids the inner loop optimizations required in the other methods. The scheme also introduces a gradient change measure to reduce the computational time needed to calculate the gradients. It is demonstrated that the new multi-level scheme leads to a robust procedure to handle the sensitivity of the constraints, and the multiple objectives of different trajectory phases. Ref. 1. Fahroo, F and Ross, M., " A Spectral Patching Method for Direct Trajectory Optimization" The Journal of the Astronautical Sciences, Vol.48, 2000, pp.269-286 Ref. 2. Phililps, C.A. and Drake, J.C., "Trajectory Optimization for a Missile using a Multitier Approach" Journal of Spacecraft and Rockets, Vol.37, 2000, pp.663-669 Ref. 3. Gath, P.F., and Calise, A.J., " Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs", Journal of Guidance, Control, and Dynamics, Vol. 24, 2001, pp.296-304 Ref. 4. Betts, J.T., " Survey of Numerical Methods for Trajectory Optimization", Journal of Guidance, Control, and Dynamics, Vol.21, 1998, pp. 193-207 Ref. 5. Adimurthy, V., " Launch Vehicle Trajectory Optimization", Acta Astronautica, Vol.15, 1987, pp.845-850.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo
2015-10-01
The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.
NASA Astrophysics Data System (ADS)
Singh, Randhir; Das, Nilima; Kumar, Jitendra
2017-06-01
An effective analytical technique is proposed for the solution of the Lane-Emden equations. The proposed technique is based on the variational iteration method (VIM) and the convergence control parameter h . In order to avoid solving a sequence of nonlinear algebraic or complicated integrals for the derivation of unknown constant, the boundary conditions are used before designing the recursive scheme for solution. The series solutions are found which converges rapidly to the exact solution. Convergence analysis and error bounds are discussed. Accuracy, applicability of the method is examined by solving three singular problems: i) nonlinear Poisson-Boltzmann equation, ii) distribution of heat sources in the human head, iii) second-kind Lane-Emden equation.
Robotic fish tracking method based on suboptimal interval Kalman filter
NASA Astrophysics Data System (ADS)
Tong, Xiaohong; Tang, Chao
2017-11-01
Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.
NASA Astrophysics Data System (ADS)
Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.
2017-09-01
Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.
Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms
Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun
2011-01-01
This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927
Constellation labeling optimization for bit-interleaved coded APSK
NASA Astrophysics Data System (ADS)
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
A comparison of washout filters using a human dynamic orientation model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Riedel, S. A.
1977-01-01
The Ormsby model of human dynamic orientation, a discrete time computer program, was used to provide a vestibular explanation for observed differences between two washout schemes. These washout schemes, a linear washout and a nonlinear washout, were subjectively evaluated. It was found that the linear washout presented false rate cues, causing pilots to rate the simulation fidelity of the linear scheme much lower than the nonlinear scheme. By inputting these motion histories into the Ormsby model, it was shown that the linear filter causes discontinuities in the pilot's perceived angular velocity, resulting in the sensation of an anomalous rate cue. This phenomenon does not occur with the use of the nonlinear filter.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Zero Forcing Conditions for Nonlinear channel Equalisation using a pre-coding scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arfa, Hichem; Belghith, Safya; El Asmi, Sadok
2009-03-05
This paper shows how we can present a zero forcing conditions for a nonlinear channel equalisation. These zero forcing conditions based on the rank of nonlinear system are issued from an algebraic approach based on the module theoretical approach, in which the rank of nonlinear channel is clearly defined. In order to improve the performance of equalisation and reduce the complexity of used nonlinear systems, we will apply a pre-coding scheme. Theoretical results are given and computer simulation is used to corroborate the theory.
Inhibition of viscous fluid fingering: A variational scheme for optimal flow rates
NASA Astrophysics Data System (ADS)
Miranda, Jose; Dias, Eduardo; Alvarez-Lacalle, Enrique; Carvalho, Marcio
2012-11-01
Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping rate in order to restrain growth of interfacial amplitudes. We use an analytical variational scheme to look for the precise functional form of such an optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this particularly simple, but not at all obvious, pattern controlling process. J.A.M., E.O.D. and M.S.C. thank CNPq/Brazil for financial support. E.A.L. acknowledges support from Secretaria de Estado de IDI Spain under project FIS2011-28820-C02-01.
Spectral Re-Growth Reduction for CCSDS 8-D 8-PSK TCM
NASA Technical Reports Server (NTRS)
Borah, Deva K.
2002-01-01
This report presents a study on the CCSDS recommended 8-dimensional 8 PSK Trellis Coded Modulation (TCM) scheme. The important steps of the CCSDS scheme include: conversion of serial data into parallel form, differential encoding, convolutional encoding, constellation mapping, and filtering the 8-PSK symbols using the square root raised cosine (SRRC) pulses. The last step, namely the filtering of the 8 PSK symbols using SRRC pulses, significantly affects the bandwidth of the signal. If a nonlinear power amplifier is used, the SRRC filtered signal creates spectral regrowth. The purpose of this report is to investigate a technique, called the smooth phase interpolated keying (SPIK), that can provide an alternative to SRRC filtering so that good spectral as well as power efficiencies can be obtained with the CCSDS encoder. The results of this study show that the CCSDS encoder does not affect the spectral shape of the SRRC filtered signal or the SPIK signal. When a nonlinear traveling wave tube amplifier (TWTA) is used, the spectral performance of the SRRC signal degrades significantly while the spectral performance of SPIK remains unaffected. The degrading effect of a nonlinear solid state power amplifier (SSPA) on SRRC is found to be less than that due to a nonlinear TWTA. However, in both cases, the spectral performance of the SRRC modulated signal is worse than that of the SPIK signal. The bit error rate (BER) performance of the SRRC signal in a linear amplifier environment is about 2.5 dB better than that of the SPIK signal when both the receivers use algorithms of similar complexity. In a nonlinear TWTA environment, the SRRC signal requires accurate phase tracking since the TWTA introduces additional phase distortion. This problem does not arise with SPIK signal due to its constant envelope property. When a nonlinear amplifier is used, the SRRC method loses nearly 1 dB in the bit error rate performance. The SPIK signal does not lose any performance. Thus the performance gap between SRRC and SPIK reduces. The BER performance of SPIK can be improved even further by using a more optimal receiver. A similar optimal receiver for SRRC is quite complex since the amplifier distorts the pulse shape. However, this requires further investigation and is not covered in this report.
Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Pegoraro, Adrian Frank
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.
Parametric amplification in quasi-PT symmetric coupled waveguide structures
NASA Astrophysics Data System (ADS)
Zhong, Q.; Ahmed, A.; Dadap, J. I.; Osgood, R. M., Jr.; El-Ganainy, R.
2016-12-01
The concept of non-Hermitian parametric amplification was recently proposed as a means to achieve an efficient energy conversion throughout the process of nonlinear three wave mixing in the absence of phase matching. Here we investigate this effect in a waveguide coupler arrangement whose characteristics are tailored to introduce passive PT symmetry only for the idler component. By means of analytical solutions and numerical analysis, we demonstrate the utility of these novel schemes and obtain the optimal design conditions for these devices.
Gompertzian stochastic model with delay effect to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
Engineering high-order nonlinear dissipation for quantum superconducting circuits
NASA Astrophysics Data System (ADS)
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
A comparative study of advanced shock-capturing schemes applied to Burgers' equation
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
A systematic evaluation is conducted of all extant numerical schemes for nonlinear scalar transport problems, and several advanced shock-capturing schemes are used to solve the nonlinear Burgers' equation in order to characterize their ability to resolve the sharp discontinuity, expansion zone, and propagation and collision features of shocks. For discontinuous functions, the Warming-Beam scheme generates preshock wiggles, while the Lax-Wendroff scheme generates postshock ones. Such limiters as the MUSCL or the superbee are more compressive than minimod or monotonic limiters. The performance of such TVD schemes as the upwind, the symmetric, and the Roe-Sweby, resemble each other.
Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm
NASA Astrophysics Data System (ADS)
Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat
2018-01-01
This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.
The development of global GRAPES 4DVAR
NASA Astrophysics Data System (ADS)
Liu, Yongzhu
2017-04-01
Four-dimensional variation data assimilation (4DVAR) has given a great contribution to the improvement of NWP system over the past twenty years. Therefore, our strategy is to develop an operational global 4D-Var system from the outset. The aim at the paper is to introduce the development of the global GRAPES four-dimensional variation data assimilation (4DVAR) using incremental analysis schemes and to presents results of a comparison between 4DVAR using 6-hour assimilation window and simplified physics during the minimization with three-dimensional variation data assimilation (3DVAR). The dynamical cores of the tangent-linear and adjoint models are developed directly based on the non-hydrostatic forecast model. In addition, the standard correctness checks have been performed. As well as the development adjoint codes, most of our work is focused on improving the computational efficiency since the bulk of the computational cost of 4D-Var is in the integration of the tangent-linear and adjoint models. In terms of tangent-linear model, the wall-clock time is reduced to about 1.2 times as much as one of nonlinear model through the optimizing of the software framework. The significant computational cost savings on adjoint model result from the removing the redundant recompilations of model trajectories. It is encouraging that the wall-clock time of adjoint model is less than 1.5 times as much as one of nonlinear model. The current difficulty is that the numerical scheme used within the linear model is based on strategically on the numeric of the corresponding nonlinear model. Further computational acceleration should be expected from the improvement on nonlinear numerical algorithm. A series of linearized physical parameterization schemes has been developed to improve the representation of perturbed fields in the linear model. It consists of horizontal and vertical diffusion, sub-grid scale orographic gravity wave drag, large-scale condensation and cumulus convection schemes. We also found the straightforward linearization based on the nonlinear physical scheme might lead to significant growing of spurious unstable perturbations. It is essential to simplify the linear physics with respect to the non-linear schemes. The improvement on the perturbed fields in the tangent-linear model is visible with the linear physics included, especially at the low level. GRAPES variation data assimilation system adopts the incremental approach. The work is ongoing to develop a pre-operational 4DVAR suite with 0.25° outer loop resolution and multiple outer-loops configurations. One 4DVAR analysis using 6-hour assimilation windows can be finished within 40-minutes when using the available conventional and satellite data. In summary, it was found that the analysis over the northern, southern hemispheres, tropical region and East Asian area of GRAPES 4DVAR performed better than GRAPES 3DVAR for one month experiments. Moreover, the forecast results show that northern and southern extra-tropical scores for GRAPES 4DVAR are already better than GRAPES 3DVAR, but the tropical performance needs further investigations. Therefore, the subsequent main improvements will aim to enhance its computational efficiency and accuracy in 2017. The global GRAPES 4DVAR is planned for operation in 2018.
Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data
2015-09-30
Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation
Photonic Crystal Fiber Based Entangled Photon Sources
2014-03-01
5 Figure 2: The diagram of the counter- propagating scheme. FP: fiber port ( free - space to fiber). PBS: polarization beam splitter. LP: Linear... entangled photon -pairs using the highly nonlinear fiber in a counter- propagating scheme (CPS). With the HNLF at room temperature, we obtain a... propagating scheme for generating polarization entangled photon pairs at telecom wavelengths. We use 10 m of highly nonlinear fiber. We measure a
Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.
Zhang, Qichao; Zhao, Dongbin; Wang, Ding
2018-01-01
In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.
Najjar-Khodabakhsh, Abbas; Soltani, Jafar
2016-03-01
In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maghsoudi, Mohammad Javad; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H. I.; Ahmad, S. M.
2017-08-01
This paper proposes an improved input shaping scheme for an efficient sway control of a nonlinear three dimensional (3D) overhead crane with friction using the particle swarm optimization (PSO) algorithm. Using this approach, a higher payload sway reduction is obtained as the input shaper is designed based on a complete nonlinear model, as compared to the analytical-based input shaping scheme derived using a linear second order model. Zero Vibration (ZV) and Distributed Zero Vibration (DZV) shapers are designed using both analytical and PSO approaches for sway control of rail and trolley movements. To test the effectiveness of the proposed approach, MATLAB simulations and experiments on a laboratory 3D overhead crane are performed under various conditions involving different cable lengths and sway frequencies. Their performances are studied based on a maximum residual of payload sway and Integrated Absolute Error (IAE) values which indicate total payload sway of the crane. With experiments, the superiority of the proposed approach over the analytical-based is shown by 30-50% reductions of the IAE values for rail and trolley movements, for both ZV and DZV shapers. In addition, simulations results show higher sway reductions with the proposed approach. It is revealed that the proposed PSO-based input shaping design provides higher payload sway reductions of a 3D overhead crane with friction as compared to the commonly designed input shapers.
NASA Technical Reports Server (NTRS)
Melott, A. L.; Buchert, T.; Weib, A. G.
1995-01-01
We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of scales. The Lagrangian theory of gravitational instability of Friedmann-Lemaitre cosmogonies is compared with numerical simulations. We study the dynamics of hierarchical models as a second step. In the first step we analyzed the performance of the Lagrangian schemes for pancake models, the difference being that in the latter models the initial power spectrum is truncated. This work probed the quasi-linear and weakly non-linear regimes. We here explore whether the results found for pancake models carry over to hierarchical models which are evolved deeply into the non-linear regime. We smooth the initial data by using a variety of filter types and filter scales in order to determine the optimal performance of the analytical models, as has been done for the 'Zel'dovich-approximation' - hereafter TZA - in previous work. We find that for spectra with negative power-index the second-order scheme performs considerably better than TZA in terms of statistics which probe the dynamics, and slightly better in terms of low-order statistics like the power-spectrum. However, in contrast to the results found for pancake models, where the higher-order schemes get worse than TZA at late non-linear stages and on small scales, we here find that the second-order model is as robust as TZA, retaining the improvement at later stages and on smaller scales. In view of these results we expect that the second-order truncated Lagrangian model is especially useful for the modelling of standard dark matter models such as Hot-, Cold-, and Mixed-Dark-Matter.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.
Support vector machine firefly algorithm based optimization of lens system.
Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah
2015-01-01
Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.
Upwind and symmetric shock-capturing schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1987-01-01
The development of numerical methods for hyperbolic conservation laws has been a rapidly growing area for the last ten years. Many of the fundamental concepts and state-of-the-art developments can only be found in meeting proceedings or internal reports. This review paper attempts to give an overview and a unified formulation of a class of shock-capturing methods. Special emphasis is on the construction of the basic nonlinear scalar second-order schemes and the methods of extending these nonlinear scalar schemes to nonlinear systems via the extact Riemann solver, approximate Riemann solvers, and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows is discussed. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas dynamics problems.
Hudson, H M; Ma, J; Green, P
1994-01-01
Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.
Zhu, Xiaolei; Yarkony, David R
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H(d), and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H(d) individually provides a starting point (seed) from which convergence of the full H(d) construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4(1)A states of phenol and the 1,2(1)A states of NH3, states which are coupled by conical intersections.
Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator
NASA Astrophysics Data System (ADS)
Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan
2018-05-01
This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.
Stabilization of business cycles of finance agents using nonlinear optimal control
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.
2017-11-01
Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.
NASA Astrophysics Data System (ADS)
Hayatbini, N.; Faridzad, M.; Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.
2016-12-01
The Artificial Neural Networks (ANNs) are useful in many fields, including water resources engineering and management. However, due to the non-linear and chaotic characteristics associated with natural processes and human decision making, the use of ANNs in real-world applications is still limited, and its performance needs to be further improved for a broader practical use. The commonly used Back-Propagation (BP) scheme and gradient-based optimization in training the ANNs have already found to be problematic in some cases. The BP scheme and gradient-based optimization methods are associated with the risk of premature convergence, stuck in local optimums, and the searching is highly dependent on initial conditions. Therefore, as an alternative to BP and gradient-based searching scheme, we propose an effective and efficient global searching method, termed the Shuffled Complex Evolutionary Global optimization algorithm with Principal Component Analysis (SP-UCI), to train the ANN connectivity weights. Large number of real-world datasets are tested with the SP-UCI-based ANN, as well as various popular Evolutionary Algorithms (EAs)-enhanced ANNs, i.e., Particle Swarm Optimization (PSO)-, Genetic Algorithm (GA)-, Simulated Annealing (SA)-, and Differential Evolution (DE)-enhanced ANNs. Results show that SP-UCI-enhanced ANN is generally superior over other EA-enhanced ANNs with regard to the convergence and computational performance. In addition, we carried out a case study for hydropower scheduling in the Trinity Lake in the western U.S. In this case study, multiple climate indices are used as predictors for the SP-UCI-enhanced ANN. The reservoir inflows and hydropower releases are predicted up to sub-seasonal to seasonal scale. Results show that SP-UCI-enhanced ANN is able to achieve better statistics than other EAs-based ANN, which implies the usefulness and powerfulness of proposed SP-UCI-enhanced ANN for reservoir operation, water resources engineering and management. The SP-UCI-enhanced ANN is universally applicable to many other regression and prediction problems, and it has a good potential to be an alternative to the classical BP scheme and gradient-based optimization methods.
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.
1996-01-01
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
NASA Astrophysics Data System (ADS)
Gao, Qian
For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.
NASA Astrophysics Data System (ADS)
Yousefian, Reza
This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.
Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.
Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K
2016-07-01
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.
Uniscale multi-view registration using double dog-leg method
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan
2009-02-01
3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes
NASA Astrophysics Data System (ADS)
Saksida, Pavle
2018-01-01
We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.
A coupled electro-thermal Discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Homsi, L.; Geuzaine, C.; Noels, L.
2017-11-01
This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.
Tethered satellite system control using electromagnetic forces and reaction wheels
NASA Astrophysics Data System (ADS)
Alandi Hallaj, Mohammad Amin; Assadian, Nima
2015-12-01
In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
NASA Astrophysics Data System (ADS)
Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji
2015-12-01
Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.
Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements
NASA Astrophysics Data System (ADS)
Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.
2018-03-01
We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.
NASA Astrophysics Data System (ADS)
Jiang, Jiamin; Younis, Rami M.
2017-10-01
In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.
Huang, Yi-Shao; Liu, Wel-Ping; Wu, Min; Wang, Zheng-Wu
2014-09-01
This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations. Copyright © 2014. Published by Elsevier Ltd.
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing
NASA Astrophysics Data System (ADS)
Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline
2017-11-01
Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.
Nonlinear secret image sharing scheme.
Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.
Nonlinear Secret Image Sharing Scheme
Shin, Sang-Ho; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2m⌉ bit-per-pixel (bpp), respectively. PMID:25140334
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those applied in this paper.
On the utilization of engineering knowledge in design optimization
NASA Technical Reports Server (NTRS)
Papalambros, P.
1984-01-01
Some current research work conducted at the University of Michigan is described to illustrate efforts for incorporating knowledge in optimization in a nontraditional way. The incorporation of available knowledge in a logic structure is examined in two circumstances. The first examines the possibility of introducing global design information in a local active set strategy implemented during the iterations of projection-type algorithms for nonlinearly constrained problems. The technique used algorithms for nonlinearly constrained problems. The technique used combines global and local monotinicity analysis of the objective and constraint functions. The second examines a knowledge-based program which aids the user to create condigurations that are most desirable from the manufacturing assembly viewpoint. The data bank used is the classification scheme suggested by Boothroyd. The important aspect of this program is that it is an aid for synthesis intended for use in the design concept phase in a way similar to the so-called idea-triggers in creativity-enhancement techniques like brain-storming. The idea generation, however, is not random but it is driven by the goal of achieving the best acceptable configuration.
Parallel Aircraft Trajectory Optimization with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Gray, Justin S.; Naylor, Bret
2016-01-01
Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.
Discrete optimal control approach to a four-dimensional guidance problem near terminal areas
NASA Technical Reports Server (NTRS)
Nagarajan, N.
1974-01-01
Description of a computer-oriented technique to generate the necessary control inputs to guide an aircraft in a given time from a given initial state to a prescribed final state subject to the constraints on airspeed, acceleration, and pitch and bank angles of the aircraft. A discrete-time mathematical model requiring five state variables and three control variables is obtained, assuming steady wind and zero sideslip. The guidance problem is posed as a discrete nonlinear optimal control problem with a cost functional of Bolza form. A solution technique for the control problem is investigated, and numerical examples are presented. It is believed that this approach should prove to be useful in automated air traffic control schemes near large terminal areas.
Optimal Signal Filtration in Optical Sensors with Natural Squeezing of Vacuum Noises
NASA Technical Reports Server (NTRS)
Gusev, A. V.; Kulagin, V. V.
1996-01-01
The structure of optimal receiver is discussed for optical sensor measuring a small displacement of probe mass. Due to nonlinear interaction of the field and the mirror, a reflected wave is in squeezed state (natural squeezing), two quadratures of which are correlated and therefore one can increase signal-to-noise ratio and overcome the SQL. A measurement procedure realizing such correlation processing of two quadratures is clarified. The required combination of quadratures can be produced via mixing of pump field reflected from the mirror with local oscillator phase modulated field in duel-detector homodyne scheme. Such measurement procedure could be useful not only for resonant bar gravitational detector but for laser longbase interferometric detectors as well.
NASA Astrophysics Data System (ADS)
Hatano, Hideki; Slater, Richard; Takekawa, Shunji; Kusano, Masahiro; Watanabe, Makoto
2017-07-01
We demonstrate 43% slope efficiency for generation of ∼3200 nm light, a wavelength considered to be ideal for laser induced ultrasound generation in carbon fiber reinforced plastic. High slope efficiency was obtained by optimizing crystal lengths, cavity length and mirror reflectivity using a two crystal optical parametric oscillator+difference frequency mixing (OPO+DFM) nonlinear wavelength conversion scheme. Mid-IR output >12 mJ was obtained from a 1064 nm Nd:YAG pump laser with 12 ns pulse width (FWHM) and containing pulse energy of 43 mJ. A compact, single temperature crystal oven is described along with some suggestions for improving the slope efficiency.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
NASA Astrophysics Data System (ADS)
Cordier, G.; Choi, J.; Raguin, L. G.
2008-11-01
Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.
Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies
NASA Astrophysics Data System (ADS)
Dutt, A.; Lermusiaux, P. F. J.
2017-12-01
Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.
Exploration of multiphoton entangled states by using weak nonlinearities
He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting
2016-01-01
We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044
NASA Astrophysics Data System (ADS)
Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.
2017-12-01
We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.
2014-01-01
All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A
2014-11-24
All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.
Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles
2007-07-01
Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)
2000-01-01
In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct numerical simulation or large eddy simulation of compressible turbulent flows at various speeds including high-speed shock-turbulence interactions, and general long time wave propagation problems. These schemes, including entropy splitting, have also been extended to freestream preserving schemes on curvilinear moving grids for a thermally perfect gas (Vinokur & Yee 2000).
Incompressible spectral-element method: Derivation of equations
NASA Technical Reports Server (NTRS)
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
Demultiplexing of photonic temporal modes by a linear system
NASA Astrophysics Data System (ADS)
Xu, Shuang; Shen, H. Z.; Yi, X. X.
2018-03-01
Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
Castorina, P; Delsanto, P P; Guiot, C
2006-05-12
A classification in universality classes of broad categories of phenomenologies, belonging to physics and other disciplines, may be very useful for a cross fertilization among them and for the purpose of pattern recognition and interpretation of experimental data. We present here a simple scheme for the classification of nonlinear growth problems. The success of the scheme in predicting and characterizing the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored class of nonlinear growth problems.
Power and spectrally efficient M-ARY QAM schemes for future mobile satellite communications
NASA Technical Reports Server (NTRS)
Sreenath, K.; Feher, K.
1990-01-01
An effective method to compensate nonlinear phase distortion caused by the mobile amplifier is proposed. As a first step towards the future use of spectrally efficient modulation schemes for mobile satellite applications, we have investigated effects of nonlinearities and the phase compensation method on 16-QAM. The new method provides about 2 dB savings in power for 16-QAM operation with cost effective amplifiers near saturation and thereby promising use of spectrally efficient linear modulation schemes for future mobile satellite applications.
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin
2005-11-01
The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.
Norris, G; McConnell, G
2010-03-01
A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.
Customization of the acoustic field produced by a piezoelectric array through interelement delays
Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.
2008-01-01
A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility,more » has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.« less
NASA Astrophysics Data System (ADS)
Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua
2016-04-01
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
NASA Astrophysics Data System (ADS)
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
NASA Astrophysics Data System (ADS)
Kanjilal, Oindrila; Manohar, C. S.
2017-07-01
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
Chen, Mou; Tao, Gang
2016-08-01
In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.
NASA Astrophysics Data System (ADS)
Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei
2015-01-01
This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.
Daunizeau, J; Friston, K J; Kiebel, S J
2009-11-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
Numerical viscosity and the entropy condition for conservative difference schemes
NASA Technical Reports Server (NTRS)
Tadmor, E.
1983-01-01
Consider a scalar, nonlinear conservative difference scheme satisfying the entropy condition. It is shown that difference schemes containing more numerical viscosity will necessarily converge to the unique, physically relevant weak solution of the approximated conservation equation. In particular, entropy satisfying convergence follows for E schemes - those containing more numerical viscosity than Godunov's scheme.
Parallel filtering in global gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jolliet, S.; McMillan, B. F.; Villard, L.; Vernay, T.; Angelino, P.; Tran, T. M.; Brunner, S.; Bottino, A.; Idomura, Y.
2012-02-01
In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L. Villard, Comp. Phys. Commun. 181 (2010) 715] is implemented in the global Eulerian gyrokinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009) 065029] and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, Comp. Phys. Commun. 177 (2007) 409] in order to reduce the memory of the matrix associated with the field equation. This scheme is verified with linear and nonlinear simulations of turbulence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the parallel filtering, and that the k∥ spectrum is independent of plasma size at fixed normalized poloidal wave number.
Hamed, Kaveh Akbari; Gregg, Robert D
2016-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D
2017-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117
NASA Astrophysics Data System (ADS)
Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram
2018-04-01
The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.
Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads
NASA Astrophysics Data System (ADS)
Xu, Jiqiang; Lu, Wenzhou; Wu, Lei
2017-05-01
There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.
NASA Astrophysics Data System (ADS)
Al-Chalabi, Rifat M. Khalil
1997-09-01
Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)
Strongly interacting photons in asymmetric quantum well via resonant tunneling.
Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H
2012-04-09
We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.
Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua
2013-12-01
This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.
A numerical scheme to solve unstable boundary value problems
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.
1977-01-01
The considered scheme makes it possible to determine an unstable steady state solution in cases in which, because of lack of symmetry, such a solution cannot be obtained analytically, and other time integration or relaxation schemes, because of instability, fail to converge. The iterative solution of a single complex equation is discussed and a nonlinear system of equations is considered. Described applications of the scheme are related to a steady state solution with shear instability, an unstable nonlinear Ekman boundary layer, and the steady state solution of a baroclinic atmosphere with asymmetric forcing. The scheme makes use of forward and backward time integrations of the original spatial differential operators and of an approximation of the adjoint operators. Only two computations of the time derivative per iteration are required.
Nonlinear Road Pricing : [Summary
DOT National Transportation Integrated Search
2012-01-01
Nonlinear pricing is an unfamiliar term for a familiar idea. Linear pricing charges all consumers the same price for the same quantity of goods or services; in nonlinear schemes, the price varies, depending, for example, on quantity purchased or a co...
NASA Astrophysics Data System (ADS)
Al-Gburi, A.; Freeman, C. T.; French, M. C.
2018-06-01
This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
Cubication of Conservative Nonlinear Oscillators
ERIC Educational Resources Information Center
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan
2014-11-01
This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.
Acoustic and elastic waveform inversion best practices
NASA Astrophysics Data System (ADS)
Modrak, Ryan T.
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
NASA Astrophysics Data System (ADS)
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-03-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network.
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-03-21
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices' non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-01-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
Early seizure detection in an animal model of temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Talathi, Sachin S.; Hwang, Dong-Uk; Ditto, William; Carney, Paul R.
2007-11-01
The performance of five seizure detection schemes, i.e., Nonlinear embedding delay, Hurst scaling, Wavelet Scale, autocorrelation and gradient of accumulated energy, in their ability to detect EEG seizures close to the seizure onset time were evaluated to determine the feasibility of their application in the development of a real time closed loop seizure intervention program (RCLSIP). The criteria chosen for the performance evaluation were, high statistical robustness as determined through the predictability index, the sensitivity and the specificity of a given measure to detect an EEG seizure, the lag in seizure detection with respect to the EEG seizure onset time, as determined through visual inspection and the computational efficiency for each detection measure. An optimality function was designed to evaluate the overall performance of each measure dependent on the criteria chosen. While each of the above measures analyzed for seizure detection performed very well in terms of the statistical parameters, the nonlinear embedding delay measure was found to have the highest optimality index due to its ability to detect seizure very close to the EEG seizure onset time, thereby making it the most suitable dynamical measure in the development of RCLSIP in rat model with chronic limbic epilepsy.
On sequential data assimilation for scalar macroscopic traffic flow models
NASA Astrophysics Data System (ADS)
Blandin, Sébastien; Couque, Adrien; Bayen, Alexandre; Work, Daniel
2012-09-01
We consider the problem of sequential data assimilation for transportation networks using optimal filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities in the traffic state, affect the performances of classical filters and in particular that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering, which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to support the results presented. A Java implementation of the classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and fostering reproducible research.
Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation
NASA Astrophysics Data System (ADS)
Choi, J.; Raguin, L. G.
2010-10-01
Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.
Genetic learning in rule-based and neural systems
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1993-01-01
The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.
Dynamic rain fade compensation techniques for the advanced communications technology satellite
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1992-01-01
The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
Qazi, Abroon Jamal; de Silva, Clarence W.
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less
High-resolution schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Harten, A.
1982-01-01
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin
2016-06-01
An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.
NASA Astrophysics Data System (ADS)
Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu
2007-08-01
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.
Pseudo-updated constrained solution algorithm for nonlinear heat conduction
NASA Technical Reports Server (NTRS)
Tovichakchaikul, S.; Padovan, J.
1983-01-01
This paper develops efficiency and stability improvements in the incremental successive substitution (ISS) procedure commonly used to generate the solution to nonlinear heat conduction problems. This is achieved by employing the pseudo-update scheme of Broyden, Fletcher, Goldfarb and Shanno in conjunction with the constrained version of the ISS. The resulting algorithm retains the formulational simplicity associated with ISS schemes while incorporating the enhanced convergence properties of slope driven procedures as well as the stability of constrained approaches. To illustrate the enhanced operating characteristics of the new scheme, the results of several benchmark comparisons are presented.
Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong
2017-01-01
Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.
An accurate front capturing scheme for tumor growth models with a free boundary limit
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tang, Min; Wang, Li; Zhou, Zhennan
2018-07-01
We consider a class of tumor growth models under the combined effects of density-dependent pressure and cell multiplication, with a free boundary model as its singular limit when the pressure-density relationship becomes highly nonlinear. In particular, the constitutive law connecting pressure p and density ρ is p (ρ) = m/m-1 ρ m - 1, and when m ≫ 1, the cell density ρ may evolve its support according to a pressure-driven geometric motion with sharp interface along its boundary. The nonlinearity and degeneracy in the diffusion bring great challenges in numerical simulations. Prior to the present paper, there is lack of standard mechanism to numerically capture the front propagation speed as m ≫ 1. In this paper, we develop a numerical scheme based on a novel prediction-correction reformulation that can accurately approximate the front propagation even when the nonlinearity is extremely strong. We show that the semi-discrete scheme naturally connects to the free boundary limit equation as m → ∞. With proper spatial discretization, the fully discrete scheme has improved stability, preserves positivity, and can be implemented without nonlinear solvers. Finally, extensive numerical examples in both one and two dimensions are provided to verify the claimed properties in various applications.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.
NASA Astrophysics Data System (ADS)
Wang, Yiguang; Chi, Nan
2016-10-01
Light emitting diodes (LEDs) based visible light communication (VLC) has been considered as a promising technology for indoor high-speed wireless access, due to its unique advantages, such as low cost, license free and high security. To achieve high-speed VLC transmission, carrierless amplitude and phase (CAP) modulation has been utilized for its lower complexity and high spectral efficiency. Moreover, to compensate the linear and nonlinear distortions such as frequency attenuation, sampling time offset, LED nonlinearity etc., series of pre- and post-equalization schemes should be employed in high-speed VLC systems. In this paper, we make an investigation on several advanced pre- and postequalization schemes for high-order CAP modulation based VLC systems. We propose to use a weighted preequalization technique to compensate the LED frequency attenuation. In post-equalization, a hybrid post equalizer is proposed, which consists of a linear equalizer, a Volterra series based nonlinear equalizer, and a decision-directed least mean square (DD-LMS) equalizer. Modified cascaded multi-modulus algorithm (M-CMMA) is employed to update the weights of the linear and the nonlinear equalizer, while DD-LMS can further improve the performance after the preconvergence. Based on high-order CAP modulation and these equalization schemes, we have experimentally demonstrated a 1.35-Gb/s, a 4.5-Gb/s and a 8-Gb/s high-speed indoor VLC transmission systems. The results show the benefit and feasibility of the proposed equalization schemes for high-speed VLC systems.
Multiple-copy state discrimination: Thinking globally, acting locally
NASA Astrophysics Data System (ADS)
Higgins, B. L.; Doherty, A. C.; Bartlett, S. D.; Pryde, G. J.; Wiseman, H. M.
2011-05-01
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.
Multiple-copy state discrimination: Thinking globally, acting locally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.
2011-05-15
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N{yields}{infinity}. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements,more » and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.« less
NASA Astrophysics Data System (ADS)
Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane
1990-03-01
A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1991-01-01
The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.
Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics.
Coulliette, Chad; Lekien, Francois; Paduan, Jeffrey D; Haller, George; Marsden, Jerrold E
2007-09-15
High-frequency (HF) radar technology produces detailed velocity maps near the surface of estuaries and bays. The use of velocity data in environmental prediction, nonetheless, remains unexplored. In this paper, we uncover a striking flow structure in coastal radar observations of Monterey Bay, along the California coastline. This complex structure governs the spread of organic contaminants, such as agricultural runoff which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal environment in the bay. We predict the motion of the Lagrangian flow structures from finite-time Lyapunov exponents of the coastal HF velocity data. From this prediction, we obtain optimal release times, at which pollution leaves the bay most efficiently.
COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION
A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...
Numerical Analysis of the Dynamics of Nonlinear Solids and Structures
2008-08-01
to arrive to a new numerical scheme that exhibits rigorously the dissipative character of the so-called canonical free en - ergy characteristic of...UCLA), February 14 2006. 5. "Numerical Integration of the Nonlinear Dynamics of Elastoplastic Solids," keynote lecture , 3rd European Conference on...Computational Mechanics (ECCM 3), Lisbon, Portugal, June 5-9 2006. 6. "Energy-Momentum Schemes for Finite Strain Plasticity," keynote lecture , 7th
A parallel time integrator for noisy nonlinear oscillatory systems
NASA Astrophysics Data System (ADS)
Subber, Waad; Sarkar, Abhijit
2018-06-01
In this paper, we adapt a parallel time integration scheme to track the trajectories of noisy non-linear dynamical systems. Specifically, we formulate a parallel algorithm to generate the sample path of nonlinear oscillator defined by stochastic differential equations (SDEs) using the so-called parareal method for ordinary differential equations (ODEs). The presence of Wiener process in SDEs causes difficulties in the direct application of any numerical integration techniques of ODEs including the parareal algorithm. The parallel implementation of the algorithm involves two SDEs solvers, namely a fine-level scheme to integrate the system in parallel and a coarse-level scheme to generate and correct the required initial conditions to start the fine-level integrators. For the numerical illustration, a randomly excited Duffing oscillator is investigated in order to study the performance of the stochastic parallel algorithm with respect to a range of system parameters. The distributed implementation of the algorithm exploits Massage Passing Interface (MPI).
Liu, Chongxin; Liu, Hang
2017-01-01
This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
Optical image encryption system using nonlinear approach based on biometric authentication
NASA Astrophysics Data System (ADS)
Verma, Gaurav; Sinha, Aloka
2017-07-01
A nonlinear image encryption scheme using phase-truncated Fourier transform (PTFT) and natural logarithms is proposed in this paper. With the help of the PTFT, the input image is truncated into phase and amplitude parts at the Fourier plane. The phase-only information is kept as the secret key for the decryption, and the amplitude distribution is modulated by adding an undercover amplitude random mask in the encryption process. Furthermore, the encrypted data is kept hidden inside the face biometric-based phase mask key using the base changing rule of logarithms for secure transmission. This phase mask is generated through principal component analysis. Numerical experiments show the feasibility and the validity of the proposed nonlinear scheme. The performance of the proposed scheme has been studied against the brute force attacks and the amplitude-phase retrieval attack. Simulation results are presented to illustrate the enhanced system performance with desired advantages in comparison to the linear cryptosystem.
Study on UKF based federal integrated navigation for high dynamic aviation
NASA Astrophysics Data System (ADS)
Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie
2011-08-01
High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.
Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests
NASA Astrophysics Data System (ADS)
Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.
2000-04-01
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.
Nonlinear robust controller design for multi-robot systems with unknown payloads
NASA Technical Reports Server (NTRS)
Song, Y. D.; Anderson, J. N.; Homaifar, A.; Lai, H. Y.
1992-01-01
This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints.
Stochastic growth logistic model with aftereffect for batch fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
A simplified satellite navigation system for an autonomous Mars roving vehicle.
NASA Technical Reports Server (NTRS)
Janosko, R. E.; Shen, C. N.
1972-01-01
The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.
Stochastic growth logistic model with aftereffect for batch fermentation process
NASA Astrophysics Data System (ADS)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Maximally Informative Statistics for Localization and Mapping
NASA Technical Reports Server (NTRS)
Deans, Matthew C.
2001-01-01
This paper presents an algorithm for localization and mapping for a mobile robot using monocular vision and odometry as its means of sensing. The approach uses the Variable State Dimension filtering (VSDF) framework to combine aspects of Extended Kalman filtering and nonlinear batch optimization. This paper describes two primary improvements to the VSDF. The first is to use an interpolation scheme based on Gaussian quadrature to linearize measurements rather than relying on analytic Jacobians. The second is to replace the inverse covariance matrix in the VSDF with its Cholesky factor to improve the computational complexity. Results of applying the filter to the problem of localization and mapping with omnidirectional vision are presented.
Scalable analysis of nonlinear systems using convex optimization
NASA Astrophysics Data System (ADS)
Papachristodoulou, Antonis
In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of the Navier-Stokes equations for Hagen-Poiseuille flow are globally stable, even though the background noise is amplified as R3 where R is the Reynolds number, giving a 'robust yet fragile' interpretation. We also propose a sum of squares methodology for the analysis of systems described by parabolic PDEs. We conclude this work with an account for future research.
LES of Temporally Evolving Mixing Layers by Three High Order Schemes
NASA Astrophysics Data System (ADS)
Yee, H.; Sjögreen, B.; Hadjadj, A.
2011-10-01
The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
Yadav, Jyoti; Rani, Asha; Singh, Vijander
2016-12-01
This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.
Zheng, Zi-Yi; Guo, Xiao-Na; Zhu, Ke-Xue; Peng, Wei; Zhou, Hui-Ming
2017-07-15
Methoxy-ρ-benzoquinone (MBQ) and 2, 6-dimethoxy-ρ-benzoquinone (DMBQ) are two potential anticancer compounds in fermented wheat germ. In present study, modeling and optimization of added macronutrients, microelements, vitamins for producing MBQ and DMBQ was investigated using artificial neural network (ANN) combined with genetic algorithm (GA). A configuration of 16-11-1 ANN model with Levenberg-Marquardt training algorithm was applied for modeling the complicated nonlinear interactions among 16 nutrients in fermentation process. Under the guidance of optimized scheme, the total contents of MBQ and DMBQ was improved by 117% compared with that in the control group. Further, by evaluating the relative importance of each nutrient in terms of the two benzoquinones' yield, macronutrients and microelements were found to have a greater influence than most of vitamins. It was also observed that a number of interactions between nutrients affected the yield of MBQ and DMBQ remarkably. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mangalgiri, P. D.; Prabhakaran, R.
1986-01-01
An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Soller, Jeffrey Alan; Grunwald, Arthur J.; Ellis, Stephen R.
1991-01-01
Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions.
A novel robust speed controller scheme for PMBLDC motor.
Thirusakthimurugan, P; Dananjayan, P
2007-10-01
The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.
Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme
NASA Technical Reports Server (NTRS)
Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook
1995-01-01
Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.
Variationally consistent discretization schemes and numerical algorithms for contact problems
NASA Astrophysics Data System (ADS)
Wohlmuth, Barbara
We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of possible applications and show the performance of the space discretization scheme, non-linear solver, adaptive refinement process and time integration.
COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Borland, Michael
Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.
Survey of optimization techniques for nonlinear spacecraft trajectory searches
NASA Technical Reports Server (NTRS)
Wang, Tseng-Chan; Stanford, Richard H.; Sunseri, Richard F.; Breckheimer, Peter J.
1988-01-01
Mathematical analysis of the optimal search of a nonlinear spacecraft trajectory to arrive at a set of desired targets is presented. A high precision integrated trajectory program and several optimization software libraries are used to search for a converged nonlinear spacecraft trajectory. Several examples for the Galileo Jupiter Orbiter and the Ocean Topography Experiment (TOPEX) are presented that illustrate a variety of the optimization methods used in nonlinear spacecraft trajectory searches.
Second-order accurate nonoscillatory schemes for scalar conservation laws
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1989-01-01
Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.
NASA Astrophysics Data System (ADS)
Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.
2017-02-01
The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Baeder, James D.
2014-01-21
A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less
Linearization of Conservative Nonlinear Oscillators
ERIC Educational Resources Information Center
Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I.
2009-01-01
A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.
1997-01-01
A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.
Development of Ensemble Model Based Water Demand Forecasting Model
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop
2014-05-01
In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)
NASA Astrophysics Data System (ADS)
Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-04-01
One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.
NASA Astrophysics Data System (ADS)
Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie
2016-04-01
We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.
Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Perez, Hector Eduardo
This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.
A Hybrid Interval-Robust Optimization Model for Water Quality Management.
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-05-01
In water quality management problems, uncertainties may exist in many system components and pollution-related processes ( i.e. , random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval-robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements.
Using adaptive grid in modeling rocket nozzle flow
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1992-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.
Linear approximations of global behaviors in nonlinear systems with moderate or strong noise
NASA Astrophysics Data System (ADS)
Liang, Junhao; Din, Anwarud; Zhou, Tianshou
2018-03-01
While many physical or chemical systems can be modeled by nonlinear Langevin equations (LEs), dynamical analysis of these systems is challenging in the cases of moderate and strong noise. Here we develop a linear approximation scheme, which can transform an often intractable LE into a linear set of binomial moment equations (BMEs). This scheme provides a feasible way to capture nonlinear behaviors in the sense of probability distribution and is effective even when the noise is moderate or big. Based on BMEs, we further develop a noise reduction technique, which can effectively handle tough cases where traditional small-noise theories are inapplicable. The overall method not only provides an approximation-based paradigm to analysis of the local and global behaviors of nonlinear noisy systems but also has a wide range of applications.
On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.
1990-01-01
An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.
NASA Astrophysics Data System (ADS)
Nikitin, Alexander P.; Bulsara, Adi R.; Stocks, Nigel G.
2017-03-01
Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The self-tuning gives the array its "biomimetic" features. We show that the overall performance of the array can, as expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the overall performance even though the individual sensors in the system could see an improvement. We quantify the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the performance degradation that would, normally, stem from the Ringelmann effect.
Directional hearing by linear summation of binaural inputs at the medial superior olive
van der Heijden, Marcel; Lorteije, Jeannette A. M.; Plauška, Andrius; Roberts, Michael T.; Golding, Nace L.; Borst, J. Gerard G.
2013-01-01
SUMMARY Neurons in the medial superior olive (MSO) enable sound localization by their remarkable sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own “best ITD” to which it responds optimally. A difference in physical path length of the excitatory inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it is still debated how these inputs interact and whether the segregation of inputs to opposite dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike probability depends nonlinearly on the size of synaptic inputs. This simple coincidence detection scheme thus makes accurate sound localization possible. PMID:23764292
NASA Astrophysics Data System (ADS)
Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.
2016-04-01
Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel
2008-10-01
This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting.
Design and architecture of the Mars relay network planning and analysis framework
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Lee, C. H.
2002-01-01
In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.
Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media
NASA Astrophysics Data System (ADS)
Yang, Lei; Yan, Hongyong; Liu, Hong
2015-11-01
The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.
A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics
NASA Astrophysics Data System (ADS)
Halpern, Federico
2017-10-01
The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.
Design optimization for active twist rotor blades
NASA Astrophysics Data System (ADS)
Mok, Ji Won
This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to explore the nonlinear design space of complex planform. Especially for this case, detailed design is carried out to make the actual blade manufacturable. The proposed optimization framework is shown to be an effective tool to design high authority active twist blades to reduce vibration in future helicopter rotor blades.
Coherent nonlinear optical imaging: beyond fluorescence microscopy.
Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney
2011-01-01
The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.
Non-linear eigensolver-based alternative to traditional SCF methods
NASA Astrophysics Data System (ADS)
Gavin, B.; Polizzi, E.
2013-05-01
The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.
Second-order nonlinearity induced transparency.
Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X
2017-04-01
In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.
NASA Astrophysics Data System (ADS)
Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui
2018-04-01
A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.
NASA Technical Reports Server (NTRS)
Jameson, A.
1976-01-01
A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.
Guo, Jianqiang; Wang, Wansheng
2014-01-01
This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable. PMID:24895653
Guo, Jianqiang; Wang, Wansheng
2014-01-01
This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
Weak turbulence simulations with the Hermite-Fourier spectral method
NASA Astrophysics Data System (ADS)
Vencels, Juris; Delzanno, Gian Luca; Manzini, Gianmarco; Roytershteyn, Vadim; Markidis, Stefano
2015-11-01
Recently, a new (transform) method based on a Fourier-Hermite (FH) discretization of the Vlasov-Maxwell equations has been developed. The resulting set of moment equations is discretized implicitly in time with a Crank-Nicolson scheme and solved with a nonlinear Newton-Krylov technique. For periodic boundary conditions, this discretization delivers a scheme that conserves the total mass, momentum and energy of the system exactly. In this work, we apply the FH method to study a problem of Langmuir turbulence, where a low signal-to-noise ratio is important to follow the turbulent cascade and might require a lot of computational resources if studied with PIC. We simulate a weak (low density) electron beam moving in a Maxwellian plasma and subject to an instability that generates Langmuir waves and a weak turbulence field. We also discuss some optimization techniques to optimally select the Hermite basis in terms of its shift and scaling argument, and show that this technique improve the overall accuracy of the method. Finally, we discuss the applicability of the HF method for studying kinetic plasma turbulence. This work was funded by LDRD under the auspices of the NNSA of the U.S. by LANL under contract DE-AC52-06NA25396 and by EC through the EPiGRAM project (grant agreement no. 610598. epigram-project.eu).
Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR
NASA Astrophysics Data System (ADS)
Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.
2016-08-01
Reliable power control for stabilizing the spatial oscillations is quite important for ensuring the safe operation of a modern pressurized heavy water reactor (PHWR), since these spatial oscillations can cause “flux tilting” in the reactor core. In this paper, a decentralized fuzzy model predictive control (DFMPC) is proposed for spatial control of PHWR. Due to the load dependent dynamics of the nuclear power plant, fuzzy modeling is used to approximate the nonlinear process. A fuzzy Lyapunov function and “quasi-min-max” strategy is utilized in designing the DFMPC, to reduce the conservatism. The plant-wide stability is achieved by the asymptotically positive realness constraint (APRC) for this decentralized MPC. The solving optimization problem is based on a receding horizon scheme involving the linear matrix inequalities (LMIs) technique. Through dynamic simulations, it is demonstrated that the designed DFMPC can effectively suppress spatial oscillations developed in PHWR, and further, shows the advantages over the typical parallel distributed compensation (PDC) control scheme.
NASA Astrophysics Data System (ADS)
Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong
2018-03-01
We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.
A combined reconstruction-classification method for diffuse optical tomography.
Hiltunen, P; Prince, S J D; Arridge, S
2009-11-07
We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.
Self-replication with magnetic dipolar colloids
NASA Astrophysics Data System (ADS)
Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica
2015-10-01
Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.
A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)
NASA Astrophysics Data System (ADS)
Zhang, H.; Tian, X.
2017-12-01
The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-01-01
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-07-27
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.
Multidisciplinary design optimization for sonic boom mitigation
NASA Astrophysics Data System (ADS)
Ozcer, Isik A.
Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L ≈ 10 from the source for a simple lifting wing, and r/L ≈ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris
2017-12-15
Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.
2017-08-01
The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.
Dynamic updating atlas for heart segmentation with a nonlinear field-based model.
Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng
2017-09-01
Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.
Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.
2012-01-01
Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
High Order Semi-Lagrangian Advection Scheme
NASA Astrophysics Data System (ADS)
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
ITG-TEM turbulence simulation with bounce-averaged kinetic electrons in tokamak geometry
NASA Astrophysics Data System (ADS)
Kwon, Jae-Min; Qi, Lei; Yi, S.; Hahm, T. S.
2017-06-01
We develop a novel numerical scheme to simulate electrostatic turbulence with kinetic electron responses in magnetically confined toroidal plasmas. Focusing on ion gyro-radius scale turbulences with slower frequencies than the time scales for electron parallel motions, we employ and adapt the bounce-averaged kinetic equation to model trapped electrons for nonlinear turbulence simulation with Coulomb collisions. Ions are modeled by employing the gyrokinetic equation. The newly developed scheme is implemented on a global δf particle in cell code gKPSP. By performing linear and nonlinear simulations, it is demonstrated that the new scheme can reproduce key physical properties of Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities, and resulting turbulent transport. The overall computational cost of kinetic electrons using this novel scheme is limited to 200%-300% of the cost for simulations with adiabatic electrons. Therefore the new scheme allows us to perform kinetic simulations with trapped electrons very efficiently in magnetized plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the secondmore » explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.« less
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Astrophysical data analysis with information field theory
NASA Astrophysics Data System (ADS)
Enßlin, Torsten
2014-12-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2016-01-01
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814
Optimal updating magnitude in adaptive flat-distribution sampling
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Drake, Justin A.; Ma, Jianpeng; Pettitt, B. Montgomery
2017-11-01
We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.
Optimal updating magnitude in adaptive flat-distribution sampling.
Zhang, Cheng; Drake, Justin A; Ma, Jianpeng; Pettitt, B Montgomery
2017-11-07
We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.
NASA Astrophysics Data System (ADS)
Wei, Xinjiang; Sun, Shixiang
2018-03-01
An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.
The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme
NASA Technical Reports Server (NTRS)
Tadmor, E.
1983-01-01
The Lax-Friedrichs scheme, approximating the scalar, genuinely nonlinear conservation law u sub t + f sub x (u) = 0 where f(u) is, say, strictly convex double dot f dot a sub asterisk 0 is studied. The divided differences of the numerical solution at time t do not exceed 2 (t dot a sub asterisk) to the -1. This one-sided Lipschitz boundedness is in complete agreement with the corresponding estimate one has in the differential case; in particular, it is independent of the initial amplitude in sharp contrast to liner problems. It guarantees the entropy compactness of the scheme in this case, as well as providing a quantitive insight into the large-time behavior of the numerical computation.
Computational procedures for mixed equations with shock waves
NASA Technical Reports Server (NTRS)
Yu, N. J.; Seebass, R.
1974-01-01
This paper discusses the procedures we have developed to treat a canonical problem involving a mixed nonlinear equation with boundary data that imply a discontinuous solution. This equation arises in various physical contexts and is basic to the description of the nonlinear acoustic behavior of a shock wave near a caustic. The numerical scheme developed is of second order, treats discontinuities as such by applying the appropriate jump conditions across them, and eliminates the numerical dissipation and dispersion associated with large gradients. Our results are compared with the results of a first-order scheme and with those of a second-order scheme we have developed. The algorithm used here can easily be generalized to more complicated problems, including transonic flows with imbedded shocks.
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.
2007-01-01
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y
2007-01-15
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.; ...
2016-11-07
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
Bound-preserving Legendre-WENO finite volume schemes using nonlinear mapping
NASA Astrophysics Data System (ADS)
Smith, Timothy; Pantano, Carlos
2017-11-01
We present a new method to enforce field bounds in high-order Legendre-WENO finite volume schemes. The strategy consists of reconstructing each field through an intermediate mapping, which by design satisfies realizability constraints. Determination of the coefficients of the polynomial reconstruction involves nonlinear equations that are solved using Newton's method. The selection between the original or mapped reconstruction is implemented dynamically to minimize computational cost. The method has also been generalized to fields that exhibit interdependencies, requiring multi-dimensional mappings. Further, the method does not depend on the existence of a numerical flux function. We will discuss details of the proposed scheme and show results for systems in conservation and non-conservation form. This work was funded by the NSF under Grant DMS 1318161.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
NASA Astrophysics Data System (ADS)
Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.
2018-05-01
We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun
2013-04-12
The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).
NASA Technical Reports Server (NTRS)
Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modeled by fractional integrodifferential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating, as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator.
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Kent, James
2015-01-01
The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.
A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul
2015-01-01
A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Dai, C; Cai, X H; Cai, Y P; Guo, H C; Sun, W; Tan, Q; Huang, G H
2014-06-01
This research developed a simulation-aided nonlinear programming model (SNPM). This model incorporated the consideration of pollutant dispersion modeling, and the management of coal blending and the related human health risks within a general modeling framework In SNPM, the simulation effort (i.e., California puff [CALPUFF]) was used to forecast the fate of air pollutants for quantifying the health risk under various conditions, while the optimization studies were to identify the optimal coal blending strategies from a number of alternatives. To solve the model, a surrogate-based indirect search approach was proposed, where the support vector regression (SVR) was used to create a set of easy-to-use and rapid-response surrogates for identifying the function relationships between coal-blending operating conditions and health risks. Through replacing the CALPUFF and the corresponding hazard quotient equation with the surrogates, the computation efficiency could be improved. The developed SNPM was applied to minimize the human health risk associated with air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicated that it could be used for reducing the health risk of the public in the vicinity of the two power plants, identifying desired coal blending strategies for decision makers, and considering a proper balance between coal purchase cost and human health risk. A simulation-aided nonlinear programming model (SNPM) is developed. It integrates the advantages of CALPUFF and nonlinear programming model. To solve the model, a surrogate-based indirect search approach based on the combination of support vector regression and genetic algorithm is proposed. SNPM is applied to reduce the health risk caused by air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicate that it is useful for generating coal blending schemes, reducing the health risk of the public, reflecting the trade-offbetween coal purchase cost and health risk.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Further efforts in optimizing nonlinear optical molecules
NASA Astrophysics Data System (ADS)
Dirk, Carl W.; Caballero, Noel; Tan, Alarice; Kuzyk, Mark G.; Cheng, Lap-Tak A.; Katz, Howard E.; Shilling, Marcia; King, Lori A.
1993-02-01
We summarize some of our past work in the field on optimizing molecules for second order and third order nonlinear optical applications. We also present some previously unpublished results suggesting a particular optimization of the popular cyano- and nitrovinyl acceptor groups. In addition we provide some new quadratic electro-optic results which serve to further verify our choice of a restricted three-level model suitable for optimizing third order nonlinearities in molecules. Finally we present a new squarylium dye with a large third order optical nonlinearity (-9.5 X 10-34 cm7/esu2; EFISH (gamma) at 1906 nm).
Role of atmosphere-ocean interactions in supermodeling the tropical Pacific climate
NASA Astrophysics Data System (ADS)
Shen, Mao-Lin; Keenlyside, Noel; Bhatt, Bhuwan C.; Duane, Gregory S.
2017-12-01
The supermodel strategy interactively combines several models to outperform the individual models comprising it. A key advantage of the approach is that nonlinear improvements can be achieved, in contrast to the linear weighted combination of individual unconnected models. This property is found in a climate supermodel constructed by coupling two versions of an atmospheric model differing only in their convection scheme to a single ocean model. The ocean model receives a weighted combination of the momentum and heat fluxes. Optimal weights can produce a supermodel with a basic state similar to observations: a single Intertropical Convergence zone (ITCZ), with a western Pacific warm pool and an equatorial cold tongue. This is in stark contrast to the erroneous double ITCZ pattern simulated by both of the two stand-alone coupled models. By varying weights, we develop a conceptual scheme to explain how combining the momentum fluxes of the two different atmospheric models affects equatorial upwelling and surface wind feedback so as to give a realistic basic state in the tropical Pacific. In particular, we propose a mechanism based on the competing influences of equatorial zonal wind and off-equatorial wind stress curl in driving equatorial upwelling in the coupled models. Our results show how nonlinear ocean-atmosphere interaction is essential in combining these two effects to build different sea surface temperature structures, some of which are realistic. They also provide some insight into observed and modelled tropical Pacific climate.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos
2018-01-01
This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781
Role of atmosphere-ocean interactions in supermodeling the tropical Pacific climate.
Shen, Mao-Lin; Keenlyside, Noel; Bhatt, Bhuwan C; Duane, Gregory S
2017-12-01
The supermodel strategy interactively combines several models to outperform the individual models comprising it. A key advantage of the approach is that nonlinear improvements can be achieved, in contrast to the linear weighted combination of individual unconnected models. This property is found in a climate supermodel constructed by coupling two versions of an atmospheric model differing only in their convection scheme to a single ocean model. The ocean model receives a weighted combination of the momentum and heat fluxes. Optimal weights can produce a supermodel with a basic state similar to observations: a single Intertropical Convergence zone (ITCZ), with a western Pacific warm pool and an equatorial cold tongue. This is in stark contrast to the erroneous double ITCZ pattern simulated by both of the two stand-alone coupled models. By varying weights, we develop a conceptual scheme to explain how combining the momentum fluxes of the two different atmospheric models affects equatorial upwelling and surface wind feedback so as to give a realistic basic state in the tropical Pacific. In particular, we propose a mechanism based on the competing influences of equatorial zonal wind and off-equatorial wind stress curl in driving equatorial upwelling in the coupled models. Our results show how nonlinear ocean-atmosphere interaction is essential in combining these two effects to build different sea surface temperature structures, some of which are realistic. They also provide some insight into observed and modelled tropical Pacific climate.
Model-Free Optimal Tracking Control via Critic-Only Q-Learning.
Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding
2016-10-01
Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.
Cao, Hongrui; Niu, Linkai; He, Zhengjia
2012-01-01
Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514
Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach
Girrbach, Fabian; Hol, Jeroen D.; Bellusci, Giovanni; Diehl, Moritz
2017-01-01
The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem. PMID:28534857
Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach.
Girrbach, Fabian; Hol, Jeroen D; Bellusci, Giovanni; Diehl, Moritz
2017-05-19
The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem.
Talebi, H A; Khorasani, K; Tafazoli, S
2009-01-01
This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.
An online outlier identification and removal scheme for improving fault detection performance.
Ferdowsi, Hasan; Jagannathan, Sarangapani; Zawodniok, Maciej
2014-05-01
Measured data or states for a nonlinear dynamic system is usually contaminated by outliers. Identifying and removing outliers will make the data (or system states) more trustworthy and reliable since outliers in the measured data (or states) can cause missed or false alarms during fault diagnosis. In addition, faults can make the system states nonstationary needing a novel analytical model-based fault detection (FD) framework. In this paper, an online outlier identification and removal (OIR) scheme is proposed for a nonlinear dynamic system. Since the dynamics of the system can experience unknown changes due to faults, traditional observer-based techniques cannot be used to remove the outliers. The OIR scheme uses a neural network (NN) to estimate the actual system states from measured system states involving outliers. With this method, the outlier detection is performed online at each time instant by finding the difference between the estimated and the measured states and comparing its median with its standard deviation over a moving time window. The NN weight update law in OIR is designed such that the detected outliers will have no effect on the state estimation, which is subsequently used for model-based fault diagnosis. In addition, since the OIR estimator cannot distinguish between the faulty or healthy operating conditions, a separate model-based observer is designed for fault diagnosis, which uses the OIR scheme as a preprocessing unit to improve the FD performance. The stability analysis of both OIR and fault diagnosis schemes are introduced. Finally, a three-tank benchmarking system and a simple linear system are used to verify the proposed scheme in simulations, and then the scheme is applied on an axial piston pump testbed. The scheme can be applied to nonlinear systems whose dynamics and underlying distribution of states are subjected to change due to both unknown faults and operating conditions.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
A Hybrid Interval–Robust Optimization Model for Water Quality Management
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-01-01
Abstract In water quality management problems, uncertainties may exist in many system components and pollution-related processes (i.e., random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval–robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements. PMID:23922495
Investigation of broadband terahertz generation from metasurface
NASA Astrophysics Data System (ADS)
Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E. I.; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M.
2018-05-01
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.
Investigation of broadband terahertz generation from metasurface.
Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E I; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M
2018-05-28
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.
A Genetic Algorithm Approach to Nonlinear Least Squares Estimation
ERIC Educational Resources Information Center
Olinsky, Alan D.; Quinn, John T.; Mangiameli, Paul M.; Chen, Shaw K.
2004-01-01
A common type of problem encountered in mathematics is optimizing nonlinear functions. Many popular algorithms that are currently available for finding nonlinear least squares estimators, a special class of nonlinear problems, are sometimes inadequate. They might not converge to an optimal value, or if they do, it could be to a local rather than…
Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong
2011-01-01
A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred
On the dynamics of some grid adaption schemes
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, Helen C.
1994-01-01
The dynamics of a one-parameter family of mesh equidistribution schemes coupled with finite difference discretisations of linear and nonlinear convection-diffusion model equations is studied numerically. It is shown that, when time marched to steady state, the grid adaption not only influences the stability and convergence rate of the overall scheme, but can also introduce spurious dynamics to the numerical solution procedure.
NASA Astrophysics Data System (ADS)
Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong
2018-04-01
A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.
NASA Technical Reports Server (NTRS)
Kent, James; Holdaway, Daniel
2015-01-01
A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.
NASA Astrophysics Data System (ADS)
Raghunathan, Ravi
In recent years, passively mode-locked quantum dot lasers have shown great promise as compact, efficient and reliable pulsed sources of light for a range of precision and high performance applications, such as high bit-rate optical communications, diverse waveform generation, metrology, and clock distribution in high-performance computing (HPC) processors. For such applications, stable optical pulses with short picosecond pulse durations and multi-gigahertz repetition rates are required. In addition, a low pulse-to-pulse timing jitter is also necessary to prevent errors arising from the ambiguity between neighboring pulses. In order to optimize pulse quality in terms of optical characteristics such as pulse shape and pulse train behavior, as well as RF characteristics such as phase noise and timing jitter, understanding the nonlinear output dynamics of such devices is of critical importance, not only to get a sense of the regimes of operation where device output might be stable or unstable, but also to gain insight into the parameters that influence the output characteristics the most, and how they can be accessed and exploited to optimize design and performance for next generation applications. In this dissertation, theoretical and experimental studies have been combined to investigate the dynamical trends of two-section passively mode-locked quantum dot lasers. On the theoretical side, a novel numerical modeling scheme is presented as a powerful and versatile framework to study the nonlinear dynamics specific to a device, with device-specific parameters extracted over a range of operating conditions. The practical utility of this scheme is then demonstrated, first, in an analytical capability to interpret and explain dynamical trends observed in experiment, and subsequently, as a predictive tool to guide experiment to operate in a desired dynamical regime. Modeling results are compared to experimental findings where possible. Finally, optical feedback from an external reflector is experimentally studied as an additional control mechanism over the output dynamics of the device, and shown to enable invaluable insight into the behavior of the RF and optical spectra of the output. Together, the theoretical and experimental findings of this dissertation are shown to offer a systematic approach to understand, control and exploit the dynamical trends of passively mode-locked two-section quantum dot lasers.
Djordjevic, Ivan B; Vasic, Bane
2006-05-29
A maximum a posteriori probability (MAP) symbol decoding supplemented with iterative decoding is proposed as an effective mean for suppression of intrachannel nonlinearities. The MAP detector, based on Bahl-Cocke-Jelinek-Raviv algorithm, operates on the channel trellis, a dynamical model of intersymbol interference, and provides soft-decision outputs processed further in an iterative decoder. A dramatic performance improvement is demonstrated. The main reason is that the conventional maximum-likelihood sequence detector based on Viterbi algorithm provides hard-decision outputs only, hence preventing the soft iterative decoding. The proposed scheme operates very well in the presence of strong intrachannel intersymbol interference, when other advanced forward error correction schemes fail, and it is also suitable for 40 Gb/s upgrade over existing 10 Gb/s infrastructure.
NASA Technical Reports Server (NTRS)
Pavarini, C.
1974-01-01
Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng
2015-01-12
A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Universal quantum computation using all-optical hybrid encoding
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou
2015-04-01
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).
Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.
Amini, H; Farzaneh, B; Azimifar, F; Sarhan, A A D
2016-09-01
This paper establishes a novel control strategy for a nonlinear bilateral macro-micro teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear micro-micro teleoperation system with the proposed control scheme is investigated employing the Lyapunov theory. Consequently, the experimental results verify the efficiency of the new control scheme in free motion and during collision between the slave robot and the environment of slave robot with environment, and the efficiency of the force estimation algorithm. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
The assessment of nanofluid in a Von Karman flow with temperature relied viscosity
NASA Astrophysics Data System (ADS)
Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.
2018-06-01
This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.
Zhang, Yichuan; Wang, Jiangping
2015-07-01
Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
NASA Astrophysics Data System (ADS)
Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro
2016-12-01
Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases of streak saturation, providing a contemporary growth of all of the velocity components due to strong nonlinear coupling.
NASA Astrophysics Data System (ADS)
Tsou, Haiping; Yan, Tsun-Yee
1999-04-01
This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.
Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang
2018-01-22
A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
Space Launch System Ascent Flight Control Design
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.
2014-01-01
A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.
Space Launch System Ascent Flight Control Design
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.
2014-01-01
A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.
Estimation of delays and other parameters in nonlinear functional differential equations
NASA Technical Reports Server (NTRS)
Banks, H. T.; Lamm, P. K. D.
1983-01-01
A spline-based approximation scheme for nonlinear nonautonomous delay differential equations is discussed. Convergence results (using dissipative type estimates on the underlying nonlinear operators) are given in the context of parameter estimation problems which include estimation of multiple delays and initial data as well as the usual coefficient-type parameters. A brief summary of some of the related numerical findings is also given.
Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme
NASA Astrophysics Data System (ADS)
Mielikainen, J.; Huang, B.; Huang, A. H.-L.
2014-12-01
The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations improved performance on Intel Xeon E5-2670 by a factor of 2.8× compared to the original code.
Global Optimal Trajectory in Chaos and NP-Hardness
NASA Astrophysics Data System (ADS)
Latorre, Vittorio; Gao, David Yang
This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.
NASA Astrophysics Data System (ADS)
Bartlett, Matthew; Huang, George; Larcom, Lyndon; Jiang, Huabei
2004-02-01
We demonstrate the feasibility of measuring the particle size distribution (PSD) of internal cell structures in vitro. We use polarized light spectroscopy to probe the internal morphology of mammalian breast cancer (MCF7) and cervical cancer (Siha) cells. We find that graphing the least-squared error versus the scatterer size provides insight into cell scattering. A nonlinear optimization scheme is used to determine the PSD iteratively. The results suggest that 2-μm particles (possibly the mitochondria) contribute most to the scattering. Other subcellular structures, such as the nucleoli and the nucleus, may also contribute significantly. We reconstruct the PSD of the mitochondria, as verified by optical microscopy. We also demonstrate the angle dependence of the PSD.
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes
NASA Astrophysics Data System (ADS)
Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.
2018-02-01
We demonstrate second-harmonic generation (SHG) in an x -cut congruent lithium niobate (LN) whispering-gallery mode (WGM) resonator. First, we show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A coupling scheme based on our earlier work [F. Sedlmeir et al., Phys. Rev. Applied 7, 024029 (2017), 10.1103/PhysRevApplied.7.024029] is then implemented experimentally to verify this improvement. Thereby, we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively outcoupling using a LN prism, utilizing the birefringence of it and the resonator in kind. This method is also applicable to other nonlinear processes in WGM resonators.
Zhang, Yifei; Kang, Jian
2017-11-01
The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed
Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1982-01-01
Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.
NASA Astrophysics Data System (ADS)
Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2006-09-01
The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.
Yuan, Chengzhi; Licht, Stephen; He, Haibo
2017-09-26
In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yumin; Lum, Kai-Yew; Wang Qingguo
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew
2009-03-01
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.
NASA Astrophysics Data System (ADS)
Zhao, L. W.; Du, J. G.; Yin, J. L.
2018-05-01
This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.
Computational process to study the wave propagation In a non-linear medium by quasi- linearization
NASA Astrophysics Data System (ADS)
Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH
2018-03-01
Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.
Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2018-03-01
We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.
Numerical methods of solving a system of multi-dimensional nonlinear equations of the diffusion type
NASA Technical Reports Server (NTRS)
Agapov, A. V.; Kolosov, B. I.
1979-01-01
The principles of conservation and stability of difference schemes achieved using the iteration control method were examined. For the schemes obtained of the predictor-corrector type, the conversion was proved for the control sequences of approximate solutions to the precise solutions in the Sobolev metrics. Algorithms were developed for reducing the differential problem to integral relationships, whose solution methods are known, were designed. The algorithms for the problem solution are classified depending on the non-linearity of the diffusion coefficients, and practical recommendations for their effective use are given.
Generating higher-order quantum dissipation from lower-order parametric processes
NASA Astrophysics Data System (ADS)
Mundhada, S. O.; Grimm, A.; Touzard, S.; Vool, U.; Shankar, S.; Devoret, M. H.; Mirrahimi, M.
2017-06-01
The stabilisation of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilisation in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilise a four-dimensional degenerate manifold in a superconducting resonator. We analyse the performance of the scheme using numerical simulations of a realisable system with experimentally achievable parameters.
NASA Astrophysics Data System (ADS)
Nazemizadeh, M.; Rahimi, H. N.; Amini Khoiy, K.
2012-03-01
This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange's principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.
Low-resolution simulations of vesicle suspensions in 2D
NASA Astrophysics Data System (ADS)
Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George
2018-03-01
Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.
A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1994-01-01
The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings for multidimensional, equilibrium real gases and nonequilibrium flow computations.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.
An Investigation of High-Order Shock-Capturing Methods for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Casper, Jay; Baysal, Oktay
1997-01-01
Topics covered include: Low-dispersion scheme for nonlinear acoustic waves in nonuniform flow; Computation of acoustic scattering by a low-dispersion scheme; Algorithmic extension of low-dispersion scheme and modeling effects for acoustic wave simulation; The accuracy of shock capturing in two spatial dimensions; Using high-order methods on lower-order geometries; and Computational considerations for the simulation of discontinuous flows.
Demand side management in recycling and electricity retail pricing
NASA Astrophysics Data System (ADS)
Kazan, Osman
This dissertation addresses several problems from the recycling industry and electricity retail market. The first paper addresses a real-life scheduling problem faced by a national industrial recycling company. Based on their practices, a scheduling problem is defined, modeled, analyzed, and a solution is approximated efficiently. The recommended application is tested on the real-life data and randomly generated data. The scheduling improvements and the financial benefits are presented. The second problem is from electricity retail market. There are well-known patterns in daily usage in hours. These patterns change in shape and magnitude by seasons and days of the week. Generation costs are multiple times higher during the peak hours of the day. Yet most consumers purchase electricity at flat rates. This work explores analytic pricing tools to reduce peak load electricity demand for retailers. For that purpose, a nonlinear model that determines optimal hourly prices is established based on two major components: unit generation costs and consumers' utility. Both are analyzed and estimated empirically in the third paper. A pricing model is introduced to maximize the electric retailer's profit. As a result, a closed-form expression for the optimal price vector is obtained. Possible scenarios are evaluated for consumers' utility distribution. For the general case, we provide a numerical solution methodology to obtain the optimal pricing scheme. The models recommended are tested under various scenarios that consider consumer segmentation and multiple pricing policies. The recommended model reduces the peak load significantly in most cases. Several utility companies offer hourly pricing to their customers. They determine prices using historical data of unit electricity cost over time. In this dissertation we develop a nonlinear model that determines optimal hourly prices with parameter estimation. The last paper includes a regression analysis of the unit generation cost function obtained from Independent Service Operators. A consumer experiment is established to replicate the peak load behavior. As a result, consumers' utility function is estimated and optimal retail electricity prices are computed.
Improvements of the Radiation Code "MstrnX" in AORI/NIES/JAMSTEC Models
NASA Astrophysics Data System (ADS)
Sekiguchi, M.; Suzuki, K.; Takemura, T.; Watanabe, M.; Ogura, T.
2015-12-01
There is a large demand for an accurate yet rapid radiation transfer scheme accurate for general climate models. The broadband radiative transfer code "mstrnX", ,which was developed by Atmosphere and Ocean Research Institute (AORI) and was implemented in several global and regional climate models cooperatively developed in the Japanese research community, for example, MIROC (the Model for Interdisciplinary Research on Climate) [Watanabe et al., 2010], NICAM (Non-hydrostatic Icosahedral Atmospheric Model) [Satoh et al, 2008], and CReSS (Cloud Resolving Storm Simulator) [Tsuboki and Sakakibara, 2002]. In this study, we improve the gas absorption process and the scattering process of ice particles. For update of gas absorption process, the absorption line database is replaced by the latest versions of the Harvard-Smithsonian Center, HITRAN2012. An optimization method is adopted in mstrnX to decrease the number of integration points for the wavenumber integration using the correlated k-distribution method and to increase the computational efficiency in each band. The integration points and weights of the correlated k-distribution are optimized for accurate calculation of the heating rate up to altitude of 70 km. For this purpose we adopted a new non-linear optimization method of the correlated k-distribution and studied an optimal initial condition and the cost function for the non-linear optimization. It is known that mstrnX has a considerable bias in case of quadrapled carbon dioxide concentrations [Pincus et al., 2015], however, the bias is decreased by this improvement. For update of scattering process of ice particles, we adopt a solid column as an ice crystal habit [Yang et al., 2013]. The single scattering properties are calculated and tabulated in advance. The size parameter of this table is ranged from 0.1 to 1000 in mstrnX, we expand the maximum to 50000 in order to correspond to large particles, like fog and rain drop. Those update will be introduced to MIROC and adopted for CMIP6 experiment.
Active control of acoustic pressure fields using smart material technologies
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, R. C.
1993-01-01
An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.
Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode
NASA Astrophysics Data System (ADS)
Chan, Sze-Chun
2008-04-01
Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.
Selecting registration schemes in case of interstitial lung disease follow-up in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros
Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information),more » four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the range of 1.985–2.156 mm and 1.966–2.234 mm, for NLP and ILD affected regions, respectively, excluding schemes with statistically significant lower performance (Wilcoxon signed-ranks test, p < 0.05), resulting in 13 finally selected registration schemes. Conclusions: Selected registration schemes in case of ILD CT follow-up analysis indicate the significance of adaptive stochastic gradient descent optimizer, as well as the importance of combined rigid and nonrigid schemes providing high accuracy and time efficiency. The selected optimal deformable registration schemes are equivalent in terms of their accuracy and thus compatible in terms of their clinical outcome.« less
Investigation of broadband terahertz generation from metasurface
Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...
2018-01-01
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Investigation of broadband terahertz generation from metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ming; Niu, Kaikun; Huang, ZHixiang
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Investigation of broadband terahertz generation from metasurface
Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...
2018-05-21
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Optimization-Based Robust Nonlinear Control
2006-08-01
ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in
Puso, M. A.; Kokko, E.; Settgast, R.; ...
2014-10-22
An embedded mesh method using piecewise constant multipliers originally proposed by Puso et al. (CMAME, 2012) is analyzed here to determine effects of the pressure stabilization term and small cut cells. The approach is implemented for transient dynamics using the central difference scheme for the time discretization. It is shown that the resulting equations of motion are a stable linear system with a condition number independent of mesh size. Furthermore, we show that the constraints and the stabilization terms can be recast as non-proportional damping such that the time integration of the scheme is provably stable with a critical timemore » step computed from the undamped equations of motion. Effects of small cuts are discussed throughout the presentation. A mesh study is conducted to evaluate the effects of the stabilization on the discretization error and conditioning and is used to recommend an optimal value for stabilization scaling parameter. Several nonlinear problems are also analyzed and compared with comparable conforming mesh results. Finally, we show several demanding problems highlighting the robustness of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Latif, Norfaneysa Abd; Kassim, Anuar Mohamed; Abidin, Amar Faiz Zainal; Hussien, Sharifah Yuslinda Syed; Aras, Mohd Shahrieel Mohd
2015-05-01
Advanced manufacturing technology made Gantry Crane System (GCS) is one of the suitable heavy machinery transporters and frequently employed in handling with huge materials. The interconnection of trolley movement and payload oscillation has a technical impact which needs to be considered. Once the trolley moves to the desired position with high speed, this will induce undesirable's payload oscillation. This frequent unavoidable load swing causes an efficiency drop, load damages and even accidents. In this paper, a new control strategy of Firefly Algorithm (FA) will be developed to obtain five optimal controller parameters (PID and PD) via Priority-based Fitness Scheme (PFS). Combinations of these five parameters are utilized for controlling trolley movement and minimizing the angle of payload oscillation. This PFS is prioritized based on steady-state error (SSE), overshoot (OS) and settling time (Ts) according to the needs and circumstances. Lagrange equation will be chosen for modeling and simulation will be conducted by using related software. Simulation results show that the proposed control strategy is efficient to control the trolley movement to the desired position and minimize the angle of payload oscillation.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
Low-Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Kennedy, Chistopher A.; Carpenter, Mark H.; Lewis, R. Michael
1999-01-01
The derivation of storage explicit Runge-Kutta (ERK) schemes has been performed in the context of integrating the compressible Navier-Stokes equations via direct numerical simulation. Optimization of ERK methods is done across the broad range of properties, such as stability and accuracy efficiency, linear and nonlinear stability, error control reliability, step change stability, and dissipation/dispersion accuracy, subject to varying degrees of memory economization. Following van der Houwen and Wray, 16 ERK pairs are presented using from two to five registers of memory per equation, per grid point and having accuracies from third- to fifth-order. Methods have been assessed using the differential equation testing code DETEST, and with the 1D wave equation. Two of the methods have been applied to the DNS of a compressible jet as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs are competitive with existing full-storage methods. Although a substantial efficiency penalty accompanies use of two- and three-register, fifth-order methods, the best contemporary full-storage methods can be pearl), matched while still saving two to three registers of memory.
Development of solution techniques for nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Vos, R. G.; Andrews, J. S.
1974-01-01
Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading.
An adjoint-based framework for maximizing mixing in binary fluids
NASA Astrophysics Data System (ADS)
Eggl, Maximilian; Schmid, Peter
2017-11-01
Mixing in the inertial, but laminar parameter regime is a common application in a wide range of industries. Enhancing the efficiency of mixing processes thus has a fundamental effect on product quality, material homogeneity and, last but not least, production costs. In this project, we address mixing efficiency in the above mentioned regime (Reynolds number Re = 1000 , Peclet number Pe = 1000) by developing and demonstrating an algorithm based on nonlinear adjoint looping that minimizes the variance of a passive scalar field which models our binary Newtonian fluids. The numerical method is based on the FLUSI code (Engels et al. 2016), a Fourier pseudo-spectral code, which we modified and augmented by scalar transport and adjoint equations. Mixing is accomplished by moving stirrers which are numerically modeled using a penalization approach. In our two-dimensional simulations we consider rotating circular and elliptic stirrers and extract optimal mixing strategies from the iterative scheme. The case of optimizing shape and rotational speed of the stirrers will be demonstrated.
NASA Astrophysics Data System (ADS)
Chen, Yu-Ren; Dye, Chung-Yuan
2013-06-01
In most of the inventory models in the literature, the deterioration rate of goods is viewed as an exogenous variable, which is not subject to control. In the real market, the retailer can reduce the deterioration rate of product by making effective capital investment in storehouse equipments. In this study, we formulate a deteriorating inventory model with time-varying demand by allowing preservation technology cost as a decision variable in conjunction with replacement policy. The objective is to find the optimal replenishment and preservation technology investment strategies while minimising the total cost over the planning horizon. For any given feasible replenishment scheme, we first prove that the optimal preservation technology investment strategy not only exists but is also unique. Then, a particle swarm optimisation is coded and used to solve the nonlinear programming problem by employing the properties derived from this article. Some numerical examples are used to illustrate the features of the proposed model.
HITEMP Material and Structural Optimization Technology Transfer
NASA Technical Reports Server (NTRS)
Collier, Craig S.; Arnold, Steve (Technical Monitor)
2001-01-01
The feasibility of adding viscoelasticity and the Generalized Method of Cells (GMC) for micromechanical viscoelastic behavior into the commercial HyperSizer structural analysis and optimization code was investigated. The viscoelasticity methodology was developed in four steps. First, a simplified algorithm was devised to test the iterative time stepping method for simple one-dimensional multiple ply structures. Second, GMC code was made into a callable subroutine and incorporated into the one-dimensional code to test the accuracy and usability of the code. Third, the viscoelastic time-stepping and iterative scheme was incorporated into HyperSizer for homogeneous, isotropic viscoelastic materials. Finally, the GMC was included in a version of HyperSizer. MS Windows executable files implementing each of these steps is delivered with this report, as well as source code. The findings of this research are that both viscoelasticity and GMC are feasible and valuable additions to HyperSizer and that the door is open for more advanced nonlinear capability, such as viscoplasticity.
Wheatley, Benjamin B.; Fischenich, Kristine M.; Button, Keith D.; Haut, Roger C.; Haut Donahue, Tammy L.
2015-01-01
Inverse finite element (FE) analysis is an effective method to predict material behavior, evaluate mechanical properties, and study differences in biological tissue function. The meniscus plays a key role in load distribution within the knee joint and meniscal degradation is commonly associated with the onset of osteoarthritis. In the current study, a novel transversely isotropic hyper-poro-viscoelastic constitutive formulation was incorporated in a FE model to evaluate changes in meniscal material properties following tibiofemoral joint impact. A non-linear optimization scheme was used to fit the model output to indentation relaxation experimental data. This study is the first to investigate rate of relaxation in healthy versus impacted menisci. Stiffness was found to be decreased (p=0.003), while the rate of tissue relaxation increased (p=0.010) at twelve weeks post impact. Total amount of relaxation, however, did not change in the impacted tissue (p=0.513). PMID:25776872
Analysis of elliptically polarized maximally entangled states for bell inequality tests
NASA Astrophysics Data System (ADS)
Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.
2012-06-01
When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2015-10-01
The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.
Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.
2014-01-01
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390