Science.gov

Sample records for nonlinear poisson-boltzmann equation

  1. Solution of the nonlinear Poisson-Boltzmann equation: Application to ionic diffusion in cementitious materials

    SciTech Connect

    Arnold, J.; Kosson, D.S.; Garrabrants, A.; Meeussen, J.C.L.; Sloot, H.A. van der

    2013-02-15

    A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  2. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    PubMed Central

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs. PMID:25013789

  3. Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method.

    PubMed

    Shestakov, A I; Milovich, J L; Noy, A

    2002-03-01

    The nonlinear Poisson-Boltzmann (PB) equation is solved using Newton-Krylov iterations coupled with pseudo-transient continuation. The PB potential is used to compute the electrostatic energy and evaluate the force on a user-specified contour. The PB solver is embedded in a existing, 3D, massively parallel, unstructured-grid, finite element code. Either Dirichlet or mixed boundary conditions are allowed. The latter specifies surface charges, approximates far-field conditions, or linearizes conditions "regulating" the surface charge. Stability and robustness are proved using results for backward Euler differencing of diffusion equations. Potentials and energies of charged spheres and plates are computed and results compared to analysis. An approximation to the potential of the nonlinear, spherical charge is derived by combining two analytic formulae. The potential and force due to a conical probe interacting with a flat plate are computed for two types of boundary conditions: constant potential and constant charge. The second case is compared with direct force measurements by chemical force microscopy. The problem is highly nonlinear-surface potentials of the linear and nonlinear PB equations differ by over an order of magnitude. Comparison of the simulated and experimentally measured forces shows that approximately half of the surface carboxylic acid groups, of density 1/(0.2 nm2), ionize in the electrolyte implying surface charges of 0.4 C/m2, surface potentials of 0.27 V, and a force of 0.6 nN when the probe and plate are 8.7 nm apart. PMID:16290441

  4. Electrophoresis of a soft particle within a cylindrical pore: polarization effect with the nonlinear Poisson-Boltzmann equation.

    PubMed

    Huang, Cheng-Hsuan; Cheng, Wen-Li; He, Yan-Ying; Lee, Eric

    2010-08-12

    Electrophoresis of a soft particle along the centerline of a cylindrical pore is investigated theoretically in this study. The soft particle consists of an inner hard sphere covered by a concentric porous layer with fixed charge uniformly distributed in it. The polarization effect, the deformation of ion clouds surrounding the particle due to convection flow, is taken into account properly by adopting the full nonlinear Poisson-Boltzmann equation. The study reveals that recent investigation in the literature without consideration of the polarization effect could severely overestimate the particle mobility up to nearly two times if the fixed charge in the porous layer is high. The boundary effect in terms of the reduction of particle mobility is very significant when the double layer is thick and diminishes as it gets very thin. The effect of the highly charged cylindrical wall is analyzed, in particular, among other factors of electrokinetic interest. The presence of the cylindrical wall retards the particle motion in general, as compared with an isolated particle. With the generation of an electroosmotic flow, however, the charged wall can either enhance the particle motion or deter it, depending on the surface potential on the wall and the double-layer thickness. The thinner the double layer, the more significant the influence of the osmotic flow on the particle motion in general. The direction of particle motion may even change twice as the reciprocal of the double-layer thickness increases when both the wall and the particle are highly charged. This is due to the competition between the electric driving force of the charged particle and the hydrodynamic retarding force from the background electroosmotic flow. This has direct impact in practical applications of nanofluidics when a weak electric field is applied. Conducting operations near these critical double-layer thicknesses should be avoided in practice.

  5. Biomolecular electrostatics with the linearized Poisson-Boltzmann equation.

    PubMed Central

    Fogolari, F; Zuccato, P; Esposito, G; Viglino, P

    1999-01-01

    Electrostatics plays a key role in many biological processes. The Poisson-Boltzmann equation (PBE) and its linearized form (LPBE) allow prediction of electrostatic effects for biomolecular systems. The discrepancies between the solutions of the PBE and those of the LPBE are well known for systems with a simple geometry, but much less for biomolecular systems. Results for high charge density systems show that there are limitations to the applicability of the LPBE at low ionic strength and, to a lesser extent, at higher ionic strength. For systems with a simple geometry, the onset of nonlinear effects has been shown to be governed by the ratio of the electric field over the Debye screening constant. This ratio is used in the present work to correct the LPBE results to reproduce fairly accurately those obtained from the PBE for systems with a simple geometry. Since the correction does not involve any geometrical parameter, it can be easily applied to real biomolecular systems. The error on the potential for the LPBE (compared to the PBE) spans few kT/q for the systems studied here and is greatly reduced by the correction. This allows for a more accurate evaluation of the electrostatic free energy of the systems. PMID:9876118

  6. Multilevel Methods for the Poisson-Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Holst, Michael Jay

    We consider the numerical solution of the Poisson -Boltzmann equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation arising in biophysics. This problem has several interesting features impacting numerical algorithms, including discontinuous coefficients representing material interfaces, rapid nonlinearities, and three spatial dimensions. Similar equations occur in various applications, including nuclear physics, semiconductor physics, population genetics, astrophysics, and combustion. In this thesis, we study the PBE, discretizations, and develop multilevel-based methods for approximating the solutions of these types of equations. We first outline the physical model and derive the PBE, which describes the electrostatic potential of a large complex biomolecule lying in a solvent. We next study the theoretical properties of the linearized and nonlinear PBE using standard function space methods; since this equation has not been previously studied theoretically, we provide existence and uniqueness proofs in both the linearized and nonlinear cases. We also analyze box-method discretizations of the PBE, establishing several properties of the discrete equations which are produced. In particular, we show that the discrete nonlinear problem is well-posed. We study and develop linear multilevel methods for interface problems, based on algebraic enforcement of Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil calculus, we show that in certain simplified cases the two approaches are equivalent, with different averaging procedures corresponding to different prolongation operators. We also develop methods for nonlinear problems based on a nonlinear multilevel method, and on linear multilevel methods combined with a globally convergent damped-inexact-Newton method. We derive a necessary and sufficient descent condition for the inexact-Newton direction, enabling the development of extremely

  7. Adaptive Mesh Enrichment for the Poisson-Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Dyshlovenko, Pavel

    2001-09-01

    An adaptive mesh enrichment procedure for a finite-element solution of the two-dimensional Poisson-Boltzmann equation is described. The mesh adaptation is performed by subdividing the cells using information obtained in the previous step of the solution and next rearranging the mesh to be a Delaunay triangulation. The procedure allows the gradual improvement of the quality of the solution and adjustment of the geometry of the problem. The performance of the proposed approach is illustrated by applying it to the problem of two identical colloidal particles in a symmetric electrolyte.

  8. Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson-Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirofumi; Okiyama, Yoshio; Nakano, Tatsuya; Tanaka, Shigenori

    2010-11-01

    We developed FMO-PB method, which incorporates solvation effects into the Fragment Molecular Orbital calculation with the Poisson-Boltzmann equation. This method retains good accuracy in energy calculations with reduced computational time. We calculated the solvation free energies for polyalanines, Alpha-1 peptide, tryptophan cage, and complex of estrogen receptor and 17 β-estradiol to show the applicability of this method for practical systems. From the calculated results, it has been confirmed that the FMO-PB method is useful for large biomolecules in solution. We also discussed the electric charges which are used in solving the Poisson-Boltzmann equation.

  9. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson-Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    NASA Astrophysics Data System (ADS)

    Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra

    2014-11-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson-Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.

  10. Adaptive Finite-Element Solution of the Nonlinear Poisson-Boltzmann Equation: A Charged Spherical Particle at Various Distances from a Charged Cylindrical Pore in a Charged Planar Surface

    PubMed

    Bowen; Sharif

    1997-03-15

    A Galerkin finite-element approach combined with an error estimator and automatic mesh refinement has been used to provide a flexible numerical solution of the Poisson-Boltzmann equation. A Newton sequence technique was used to solve the nonlinear equations arising from the finite-element discretization procedure. Errors arising from the finite-element solution due to mesh refinement were calculated using the Zienkiewicz-Zhu error estimator, and an automatic remeshing strategy was adopted to achieve a solution satisfying a preset quality. Examples of the performance of the error estimator in adaptive mesh refinement are presented. The adaptive finite-element scheme presented in this study has proved to be an effective technique in minimizing errors in finite-element solutions for a given problem, in particular those of complex geometries. As an example, numerical solutions are presented for the case of a charged spherical particle at various distances from a charged cylindrical pore in a charged planar surface. Such a scheme provides a quantification of the significance of electrostatic interactions for an important industrial technology-membrane separation processes.

  11. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    SciTech Connect

    Lee, Chiun-Chang

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem. Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.

  12. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION.

    PubMed

    Holst, Michael; McCammon, James Andrew; Yu, Zeyun; Zhou, Youngcheng; Zhu, Yunrong

    2012-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L(∞) estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  13. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    PubMed Central

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  14. A nonlocal modified Poisson-Boltzmann equation and finite element solver for computing electrostatics of biomolecules

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2016-10-01

    The nonlocal dielectric approach has been studied for more than forty years but only limited to water solvent until the recent work of Xie et al. (2013) [20]. As the development of this recent work, in this paper, a nonlocal modified Poisson-Boltzmann equation (NMPBE) is proposed to incorporate nonlocal dielectric effects into the classic Poisson-Boltzmann equation (PBE) for protein in ionic solvent. The focus of this paper is to present an efficient finite element algorithm and a related software package for solving NMPBE. Numerical results are reported to validate this new software package and demonstrate its high performance for protein molecules. They also show the potential of NMPBE as a better predictor of electrostatic solvation and binding free energies than PBE.

  15. Nonlinear Poisson-Boltzmann model of charged lipid membranes: Accounting for the presence of zwitterionic lipids

    NASA Astrophysics Data System (ADS)

    Mengistu, Demmelash H.; May, Sylvio

    2008-09-01

    The nonlinear Poisson-Boltzmann model is used to derive analytical expressions for the free energies of both mixed anionic-zwitterionic and mixed cationic-zwitterionic lipid membranes as function of the mole fraction of charged lipids. Accounting explicitly for the electrostatic properties of the zwitterionic lipid species affects the free energy of anionic and cationic membranes in a qualitatively different way: That of an anionic membrane changes monotonously as a function of the mole fraction of charged lipids, whereas it passes through a pronounced minimum for a cationic membrane.

  16. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation

    PubMed Central

    Botello-Smith, Wesley M.; Luo, Ray

    2016-01-01

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966

  17. A first-order system least-squares finite element method for the Poisson-Boltzmann equation.

    PubMed

    Bond, Stephen D; Chaudhry, Jehanzeb Hameed; Cyr, Eric C; Olson, Luke N

    2010-06-01

    The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation, we propose a system that yields a tractable least-squares finite element formulation and establish theory to support this approach. The least-squares finite element approximation naturally provides an a posteriori error estimator and we present numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach.

  18. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    PubMed

    Fraenkel, Dan

    2015-12-01

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions. PMID:26493019

  19. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    PubMed

    Fraenkel, Dan

    2015-12-01

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions.

  20. Electrostatic component of binding energy: Interpreting predictions from poisson-boltzmann equation and modeling protocols.

    PubMed

    Chakavorty, Arghya; Li, Lin; Alexov, Emil

    2016-10-30

    Macromolecular interactions are essential for understanding numerous biological processes and are typically characterized by the binding free energy. Important component of the binding free energy is the electrostatics, which is frequently modeled via the solutions of the Poisson-Boltzmann Equations (PBE). However, numerous works have shown that the electrostatic component (ΔΔGelec ) of binding free energy is very sensitive to the parameters used and modeling protocol. This prompted some researchers to question the robustness of PBE in predicting ΔΔGelec . We argue that the sensitivity of the absolute ΔΔGelec calculated with PBE using different input parameters and definitions does not indicate PBE deficiency, rather this is what should be expected. We show how the apparent sensitivity should be interpreted in terms of the underlying changes in several numerous and physical parameters. We demonstrate that PBE approach is robust within each considered force field (CHARMM-27, AMBER-94, and OPLS-AA) once the corresponding structures are energy minimized. This observation holds despite of using two different molecular surface definitions, pointing again that PBE delivers consistent results within particular force field. The fact that PBE delivered ΔΔGelec values may differ if calculated with different modeling protocols is not a deficiency of PBE, but natural results of the differences of the force field parameters and potential functions for energy minimization. In addition, while the absolute ΔΔGelec values calculated with different force field differ, their ordering remains practically the same allowing for consistent ranking despite of the force field used. © 2016 Wiley Periodicals, Inc.

  1. Efficient quantum mechanical calculation of solvation free energies based on density functional theory, numerical atomic orbitals and Poisson Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Wang, Mingliang; Wong, Chung F.; Liu, Jianhong; Zhang, Peixin

    2007-07-01

    We have successfully coupled the Kohn-Sham with Poisson-Boltzmann equations to predict the solvation free energy, where the Kohn-Sham equations were solved by implementing the flexible pseudo atomic orbitals as in S IESTA package. It was found that the calculated solvation free energy is in good agreement with experimental results for small neutral molecules, and its standard error is 1.33 kcal/mol, the correlation coefficient is 0.97. Due to its high efficiency and accuracy, the proposed model can be a promising tool for computing solvation free energies in computer aided drug design in future.

  2. Electrostatic forces in the Poisson-Boltzmann systems.

    PubMed

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models. PMID:24028101

  3. Poisson-Boltzmann equation and electro-convective instability in ferroelectric liquid crystals: a mean-field approach

    NASA Astrophysics Data System (ADS)

    Lahiri, T.; Pal Majumder, T.; Ghosh, N. K.

    2014-07-01

    Commercialization of ferroelectric liquid crystal displays (FLCDs) suffers from mechanical and electro-convective instabilities. Impurity ions play a pivotal role in the latter case, and therefore we developed a mean-field type model to understand the complex role of space charges, particularly ions in a ferroelectric liquid crystal. Considering an effective ion-chirality relation, we obtained a modified Poisson-Boltzmann equation for ions dissolved into a chiral solvent like the ferroelectric smectic phase. A nonuniform director profile induced by the mean electrostatic potential of the ions is then calculated by solving an Euler-Lagrange equation for a helically twisted smectic state. A combination of effects resulting from molecular chirality and an electrostatically driven twist created by the ions seems to produce this nonuniform fluctuation in the director orientation. Finally, both theoretical and experimental points of view are presented on the prediction of this mean-field model.

  4. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-01

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol. PMID:27323006

  5. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-01

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  6. Poisson-Boltzmann theory for two parallel uniformly charged plates

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun

    2011-04-01

    We solve the nonlinear Poisson-Boltzmann equation for two parallel and like-charged plates both inside a symmetric electrolyte, and inside a 2:1 asymmetric electrolyte, in terms of Weierstrass elliptic functions. From these solutions we derive the functional relation between the surface charge density, the plate separation, and the pressure between plates. For the one plate problem, we obtain exact expressions for the electrostatic potential and for the renormalized surface charge density, both in symmetric and in asymmetric electrolytes. For the two plate problems, we obtain new exact asymptotic results in various regimes.

  7. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  8. Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory.

    PubMed

    Buyukdagli, S; Blossey, R

    2016-09-01

    Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent-a dipolar Coulomb fluid-including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations. PMID:27357125

  9. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    NASA Astrophysics Data System (ADS)

    Fisicaro, G.; Genovese, L.; Andreussi, O.; Marzari, N.; Goedecker, S.

    2016-01-01

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  10. Poisson-Boltzmann thermodynamics of counterions confined by curved hard walls.

    PubMed

    Šamaj, Ladislav; Trizac, Emmanuel

    2016-01-01

    We consider a set of identical mobile pointlike charges (counterions) confined to a domain with curved hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three domain geometries are considered: a pair of parallel plates, the cylinder, and the sphere. The particle system in thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively one-dimensional plates and the two-dimensional cylinder have already been solved, the three-dimensional sphere problem is not integrable. It is shown that the contact density of particles at the charged surface is determined by a first-order Abel differential equation of the second kind which is a counterpart of Enig's equation in the critical theory of gravitation and combustion or explosion. This equation enables us to construct the exact series solutions of the contact density in the regions of small and large surface charge densities. The formalism provides, within the mean-field Poisson-Boltzmann framework, the complete thermodynamics of counterions inside a charged sphere (salt-free system). PMID:26871116

  11. Poisson-Boltzmann-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  12. Poisson-Boltzmann-Nernst-Planck model

    SciTech Connect

    Zheng Qiong; Wei Guowei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  13. Understanding of the Effects of Ionic Strength on the Bimolecular Rate Constant between Structurally Identified Redox Enzymes and Charged Substrates Using Numerical Simulations on the Basis of the Poisson-Boltzmann Equation.

    PubMed

    Sugimoto, Yu; Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2016-03-31

    To understand electrostatic interactions in biomolecules, the bimolecular rate constants (k) between redox enzymes and charged substrates (in this study, redox mediators in the electrode reaction) were evaluated at various ionic strengths (I) for the mediated bioelectrocatalytic reaction. The k value between bilirubin oxidase (BOD) and positively charged mediators increased with I, while that between BOD and negatively charged mediators decreased with I. The opposite trend was observed for the reaction of glucose oxidase (GOD). In the case of noncharged mediators, the k value was independent of I for both BOD and GOD. These results reflect the electrostatic interactions between the enzymes and the mediators. Furthermore, we estimated k/k° (k° being the thermodynamic rate constant) by numerical simulation (finite element method) based on the Poisson-Boltzmann (PB) equation. By considering the charges of individual atoms involved in the amino acids around the substrate binding sites in the enzymes, the simulated k/k° values well reproduced the experimental data. In conclusion, k/k° can be predicted by PB-based simulation as long as the crystal structure of the enzyme and the substrate binding site are known. PMID:26956542

  14. Polarizable Atomic Multipole Solutes in a Poisson-Boltzmann Continuum

    PubMed Central

    Schnieders, Michael J.; Baker, Nathan A.; Ren, Pengyu; Ponder, Jay W.

    2008-01-01

    Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager used vacuum properties of small molecules, including polarizability, dipole moment and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation (PBE). Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here we describe the theory underlying a newly developed Polarizable Multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pKa prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2–13 kcal/mole, depending on the formal charge of the protein, but had only a

  15. Where the linearized Poisson-Boltzmann cell model fails: Spurious phase separation in charged colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Tamashiro, M. N.; Schiessel, H.

    2003-07-01

    The Poisson-Boltzmann (PB) spherical Wigner-Seitz cell model—introduced to theoretically describe suspensions of spherical charged colloidal particles—is investigated at the nonlinear and linearized levels. The linearization of the mean-field PB functional yields linearized Debye-Hückel-type equations agreeing asymptotically with the nonlinear PB results in the weak-coupling (high-temperature) limit. Both the canonical (fixed number of microions) as well as the semigrand-canonical (in contact with an infinite salt reservoir) cases are considered and discussed in a unified linearized framework. In disagreement with the exact nonlinear PB solution inside a Wigner-Seitz cell, the linearized theory predicts the occurrence of a thermodynamical instability with an associated phase separation of the homogeneous suspension into dilute (gas) and dense (liquid) phases, being thus a spurious result of the linearization. We show that these artifacts, although thermodynamically consistent with quadratic expansions of the nonlinear functional and osmotic pressure, may be traced back to the nonfulfillment of the underlying assumptions of the linearization. This raises questions about the reliability of the prediction of gas/liquid-like phase separation in deionized aqueous suspensions of charged colloids mediated by monovalent counterions obtained by linearized theories.

  16. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2011-05-10

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous

  17. Formulation of a new and simple nonuniform size-modified Poisson-Boltzmann description.

    PubMed

    Boschitsch, Alexander H; Danilov, Pavel V

    2012-04-30

    The nonlinear Poisson-Boltzmann equation (PBE) governing biomolecular electrostatics neglects ion size and ion correlation effects, and recent research activity has focused on accounting for these effects to achieve better physical modeling realism. Here, attention is focused on the comparatively simpler challenge of addressing ion size effects within a continuum-based solvent modeling framework. Prior works by Borukhov et al. (Phys. Rev. Lett. 1997, 79, 435; Electrochim. Acta 2000, 46, 221) have examined the case of uniform ion size in considerable detail. Generalizations to accommodate different species ion sizes have been performed by Li (Nonlinearity 2009, 22, 811; SIAM J. Math. Anal. 2009, 40, 2536) and Zhou et al. (Phys. Rev. E 2011, 84, 021901) using a variational principle, Chu et al. (Biophys. J. 2007, 93, 3202) using a lattice gas model, and Tresset (Phys. Rev. E 2008, 78, 061506) using a generalized Poisson-Fermi distribution. The current work provides an alternative derivation using simple statistical mechanics principles that place the ion size effects and energy distributions on a consistent statistical footing. The resulting expressions differ from the prior nonuniform ion-size developments. However, all treatments reduce to the same form in the cases of uniform ion-size and zero ion size (the PBE). Because of their importance to molecular modeling and salt-dependent behavior, expressions for the salt sensitivities and ionic forces are also derived using the nonuniform ion size description. Emphasis in this article is on formulation and numerically robust evaluation; results are presented for a simple sphere and a previously considered DNA structure for comparison and validation. More extensive application to biomolecular systems is deferred to a subsequent article. PMID:22370918

  18. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model.

    PubMed

    Sharma, P; Mišković, Z L

    2015-10-01

    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential. PMID:26450303

  19. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model.

    PubMed

    Sharma, P; Mišković, Z L

    2015-10-01

    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential.

  20. Beyond Poisson-Boltzmann: Modeling Biomolecule-Water and Water-Water Interactions

    PubMed Central

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2009-01-01

    We present an extension to the Poisson-Boltzmann model in which the solvent is modeled as an assembly of self-orienting dipoles of variable densities. Interactions between these dipoles are included implicitly using a Yukawa potential field. This model leads to a set of equations whose solutions give the dipole densities; we use the latter to study the organization of water around biomolecules. The computed water density profiles resemble those derived from molecular dynamics simulations. We also derive an excess free energy that discriminates correct from incorrect conformations of proteins. PMID:19257790

  1. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Luo, Ray

    2003-12-01

    We have developed a well-behaved and efficient finite difference Poisson-Boltzmann dynamics method with a nonperiodic boundary condition. This is made possible, in part, by a rather fine grid spacing used for the finite difference treatment of the reaction field interaction. The stability is also made possible by a new dielectric model that is smooth both over time and over space, an important issue in the application of implicit solvents. In addition, the electrostatic focusing technique facilitates the use of an accurate yet efficient nonperiodic boundary condition: boundary grid potentials computed by the sum of potentials from individual grid charges. Finally, the particle-particle particle-mesh technique is adopted in the computation of the Coulombic interaction to balance accuracy and efficiency in simulations of large biomolecules. Preliminary testing shows that the nonperiodic Poisson-Boltzmann dynamics method is numerically stable in trajectories at least 4 ns long. The new model is also fairly efficient: it is comparable to that of the pairwise generalized Born solvent model, making it a strong candidate for dynamics simulations of biomolecules in dilute aqueous solutions. Note that the current treatment of total electrostatic interactions is with no cutoff, which is important for simulations of biomolecules. Rigorous treatment of the Debye-Hückel screening is also possible within the Poisson-Boltzmann framework: its importance is demonstrated by a simulation of a highly charged protein.

  2. Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.

    PubMed

    Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-01

    Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions.

  3. Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.

    PubMed

    Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-01

    Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions. PMID:23439886

  4. A New and Efficient Poisson-Boltzmann Solver for Interaction of Multiple Proteins

    PubMed Central

    Yap, Eng-Hui; Head-Gordon, Teresa

    2010-01-01

    We derive a new numerical approach to solving the linearized Poisson Boltzmann equation (PBE) by representing the protein surface as a collection of spheres in which the surface charges can then be iteratively solved by new analytical multipole methods previously introduced by us [Lotan & Head-Gordon, 2006]. We show that our Poisson Boltzmann semi-analytical method, PB-SAM, realizes better accuracy, more flexible memory management, and at reduced cost relative to either finite difference or boundary element method PBE solvers. We provide two new benchmarks of PBE solution accuracy to test the numerical PBE solutions based on (1) arrays of up to hundreds of spherical low dielectric geometries with asymmetric charges in which mutual polarization is treated exactly, and (2) two overlapping spheres with increasing charge asymmetry by solving the PB-SAM method to very high pole order. We illustrate the strength of the PB-SAM approach by computing the potential profile of an array of 60 T1-particle forming monomers of the bromine mosaic virus. PMID:20711494

  5. Poisson-Boltzmann study of the effective electrostatic interaction between colloids at an electrolyte interface

    NASA Astrophysics Data System (ADS)

    Majee, Arghya; Bier, Markus; Dietrich, S.

    2016-08-01

    The effective electrostatic interaction between a pair of colloids, both of them located close to each other at an electrolyte interface, is studied by employing the full, nonlinear Poisson-Boltzmann (PB) theory within classical density functional theory. Using a simplified yet appropriate model, all contributions to the effective interaction are obtained exactly, albeit numerically. The comparison between our results and those obtained within linearized PB theory reveals that the latter overestimates these contributions significantly at short inter-particle separations. Whereas the surface contributions to the linear and the nonlinear PB results differ only quantitatively, the line contributions show qualitative differences at short separations. Moreover, a dependence of the line contribution on the solvation properties of the two adjacent fluids is found, which is absent within the linear theory. Our results are expected to enrich the understanding of effective interfacial interactions between colloids.

  6. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-06-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Program summaryProgram title: AFMPB: Adaptive fast multipole Poisson-Boltzmann solver Catalogue identifier: AEGB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 453 649 No. of bytes in distributed program, including test data, etc.: 8 764 754 Distribution format: tar.gz Programming language: Fortran Computer: Any Operating system: Any RAM: Depends on the size of the discretized biomolecular system Classification: 3 External routines: Pre- and post-processing tools are required for generating the boundary elements and for visualization. Users can use MSMS ( http://www.scripps.edu/~sanner/html/msms_home.html) for pre-processing, and VMD ( http://www.ks.uiuc.edu/Research/vmd/) for visualization. Sub-programs included: An iterative Krylov subspace solvers package from SPARSKIT by Yousef Saad ( http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html), and the fast multipole methods subroutines from FMMSuite ( http

  7. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    PubMed

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning.

  8. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    PubMed

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. PMID:25278358

  9. Progress in developing Poisson-Boltzmann equation solvers

    PubMed Central

    Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil

    2013-01-01

    This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185

  10. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    PubMed

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics. PMID:24920153

  11. An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics

    SciTech Connect

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan

    2009-01-01

    The numerical solution of the Poisson Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.

  12. Ca/Na selectivity coefficients from the Poisson-Boltzmann theory

    NASA Astrophysics Data System (ADS)

    Hedström, Magnus; Karnland, Ola

    As a model for ion equilibrium in montmorillonite, the Poisson-Boltzmann (PB) equation was solved for two parallel charged surfaces in contact with an external NaCl/CaCl 2 mixed solution. The ion concentration profiles in the montmorillonite interlayer were obtained from the PB equation and integration of those gave the occupancy of Na + and Ca 2+ in the clay. That information together with the composition of the external electrolyte were then used for the calculation of the Gaines-Thomas selectivity coefficient K GT. The predictions from the model were compared to experimental data from batch as well as compacted conditions, and the agreement was generally good. With a surface layer-charge density of one unit charge per 145 Å 2, which is close to the value for Wyoming-type montmorillonite, the calculated selectivity coefficients were found to vary from about 4 in batch to 8 in compacted montmorillonite with dry density ∼1700 kg/m 3. From the point of view of assessing the evolution, with regard to sodium-calcium ion exchange, of the bentonite buffer in a repository for spent nuclear fuel, these results justify the use of data obtained in batch experiments.

  13. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2013-11-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of the fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Restrictions: Only three or six significant digits options are provided in this version. Unusual features: Most of the codes are in Fortran77 style. Memory allocation functions from Fortran90 and above are used in a few subroutines. Additional comments: The current version of the codes is designed and written for single core/processor desktop machines. Check http://lsec.cc.ac.cn/lubz/afmpb.html for updates and changes. Running time: The running time varies with the number of discretized elements (N) in the system and their distributions. In most cases, it scales linearly as a function of N.

  14. iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver (APBS).

    PubMed

    Konecny, Robert; Baker, Nathan A; McCammon, J Andrew

    2012-07-26

    The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS package provides a modular programmatic interface to the APBS library of electrostatic calculation routines. The iAPBS interface library can be linked with a FORTRAN or C/C++ program thus making all of the APBS functionality available from within the application. Several application modules for popular molecular dynamics simulation packages - Amber, NAMD and CHARMM are distributed with iAPBS allowing users of these packages to perform implicit solvent electrostatic calculations with APBS. PMID:22905037

  15. Incorporating Dipolar Solvents with Variable Density in Poisson-Boltzmann Electrostatics

    PubMed Central

    Azuara, Cyril; Orland, Henri; Bon, Michael; Koehl, Patrice; Delarue, Marc

    2008-01-01

    We describe a new way to calculate the electrostatic properties of macromolecules that goes beyond the classical Poisson-Boltzmann treatment with only a small extra CPU cost. The solvent region is no longer modeled as a homogeneous dielectric media but rather as an assembly of self-orienting interacting dipoles of variable density. The method effectively unifies both the Poisson-centric view and the Langevin Dipole model. The model results in a variable dielectric constant \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\epsilon}({\\vec{r}})\\end{equation*}\\end{document} in the solvent region and also in a variable solvent density \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\rho}({\\vec{r}})\\end{equation*}\\end{document} that depends on the nature of the closest exposed solute atoms. The model was calibrated using small molecules and ions solvation data with only two adjustable parameters, namely the size and dipolar moment of the solvent. Hydrophobicity scales derived from the solvent density profiles agree very well with independently derived hydrophobicity scales, both at the atomic or residue level. Dimerization interfaces in homodimeric proteins or lipid-binding regions in membrane proteins clearly appear as poorly solvated patches on the solute accessible surface. Comparison of the thermally averaged solvent density of this model with the one derived from molecular dynamics simulations shows qualitative agreement on a coarse-grained level. Because this calculation is much more

  16. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  17. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.

    PubMed

    Shkel, Irina A

    2010-08-26

    An accurate analytical expression for the Coulombic free energy of DNA as a function of salt concentration ([salt]) is essential in applications to nucleic acid (NA) processes. The cylindrical model of DNA and the nonlinear Poisson-Boltzmann (NLPB) equation for ions in solution are among the simplest approaches capable of describing Coulombic interactions of NA and salt ions and of providing analytical expressions for thermodynamic quantities. Three approximations for Coulombic free energy G(u,infinity)(coul) of a polymeric nucleic acid are derived and compared with the numerical solution in a wide experimental range of 1:1 [salt] from 0.01 to 2 M. Two are obtained from the two asymptotic solutions of the cylindrical NLPB equation in the high-[salt] and low-[salt] limits: these are sufficient to determine G(u,infinity)(coul) of double-stranded (ds) DNA with 1% and of single-stranded (ss) DNA with 3% accuracy at any [salt]. The third approximation is experimentally motivated Taylor series up to the quadratic term in ln[salt] in the vicinity of the reference [salt] 0.15 M. This expression with three numerical coefficients (Coulombic free energy and its first and second derivatives at 0.15 M) predicts dependence of G(u,infinity)(coul) on [salt] within 2% of the numerical solution from 0.01 to 1 M for ss (a = 7 A, b = 3.4 A) and ds (a = 10 A, b = 1.7 A) DNA. Comparison of cylindrical free energy with that calculated for the all-atom structural model of linear B-DNA shows that the cylindrical model is completely sufficient above 0.01 M of 1:1 [salt]. The choice of two cylindrical parameters, the distance of closest approach of ion to cylinder axis (radius) a and the average axial charge separation b, is discussed in application to all-atom numerical calculations and analysis of experiment. Further development of analytical expression for Coulombic free energy with thermodynamic approaches accounting for ionic correlations and specific effects is suggested.

  18. Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    SciTech Connect

    Bu, W.; Vaknin, D.; Travesset, A.

    2010-07-13

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L{sub 3} Cs{sup +} resonance, we provide spatial counterion distributions (Cs{sup +}) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H{sub 3}O{sup +} at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  19. Incorporating headgroup structure into the Poisson-Boltzmann model of charged lipid membranes

    NASA Astrophysics Data System (ADS)

    Wang, Muyang; Chen, Er-Qiang; Yang, Shuang; May, Sylvio

    2013-07-01

    Charged lipids often possess a complex headgroup structure with several spatially separated charges and internal conformational degrees of freedom. We propose a headgroup model consisting of two rod-like segments of the same length that form a flexible joint, with three charges of arbitrary sign and valence located at the joint and the two terminal positions. One terminal charge is firmly anchored at the polar-apolar interface of the lipid layer whereas the other two benefit from the orientational degrees of freedom of the two headgroup segments. This headgroup model is incorporated into the mean-field continuum Poisson-Boltzmann formalism of the electric double layer. For sufficiently small lengths of the two rod-like segments a closed-form expression of the charging free energy is calculated. For three specific examples—a zwitterionic headgroup with conformational freedom and two headgroups that carry an excess charge—we analyze and discuss conformational properties and electrostatic free energies.

  20. Nonlinear gyrokinetic equations

    SciTech Connect

    Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.

    1983-03-01

    Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.

  1. Nonlinear differential equations

    SciTech Connect

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  2. Charge Central Interpretation of the Full Nonlinear PB Equation: Implications for Accurate and Scalable Modeling of Solvation Interactions.

    PubMed

    Xiao, Li; Wang, Changhao; Ye, Xiang; Luo, Ray

    2016-08-25

    Continuum solvation modeling based upon the Poisson-Boltzmann equation (PBE) is widely used in structural and functional analysis of biomolecules. In this work, we propose a charge-central interpretation of the full nonlinear PBE electrostatic interactions. The validity of the charge-central view or simply charge view, as formulated as a vacuum Poisson equation with effective charges, was first demonstrated by reproducing both electrostatic potentials and energies from the original solvated full nonlinear PBE. There are at least two benefits when the charge-central framework is applied. First the convergence analyses show that the use of polarization charges allows a much faster converging numerical procedure for electrostatic energy and forces calculation for the full nonlinear PBE. Second, the formulation of the solvated electrostatic interactions as effective charges in vacuum allows scalable algorithms to be deployed for large biomolecular systems. Here, we exploited the charge-view interpretation and developed a particle-particle particle-mesh (P3M) strategy for the full nonlinear PBE systems. We also studied the accuracy and convergence of solvation forces with the charge-view and the P3M methods. It is interesting to note that the convergence of both the charge-view and the P3M methods is more rapid than the original full nonlinear PBE method. Given the developments and validations documented here, we are working to adapt the P3M treatment of the full nonlinear PBE model to molecular dynamics simulations.

  3. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  4. Poisson-Boltzmann model for protein-surface electrostatic interactions and grid-convergence study using the PyGBe code

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Barba, Lorena A.

    2016-05-01

    Interactions between surfaces and proteins occur in many vital processes and are crucial in biotechnology: the ability to control specific interactions is essential in fields like biomaterials, biomedical implants and biosensors. In the latter case, biosensor sensitivity hinges on ligand proteins adsorbing on bioactive surfaces with a favorable orientation, exposing reaction sites to target molecules. Protein adsorption, being a free-energy-driven process, is difficult to study experimentally. This paper develops and evaluates a computational model to study electrostatic interactions of proteins and charged nanosurfaces, via the Poisson-Boltzmann equation. We extended the implicit-solvent model used in the open-source code PyGBe to include surfaces of imposed charge or potential. This code solves the boundary integral formulation of the Poisson-Boltzmann equation, discretized with surface elements. PyGBe has at its core a treecode-accelerated Krylov iterative solver, resulting in O(N log N) scaling, with further acceleration on hardware via multi-threaded execution on GPUs. It computes solvation and surface free energies, providing a framework for studying the effect of electrostatics on adsorption. We derived an analytical solution for a spherical charged surface interacting with a spherical dielectric cavity, and used it in a grid-convergence study to build evidence on the correctness of our approach. The study showed the error decaying with the average area of the boundary elements, i.e., the method is O(1 / N) , which is consistent with our previous verification studies using PyGBe. We also studied grid-convergence using a real molecular geometry (protein G B1 D4‧), in this case using Richardson extrapolation (in the absence of an analytical solution) and confirmed the O(1 / N) scaling. With this work, we can now access a completely new family of problems, which no other major bioelectrostatics solver, e.g. APBS, is capable of dealing with. PyGBe is open

  5. Solitons and nonlinear wave equations

    SciTech Connect

    Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.

    1982-01-01

    A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.

  6. A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.

    PubMed

    Yamagishi, Junya; Okimoto, Noriaki; Morimoto, Gentaro; Taiji, Makoto

    2014-11-01

    The Poisson-Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N- and C-terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules.

  7. A general Poisson-Boltzmann model with position-dependent dielectric permittivity for electric double layer analysis.

    PubMed

    Le, Guigao; Zhang, Junfeng

    2011-05-01

    In this paper, we propose a general Poisson-Boltzmann model for electric double layer (EDL) analysis with the position dependence of dielectric permittivity considered. This model provides physically reasonable property profiles in the EDL region, and it is then utilized to investigate the depletion layer effect on EDL structure and interaction near hydrophobic surfaces. Our results show that both the electric potential and the interaction pressure between surfaces decrease due to the lower permittivity in the depletion layer. The reduction becomes more profound at larger variation magnitude and range. This trend is in general agreement with that observed from the previous stepwise model; however, that model has overestimated the influence of permittivity variation effect. For the thin depletion layer and the relative thick EDL, our calculation indicates that the permittivity variation effect on EDL usually can be neglected. Furthermore, our model can be readily extended to study the permittivity variation in EDL due to ion accumulation and hydration in the EDL region.

  8. Duffing's Equation and Nonlinear Resonance

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    The phenomenon of nonlinear resonance (sometimes called the "jump phenomenon") is examined and second-order van der Pol plane analysis is employed to indicate that this phenomenon is not a feature of the equation, but rather the result of accumulated round-off error, truncation error and algorithm error that distorts the true bounded solution onto…

  9. Linear superposition in nonlinear equations.

    PubMed

    Khare, Avinash; Sukhatme, Uday

    2002-06-17

    Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300

  10. Between algorithm and model: different Molecular Surface definitions for the Poisson-Boltzmann based electrostatic characterization of biomolecules in solution.

    PubMed

    Decherchi, Sergio; Colmenares, José; Catalano, Chiara Eva; Spagnuolo, Michela; Alexov, Emil; Rocchia, Walter

    2013-01-01

    The definition of a molecular surface which is physically sound and computationally efficient is a very interesting and long standing problem in the implicit solvent continuum modeling of biomolecular systems as well as in the molecular graphics field. In this work, two molecular surfaces are evaluated with respect to their suitability for electrostatic computation as alternatives to the widely used Connolly-Richards surface: the blobby surface, an implicit Gaussian atom centered surface, and the skin surface. As figures of merit, we considered surface differentiability and surface area continuity with respect to atom positions, and the agreement with explicit solvent simulations. Geometric analysis seems to privilege the skin to the blobby surface, and points to an unexpected relationship between the non connectedness of the surface, caused by interstices in the solute volume, and the surface area dependence on atomic centers. In order to assess the ability to reproduce explicit solvent results, specific software tools have been developed to enable the use of the skin surface in Poisson-Boltzmann calculations with the DelPhi solver. Results indicate that the skin and Connolly surfaces have a comparable performance from this last point of view.

  11. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  12. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  13. Electrostatics of ligand binding: parameterization of the generalized Born model and comparison with the Poisson-Boltzmann approach

    PubMed Central

    Liu, Hao-Yang; Zou, Xiaoqin

    2008-01-01

    An accurate and fast evaluation of the electrostatics in ligand-protein interactions is crucial for computer-aided drug design. The pairwise generalized Born (GB) model, a fast analytical method originally developed for studying solvation of organic molecules, has been widely applied to macromolecular systems, including ligand-protein complexes. Yet, this model involves several empirical scaling parameters, which have been optimized for solvation of organic molecules, peptides and nucleic acids, but not for energetics of ligand binding. Studies have shown that a good solvation energy does not guarantee a correct model of solvent-mediated interactions. Thus in this study, we have used the Poisson-Boltzmann (PB) approach as a reference to optimize the GB model for studies of ligand-protein interactions. Specifically, we have employed the pairwise descreening approximation proposed by Hawkins et al [1] for GB calculations, and DelPhi for PB calculations. The AMBER all-atom force field parameters have been used in this work. Seventeen protein-ligand complexes have been used as a training database, and a set of atomic descreening parameters has been selected with which the pairwise GB model and the PB model yield comparable results on atomic Born radii, the electrostatic component of free energies of ligand binding, and desolvation energies of the ligands and proteins. The energetics of the fifteen test complexes calculated with the GB model using this set of parameters also agrees well with the energetics calculated with the PB method. This is the first time that the GB model is parameterized and thoroughly compared with the PB model for the electrostatics of ligand binding. PMID:16671749

  14. Linear superposition solutions to nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2012-11-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.

  15. Nonlinear gyrokinetic equations for tokamak microturbulence

    SciTech Connect

    Hahm, T.S.

    1988-05-01

    A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.

  16. Spurious Solutions Of Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  17. Extended Trial Equation Method for Nonlinear Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Gepreel, Khaled A.; Nofal, Taher A.

    2015-04-01

    The main objective of this paper is to use the extended trial equation method to construct a series of some new solutions for some nonlinear partial differential equations (PDEs) in mathematical physics. We will construct the solutions in many different functions such as hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions, and rational functional solutions for the nonlinear PDEs when the balance number is a real number via the Zhiber-Shabat nonlinear differential equation. The balance number of this method is not constant as we shown in other methods, but it is changed by changing the trial equation derivative definition. This method allowed us to construct many new types of solutions. It is shown by using the Maple software package that all obtained solutions satisfy the original PDEs.

  18. Nonlinear quantum equations: Classical field theory

    SciTech Connect

    Rego-Monteiro, M. A.; Nobre, F. D.

    2013-10-15

    An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.

  19. Large-scale application of high-throughput molecular mechanics with Poisson-Boltzmann surface area for routine physics-based scoring of protein-ligand complexes.

    PubMed

    Brown, Scott P; Muchmore, Steven W

    2009-05-28

    We apply a high-throughput formulation of the molecular mechanics with Poisson-Boltzmann surface area (htMM-PBSA) to estimate relative binding potencies on a set of 308 small-molecule ligands in complex with the proteins urokinase, PTP-1B, and Chk-1. We observe statistically significant correlation to experimentally measured potencies and report correlation coefficients for the three proteins in the range 0.72-0.83. The htMM-PBSA calculations illustrate the feasibility of procedural automation of physics-based scoring calculations to produce rank-ordered binding-potency estimates for protein-ligand complexes, with sufficient throughput for realization of practical implementation into scientist workflows in an industrial drug discovery research setting.

  20. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  1. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  2. Exact solutions of the nonlinear Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ernst, Matthieu H.

    1984-03-01

    A review is given of research activities since 1976 on the nonlinear Boltzmann equation and related equations of Boltzmann type, in which several rediscoveries have been made and several conjectures have been disproved. Subjects are (i) the BKW solution of the Boltzmann equation for Maxwell molecules, first discovered by Krupp in 1967, and the Krook-Wu conjecture concerning the universal significance of the BKW solution for the large (v, t) behavior of the velocity distribution function f (v, t); (ii) moment equations and polynomial expansions of f (v, t); (iii) model Boltzmann equation for a spatially uniform system of very hard particles, that can be solved in closed form for general initial conditions; (iv) for Maxwell and non-Maxwell-type molecules there exist solutions of the nonlinear Boltzmann equation with algebraic decrease at υ→∞; connections with nonuniqueness and violation of conservation laws; (v) conjectured super- H-theorem and the BKW solution; (vi) exactly soluble one-dimensional Boltzmann equation with spatial dependence.

  3. Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.

    PubMed

    Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh

    2010-09-01

    We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200

  4. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2011-10-01

    The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. Our computed binding free energies are in satisfactory agreement with the experimental results. The suitability of specific fullerene derivatives as drug candidates was further enhanced, after ADMET (absorption, distribution, metabolism, excretion and toxicity) properties have been estimated to be promising. The outcomes of this study revealed important protein-ligand interaction patterns that may lead towards the development of novel, potent HIV-1 PR inhibitors.

  5. Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane.

    PubMed Central

    Fleck, Christian; Netz, Roland R; von Grünberg, Hans Hennig

    2002-01-01

    We consider a planar stiff model membrane consisting of mobile surface groups whose state of charge depends on the pH and the ionic composition of the adjacent electrolyte solution. To calculate the mean-field interaction potential between a charged object and such a model membrane, one needs to solve a Poisson-Boltzmann boundary value problem. We here derive and discuss the boundary condition at the membrane surface, a condition that is generally appropriate for biological membranes where two charge-regulating mechanisms are present at the same time: the pH-dependent chemical charge regulation and a regulation through the in-plane mobility of the surface groups. As an application of this general formalism, we consider the specific example of a single DNA molecule, approximated by a cylinder with smeared-out surface charges, interacting with such a model membrane. We study the effect that the two competing charge-regulating mechanisms have on the DNA/membrane interaction and the distribution of surface ions in the plane of the membrane. We find that, at short DNA-membrane distances, membrane fluidity can have a considerable impact on the DNA adsorption behavior and can lead to such counterintuitive phenomena as the adsorption of a negatively charged DNA onto a (on average) negatively charged membrane. PMID:11751297

  6. Taming the nonlinearity of the Einstein equation.

    PubMed

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  7. Taming the nonlinearity of the Einstein equation.

    PubMed

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well. PMID:25615299

  8. Taming the Nonlinearity of the Einstein Equation

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.

    2014-12-01

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  9. Explicit integration of Friedmann's equation with nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.

  10. Lattice Boltzmann model for nonlinear convection-diffusion equations.

    PubMed

    Shi, Baochang; Guo, Zhaoli

    2009-01-01

    A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.

  11. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  12. Forces Associated with Nonlinear Nonholonomic Constraint Equations

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2010-01-01

    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.

  13. Dark soliton solutions of (N+1)-dimensional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Demiray, Seyma Tuluce; Bulut, Hasan

    2016-06-01

    In this study, we investigate exact solutions of (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation by using generalized Kudryashov method. (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation can be returned to nonlinear ordinary differential equation by suitable transformation. Then, generalized Kudryashov method has been used to seek exact solutions of the (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation. Also, we obtain dark soliton solutions for these (N+1)-dimensional nonlinear evolution equations. Finally, we denote that this method can be applied to solve other nonlinear evolution equations.

  14. Using the scalable nonlinear equations solvers package

    SciTech Connect

    Gropp, W.D.; McInnes, L.C.; Smith, B.F.

    1995-02-01

    SNES (Scalable Nonlinear Equations Solvers) is a software package for the numerical solution of large-scale systems of nonlinear equations on both uniprocessors and parallel architectures. SNES also contains a component for the solution of unconstrained minimization problems, called SUMS (Scalable Unconstrained Minimization Solvers). Newton-like methods, which are known for their efficiency and robustness, constitute the core of the package. As part of the multilevel PETSc library, SNES incorporates many features and options from other parts of PETSc. In keeping with the spirit of the PETSc library, the nonlinear solution routines are data-structure-neutral, making them flexible and easily extensible. This users guide contains a detailed description of uniprocessor usage of SNES, with some added comments regarding multiprocessor usage. At this time the parallel version is undergoing refinement and extension, as we work toward a common interface for the uniprocessor and parallel cases. Thus, forthcoming versions of the software will contain additional features, and changes to parallel interface may result at any time. The new parallel version will employ the MPI (Message Passing Interface) standard for interprocessor communication. Since most of these details will be hidden, users will need to perform only minimal message-passing programming.

  15. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  16. Orthogonal collocation of the nonlinear Boltzman equation

    NASA Astrophysics Data System (ADS)

    Morin, T. J.; Hawley, M. C.

    1985-07-01

    A numerical solution to the nonlinear Boltzmann equation for Maxwell molecules, including the momentum conserving kernel by the method of orthogonal collocation, is presented and compared with the similarity solution of Krupp (1967), Bobylev (1975), Krook and Wu (1976) (KBKW). Excellent agreement is found between the two for KBKW initial values. The calculations of the evolution of a distribution function from nonKBKW initial conditions are examined. The correlation of the nonKBKW trajectories to the presence of a robust unstable manifold in the eigenspace of the linearized Boltzmann equation is considered. The results of a linear analysis are compared with the work of Wang Chang and Uhlenbeck (1952). The implications of the results for the relaxation of nonequilibrium distribution functions are discussed.

  17. Exact and explicit solitary wave solutions to some nonlinear equations

    SciTech Connect

    Jiefang Zhang

    1996-08-01

    Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.

  18. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  19. Solution spectrum of nonlinear diffusion equations

    SciTech Connect

    Ulmer, W.

    1992-08-01

    The stationary version of the nonlinear diffusion equation -{partial_derivative}c/{partial_derivative}t+D{Delta}c=A{sub 1}c-A{sub 2}c{sup 2} can be solved with the ansatz c={summation}{sub p=1}{sup {infinity}} A{sub p}(cosh kx){sup -p}, inducing a band structure with regard to the ratio {lambda}{sub 1}/{lambda}{sub 2}. The resulting solution manifold can be related to an equilibrium of fluxes of nonequilibrium thermodynamics. The modification of this ansatz yielding the expansion c={summation}{sub p,q=1}{sup infinity}A{sub pa}(cosh kx){sup -p}[(cosh {alpha}t){sup -q-1} sinh {alpha}t+b(cosh {alpha}t){sup -q}] represents a solution spectrum of the time-dependent nonlinear equations, and the stationary version can be found from the asymptotic behaviour of the expansion. The solutions can be associated with reactive processes such as active transport phenomena and control circuit problems is discussed. There are also applications to cellular kinetics of clonogenic cell assays and spheriods. 33 refs., 1 tab.

  20. Asymptotic behaviour of the Boltzmann equation as a cosmological model

    NASA Astrophysics Data System (ADS)

    Lee, Ho

    2016-08-01

    As a Newtonian cosmological model the Vlasov-Poisson-Boltzmann system is considered, and a slightly modified Boltzmann equation, which describes the stability of an expanding universe, is derived. Asymptotic behaviour of solutions turns out to depend on the expansion of the universe, and in this paper we consider the soft potential case and will obtain asymptotic behaviour.

  1. Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Shan

    2014-01-01

    This work introduces novel operator splitting alternating direction implicit (ADI) schemes to overcome numerical difficulties in solving pseudo-time coupled nonlinear partial differential equations (PDEs) for biomolecular solvation analysis. Based on the variational formulation, a pseudo-transient continuation model has been previously formulated to couple a nonlinear Poisson-Boltzmann (NPB) equation for the electrostatic potential with a generalized Laplace-Beltrami equation defining the biomolecular surface. However, the standard numerical integration of the time dependent NPB equation is known to be very inefficient. Moreover, it encounters instability issues for smoothly varying solute-solvent interfaces so that a filtering process has to be conducted. In the present work, we propose to solve the unsteady NPB equation in an operator splitting framework so that the nonlinear instability can be completely avoided through an analytical integration. Central finite differences are employed to discretize the nonhomogeneous diffusion term of the generalized NPB equation to form tridiagonal matrices in the Douglas and Douglas-Rachford type ADI schemes. The proposed time splitting ADI schemes are found to be unconditionally stable for solving the NPB equation in benchmark examples with analytical solutions. For the solvation analysis involving two pseudo-time coupled nonlinear PDEs, the time stability of the NPB equation can be maintained by using very large time increments, so that without sacrificing the accuracy, the present biomolecular simulation becomes over ten times faster.

  2. Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.

    PubMed

    Yan, Zhenya

    2013-04-28

    The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail. PMID:23509385

  3. Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet

    2015-10-01

    The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.

  4. Forced nonlinear Schrödinger equation with arbitrary nonlinearity.

    PubMed

    Cooper, Fred; Khare, Avinash; Quintero, Niurka R; Mertens, Franz G; Saxena, Avadh

    2012-04-01

    We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r→0. In particular we study the behavior of solitary wave solutions in the presence of these external forces in a variational approximation which allows the position, momentum, width, and phase of these waves to vary in time. We show that the stationary solutions of the variational equations include a solution close to the exact one and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition for instability is that dp(t)/dq ̇(t)<0, where p(t) is the normalized canonical momentum p(t)=1/M(t)∂L/∂q ̇, and q ̇(t) is the solitary wave velocity. Here M(t)=∫dxψ*(x,t)ψ(x,t). Stability is also studied using a "phase portrait" of the soliton, where its dynamics is represented by two-dimensional projections of its trajectory in the four-dimensional space of collective coordinates. The criterion for stability of a soliton is that its trajectory is a closed single curve with a positive sense of rotation around a fixed point. We investigate the accuracy of our variational approximation and these criteria using numerical simulations of the NLSE. We find that our criteria work quite well when the magnitude of the forcing term is small compared to the amplitude of the unforced solitary wave. In this regime the variational approximation captures quite well the behavior of the solitary wave. PMID:22680598

  5. Collocation Method for Numerical Solution of Coupled Nonlinear Schroedinger Equation

    SciTech Connect

    Ismail, M. S.

    2010-09-30

    The coupled nonlinear Schroedinger equation models several interesting physical phenomena presents a model equation for optical fiber with linear birefringence. In this paper we use collocation method to solve this equation, we test this method for stability and accuracy. Numerical tests using single soliton and interaction of three solitons are used to test the resulting scheme.

  6. The zero dispersion limits of nonlinear wave equations

    SciTech Connect

    Tso, T.

    1992-01-01

    In chapter 2 the author uses functional analytic methods and conservation laws to solve the initial-value problem for the Korteweg-de Vries equation, the Benjamin-Bona-Mahony equation, and the nonlinear Schroedinger equation for initial data that satisfy some suitable conditions. In chapter 3 the energy estimates are used to show that the strong convergence of the family of the solutions of the KdV equation obtained in chapter 2 in H[sup 3](R) as [epsilon] [yields] 0; also, it is shown that the strong L[sup 2](R)-limit of the solutions of the BBM equation as [epsilon] [yields] 0 before a critical time. In chapter 4 the author uses the Whitham modulation theory and averaging method to find the 2[pi]-periodic solutions and the modulation equations of the KdV equation, the BBM equation, the Klein-Gordon equation, the NLS equation, the mKdV equation, and the P-system. It is shown that the modulation equations of the KdV equation, the K-G equation, the NLS equation, and the mKdV equation are hyperbolic but those of the BBM equation and the P-system are not hyperbolic. Also, the relations are studied of the KdV equation and the mKdV equation. Finally, the author studies the complex mKdV equation to compare with the NLS equation, and then study the complex gKdV equation.

  7. Kinetic equation for nonlinear resonant wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2016-09-01

    We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

  8. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  9. An integrable shallow water equation with linear and nonlinear dispersion.

    PubMed

    Dullin, H R; Gottwald, G A; Holm, D D

    2001-11-01

    We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases. PMID:11690414

  10. Effective mass Schrödinger equation and nonlinear algebras

    NASA Astrophysics Data System (ADS)

    Roy, B.; Roy, P.

    2005-06-01

    Using supersymmetry we obtain solutions of Schrödinger equation with a position dependent effective mass exhibiting a harmonic oscillator like spectrum. We also discuss the underlying nonlinear algebraic symmetry of the problem.

  11. Comparative study of homotopy continuation methods for nonlinear algebraic equations

    NASA Astrophysics Data System (ADS)

    Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.

    2014-07-01

    We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).

  12. Late-time attractor for the cubic nonlinear wave equation

    SciTech Connect

    Szpak, Nikodem

    2010-08-15

    We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.

  13. An identification problem for nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Aksoy, Nigar Yildirim; Yagub, Gabil; Aksoy, Eray

    2016-04-01

    In this paper, an identification problem on determining the unknown coefficients of nonlinear time-dependent Schrödinger equation is studied. The existence and uniqueness of solutions of identification problem with variational method are proved.

  14. Numerical methods for the Poisson-Fermi equation in electrolytes

    NASA Astrophysics Data System (ADS)

    Liu, Jinn-Liang

    2013-08-01

    The Poisson-Fermi equation proposed by Bazant, Storey, and Kornyshev [Phys. Rev. Lett. 106 (2011) 046102] for ionic liquids is applied to and numerically studied for electrolytes and biological ion channels in three-dimensional space. This is a fourth-order nonlinear PDE that deals with both steric and correlation effects of all ions and solvent molecules involved in a model system. The Fermi distribution follows from classical lattice models of configurational entropy of finite size ions and solvent molecules and hence prevents the long and outstanding problem of unphysical divergence predicted by the Gouy-Chapman model at large potentials due to the Boltzmann distribution of point charges. The equation reduces to Poisson-Boltzmann if the correlation length vanishes. A simplified matched interface and boundary method exhibiting optimal convergence is first developed for this equation by using a gramicidin A channel model that illustrates challenging issues associated with the geometric singularities of molecular surfaces of channel proteins in realistic 3D simulations. Various numerical methods then follow to tackle a range of numerical problems concerning the fourth-order term, nonlinearity, stability, efficiency, and effectiveness. The most significant feature of the Poisson-Fermi equation, namely, its inclusion of steric and correlation effects, is demonstrated by showing good agreement with Monte Carlo simulation data for a charged wall model and an L type calcium channel model.

  15. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  16. Invariant tori for a class of nonlinear evolution equations

    SciTech Connect

    Kolesov, A Yu; Rozov, N Kh

    2013-06-30

    The paper looks at quite a wide class of nonlinear evolution equations in a Banach space, including the typical boundary value problems for the main wave equations in mathematical physics (the telegraph equation, the equation of a vibrating beam, various equations from the elastic stability and so on). For this class of equations a unified approach to the bifurcation of invariant tori of arbitrary finite dimension is put forward. Namely, the problem of the birth of such tori from the zero equilibrium is investigated under the assumption that in the stability problem for this equilibrium the situation arises close to an infinite-dimensional degeneracy. Bibliography: 28 titles.

  17. Nonlinear acoustic wave equations with fractional loss operators.

    PubMed

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations.

  18. Nonlinear Kramers equation associated with nonextensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Mendes, G. A.; Ribeiro, M. S.; Mendes, R. S.; Lenzi, E. K.; Nobre, F. D.

    2015-05-01

    Stationary and time-dependent solutions of a nonlinear Kramers equation, as well as its associated nonlinear Fokker-Planck equations, are investigated within the context of Tsallis nonextensive statistical mechanics. Since no general analytical time-dependent solutions are found for such a nonlinear Kramers equation, an ansatz is considered and the corresponding asymptotic behavior is studied and compared with those known for the standard linear Kramers equation. The H-theorem is analyzed for this equation and its connection with Tsallis entropy is investigated. An application is discussed, namely the motion of Hydra cells in two-dimensional cellular aggregates, for which previous measurements have verified q -Gaussian distributions for velocity components and superdiffusion. The present analysis is in quantitative agreement with these experimental results.

  19. Lattice Boltzmann model for generalized nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Lai, Huilin; Ma, Changfeng

    2011-10-01

    In this paper, a lattice Boltzmann model is developed to solve a class of the nonlinear wave equations. Through selecting equilibrium distribution function and an amending function properly, the governing evolution equation can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. We validate the algorithm on some problems where analytic solutions are available, including the second-order telegraph equation, the nonlinear Klein-Gordon equation, and the damped, driven sine-Gordon equation. It is found that the numerical results agree well with the analytic solutions, which indicates that the present algorithm is very effective and can be used to solve more general nonlinear problems.

  20. Solutions to Class of Linear and Nonlinear Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Emad A.-B.; Hassan, Gamal F.

    2016-02-01

    In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional KdV equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the (3+1)-space-time fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.

  1. Linear integral transformations and hierarchies of integrable nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Nijhoff, Frank W.

    1988-07-01

    Integrable hierarchies of nonlinear evolution equations are investigated on the basis of linear integral equations. These are (Riemann-Hilbert type of) integral transformations which leave invariant an infinite sequence of ordinary differential matrix equations of increasing order in an (indefinite) parameter k. The potential matrices in these equations obey a set of nonlinear recursion relations, leading to a heirarchy of nonlinear partial differential equations. In decreasing order the same equations give rise to a “reciprocal” hierarchy, associated with Heisenberg ferromagnet type of equations. Central in the treatment is an embedding of the hierarchy into an infinite-matrix structure, which is constructed on the basis of the integral equations. In terms of this infinite-matrix structure the equations governing the hierarchies become quite simple. Furthermore, it leads in a straightforward way to various generalizations, such as to other types of linear spectral problems, multicomponent system and lattice equations. Generalizations to equations associated with noncommuting flows follow as a direct consequence of the treatment. Finally, some results on conserved densities and the Hamiltonian structure are briefly discussed.

  2. Mediating role of multivalent cations in DNA electrostatics: an epsilon-modified Poisson-Boltzmann study of B-DNA-B-DNA interactions in mixture of NaCl and MgCl2 solutions.

    PubMed

    Gavryushov, Sergei

    2009-02-19

    Potentials of mean force acting between two ions in SPC/E water have been determined via molecular dynamics simulations using the spherical cavity approach ( J. Phys. Chem. B 2006 , 110 , 10878 ). The potentials were obtained for Me(2+)-Me(+) pairs, where Me(2+) means cations Mg(2+) and Ca(2+) and Me(+) denotes monovalent ions Li(+), Na(+), and K(+). The hard-core interaction distance for effective Me(2+)-Me(+) potentials appears to be of about 5 A that looks like a sum of the effective radii of a Me(2+) ion (3 A) and of an alkali metal ion Me(+) (about 2 A). These ion-ion interaction parameters were used in the epsilon-Modified Poisson-Boltzmann (epsilon-MPB) calculations ( J. Phys. Chem. B 2007 , 111 , 5264 ) of ionic distributions around DNA generalized for the arbitrary mixture of different ion species. Ionic distributions around an all-atom geometry model of B-DNA in solution of a mixture of NaCl and MgCl(2) were obtained. It was found that even a small fraction of ions Mg(2+) led to sharp condensation of Mg(2+) near the phosphate groups of DNA due to polarization deficiency of cluster [Mg(H(2)O)(6)](2+) in an external field. The epsilon-MPB calculations of the B-DNA-B-DNA interaction energies suggest that adding 1 mM of Mg(2+) to 50 mM solution of NaCl notably affects the force acting between the two macromolecules. Being compared to Poisson-Boltzmann results and to MPB calculations for the primitive model of ions, the epsilon-MPB results also indicate an important contribution of dielectric saturation effects to the mediating role of divalent cations in the DNA-DNA interaction energies. PMID:19199702

  3. Derivation of an applied nonlinear Schroedinger equation

    SciTech Connect

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  4. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  5. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  6. Nonlinear flap-lag axial equations of a rotating beam

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  7. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  8. The Jeffcott equations in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Zalik, R. A.

    1987-01-01

    The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.

  9. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  10. Generalized nonlinear Proca equation and its free-particle solutions

    NASA Astrophysics Data System (ADS)

    Nobre, F. D.; Plastino, A. R.

    2016-06-01

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ ^{μ }(ěc {x},t), involves an additional field Φ ^{μ }(ěc {x},t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2 = p2c2 + m2c4 for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.

  11. An iterative method for systems of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1989-01-01

    An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.

  12. Nonlinear Resonance and Duffing's Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2006-01-01

    This note discusses the boundary in the frequency--amplitude plane for boundedness of solutions to the forced spring Duffing type equation. For fixed initial conditions and fixed parameter [epsilon] results are reported of a systematic numerical investigation on the global stability of solutions to the initial value problem as the parameters F and…

  13. Nonlinear Resonance and Duffing's Spring Equation II

    ERIC Educational Resources Information Center

    Fay, T. H.; Joubert, Stephan V.

    2007-01-01

    The paper discusses the boundary in the frequency-amplitude plane for boundedness of solutions to the forced spring Duffing type equation x[umlaut] + x + [epsilon]x[cubed] = F cos[omega]t. For fixed initial conditions and for representative fixed values of the parameter [epsilon], the results are reported of a systematic numerical investigation…

  14. A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; San, Sait

    2016-05-01

    In this article, we established abundant local conservation laws to some nonlinear evolution equations by a new combined approach, which is a union of multiplier and Ibragimov's new conservation theorem method. One can conclude that the solutions of the adjoint equations corresponding to the new conservation theorem can be obtained via multiplier functions. Many new families of conservation laws of the Pochammer-Chree (PC) equation and the Kaup-Boussinesq type of coupled KdV system are successfully obtained. The combined method presents a wider applicability for handling the conservation laws of nonlinear wave equations. The conserved vectors obtained here can be important for the explanation of some practical physical problems, reductions, and solutions of the underlying equations.

  15. Evolution equation for non-linear cosmological perturbations

    SciTech Connect

    Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-11-01

    We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.

  16. Exact solutions for two nonlinear wave equations with nonlinear terms of any order

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Li, Biao; Zhang, Hongqing

    2005-03-01

    In this paper, based on a variable-coefficient balancing-act method, by means of an appropriate transformation and with the help of Mathematica, we obtain some new types of solitary-wave solutions to the generalized Benjamin-Bona-Mahony (BBM) equation and the generalized Burgers-Fisher (BF) equation with nonlinear terms of any order. These solutions fully cover the various solitary waves of BBM equation and BF equation previously reported.

  17. Transport equations for subdiffusion with nonlinear particle interaction.

    PubMed

    Straka, P; Fedotov, S

    2015-02-01

    We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.

  18. Biological multi-rogue waves in discrete nonlinear Schrödinger equation with saturable nonlinearities

    NASA Astrophysics Data System (ADS)

    Tchinang Tchameu, J. D.; Togueu Motcheyo, A. B.; Tchawoua, C.

    2016-09-01

    The discrete multi-rogue waves (DMRW) as solution of the discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearities is studied numerically. These biological rogue waves represent the complex probability amplitude of finding an amide-I vibrational quantum at a site. We observe that the growth in the higher order saturable nonlinearity implies the formation of DMRW including an increase in the short-living DMRW and a decrease in amplitude of the long-living DMRW.

  19. Quenching phenomena for second-order nonlinear parabolic equation with nonlinear source

    NASA Astrophysics Data System (ADS)

    Mingyou, Zhang; Huichao, Xu; Runzhang, Xu

    2012-09-01

    In this paper, we investigate the quenching phenomena of the Cauchy problem for the second-order nonlinear parabolic equation on unbounded domain. It is shown that the solution quenches in finite time under some assumptions on the exponents and the initial data. Our main tools are comparison principle and maximum principle. We extend the result to the case of more generally nonlinear absorption.

  20. Cylindrical nonlinear Schroedinger equation versus cylindrical Korteweg-de Vries equation

    SciTech Connect

    Fedele, Renato; De Nicola, Sergio; Grecu, Dan; Visinescu, Anca; Shukla, Padma K.

    2008-10-15

    A correspondence between the family of cylindrical nonlinear Schroedinger (cNLS) equations and the one of cylindrical Korteweg-de Vries (cKdV) equations is constructed. It associates non stationary solutions of the first family with the ones of the second family. This is done by using a correspondence, recently found, between the families of generalized NLS equation and generalized KdV equation, and their solutions in the form of travelling waves, respectively. In particular, non-stationary soliton-like solutions of the cNLS equation can be associated with non-stationary soliton-like solutions of cKdV equation.

  1. On the Dirichlet problem for a nonlinear elliptic equation

    NASA Astrophysics Data System (ADS)

    Egorov, Yu V.

    2015-04-01

    We prove the existence of an infinite set of solutions to the Dirichlet problem for a nonlinear elliptic equation of the second order. Such a problem for a nonlinear elliptic equation with Laplace operator was studied earlier by Krasnosel'skii, Bahri, Berestycki, Lions, Rabinowitz, Struwe and others. We study the spectrum of this problem and prove the weak convergence to 0 of the sequence of normed eigenfunctions. Moreover, we obtain some estimates for the 'Fourier coefficients' of functions in W^1p,0(Ω). This allows us to improve the preceding results. Bibliography: 8 titles.

  2. Cosmological post-Newtonian equations from nonlinear perturbation theory

    SciTech Connect

    Noh, Hyerim; Hwang, Jai-chan E-mail: jchan@knu.ac.kr

    2013-08-01

    We derive the basic equations of the cosmological first-order post-Newtonian approximation from the recently formulated fully nonlinear and exact cosmological perturbation theory in Einstein's gravity. Apparently the latter, being exact, should include the former, and here we use this fact as a new derivation of the former. The complete sets of equations in both approaches are presented without fixing the temporal gauge conditions so that we can use the gauge choice as an advantage. Comparisons between the two approaches are made. Both are potentially important in handling relativistic aspects of nonlinear processes occurring in cosmological structure formation. We consider an ideal fluid and include the cosmological constant.

  3. Blow-up of the solution of a nonlinear system of equations with positive energy

    NASA Astrophysics Data System (ADS)

    Korpusov, M. O.

    2012-06-01

    We consider the Dirichlet problem for a nonlinear system of equations, continuing our study of nonlinear hyperbolic equations and systems of equations with an arbitrarily large positive energy. We use a modified Levine method to prove the blow-up.

  4. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  5. Conservation laws of inviscid Burgers equation with nonlinear damping

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim

    2014-06-01

    In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).

  6. Quenching phenomena for fourth-order nonlinear parabolic equations

    NASA Astrophysics Data System (ADS)

    Yi, Niu; Xiaotong, Qiu; Runzhang, Xu

    2012-09-01

    In this paper, we investigate the quenching phenomena of the initial boundary value problem for the fourth-order nonlinear parabolic equation in bounded domain. By some assumptions on the exponents and initial data for a class of equations with the general source term, we not only obtain the quenching phenomena in finite time but also estimate the quenching time. Our main tools are maximum principle, comparison principle and eigenfunction method.

  7. The chaotic effects in a nonlinear QCD evolution equation

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Shen, Zhenqi; Ruan, Jianhong

    2016-10-01

    The corrections of gluon fusion to the DGLAP and BFKL equations are discussed in a united partonic framework. The resulting nonlinear evolution equations are the well-known GLR-MQ-ZRS equation and a new evolution equation. Using the available saturation models as input, we find that the new evolution equation has the chaos solution with positive Lyapunov exponents in the perturbative range. We predict a new kind of shadowing caused by chaos, which blocks the QCD evolution in a critical small x range. The blocking effect in the evolution equation may explain the Abelian gluon assumption and even influence our expectations to the projected Large Hadron Electron Collider (LHeC), Very Large Hadron Collider (VLHC) and the upgrade (CppC) in a circular e+e- collider (SppC).

  8. He's iteration formulation for solving nonlinear algebraic equations

    NASA Astrophysics Data System (ADS)

    Qian, W.-X.; Ye, Y.-H.; Chen, J.; Mo, L.-F.

    2008-02-01

    Newton iteration method is sensitive to initial guess and its slope. To overcome the shortcoming, He's iteration method is used to solve nonlinear algebraic equations where Newton iteration method becomes invalid. Some examples are given, showing that the method is effective.

  9. An Efficient Numerical Approach for Nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin; Vedula, Prakash

    2009-03-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.

  10. Solutions to Some Nonlinear Equations from Nonmetric Data.

    ERIC Educational Resources Information Center

    Rule, Stanley J.

    1979-01-01

    A method to provide estimates of parameters of specified nonlinear equations from ordinal data generated from a crossed design is presented. The statistical basis for the method, called NOPE (nonmetric parameter estimation), as well as examples using artifical data, are presented. (Author/JKS)

  11. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  12. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  13. Painleve analysis for a nonlinear Schroedinger equation in three dimensions

    SciTech Connect

    Chowdhury, A.R.; Chanda, P.K.

    1987-09-01

    A Painleve analysis is performed for the nonlinear Schroedinger equation in (2 + 1) dimensions following the methodology of Weiss et al. simplified in the sense of Kruskal. At least for one branch it is found that the required number of arbitrary functions (as demanded by the Cauchy-Kovalevskaya theorem) exists, signalling complete integrability.

  14. Forced oscillations of nonlinear damped equation of suspended string

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaru; Nagai, Tohru; Matsukane, Katsuya

    2008-06-01

    We shall study the existence of time-periodic solutions of nonlinear damped equation of suspended string to which a periodic nonlinear force works. We shall be conterned with weak, strong and classical time-periodic solutions and also the regularity of the solutions. To formulate our results, we shall take suitable weighted Sobolev-type spaces introduced by [M. Yamaguchi, Almost periodic oscillations of suspended string under quasiperiodic linear force, J. Math. Anal. Appl. 303 (2) (2005) 643-660; M. Yamaguchi, Infinitely many time-periodic solutions of nonlinear equation of suspended string, Funkcial. Ekvac., in press]. We shall study properties of the function spaces and show inequalities on the function spaces. To show our results we shall apply the Schauder fixed point theorem and the fixed point continuation theorem in the function spaces.

  15. A nonlinear wave equation in nonadiabatic flame propagation

    SciTech Connect

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-06-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.

  16. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    NASA Astrophysics Data System (ADS)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  17. A new perturbative approach to nonlinear partial differential equations

    SciTech Connect

    Bender, C.M.; Boettcher, S. ); Milton, K.A. )

    1991-11-01

    This paper shows how to solve some nonlinear wave equations as perturbation expansions in powers of a parameter that expresses the degree of nonlinearity. For the case of the Burgers equation {ital u}{sub {ital t}}+{ital uu}{sub {ital x}}={ital u}{sub {ital xx}}, the general nonlinear equation {ital u}{sub {ital t}}+{ital u}{sup {delta}}{ital u}{sub {ital x}}={ital u}{sub {ital xx}} is considered and expanded in powers of {delta}. The coefficients of the {delta} series to sixth order in powers of {delta} is determined and Pade summation is used to evaluate the perturbation series for large values of {delta}. The numerical results are accurate and the method is very general; it applies to other well-studied partial differential equations such as the Korteweg--de Vries equation, {ital u}{sub {ital t}}+{ital uu}{sub {ital x}} ={ital u}{sub {ital xxx}}.

  18. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  19. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  20. Numerical solution of control problems governed by nonlinear differential equations

    SciTech Connect

    Heinkenschloss, M.

    1994-12-31

    In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.

  1. Multi-soliton rational solutions for some nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Osman, Mohamed S.

    2016-01-01

    The Korteweg-de Vries equation (KdV) and the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system (NNV) are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially) integrable equations. Compared with Hirota's method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.

  2. Generalized creation and annihilation operators via complex nonlinear Riccati equations

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar

    2013-06-01

    Based on Gaussian wave packet solutions of the time-dependent Schrödinger equation, a generalization of the conventional creation and annihilation operators and the corresponding coherent states can be obtained. This generalization includes systems where also the width of the coherent states is time-dependent as they occur for harmonic oscillators with time-dependent frequency or systems in contact with a dissipative environment. The key point is the replacement of the frequency ω0 that occurs in the usual definition of the creation/annihilation operator by a complex time-dependent function that fulfils a nonlinear Riccati equation. This equation and its solutions depend on the system under consideration and on the (complex) initial conditions. Formal similarities also exist with supersymmetric quantum mechanics. The generalized creation and annihilation operators also allow to construct exact analytic solutions of the free motion Schrödinger equation in terms of Hermite polynomials with time-dependent variable.

  3. Nonzero solutions of nonlinear integral equations modeling infectious disease

    SciTech Connect

    Williams, L.R.; Leggett, R.W.

    1982-01-01

    Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.

  4. Solving nonlinear evolution equation system using two different methods

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  5. Unitary qubit extremely parallelized algorithms for coupled nonlinear Schrodinger equations

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Flint, Chris; Vahala, George; Vahala, Linda; Yepez, Jeffrey; Soe, Min

    2015-11-01

    The nonlinear Schrodinger equation (NLS) is a ubiquitous equation occurring in plasma physics, nonlinear optics and in Bose Einstein condensates. Viewed from the BEC standpoint of phase transitions, the wave function is the order parameter and topological defects in that manifold are simply the vortices, which for a scalar NLS have quantized circulation. In multi-species NLS the topological nature of the vortices are radically different with some classes of vortices no longer having quantized circulation as in classical turbulence. Moreover, some of the vortex equivalence classes need no longer be Abelian. This strongly effects the permitted vortex reconnections. The effect of these structures on the spectral properties of the ensuing turbulence will be investigated. Our 3D algorithm is based on a novel unitary qubit lattice scheme that is ideally parallelized - tested up to 780 000 cores on Mira. This scheme is mesoscopic (like lattice Boltzmann), but fully unitary (unlike LB). Supported by NSF, DoD.

  6. Numerical study of fractional nonlinear Schrödinger equations

    PubMed Central

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  7. The exotic conformal Galilei algebra and nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Cherniha, Roman; Henkel, Malte

    2010-09-01

    The conformal Galilei algebra (CGA) and the exotic conformal Galilei algebra (ECGA) are applied to construct partial differential equations (PDEs) and systems of PDEs, which admit these algebras. We show that there are no single second-order PDEs invariant under the CGA but systems of PDEs can admit this algebra. Moreover, a wide class of nonlinear PDEs exists, which are conditionally invariant under CGA. It is further shown that there are systems of non-linear PDEs admitting ECGA with the realisation obtained very recently in [D. Martelli and Y. Tachikawa, arXiv:0903.5184v2 [hep-th] (2009)]. Moreover, wide classes of non-linear systems, invariant under two different 10-dimensional subalgebras of ECGA are explicitly constructed and an example with possible physical interpretation is presented.

  8. Parallel iterative methods for sparse linear and nonlinear equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.

  9. Fast neural solution of a nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.

  10. Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Veeresha, B. M.; Sen, A.; Kaw, P. K.

    2008-09-07

    A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.

  11. Fast Neural Solution Of A Nonlinear Wave Equation

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Toomarian, Nikzad

    1996-01-01

    Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).

  12. Dispersion relation equation preserving FDTD method for nonlinear cubic Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Sheu, Tony W. H.; Le Lin

    2015-10-01

    In this study we aim to solve the cubic nonlinear Schrödinger (CNLS) equation by the method of fractional steps. Over a time step from tn to tn+1, the linear part of the Schrödinger equation is solved firstly through four time integration steps. In this part of the simulation, the explicit symplectic scheme of fourth order accuracy is adopted to approximate the time derivative term. The second-order spatial derivative term in the linear Schrödinger equation is approximated by centered scheme. The resulting symplectic and space centered difference scheme renders an optimized numerical dispersion relation equation. In the second part of the simulation, the solution of the nonlinear equation is computed exactly thanks to the embedded invariant nature within each time increment. The proposed semi-discretized difference scheme underlying the modified equation analysis of second kind and the method of dispersion error minimization has been assessed in terms of the spatial modified wavenumber or the temporal angular frequency resolution. Several problems have been solved to show that application of this new finite difference scheme for the calculation of one- and two-dimensional Schrödinger equations can deemed conserve Hamiltonian quantities and preserve dispersion relation equation (DRE).

  13. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Lu, Bin

    2012-06-01

    In this Letter, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Bäcklund transformation of fractional Riccati equation are employed for constructing the exact solutions of nonlinear fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations.

  14. Improved algorithm for solving nonlinear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  15. Improved algorithm for solving nonlinear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  16. The large nonlinearity scale limit of an information-theoretically motivated nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Nguyen, L.-H.; Tan, H.-S.; Parwani, R. R.

    2008-08-01

    A nonlinear Schrodinger equation, that had been obtained within the context of the maximum uncertainty principle, has the form of a difference-differential equation and exhibits some interesting properties. Here we discuss that equation in the regime where the nonlinearity length scale is large compared to the deBroglie wavelength; just as in the perturbative regime, the equation again displays some universality. We also briefly discuss stationary solutions to a naturally induced discretisation of that equation.

  17. Generalized symmetry classifications, integrable properties and exact solutions to the general nonlinear diffusion equations

    NASA Astrophysics Data System (ADS)

    Liu, Hanze

    2016-07-01

    In this paper, the combination of generalized symmetry classification and recursion operator method is developed for dealing with nonlinear diffusion equations (NLDEs). Through the combination approach, all of the second and third-order generalized symmetries of the general nonlinear diffusion equation are obtained. As its special case, the recursion operators of the nonlinear heat conduction equation are constructed, and the integrable properties of the nonlinear equations are considered. Furthermore, the exact and explicit solutions generated from the generalized symmetries are investigated.

  18. Fast numerical treatment of nonlinear wave equations by spectral methods

    SciTech Connect

    Skjaeraasen, Olaf; Robinson, P. A.; Newman, D. L.

    2011-02-15

    A method is presented that accelerates spectral methods for numerical solution of a broad class of nonlinear partial differential wave equations that are first order in time and that arise in plasma wave theory. The approach involves exact analytical treatment of the linear part of the wave evolution including growth and damping as well as dispersion. After introducing the method for general scalar and vector equations, we discuss and illustrate it in more detail in the context of the coupling of high- and low-frequency plasma wave modes, as modeled by the electrostatic and electromagnetic Zakharov equations in multiple dimensions. For computational efficiency, the method uses eigenvector decomposition, which is particularly advantageous when the wave damping is mode-dependent and anisotropic in wavenumber space. In this context, it is shown that the method can significantly speed up numerical integration relative to standard spectral or finite difference methods by allowing much longer time steps, especially in the limit in which the nonlinear Schroedinger equation applies.

  19. Traveling kinks in cubic nonlinear Ginzburg-Landau equations.

    PubMed

    Rosu, H C; Cornejo-Pérez, O; Ojeda-May, P

    2012-03-01

    Nonlinear cubic Euler-Lagrange equations of motion in the traveling variable are usually derived from Ginzburg-Landau free energy functionals frequently encountered in several fields of physics. Many authors considered in the past damped versions of such equations, with the damping term added by hand simulating the friction due to the environment. It is known that even in this damped case kink solutions can exist. By means of a factorization method, we provide analytic formulas for several possible kink solutions of such equations of motion in the undriven and constant field driven cases, including the recently introduced Riccati parameter kinks, which were not considered previously in such a context. The latter parameter controls the delay of the switching stage of the kinks. The delay is caused by antikink components that are introduced in the structure of the solution through this parameter. PMID:22587214

  20. Equations for Nonlinear MHD Convection in Shearless Magnetic Systems

    SciTech Connect

    Pastukhov, V.P.

    2005-07-15

    A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport processes and the establishment of the self-consistent plasma temperature and density profiles for a large class of axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow motions.

  1. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    SciTech Connect

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.

  2. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.

    PubMed

    Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc

    2013-11-01

    This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown. PMID:24180802

  3. On the nonlinear Schrodinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Emily

    This thesis is concerned with the study of the nonlinear Schrodinger (NLS) equation, which is important both from a physical and a mathematical point of view. In physics, it is a universal model for the evolutions of weakly nonlinear dispersive wave trains. As such it appears in many physical contexts, such as optics, acoustics, plasmas, biology, etc. Mathematically, it is a completely integrable, infinite-dimensional Hamiltonian system, and possesses a surprisingly rich structure. This equation has been extensively studied in the last 50 years, but many important questions are still open. In particular, this thesis contains the following original contributions: NLS with real spectral singularities. First, the focusing NLS equation is considered with decaying initial conditions. This situation has been studied extensively before, but the assumption is almost always made that the scattering coefficients have no real zeros, and thus the scattering data had no poles on the real axis. However, it is easy to produce example potentials with this behavior. For example, by modifying parameters in Satsuma-Yajima's sech potential, or by choosing a "box" potential with a particular area, one can obtain corresponding scattering entries with real zeros. The inverse scattering transform can be implemented by formulating the modified Jost eigenfunctions and the scattering data as a Riemann Hilbert problem. But it can also be formulated by using integral kernels. Doing so produces the Gelf'and-Levitan-Marchenko (GLM) equations. Solving these integral equations requires integrating an expression containing the reflection coefficient over the real axis. Under the usual assumption, the reflection coefficient has no poles on the real axis. In general, the integration contour cannot be deformed to avoid poles, because the reflection coefficient may not admit analytic extension off the real axis. Here it is shown that the GLM equations may be (uniquely) solved using a principal value

  4. Vortex Solutions of the Defocusing Discrete Nonlinear Schroedinger Equation

    SciTech Connect

    Cuevas, J.; Kevrekidis, P. G.; Law, K. J. H.

    2009-09-09

    We consider the existence, stability and dynamical evolution of dark vortex states in the two-dimensional defocusing DNLS equation, a model of interest both to atomic physics and to nonlinear optics. Our considerations are chiefly based on initializing such vortex configurations at the anti-continuum limit of zero coupling between adjacent sites, and continuing them to finite values of the coupling. Discrete defocusing vortices become unstable past a critical coupling strength and, subsequently feature a cascade of alternating stabilization-destabilization windows for any finite lattice.

  5. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    SciTech Connect

    Khare, Avinash; Saxena, Avadh

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.

  6. A system of nonlinear algebraic equations connected with the multisoliton solution of the Benjamin-Ono equation

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2004-02-01

    The multisoliton solution of the Benjamin-Ono equation is derived from the system of nonlinear algebraic equations. This finding is unexpected from the scheme of the inverse scattering transform method, which constructs the multisoliton solution through the system of linear algebraic equations. The anlaysis developed here is also applied to the rational multisoliton solution of the Kadomtsev-Petviashvili equation.

  7. New variable separation solutions for the generalized nonlinear diffusion equations

    NASA Astrophysics Data System (ADS)

    Fei-Yu, Ji; Shun-Li, Zhang

    2016-03-01

    The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u,ux)uxx + B(u,ux) is studied by using the conditional Lie-Bäcklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie-Bäcklund symmetries, are characterized. To construct functionally generalized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11371293, 11401458, and 11501438), the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426169), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1014).

  8. Modifications of weighted Monte Carlo algorithms for nonlinear kinetic equations

    NASA Astrophysics Data System (ADS)

    Korotchenko, M. A.; Mikhailov, G. A.; Rogasinsky, S. V.

    2007-12-01

    Test problems for the nonlinear Boltzmann and Smoluchowski kinetic equations are used to analyze the efficiency of various versions of weighted importance modeling as applied to the evolution of multiparticle ensembles. For coagulation problems, a considerable gain in computational costs is achieved via the approximate importance modeling of the “free path” of the ensemble combined with the importance modeling of the index of a pair of interacting particles. A weighted modification of the modeling of the initial velocity distribution was found to be the most efficient for model solutions to the Boltzmann equation. The technique developed can be useful as applied to real-life coagulation and relaxation problems for which the model problems considered give approximate solutions.

  9. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589

  10. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1982-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.

  11. Analytic lyapunov exponents in a classical nonlinear field equation

    PubMed

    Franzosi; Gatto; Pettini; Pettini

    2000-04-01

    It is shown that the nonlinear wave equation partial differential(2)(t)straight phi- partial differential2xstraight phi-&mgr;(0) partial differential(x)( partial differential(x)straight phi)(3)=0, which is the continuum limit of the Fermi-Pasta-Ulam beta model, has a positive Lyapunov exponent lambda(1), whose analytic energy dependence is given. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependence of lambda(1) for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We also discuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in the dynamical description.

  12. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  13. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  14. Nonlinear periodic waves solutions of the nonlinear self-dual network equations

    SciTech Connect

    Laptev, Denis V. Bogdan, Mikhail M.

    2014-04-15

    The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.

  15. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-15

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  16. New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Yao, Ruo-Xia; Wang, Wei; Chen, Ting-Hua

    2014-11-01

    Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.

  17. Bright and dark optical solitons in the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity

    NASA Astrophysics Data System (ADS)

    Zhang, Jiefang; Dai, Chaoqing

    2005-05-01

    By the use of an auxiliary equation, we find bright and dark optical soliton and other soliton solutions for the higher-order nonlinear Schrodinger equation (NLSE) with fourth-order dispersion (FOD), cubic-quintic terms, self-steepening, and nonlinear dispersive terms. Moreover, we give the formation condition of the bright and dark solitons for this higher-order NLSE.

  18. Existence of dark solitons in a class of stationary nonlinear Schroedinger equations with periodically modulated nonlinearity and periodic asymptotics

    SciTech Connect

    Belmonte-Beitia, J.; Cuevas, J.

    2011-03-15

    In this paper, we give a proof of the existence of stationary dark soliton solutions or heteroclinic orbits of nonlinear equations of Schroedinger type with periodic inhomogeneous nonlinearity. The result is illustrated with examples of dark solitons for cubic and photorefractive nonlinearities.

  19. Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains.

    PubMed

    Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei

    2014-09-01

    In this paper, we generalize the unified approach proposed in Zhang et al. [J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008)] to design the nonlinear local absorbing boundary conditions (LABCs) for the nonlinear Schrödinger equation with wave operator on unbounded domains. In fact, based on the methodology underlying the unified approach, we first split the original equation into two parts-the linear equation and the nonlinear equation-then achieve a one-way operator to approximate the linear equation to make the wave outgoing, and finally combine the one-way operator with the nonlinear equation to achieve the nonlinear LABCs. The stability of the equation with the nonlinear LABCs is also analyzed by introducing some auxiliary variables, and some numerical examples are presented to verify the accuracy and effectiveness of our proposed method.

  20. An effective analytic approach for solving nonlinear fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Ma, Junchi; Zhang, Xiaolong; Liang, Songxin

    2016-08-01

    Nonlinear fractional differential equations are widely used for modelling problems in applied mathematics. A new analytic approach with two parameters c1 and c2 is first proposed for solving nonlinear fractional partial differential equations. These parameters are used to improve the accuracy of the resulting series approximations. It turns out that much more accurate series approximations are obtained by choosing proper values of c1 and c2. To demonstrate the applicability and effectiveness of the new method, two typical fractional partial differential equations, the nonlinear gas dynamics equation and the nonlinear KdV-Burgers equation, are solved.

  1. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    SciTech Connect

    Hahm, T. S.; Wang, Lu; Madsen, J.

    2008-08-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρi<< ρθ¡ ~ LE ~ Lp << R (here ρi is the thermal ion Larmor radius and ρθ¡ = B/Bθ] ρi), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρi ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τi ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  2. Traveling wave solutions of density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method

    NASA Astrophysics Data System (ADS)

    Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed

    2013-11-01

    Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.

  3. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  4. Exact Multisoliton Solutions of General Nonlinear Schrödinger Equation with Derivative

    PubMed Central

    Li, Qi; Duan, Qiu-yuan; Zhang, Jian-bing

    2014-01-01

    Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions. PMID:25013858

  5. Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.

    PubMed

    Shao, Sihong; Quintero, Niurka R; Mertens, Franz G; Cooper, Fred; Khare, Avinash; Saxena, Avadh

    2014-09-01

    We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g(2)/κ+1(̅ΨΨ)(κ+1) and with mass m. Using the exact analytic form for rest frame solitary waves of the form Ψ(x,t)=ψ(x)e(-iωt) for arbitrary κ, we discuss the validity of various approaches to understanding stability that were successful for the nonlinear Schrödinger equation. In particular we study the validity of a version of Derrick's theorem and the criterion of Bogolubsky as well as the Vakhitov-Kolokolov criterion, and find that these criteria yield inconsistent results. Therefore, we study the stability by numerical simulations using a recently developed fourth-order operator splitting integration method. For different ranges of κ we map out the stability regimes in ω. We find that all stable nonlinear Dirac solitary waves have a one-hump profile, but not all one-hump waves are stable, while all waves with two humps are unstable. We also find that the time t(c), it takes for the instability to set in, is an exponentially increasing function of ω and t(c) decreases monotonically with increasing κ. PMID:25314512

  6. Code System for Solving Nonlinear Systems of Equations via the Gauss-Newton Method.

    1981-08-31

    Version 00 REGN solves nonlinear systems of numerical equations in difficult cases: high nonlinearity, poor initial approximations, a large number of unknowns, ill condition or degeneracy of a problem.

  7. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  8. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  9. Numerical Simulations of Light Bullets, Using the Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  10. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations.

    PubMed

    Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio

    2014-10-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.

  11. Nongauge bright soliton of the nonlinear Schrödinger (NLS) equation and a family of generalized NLS equations

    NASA Astrophysics Data System (ADS)

    Reyes, M. A.; Gutiérrez-Ruiz, D.; Mancas, S. C.; Rosu, H. C.

    2016-01-01

    We present an approach to the bright soliton solution of the nonlinear Schrödinger (NLS) equation from the standpoint of introducing a constant potential term in the equation. We discuss a “nongauge” bright soliton for which both the envelope and the phase depend only on the traveling variable. We also construct a family of generalized NLS equations with solitonic sechp solutions in the traveling variable and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations when p = 2.

  12. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  13. Canonical equations of Hamilton for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liang, Guo; Guo, Qi; Ren, Zhanmei

    2015-09-01

    We define two different systems of mathematical physics: the second order differential system (SODS) and the first order differential system (FODS). The Newton's second law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which exhibit some kind of symmetry in form and are formally different from the conventional CEH without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison- Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the generalized coordinates for the FODS, but twice the number of the generalized coordinates for the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way.

  14. A globalization procedure for solving nonlinear systems of equations

    NASA Astrophysics Data System (ADS)

    Shi, Yixun

    1996-09-01

    A new globalization procedure for solving a nonlinear system of equationsF(x)D0 is proposed based on the idea of combining Newton step and the steepest descent step WITHIN each iteration. Starting with an arbitrary initial point, the procedure converges either to a solution of the system or to a local minimizer off(x)D1/2F(x)TF(x). Each iteration is chosen to be as close to a Newton step as possible and could be the Newton step itself. Asymptotically the Newton step will be taken in each iteration and thus the convergence is quadratic. Numerical experiments yield positive results. Further generalizations of this procedure are also discussed in this paper.

  15. Standing waves for supercritical nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Dávila, Juan; del Pino, Manuel; Musso, Monica; Wei, Juncheng

    Let V(x) be a non-negative, bounded potential in R, N⩾3 and p supercritical, p>{N+2}/{N-2}. We look for positive solutions of the standing-wave nonlinear Schrödinger equation Δu-V(x)u+u=0 in R, with u(x)→0 as |x|→+∞. We prove that if V(x)=o(|) as |x|→+∞, then for N⩾4 and p>{N+1}/{N-3} this problem admits a continuum of solutions. If in addition we have, for instance, V(x)=O(|) with μ>N, then this result still holds provided that N⩾3 and p>{N+2}/{N-2}. Other conditions for solvability, involving behavior of V at ∞, are also provided.

  16. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  17. Hyperbolicity of the Nonlinear Models of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Serre, Denis

    . We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.

  18. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    SciTech Connect

    Kushner, Harold J.

    2012-08-15

    This two-part paper deals with 'foundational' issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  19. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.

  20. Nonlinear Dirac equation solitary waves in external fields.

    PubMed

    Mertens, Franz G; Quintero, Niurka R; Cooper, Fred; Khare, Avinash; Saxena, Avadh

    2012-10-01

    We consider nonlinear Dirac equations (NLDE's) in the 1+1 dimension with scalar-scalar self-interaction g2/κ+1(Ψ[over ¯]Ψ)κ+1 in the presence of various external electromagnetic fields. We find exact solutions for special external fields and we study the behavior of solitary-wave solutions to the NLDE in the presence of a wide variety of fields in a variational approximation depending on collective coordinates which allows the position, width, and phase of these waves to vary in time. We find that in this approximation the position q(t) of the center of the solitary wave obeys the usual behavior of a relativistic point particle in an external field. For time-independent external fields, we find that the energy of the solitary wave is conserved but not the momentum, which becomes a function of time. We postulate that, similarly to the nonlinear Schrödinger equation (NLSE), a sufficient dynamical condition for instability to arise is that dP(t)/dq[over ̇](t)<0. Here P(t) is the momentum of the solitary wave, and q[over ̇] is the velocity of the center of the wave in the collective coordinate approximation. We found for our choices of external potentials that we always have dP(t)/dq[over ̇](t)>0, so, when instabilities do occur, they are due to a different source. We investigate the accuracy of our variational approximation using numerical simulations of the NLDE and find that, when the forcing term is small and we are in a regime where the solitary wave is stable, that the behavior of the solutions of the collective coordinate equations agrees very well with the numerical simulations. We found that the time evolution of the collective coordinates of the solitary wave in our numerical simulations, namely the position of the average charge density and the momentum of the solitary wave, provide good indicators for when the solitary wave first becomes unstable. When these variables stop being smooth functions of time (t), then the solitary wave starts to distort

  1. Nonlinear Dirac equation solitary waves in external fields.

    PubMed

    Mertens, Franz G; Quintero, Niurka R; Cooper, Fred; Khare, Avinash; Saxena, Avadh

    2012-10-01

    We consider nonlinear Dirac equations (NLDE's) in the 1+1 dimension with scalar-scalar self-interaction g2/κ+1(Ψ[over ¯]Ψ)κ+1 in the presence of various external electromagnetic fields. We find exact solutions for special external fields and we study the behavior of solitary-wave solutions to the NLDE in the presence of a wide variety of fields in a variational approximation depending on collective coordinates which allows the position, width, and phase of these waves to vary in time. We find that in this approximation the position q(t) of the center of the solitary wave obeys the usual behavior of a relativistic point particle in an external field. For time-independent external fields, we find that the energy of the solitary wave is conserved but not the momentum, which becomes a function of time. We postulate that, similarly to the nonlinear Schrödinger equation (NLSE), a sufficient dynamical condition for instability to arise is that dP(t)/dq[over ̇](t)<0. Here P(t) is the momentum of the solitary wave, and q[over ̇] is the velocity of the center of the wave in the collective coordinate approximation. We found for our choices of external potentials that we always have dP(t)/dq[over ̇](t)>0, so, when instabilities do occur, they are due to a different source. We investigate the accuracy of our variational approximation using numerical simulations of the NLDE and find that, when the forcing term is small and we are in a regime where the solitary wave is stable, that the behavior of the solutions of the collective coordinate equations agrees very well with the numerical simulations. We found that the time evolution of the collective coordinates of the solitary wave in our numerical simulations, namely the position of the average charge density and the momentum of the solitary wave, provide good indicators for when the solitary wave first becomes unstable. When these variables stop being smooth functions of time (t), then the solitary wave starts to distort

  2. Finite time blowup of solutions to the nonlinear Schrödinger equation without gauge invariance

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kazumasa; Ozawa, Tohru

    2016-08-01

    A lifespan estimate and a condition of the initial data for finite time blowup for the nonlinear Schrödinger equation are presented from a view point of ordinary differential equation (ODE) mechanism.

  3. ON NONLINEAR EQUATIONS OF THE FORM F(x,\\, u,\\, Du,\\, \\Delta u) = 0

    NASA Astrophysics Data System (ADS)

    Soltanov, K. N.

    1995-02-01

    The Dirichlet problem for equations of the form F(x,\\, u,\\, Du,\\, \\Delta u) = 0 and also the initial boundary value problem for a parabolic equation with a nonlinearity are studied.Bibliography: 11 titles.

  4. Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study

    SciTech Connect

    Zarzycki, Piotr P.; Rosso, Kevin M.

    2010-01-01

    An analysis of surface potential nonlinearity at metal oxide/electrolyte interfaces is presented. By using Grand Canonical Monte Carlo simulations of a simple lattice model of an interface, we show a correlation exists between ionic strength as well as surface site densities and the non-Nernstian response of a metal oxide electrode. We propose two approaches to deal with the 0-nonlinearity: one based on perturbative expansion of the Gibbs free energy and another based on assumption of the pH-dependence of surface potential slope. The theoretical anal ysis based on our new potential form gives excellent performance at extreme pH regions, where classical formulae based on the Poisson-Boltzmann equation fail. The new formula is general and independent of any underlying assumptions. For this reason, it can be directly applied to experimental surface potential measurements, including those for individual surfaces of single crystals, as we present for data reported by Kallay and Preocanin [Kallay, Preocanin J. Colloid and Interface20 Sci. 318 (2008) 290].

  5. Hazardous Continuation Backward in Time in Nonlinear Parabolic Equations, and an Experiment in Deblurring Nonlinearly Blurred Imagery

    PubMed Central

    Carasso, Alfred S

    2013-01-01

    Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930’s, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. PMID:26401430

  6. Hazardous Continuation Backward in Time in Nonlinear Parabolic Equations, and an Experiment in Deblurring Nonlinearly Blurred Imagery.

    PubMed

    Carasso, Alfred S

    2013-01-01

    Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930's, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes.

  7. Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems

    NASA Astrophysics Data System (ADS)

    Colli, Pierluigi; Fukao, Takeshi

    2016-05-01

    An asymptotic limit of a class of Cahn-Hilliard systems is investigated to obtain a general nonlinear diffusion equation. The target diffusion equation may reproduce a number of well-known model equations: Stefan problem, porous media equation, Hele-Shaw profile, nonlinear diffusion of singular logarithmic type, nonlinear diffusion of Penrose-Fife type, fast diffusion equation and so on. Namely, by setting the suitable potential of the Cahn-Hilliard systems, all these problems can be obtained as limits of the Cahn-Hilliard related problems. Convergence results and error estimates are proved.

  8. Extreme physical information and the nonlinear wave equation

    NASA Astrophysics Data System (ADS)

    Frieden, B. R.

    1995-09-01

    The nonlinear wave equation an be derived from a principle of extreme physical information (EPI) K. This is for a scenario where a probe electron moves through a medium in a weak magnetic field. The field is caused by a probabilistic line current source. Assume that the probability current density S of the electron is approximately constant, and directed parallel to the current source. Both the source probability amplitudes (rho) and the electron probability amplitudes (phi) are unknowns (called 'modes') of the problem. The net physical information K here consists of two components: functional K1[(phi) ] due to modes (phi) and K2[(rho) ] due to modes (rho) , respectively. To form K1[(phi) ], the Fisher information functional I1[(phi) ] for the electron modes is first constructed. This is of a fixed mathematical form. Then, a unitary transformation on (phi) to a physical space is sought that leaves I1 invariant, as form J1. This is, of course, the Fourier transformation, where the transform coordinates are momenta and I1 is essentially the mean-square electron momentum. Information K1[(phi) ] is then defined as (I1 - J1). Information K2 is formed similarly. The total information K is formed as the sum of the two components K1[(phi) ] and K2[(rho) ], by the additivity of Fisher information, and is then extremized in both (phi) and (rho) . Extremizing first in (rho) gives a Taylor series in powers of (phi) n*(phi) n, which is cut off at the quadratic term. Back-substituting this into the total Lagrangian gives one that is quadratic in (phi) n*(phi) n. Now varying (phi) * gives the required cubic wave equation in (phi) .

  9. Higher-order nonlinear Schrodinger equations for simulations of surface wavetrains

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey

    2016-04-01

    Numerous recent results of numerical and laboratory simulations of waves on the water surface claim that solutions of the weakly nonlinear theory for weakly modulated waves in many cases allow a smooth generalization to the conditions of strong nonlinearity and dispersion, even when the 'envelope' is difficult to determine. The conditionally 'strongly nonlinear' high-order asymptotic equations still imply the smallness of the parameter employed in the asymptotic series. Thus at some (unknown a priori) level of nonlinearity and / or dispersion the asymptotic theory breaks down; then the higher-order corrections become useless and may even make the description worse. In this paper we use the higher-order nonlinear Schrodinger (NLS) equation, derived in [1] (the fifth-order NLS equation, or next-order beyond the classic Dysthe equation [2]), for simulations of modulated deep-water wave trains, which attain very large steepness (below or beyond the breaking limit) due to the Benjamin - Feir instability. The results are compared with fully nonlinear simulations of the potential Euler equations as well as with the weakly nonlinear theories represented by the nonlinear Schrodinger equation and the classic Dysthe equation with full linear dispersion [2]. We show that the next-order Dysthe equation can significantly improve the description of strongly nonlinear wave dynamics compared with the lower-order asymptotic models. [1] A.V. Slunyaev, A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926-941 (2005). [2] K. Trulsen, K.B. Dysthe, A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281-289 (1996).

  10. New Traveling Wave Solutions for a Class of Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Bai, Cheng-Jie; Zhao, Hong; Xu, Heng-Ying; Zhang, Xia

    The deformation mapping method is extended to solve a class of nonlinear evolution equations (NLEEs). Many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, and Jacobian elliptic function solutions, are obtained by a simple algebraic transformation relation between the solutions of the NLEEs and those of the cubic nonlinear Klein-Gordon (NKG) equation.

  11. Nonlinear self-adjointness and conservation laws for a porous medium equation with absorption

    NASA Astrophysics Data System (ADS)

    Gandarias, M. L.; Bruzón, M. S.

    2013-10-01

    We give conditions for a general porous medium equation to be nonlinear self-adjoint. By using the property of nonlinear self-adjointness we construct some conservation laws associated with classical and nonclassical generators of a porous medium equation with absorption.

  12. Soliton Theory of Two-Dimensional Lattices: The Discrete Nonlinear Schroedinger Equation

    SciTech Connect

    Arevalo, Edward

    2009-06-05

    We theoretically investigate the motion of collective excitations in the two-dimensional nonlinear Schroedinger equation with cubic nonlinearity. The form of these excitations for a broad range of parameters is derived. Their evolution and interaction is numerically studied and the modulation instability is discussed. The case of saturable nonlinearity is revisited.

  13. Analytical solutions for a nonlinear diffusion equation with convection and reaction

    NASA Astrophysics Data System (ADS)

    Valenzuela, C.; del Pino, L. A.; Curilef, S.

    2014-12-01

    Nonlinear diffusion equations with the convection and reaction terms are solved by using a power-law ansatz. This kind of equations typically appears in nonlinear problems of heat and mass transfer and flows in porous media. The solutions that we introduce in this work are analytical. At least, in the convection case, the result recovers its linear form as a special limit. In the reaction case, we define a class of nonlinearity to discuss the evolution of general solutions, we also add the Verhulst-like dynamics and global regulation. We think this method, based on this kind of ansatz, can also be applied to solve other nonlinear partial differential equations.

  14. Linear homotopy solution of nonlinear systems of equations in geodesy

    NASA Astrophysics Data System (ADS)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  15. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  16. Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations

    NASA Astrophysics Data System (ADS)

    Djordjevic, Vladan D.; Atanackovic, Teodor M.

    2008-12-01

    We analyze self-similar solutions to a nonlinear fractional diffusion equation and fractional Burgers/Korteweg-deVries equation in one spatial variable. By using Lie-group scaling transformation, we determined the similarity solutions. After the introduction of the similarity variables, both problems are reduced to ordinary nonlinear fractional differential equations. In two special cases exact solutions to the ordinary fractional differential equation, which is derived from the diffusion equation, are presented. In several other cases the ordinary fractional differential equations are solved numerically, for several values of governing parameters. In formulating the numerical procedure, we use special representation of a fractional derivative that is recently obtained.

  17. A new solution procedure for a nonlinear infinite beam equation of motion

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.

  18. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  19. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  20. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  1. Collapse of Solutions of the Nonlinear Schroedinger Equation with a Time-Dependent Nonlinearity: Application to Bose-Einstein Condensates

    SciTech Connect

    Konotop, V.V.; Pacciani, P.

    2005-06-24

    It is proven that periodically varying and sign definite nonlinearity in a general case does not prevent collapse in two-dimensional and three-dimensional nonlinear Schroedinger equations: at any oscillation frequency of the nonlinearity blowing up solutions exist. Contrary to the results known for a sign-alternating nonlinearity, an increase of the frequency of oscillations accelerates collapse. The effect is discussed from the viewpoint of scaling arguments. For the three-dimensional case a sufficient condition for the existence of collapse is rigorously established. The results are discussed in the context of the mean field theory of Bose-Einstein condensates with time-dependent scattering length.

  2. A simple and direct method for generating travelling wave solutions for nonlinear equations

    SciTech Connect

    Bazeia, D. Das, Ashok; Silva, A.

    2008-05-15

    We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.

  3. On the Stability of Self-Similar Solutions to Nonlinear Wave Equations

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Donninger, Roland; Glogić, Irfan; Huang, Min

    2016-04-01

    We consider an explicit self-similar solution to an energy-supercritical Yang-Mills equation and prove its mode stability. Based on earlier work by one of the authors, we obtain a fully rigorous proof of the nonlinear stability of the self-similar blowup profile. This is a large-data result for a supercritical wave equation. Our method is broadly applicable and provides a general approach to stability problems related to self-similar solutions of nonlinear wave equations.

  4. New solitary wave solutions of some nonlinear evolution equations with distinct physical structures

    NASA Astrophysics Data System (ADS)

    Sakthivel, Rathinasamy; Chun, Changbum

    2008-12-01

    In this paper, we obtain solitary wave solutions for some nonlinear partial differential equations. The Exp-function method is used to establish solitary wave solutions for Calogero-Bogoyavlenskii-Schiff and general modified Degasperis-Procesi and Camassa-Holm equations. The result shows that the Exp-function method yields new and more general solutions. Moreover, this method with the aid of symbolic computation provides a very effective and powerful mathematical tool for solving nonlinear evolution equations arising in mathematical physics.

  5. Deriving the New Traveling Wave Solutions for the Nonlinear Dispersive Equation, KdV-ZK Equation and Complex Coupled KdV System Using Extended Simplest Equation Method

    NASA Astrophysics Data System (ADS)

    Mohammed, K. Elboree

    2015-10-01

    In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.

  6. Hierarchies of nonlinear integrable equations and their symmetries in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Yi

    1990-11-01

    For a given nonlinear integrable equation in 2 + 1 dimensions, an approach is described to construct the hierarchies of equations and relevant Lie algebraic properties. The commutability and noncommutability of equations of the flow, their symmetries and mastersymmetries are then derived as direct results of these algebraic properties. The details for the modified Kadomtsev-Petviashvilli equation are shown as an example and the main results for the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-Katera-Sawada equation are given.

  7. On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations

    DOE PAGESBeta

    Christov, Ivan C.

    2015-08-20

    We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.

  8. Numerical approximation of a nonlinear delay-advance functional differential equation by a finite element method

    NASA Astrophysics Data System (ADS)

    Teodoro, M. F.

    2012-09-01

    We are particularly interested in the numerical solution of the functional differential equations with symmetric delay and advance. In this work, we consider a nonlinear forward-backward equation, the Fitz Hugh-Nagumo equation. It is presented a scheme which extends the algorithm introduced in [1]. A computational method using Newton's method, finite element method and method of steps is developped.

  9. Global solutions to two nonlinear perturbed equations by renormalization group method

    NASA Astrophysics Data System (ADS)

    Kai, Yue

    2016-02-01

    In this paper, according to the theory of envelope, the renormalization group (RG) method is applied to obtain the global approximate solutions to perturbed Burger's equation and perturbed KdV equation. The results show that the RG method is simple and powerful for finding global approximate solutions to nonlinear perturbed partial differential equations arising in mathematical physics.

  10. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system. PMID:26382492

  11. A note on the generation of phase plane plots on a digital computer. [for solution of nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1980-01-01

    A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.

  12. Local absorbing boundary conditions for nonlinear wave equation on unbounded domain.

    PubMed

    Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei

    2011-09-01

    The numerical solution of the nonlinear wave equation on unbounded spatial domain is considered. The artificial boundary method is introduced to reduce the nonlinear problem on unbounded spatial domain to an initial boundary value problem on a bounded domain. Using the unified approach, which is based on the operator splitting method, we construct the efficient nonlinear local absorbing boundary conditions for the nonlinear wave equation, and give the stability analysis of the resulting boundary conditions. Finally, several numerical examples are given to demonstrate the effectiveness of our method.

  13. Lump solitons in a higher-order nonlinear equation in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Estévez, P. G.; Díaz, E.; Domínguez-Adame, F.; Cerveró, Jose M.; Diez, E.

    2016-06-01

    We propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schrödinger equation to 2 +1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed.

  14. Lump solitons in a higher-order nonlinear equation in 2+1 dimensions.

    PubMed

    Estévez, P G; Díaz, E; Domínguez-Adame, F; Cerveró, Jose M; Diez, E

    2016-06-01

    We propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schrödinger equation to 2+1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed. PMID:27415266

  15. Nonlinear self-adjointness and invariant solutions of a 2D Rossby wave equation

    NASA Astrophysics Data System (ADS)

    Cimpoiasu, Rodica; Constantinescu, Radu

    2014-02-01

    The paper investigates the nonlinear self-adjointness of the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane. It is a particular form of Rossby equation which does not possess variational structure and it is studied using a recently method developed by Ibragimov. The conservation laws associated with the infinite-dimensional symmetry Lie algebra models are constructed and analyzed. Based on this Lie algebra, some classes of similarity invariant solutions with nonconstant linear and nonlinear shears are obtained. It is also shown how one of the conservation laws generates a particular wave solution of this equation.

  16. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  17. The study of nonlinear almost periodic differential equations without recourse to the H-classes of these equations

    SciTech Connect

    Slyusarchuk, V. E. E-mail: V.Ye.Slyusarchuk@NUWM.rv.ua

    2014-06-01

    The well-known theorems of Favard and Amerio on the existence of almost periodic solutions to linear and nonlinear almost periodic differential equations depend to a large extent on the H-classes and the requirement that the bounded solutions of these equations be separated. The present paper provides different conditions for the existence of almost periodic solutions. These conditions, which do not depend on the H-classes of the equations, are formulated in terms of a special functional on the set of bounded solutions of the equations under consideration. This functional is used, in particular, to test whether solutions are separated. Bibliography: 24 titles. (paper)

  18. New analytical method for solving Burgers' and nonlinear heat transfer equations and comparison with HAM

    NASA Astrophysics Data System (ADS)

    Rashidi, M. M.; Erfani, E.

    2009-09-01

    In this study, we present a numerical comparison between the differential transform method (DTM) and the homotopy analysis method (HAM) for solving Burgers' and nonlinear heat transfer problems. The first differential equation is the Burgers' equation serves as a useful model for many interesting problems in applied mathematics. The second one is the modeling equation of a straight fin with a temperature dependent thermal conductivity. In order to show the effectiveness of the DTM, the results obtained from the DTM is compared with available solutions obtained using the HAM [M.M. Rashidi, G. Domairry, S. Dinarvand, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 708-717; G. Domairry, M. Fazeli, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 489-499] and whit exact solutions. The method can easily be applied to many linear and nonlinear problems. It illustrates the validity and the great potential of the differential transform method in solving nonlinear partial differential equations. The obtained results reveal that the technique introduced here is very effective and convenient for solving nonlinear partial differential equations and nonlinear ordinary differential equations that we are found to be in good agreement with the exact solutions.

  19. The unified transform for linear, linearizable and integrable nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Fokas, A. S.; De Lillo, S.

    2014-03-01

    So-called inverse scattering provides a powerful method for analyzing the initial value problem for a large class of nonlinear evolution partial differential equations which are called integrable. In the late 1990s, the first author, motivated by inverse scattering, introduced a new method for analyzing boundary value problems. This method provides a unified treatment for linear, linearizable and integrable nonlinear partial differential equations. Here, this method, which is often referred to as the unified transform, is illustrated for the following concrete cases: the heat equation on the half-line; the nonlinear Schrödinger equation on the half-line; Burger's equation on the half-line; and Burger's equation on a moving boundary.

  20. Stationary states of extended nonlinear Schrödinger equation with a source

    NASA Astrophysics Data System (ADS)

    Borich, M. A.; Smagin, V. V.; Tankeev, A. P.

    2007-02-01

    Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.

  1. Some exact solutions of a system of nonlinear Schroedinger equations in three-dimensional space

    SciTech Connect

    Moskalyuk, S.S.

    1988-02-01

    Interactions that break the symmetry of systems of nonrelativistic Schroedinger equations but preserve their symmetry with respect to one-parameter subgroups of the Schroedinger group are described. Ansatzes for invariant solutions and the corresponding systems of reduced equations in invariant variables for Galileo-invariant Schroedinger equations are found. Exact solutions for the system of nonlinear Schroedinger equations in three-dimensional space for the generalized Hubbard model are obtained.

  2. Similarity solutions of some two-space-dimensional nonlinear wave evolution equations

    NASA Technical Reports Server (NTRS)

    Redekopp, L. G.

    1980-01-01

    Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.

  3. Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma

    SciTech Connect

    Yasmin, S.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    There are three different types of nonlinear equations, namely, Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed modified K-dV (mixed mK-dV) equations, for the nonlinear propagation of the dust ion-acoustic (DIA) waves. The effects of electron nonextensivity on DIA solitary waves propagating in a dusty plasma (containing negatively charged stationary dust, inertial ions, and nonextensive q distributed electrons) are examined by solving these nonlinear equations. The basic features of mixed mK-dV (higher order nonlinear equation) solitons are found to exist beyond the K-dV limit. The properties of mK-dV solitons are compared with those of mixed mK-dV solitons. It is found that both positive and negative solitons are obtained depending on the q (nonextensive parameter).

  4. Approximate solutions to the nonlinear Klein-Gordon equation in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Yazici, Muhammet; Şengül, Süleyman

    2016-09-01

    We consider initial value problems for the nonlinear Klein-Gordon equation in de Sitter spacetime. We use the differential transform method for the solution of the initial value problem. In order to show the accuracy of results for the solutions, we use the variational iteration method with Adomian's polynomials for the nonlinearity. We show that the methods are effective and useful.

  5. Nonlinear System Of Equations For Multicomponent Analysis Of Artificial Food Coloring

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Budiasih, L. K.

    2010-12-01

    In multicomponent analysis of artificial food coloring (AFC), nonlinear relation of the absorbance and the concentration forms a nonlinear system of equations. The Newton's method based algorithm has been used to calculate individual AFC concentration in the mixture of two AFCs. The absorbance was measured using a spectrophotometer at two different wavelengths.

  6. Generalized nonlinear Schrodinger equation as a model for turbulence, collapse, and inverse cascade

    SciTech Connect

    Zhao Dian; Yu, M. Y.

    2011-03-15

    A two-dimensional generalized cubic nonlinear Schroedinger equation with complex coefficients for the group dispersion and nonlinear terms is used to investigate the evolution of a finite-amplitude localized initial perturbation. It is found that modulation of the latter can lead to sideband formation, wave condensation, collapse, turbulence, and inverse energy cascade, although not all together and not in that order.

  7. From nonlinear Burgers and Korteweg-de Vries soliton equations via Riccati to linear Rosen-Morse and free particle Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2015-06-01

    It is shown that a nonlinear reformulation of time-dependent and time-independent quantum mechanics in terms of Riccati equations not only provides additional information about the physical system, but also allows for formal comparison with other nonlinear theories. This is demonstrated for the nonlinear Burgers and Korteweg-de Vries equations with soliton solutions. As Riccati equations can be linearized to corresponding Schrödinger equations, this also applies to the Riccati equations that can be obtained by integrating the nonlinear soliton equations, resulting in a time-independent Schrödinger equation with Rosen-Morse potential and its supersymmetric partner. Because both soliton equations lead to the same Riccati equation, relations between the Burgers and Korteweg-de Vries equations can be established. Finally, a connection with the inverse scattering method is mentioned.

  8. Infinite hierarchy of nonlinear Schrödinger equations and their solutions

    NASA Astrophysics Data System (ADS)

    Ankiewicz, A.; Kedziora, D. J.; Chowdury, A.; Bandelow, U.; Akhmediev, N.

    2016-01-01

    We study the infinite integrable nonlinear Schrödinger equation hierarchy beyond the Lakshmanan-Porsezian-Daniel equation which is a particular (fourth-order) case of the hierarchy. In particular, we present the generalized Lax pair and generalized soliton solutions, plane wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers, periodic solutions, and rogue wave solutions for this infinite-order hierarchy. We find that "even- order" equations in the set affect phase and "stretching factors" in the solutions, while "odd-order" equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are always complex.

  9. Infinite hierarchy of nonlinear Schrödinger equations and their solutions.

    PubMed

    Ankiewicz, A; Kedziora, D J; Chowdury, A; Bandelow, U; Akhmediev, N

    2016-01-01

    We study the infinite integrable nonlinear Schrödinger equation hierarchy beyond the Lakshmanan-Porsezian-Daniel equation which is a particular (fourth-order) case of the hierarchy. In particular, we present the generalized Lax pair and generalized soliton solutions, plane wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers, periodic solutions, and rogue wave solutions for this infinite-order hierarchy. We find that "even- order" equations in the set affect phase and "stretching factors" in the solutions, while "odd-order" equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are always complex. PMID:26871072

  10. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Dowell, E. H.

    1974-01-01

    The equations of motion are developed by two complementary methods, Hamilton's principle and the Newtonian method. The resulting equations are valid to second order for long, straight, slender, homogeneous, isotropic beams undergoing moderate displacements. The ordering scheme is based on the restriction that squares of the bending slopes, the torsion deformation, and the chord/radius and thickness/radius ratios are negligible with respect to unity. All remaining nonlinear terms are retained. The equations are valid for beams with mass centroid axis and area centroid (tension) axis offsets from the elastic axis, nonuniform mass and stiffness section properties, variable pretwist, and a small precone angle. The strain-displacement relations are developed from an exact transformation between the deformed and undeformed coordinate systems. These nonlinear relations form an important contribution to the final equations. Several nonlinear structural and inertial terms in the final equations are identified that can substantially influence the aeroelastic stability and response of hingeless helicopter rotor blades.

  11. Differential geometry techniques for sets of nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  12. Existence of global decaying solutions to the exterior problem for the Klein-Gordon equation with a nonlinear localized dissipation and a derivative nonlinearity

    NASA Astrophysics Data System (ADS)

    Nakao, Mitsuhiro

    We prove the existence of global decaying solutions to the exterior problem for the Klein-Gordon equation with a nonlinear localized dissipation and a derivative nonlinearity. To derive the required estimates of solutions we employ a 'loan' method.

  13. Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory.

    PubMed Central

    McDaniel, R V; Sharp, K; Brooks, D; McLaughlin, A C; Winiski, A P; Cafiso, D; McLaughlin, S

    1986-01-01

    We formed vesicles from mixtures of egg phosphatidylcholine (PC) and the gangliosides GM1, GD1a, or GT1 to model the electrokinetic properties of biological membranes. The electrophoretic mobilities of the vesicles are similar in NaCl, CsCl, and TMACl solutions, suggesting that monovalent cations do not bind significantly to these gangliosides. If we assume the sialic acid groups on the gangliosides are located some distance from the surface of the vesicle and the sugar moieties exert hydrodynamic drag, we can describe the mobility data in 1, 10, and 100 mM monovalent salt solutions with a combination of the Navier-Stokes and nonlinear Poisson-Boltzmann equations. The values we assume for the thickness of the ganglioside head group and the location of the charge affect the theoretical predictions markedly, but the Stokes radius of each sugar and the location of the hydrodynamic shear plane do not. We obtain a reasonable fit to the mobility data by assuming that all ganglioside head groups project 2.5 nm from the bilayer and all fixed charges are in a plane 1 nm from the bilayer surface. We tested the latter assumption by estimating the surface potentials of PC/ganglioside bilayers using four techniques: we made 31P nuclear magnetic resonance, fluorescence, electron spin resonance, and conductance measurements. The results are qualitatively consistent with our assumption. PMID:3697476

  14. The Poincaré-Bendixson Theorem and the non-linear Cauchy-Riemann equations

    NASA Astrophysics Data System (ADS)

    van den Berg, J. B.; Munaò, S.; Vandervorst, R. C. A. M.

    2016-11-01

    Fiedler and Mallet-Paret (1989) prove a version of the classical Poincaré-Bendixson Theorem for scalar parabolic equations. We prove that a similar result holds for bounded solutions of the non-linear Cauchy-Riemann equations. The latter is an application of an abstract theorem for flows with a(n) (unbounded) discrete Lyapunov function.

  15. Asymptotic Analysis to Two Nonlinear Equations in Fluid Mechanics by Homotopy Renormalisation Method

    NASA Astrophysics Data System (ADS)

    Guan, Jiang; Kai, Yue

    2016-09-01

    By the homotopy renormalisation method, the global approximate solutions to Falkner-Skan equation and Von Kármá's problem of a rotating disk in an infinite viscous fluid are obtained. The homotopy renormalisation method is simple and powerful for finding global approximate solutions to nonlinear perturbed differential equations arising in mathematical physics.

  16. Symmetry analysis and group-invariant solutions to inhomogeneous nonlinear diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ji, Lina

    2015-11-01

    A classification of point symmetries for inhomogeneous nonlinear diffusion equation is discussed. The optimal systems of one-dimensional subalgebra for the equation are constructed. Explicit group-invariant solutions are derived by corresponding symmetry reductions. These solutions include static solutions, separable solutions and functionally separable solutions. The behaviors of blow-up, extinction and asymptotical behavior for these solutions are also described.

  17. State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Cox, David E. (Technical Monitor)

    2004-01-01

    The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.

  18. Some Remarks on Similarity and Soliton Solutions of Nonlinear Klein-Gordon Equation

    NASA Astrophysics Data System (ADS)

    Tajiri, Masayoshi

    1984-11-01

    The three-dimensional nonlinear Klein-Gordon [, Higgs field and Yang-Milles] (3D-KG [, H and YM]) equation is first reduced to the 2D nonlinear Schrödinger (2D-NLS) and 2D-KG [, H and YM] equations, and secondly to the 1D-NLS and 1D-KG [, H and YM] equations by similarity transformations. It is shown that similar type soliton solutions of the 3D-KG, H and YM equations, which have singularity on a plane in (x, y, z, t) space, are obtained by substituting the soliton solutions of the 1D-NLS or 1D-KG (or H) equation into the similarity transformations. The soliton solutions of the YM equation are also investigated.

  19. Equations of nonlinear dynamics of elastic shells in cylindrical Eulerian coordinates

    NASA Astrophysics Data System (ADS)

    Zubov, L. M.

    2016-05-01

    The equations of dynamics of elastic shells subjected to large deformations are formulated. The Eulerian coordinates on a circular cylinder and time are accepted as independent variables, and one of the unknown functions is the distance from a point of the shell surface to the cylinder axis. The equations of dynamics of nonlinearly elastic shells in the Eulerian coordinates are convenient for exact formulation of the problem on the interaction of strongly deformable shells with moving fluids and gases. The equations obtained can be used for dynamic calculations of fluids and gases flowings in pipelines, blood vessels, hoses, and other nonlinearly deformable thin-walled tubular elements of constructions.

  20. Nonlinear Schroedinger equation and the Bogolyubov-Whitham method of averaging

    SciTech Connect

    Pavlov, M.V.

    1987-12-01

    An averaging is investigated for the nonlinear Schroedinger equation using the technique of finite-gap averaging. For the single-gap case, the results are given explicitly. Some characteristics of the original equation needed for applied calculations are averaged. Finally, recursion and functional formulas connecting the densities of the integrals of the motion of the Schroedinger equation, the fluxes, and the variational derivatives are given.

  1. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  2. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  3. Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena.

    PubMed

    Sugioka, Hideyuki

    2015-12-01

    Surface science is key to innovations on microfluidics, smart materials, and future non-equilibrium systems. However, challenging issues still exist in this field. In this article, from the viewpoint of the fundamental design, we will briefly review our strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena. In particular, we will review the microfluidic applications using ICEO, the correction based on the ion-conserving Poisson-Boltzmann theory, the direct simulation on ICEO, and the new horizon such as nonlinear thermo-kinetic phenomena and the artificial cilia.

  4. Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena.

    PubMed

    Sugioka, Hideyuki

    2015-12-01

    Surface science is key to innovations on microfluidics, smart materials, and future non-equilibrium systems. However, challenging issues still exist in this field. In this article, from the viewpoint of the fundamental design, we will briefly review our strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena. In particular, we will review the microfluidic applications using ICEO, the correction based on the ion-conserving Poisson-Boltzmann theory, the direct simulation on ICEO, and the new horizon such as nonlinear thermo-kinetic phenomena and the artificial cilia. PMID:26482087

  5. Nonlinear waves in compressible shallow water magnetohydrodynemic equations

    NASA Astrophysics Data System (ADS)

    Klimachkov, Dmitry; Petrosyan, Arakel

    2016-04-01

    Compressible magnetohydrodynamic equations for a plasma in a gravity field with a free surface in shallow water approximation are obtained. Compressibility means that the pressure is a function of height. It is shown that classical shallow water incompressible magnetohydrodynamic equations are modified with a new argument instead of a layer height. We found all the simple discontinuous and continuous wave solutions for these equations, the wave velocities are obtained. Rankine-Hugoniot jump conditions for the velocities and magnetic field in the discontinuity are obtained. The Riemann problem for the arbitrary discontinuity is solved. It was found that the decay of arbitrary discontinuity causes five different configurations. For each configuration, we found the conditions necessary and sufficient for its implementation.

  6. Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case

    NASA Astrophysics Data System (ADS)

    Cheng, Xing; Miao, Changxing; Zhao, Lifeng

    2016-09-01

    We consider the Cauchy problem for the nonlinear Schrödinger equation with combined nonlinearities, one of which is defocusing mass-critical and the other is focusing energy-critical or energy-subcritical. The threshold is given by means of variational argument. We establish the profile decomposition in H1 (Rd) and then utilize the concentration-compactness method to show the global wellposedness and scattering versus blowup in H1 (Rd) below the threshold for radial data when d ≤ 4.

  7. Nondimensional Parameters and Equations for Nonlinear and Bifurcation Analyses of Thin Anisotropic Quasi-Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A comprehensive development of nondimensional parameters and equations for nonlinear and bifurcations analyses of quasi-shallow shells, based on the Donnell-Mushtari-Vlasov theory for thin anisotropic shells, is presented. A complete set of field equations for geometrically imperfect shells is presented in terms general of lines-of-curvature coordinates. A systematic nondimensionalization of these equations is developed, several new nondimensional parameters are defined, and a comprehensive stress-function formulation is presented that includes variational principles for equilibrium and compatibility. Bifurcation analysis is applied to the nondimensional nonlinear field equations and a comprehensive set of bifurcation equations are presented. An extensive collection of tables and figures are presented that show the effects of lamina material properties and stacking sequence on the nondimensional parameters.

  8. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  9. Dromion interactions of (2+1)-dimensional nonlinear evolution equations

    PubMed

    Ruan; Chen

    2000-10-01

    Starting from two line solitons, the solution of integrable (2+1)-dimensional mKdV system and KdV system in bilinear form yields a dromion solution or a "Solitoff" solution. Such a dromion solution is localized in all directions and the Solitoff solution decays exponentially in all directions except a preferred one for the physical field or a suitable potential. The interactions between two dromions and between the dromion and Solitoff are studied by the method of figure analysis for a (2+1)-dimensional modified KdV equation and a (2+1)-dimensional KdV type equation. Our analysis shows that the interactions between two dromions may be elastic or inelastic for different forms of solutions. PMID:11089133

  10. Freezing of nonlinear Bloch oscillations in the generalized discrete nonlinear Schrödinger equation.

    PubMed

    Cao, F J

    2004-09-01

    The dynamics in a nonlinear Schrödinger chain in a homogeneous electric field is studied. We show that discrete translational invariant integrability-breaking terms can freeze the Bloch nonlinear oscillations and introduce new faster frequencies in their dynamics. These phenomena are studied by direct numerical integration and through an adiabatic approximation. The adiabatic approximation allows a description in terms of an effective potential that greatly clarifies the phenomena.

  11. Coding of Nonlinear States for NLS-Type Equations with Periodic Potential

    NASA Astrophysics Data System (ADS)

    Alfimov, G. L.; Avramenko, A. I.

    The problem of complete description of nonlinear states for NLS-type equations with periodic potential is considered. We show that in some cases all nonlinear states for equations of such kind can be coded by bi-infinite sequences of symbols of N-symbol alphabet (words). Sufficient conditions for one-to-one correspondence between the set of nonlinear states and the set of these bi-infinite words are given in the form convenient for numerical verification (Hypotheses 1-3). We report on numerical check of these hypotheses for the case of Gross-Pitaevskii equation with cosine potential and indicate regions in the space of governing parameters where this coding is possible.

  12. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems. PMID:26783508

  13. Initial Value Problem Solution of Nonlinear Shallow Water-Wave Equations

    SciTech Connect

    Kanoglu, Utku; Synolakis, Costas

    2006-10-06

    The initial value problem solution of the nonlinear shallow water-wave equations is developed under initial waveforms with and without velocity. We present a solution method based on a hodograph-type transformation to reduce the nonlinear shallow water-wave equations into a second-order linear partial differential equation and we solve its initial value problem. The proposed solution method overcomes earlier limitation of small waveheights when the initial velocity is nonzero, and the definition of the initial conditions in the physical and transform spaces is consistent. Our solution not only allows for evaluation of differences in predictions when specifying an exact initial velocity based on nonlinear theory and its linear approximation, which has been controversial in geophysical practice, but also helps clarify the differences in runup observed during the 2004 and 2005 Sumatran tsunamigenic earthquakes.

  14. Numerical modelling of the nonlinear evolutionary equations on the basis of an inverse scattering method

    NASA Astrophysics Data System (ADS)

    Grigorov, Igor V.

    2009-12-01

    In article the algorithm of numerical modelling of the nonlinear equation of Korteweg-de Vrieze which generates nonlinear algorithm of digital processing of signals is considered. For realisation of the specified algorithm it is offered to use a inverse scattering method (ISM). Algorithms of direct and return spectral problems, and also problems of evolution of the spectral data are in detail considered. Results of modelling are resulted.

  15. Nonlinear disintegration of sine wave in the framework of the Gardner equation

    NASA Astrophysics Data System (ADS)

    Kurkin, Andrey; Talipova, Tatiana; Kurkina, Oxana; Rouvinskaya, Ekaterina; Pelinovsky, Efim

    2016-04-01

    Nonlinear disintegration of sine wave is studied in the framework of the Gardner equation (extended version of the Korteweg - de Vries equation with both quadratic and cubic nonlinear terms). Undular bores appear here as an intermediate stage of wave evolution. Our numerical computations demonstrate the features of undular bore developing for different signs of the cubic nonlinear term. If cubic nonlinear term is negative, and initial wave amplitude is large enough, two undular bores are generated from the two breaking points formed on both crest slopes (within dispersionless Gardner equation). Undular bore consists of one table-top soliton and a group of small soliton-like waves passing through the table-top soliton. If the cubic nonlinear term is positive and again the wave amplitude is large enough, the breaking points appear on crest and trough generating groups of positive and negative solitary-like pulses. It is shown that nonlinear interaction of waves happens according to one of scenarios of two-soliton interaction of "exchange" or "overtake" types with a phase shift. If small-amplitude pulses interact with large-amplitude soliton-like pulses, their speed in average is negative in the case when "free" velocity is positive. Nonlinear interaction leads to the generation of higher harmonics and spectrum width increases with amplitude increase independently of the sign of cubic nonlinear term. The breaking asymptotic k4/3 predicted within the dispersionless Gardner equation emerges during the process of undular bore development. The formation of soliton-like perturbations leads to appearance of several spectral peaks which are downshifting with time.

  16. Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ma, Zheng-Yi; Ma, Song-Hua

    2012-03-01

    Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrödinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.

  17. Nonlinear disintegration of sine wave in the framework of the Gardner equation

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Kurkin, Andrey; Pelinovsky, Efim

    2016-10-01

    Internal tidal wave entering shallow waters transforms into an undular bore and this process can be described in the framework of the Gardner equation (extended version of the Korteweg-de Vries equation with both quadratic and cubic nonlinear terms). Our numerical computations demonstrate the features of undular bore developing for different signs of the cubic nonlinear term. If cubic nonlinear term is negative, and initial wave amplitude is large enough, two undular bores are generated from the two breaking points formed on both crest slopes (within dispersionless Gardner equation). Undular bore consists of one table-top soliton and a group of small soliton-like waves passing through the table-top soliton. If the cubic nonlinear term is positive and again the wave amplitude is large enough, the breaking points appear on crest and trough generating groups of positive and negative soliton-like pulses. This is the main difference with respect to the classic Korteweg-de Vries equation, where the breaking point is single. It is shown also that nonlinear interaction of waves happens similarly to one of scenarios of two-soliton interaction of "exchange" or "overtake" types with a phase shift. If small-amplitude pulses interact with large-amplitude soliton-like pulses, their speed in average is negative in the case when "free" velocity is positive. Nonlinear interaction leads to the generation of higher harmonics and spectrum width increases with amplitude increase independently of the sign of cubic nonlinear term. The breaking asymptotic k 4 / 3 predicted within the dispersionless Gardner equation emerges during the process of undular bore development. The formation of soliton-like perturbations leads to appearance of several spectral peaks which are downshifting with time.

  18. On the solutions of a nonlinear ‘pseudo’-oscillator equation

    NASA Astrophysics Data System (ADS)

    Gadella, M.; Lara, L. P.

    2014-10-01

    The second-order nonlinear equation yy^{\\prime\\prime} +1=0 has been proposed as a simple model to describe the dynamics of electrons in plasma physics. This equation is assumed to have periodic solutions by many authors who argue physical reasons. A great variety of approximate methods have been used in the recent literature in order to detect these periodic solutions. It is the objective of this paper to show that this equation has no periodic solutions whatsoever. In addition, the general solution can be obtained by showing that the equation is equivalent to a planar solvable Hamiltonian system.

  19. Consistent Riccati Expansion Method and Its Applications to Nonlinear Fractional Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Wang, Li-Zhen; Zuo, Su-Li

    2016-02-01

    In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann-Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada-Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed. Supported by the National Natural Science Foundation of China under Grant Nos. 11101332, 11201371, 11371293 and the Natural Science Foundation of Shaanxi Province under Grant No. 2015JM1037

  20. Method of Multiple Scales and Travelling Wave Solutions for (2+1)-Dimensional KdV Type Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet

    2016-08-01

    In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).

  1. Modeling taper charge with a non-linear equation

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1985-01-01

    Work aimed at modeling the charge voltage and current characteristics of nickel-cadmium cells subject to taper charge is presented. Work reported at previous NASA Battery Workshops has shown that the voltage of cells subject to constant current charge and discharge can be modeled very accurately with the equation: voltage = A + (B/(C-X)) + De to the -Ex where A, B, D, and E are fit parameters and x is amp-hr of charge removed during discharge or returned during charge. In a constant current regime, x is also equivalent to time on charge or discharge.

  2. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    SciTech Connect

    Mani Rajan, M.S.; Mahalingam, A.; Uthayakumar, A.

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  3. Stability of Traveling Waves of Nonlinear Schrödinger Equation with Nonzero Condition at Infinity

    NASA Astrophysics Data System (ADS)

    Lin, Zhiwu; Wang, Zhengping; Zeng, Chongchun

    2016-10-01

    We study the stability of traveling waves of the nonlinear Schrödinger equation with nonzero condition at infinity obtained via a constrained variational approach. Two important physical models for this are the Gross-Pitaevskii (GP) equation and the cubic-quintic equation. First, under a non-degeneracy condition we prove a sharp instability criterion for 3D traveling waves of (GP), which had been conjectured in the physical literature. This result is also extended for general nonlinearity and higher dimensions, including 4D (GP) and 3D cubic-quintic equations. Second, for cubic-quintic type nonlinearity, we construct slow traveling waves and prove their nonlinear instability in any dimension. For dimension two, the non-degeneracy condition is also proved for these slow traveling waves. For general traveling waves without vortices (that is nonvanishing) and with general nonlinearity in any dimension, we find a sharp condition for linear instability. Third, we prove that any 2D traveling wave of (GP) is transversally unstable, and we find the sharp interval of unstable transversal wave numbers. Near unstable traveling waves of all of the above cases, we construct unstable and stable invariant manifolds.

  4. The nonlinear Dirac equation in Bose-Einstein condensates: superfluid fluctuations and emergent theories from relativistic linear stability equations

    NASA Astrophysics Data System (ADS)

    Haddad, L. H.; Carr, Lincoln D.

    2015-09-01

    We present the theoretical and mathematical foundations of stability analysis for a Bose-Einstein condensate (BEC) at Dirac points of a honeycomb optical lattice. The combination of s-wave scattering for bosons and lattice interaction places constraints on the mean-field description, and hence on vortex configurations in the Bloch-envelope function near the Dirac point. A full derivation of the relativistic linear stability equations (RLSE) is presented by two independent methods to ensure veracity of our results. Solutions of the RLSE are used to compute fluctuations and lifetimes of vortex solutions of the nonlinear Dirac equation, which include Anderson-Toulouse skyrmions with lifetime ≈ 4 s. Beyond vortex stabilities the RLSE provide insight into the character of collective superfluid excitations, which we find to encode several established theories of physics. In particular, the RLSE reduce to the Andreev equations, in the nonrelativistic and semiclassical limits, the Majorana equation, inside vortex cores, and the Dirac-Bogoliubov-de Gennes equations, when nearest-neighbor interactions are included. Furthermore, by tuning a mass gap, relative strengths of various spinor couplings, for the small and large quasiparticle momentum regimes, we obtain weak-strong Bardeen-Cooper-Schrieffer superconductivity, as well as fundamental wave equations such as Schrödinger, Dirac, Klein-Gordon, and Bogoliubov-de Gennes equations. Our results apply equally to a strongly spin-orbit coupled BEC in which the Laplacian contribution can be neglected.

  5. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    SciTech Connect

    Keanini, R.G.

    2011-04-15

    Research Highlights: > Systematic approach for physically probing nonlinear and random evolution problems. > Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. > Organization of near-molecular scale vorticity mediated by hydrodynamic modes. > Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the motion

  6. Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation

    NASA Astrophysics Data System (ADS)

    Xiong, Chi; Good, Michael R. R.; Guo, Yulong; Liu, Xiaopei; Huang, Kerson

    2014-12-01

    We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime. The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the nonrelativistic nonlinear Schrödinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.

  7. Nonlinear canonical gyrokinetic Vlasov equation and computation of the gyrocenter motion in tokamaks

    SciTech Connect

    Xu Yingfeng; Wang Shaojie

    2013-01-15

    The nonlinear canonical gyrokinetic Vlasov equation is obtained from the nonlinear noncanonical gyrokinetic theory using the property of the coordinate transform. In the linear approximation, it exactly recovers the previous linear canonical gyrokinetic equations derived by the Lie-transform perturbation method. The computation of the test particle gyrocenter motion in tokamaks with a large magnetic perturbation is presented and discussed. The numerical results indicate that the second-order gyrocenter Hamiltonian is important for the gyrocenter motion of the trapped electron in tokamaks with a large magnetic perturbation.

  8. Universal Critical Power for Nonlinear Schroedinger Equations with a Symmetric Double Well Potential

    SciTech Connect

    Sacchetti, Andrea

    2009-11-06

    Here we consider stationary states for nonlinear Schroedinger equations in any spatial dimension n with symmetric double well potentials. These states may bifurcate as the strength of the nonlinear term increases and we observe two different pictures depending on the value of the nonlinearity power: a supercritical pitchfork bifurcation, and a subcritical pitchfork bifurcation with two asymmetric branches occurring as the result of saddle-node bifurcations. We show that in the semiclassical limit, or for a large barrier between the two wells, the first kind of bifurcation always occurs when the nonlinearity power is less than a critical value; in contrast, when the nonlinearity power is larger than such a critical value then we always observe the second scenario. The remarkable fact is that such a critical value is a universal constant in the sense that it does not depend on the shape of the double well potential and on the dimension n.

  9. Nonparaxial elliptic waves and solitary waves in coupled nonlinear Helmholtz equations

    NASA Astrophysics Data System (ADS)

    Tamilselvan, K.; Kanna, T.; Khare, Avinash

    2016-10-01

    We obtain a class of elliptic wave solutions of coupled nonlinear Helmholtz (CNLH) equations describing nonparaxial ultra-broad beam propagation in nonlinear Kerr-like media, in terms of the Jacobi elliptic functions and also discuss their limiting forms (hyperbolic solutions). Especially, we show the existence of non-trivial solitary wave profiles in the CNLH system. The effect of nonparaxiality on speed, pulse width and amplitude of the nonlinear waves is analyzed in detail. Particularly, a mechanism for tuning the speed by altering the nonparaxial parameter is proposed. We also identify a novel phase-unlocking behavior due to the presence of nonparaxial parameter.

  10. Pair-tunneling induced localized waves in a vector nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Chen; Ling, Liming; Yang, Zhan-Ying; Liu, Jie

    2015-06-01

    We investigate localized waves of coupled two-mode nonlinear Schrödinger equations with a pair-tunneling term representing strongly interacting particles can tunnel between the modes as a fragmented pair. Facilitated by Darboux transformation, we have derived exact solution of nonlinear vector waves such as bright solitons, Kuznetsov-Ma soliton, Akhmediev breathers and rogue waves and demonstrated their interesting temporal-spatial structures. A phase diagram that demarcates the parameter ranges of the nonlinear waves is obtained. Possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  11. Use of Picard and Newton iteration for solving nonlinear ground water flow equations

    USGS Publications Warehouse

    Mehl, S.

    2006-01-01

    This study examines the use of Picard and Newton iteration to solve the nonlinear, saturated ground water flow equation. Here, a simple three-node problem is used to demonstrate the convergence difficulties that can arise when solving the nonlinear, saturated ground water flow equation in both homogeneous and heterogeneous systems with and without nonlinear boundary conditions. For these cases, the characteristic types of convergence patterns are examined. Viewing these convergence patterns as orbits of an attractor in a dynamical system provides further insight. It is shown that the nonlinearity that arises from nonlinear head-dependent boundary conditions can cause more convergence difficulties than the nonlinearity that arises from flow in an unconfined aquifer. Furthermore, the effects of damping on both convergence and convergence rate are investigated. It is shown that no single strategy is effective for all problems and how understanding pitfalls and merits of several methods can be helpful in overcoming convergence difficulties. Results show that Picard iterations can be a simple and effective method for the solution of nonlinear, saturated ground water flow problems.

  12. Use of Picard and Newton iteration for solving nonlinear ground water flow equations.

    PubMed

    Mehl, Steffen

    2006-01-01

    This study examines the use of Picard and Newton iteration to solve the nonlinear, saturated ground water flow equation. Here, a simple three-node problem is used to demonstrate the convergence difficulties that can arise when solving the nonlinear, saturated ground water flow equation in both homogeneous and heterogeneous systems with and without nonlinear boundary conditions. For these cases, the characteristic types of convergence patterns are examined. Viewing these convergence patterns as orbits of an attractor in a dynamical system provides further insight. It is shown that the nonlinearity that arises from nonlinear head-dependent boundary conditions can cause more convergence difficulties than the nonlinearity that arises from flow in an unconfined aquifer. Furthermore, the effects of damping on both convergence and convergence rate are investigated. It is shown that no single strategy is effective for all problems and how understanding pitfalls and merits of several methods can be helpful in overcoming convergence difficulties. Results show that Picard iterations can be a simple and effective method for the solution of nonlinear, saturated ground water flow problems.

  13. Detailed resolution of the nonlinear Schrodinger equation using the full adaptive wavelet transform

    NASA Astrophysics Data System (ADS)

    Stedham, Mark A.; Banerjee, Partha P.

    2000-04-01

    The propagation of optical pulses in nonlinear optical fibers is described by the nonlinear Schrodinger (NLS) equation. This equation can generally be solved exactly using the inverse scattering method, or for more detailed analysis, through the use of numerical techniques. Perhaps the best known numerical technique for solving he NLS equation is the split-step Fourier method, which effects a solution by assuming that the dispersion and nonlinear effects act independently during pulse propagation along the fiber. In this paper we describe an alternative numerical solution to the NLS equation using an adaptive wavelet transform technique, done entirely in the wavelet domain. This technique differs form previous work involving wavelet solutions tithe NLS equation in that these previous works used a 'split-step wavelet' method in which the linear analysis was performed in the wavelet domain while the nonlinear portion was done in the space domain. Our method takes ful advantage of the set of wavelet coefficients, thus allowing the flexibility to investigate pulse propagation entirely in either the wavelet or the space domain. Additionally, this method is fully adaptive in that it is capable of accurately tracking steep gradients which may occur during the numerical simulation.

  14. Homotopy Perturbation Transform Method with He's Polynomial for Solution of Coupled Nonlinear Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Sharma, Dinkar; Singh, Prince; Chauhan, Shubha

    2016-01-01

    In this paper, a combined form of the Laplace transform method with the homotopy perturbation method (HPTM) is applied to solve nonlinear systems of partial differential equations viz. the system of third order KdV Equations and the systems of coupled Burgers' equations in one- and two- dimensions. The nonlinear terms can be easily handled by the use of He's polynomials. The results shows that the HPTM is very efficient, simple and avoids the round-off errors. Four test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM) which shows that this method is a suitable method for solving systems of partial differential equations.

  15. Analytical solutions for non-linear differential equations with the help of a digital computer

    NASA Technical Reports Server (NTRS)

    Cromwell, P. C.

    1964-01-01

    A technique was developed with the help of a digital computer for analytic (algebraic) solutions of autonomous and nonautonomous equations. Two operational transform techniques have been programmed for the solution of these equations. Only relatively simple nonlinear differential equations have been considered. In the cases considered it has been possible to assimilate the secular terms into the solutions. For cases where f(t) is not a bounded function, a direct series solution is developed which can be shown to be an analytic function. All solutions have been checked against results obtained by numerical integration for given initial conditions and constants. It is evident that certain nonlinear differential equations can be solved with the help of a digital computer.

  16. Von mises- and crocco-type hydrodynamical transformations: Order reduction of nonlinear equations, construction of Bäcklund transformations and of new integrable equations

    NASA Astrophysics Data System (ADS)

    Fedotov, I. A.; Polyanin, A. D.

    2011-09-01

    Broad classes of nonlinear equations of mathematical physics are described that admit order reduction by applying the von Mises transformation (with the unknown function used as a new independent variable and with a suitable partial derivative used as a new dependent variable) and by applying the Crocco transformation (with the first and second partial derivatives used as new independent and dependent variables, respectively). Associated Bäcklund transformations are constructed that connect evolution equations of general form (their special cases include Burgers, Korteweg-de Vries, and Harry Dym type equations and many other nonlinear equations of mathematical physics). Transformations are indicated that reduce the order of hydrodynamic-type equations of higher orders. The generalized Calogero equation and a number of other new integrable nonlinear equations, reducible to linear equations, are considered.

  17. Modeling Solution of Nonlinear Dispersive Partial Differential Equations using the Marker Method

    SciTech Connect

    Jerome L.V. Lewandowski

    2005-01-25

    A new method for the solution of nonlinear dispersive partial differential equations is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details.

  18. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-05-01

    Consider the one dimensional nonlinear beam equation utt + uxxxx + mu + u3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form.

  19. Kinetic equations for a density matrix describing nonlinear effects in spectral line wings

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2011-11-15

    Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

  20. Bäcklund transformation and soliton solutions for two (3+1)-dimensional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Qu, Qixing; Qin, Liangjuan

    2016-09-01

    In this paper, two (3+1)-dimensional nonlinear evolution equations (NLEEs) are under investigation by employing the Hirota’s method and symbolic computation. We derive the bilinear form and bilinear Bäcklund transformation (BT) for the two NLEEs. Based on the bilinear form, we obtain the multi-soliton solutions for them. Furthermore, multi-soliton solutions in terms of Wronskian determinant for the first NLEE are constructed, whose validity is verified through direct substitution into the bilinear equations.

  1. Parametric excitation of high-mode oscillations for a non-linear telegraph equation

    SciTech Connect

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2000-08-31

    The problem of parametric excitation of high-mode oscillations is solved for a non-linear telegraph equation with a parametric external excitation and small diffusion. The equation is considered on a finite (spatial) interval with Neumann boundary conditions. It is shown that under a proper choice of parameters of the external excitation this boundary-value problem can have arbitrarily many exponentially stable solutions that are periodic in time and rapidly oscillate with respect to the spatial variable.

  2. One class of meromorphic solutions of general two-dimensional nonlinear equations, connected with the algebraic inverse scattering method

    PubMed Central

    Chudnovsky, D. V.

    1978-01-01

    For systems of nonlinear equations having the form [Ln - (∂/∂t), Lm - (∂/∂y)] = 0 the class of meromorphic solutions obtained from the linear equations [Formula: see text] is presented. PMID:16592559

  3. On a method for constructing the Lax pairs for nonlinear integrable equations

    NASA Astrophysics Data System (ADS)

    Habibullin, I. T.; Khakimova, A. R.; Poptsova, M. N.

    2016-01-01

    We suggest a direct algorithm for searching the Lax pairs for nonlinear integrable equations. It is effective for both continuous and discrete models. The first operator of the Lax pair corresponding to a given nonlinear equation is found immediately, coinciding with the linearization of the considered nonlinear equation. The second one is obtained as an invariant manifold to the linearized equation. A surprisingly simple relation between the second operator of the Lax pair and the recursion operator is discussed: the recursion operator can immediately be found from the Lax pair. Examples considered in the article are convincing evidence that the found Lax pairs differ from the classical ones. The examples also show that the suggested objects are true Lax pairs which allow the construction of infinite series of conservation laws and hierarchies of higher symmetries. In the case of the hyperbolic type partial differential equation our algorithm is slightly modified; in order to construct the Lax pairs from the invariant manifolds we use the cutting off conditions for the corresponding infinite Laplace sequence. The efficiency of the method is illustrated by application to some equations given in the Svinolupov-Sokolov classification list for which the Lax pairs and the recursion operators have not been found earlier.

  4. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    NASA Astrophysics Data System (ADS)

    Linander, Hampus; Nilsson, Bengt E. W.

    2016-07-01

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F = 0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  5. The abundant symmetry structure of hierarchies of nonlinear equations obtained by reciprocal links

    NASA Astrophysics Data System (ADS)

    Carillo, Sandra; Fuchssteiner, Benno

    1989-07-01

    Explicit computation for a Kawamoto-type equation shows that there is a rich associated symmetry structure for four separate hierarchies of nonlinear integrodifferential equations. Contrary to the general belief that symmetry groups for nonlinear evolution equations in 1+1 dimensions have to be Abelian, it is shown that, in this case, the symmetry group is noncommutative. Its semisimple part is isomorphic to the affine Lie algebra A(1)1 associated to sl(2,C). In two of the additional hierarchies that were found, an explicit dependence of the independent variable occurs. Surprisingly, the generic invariance for the Kawamoto-type equation obtained in Rogers and Carillo [Phys. Scr. 36, 865 (1987)] via a reciprocal link to the Möbius invariance of the singularity equation of the Kaup-Kupershmidt (KK) equation only holds for one of the additional hierarchies of symmetry groups. Thus the generic invariance is not a universal property for the complete symmetry group of equations obtained by reciprocal links. In addition to these results, the bi-Hamiltonian formulation of the hierarchy is given. A direct Bäcklund transformation between the (KK) hierarchy and the hierarchy of singularity equation for the Caudrey-Dodd-Gibbon-Sawada-Kotera equation is exhibited: This shows that the abundant symmetry structure found for the Kawamoto equation must exist for all fifth-order equations, which are known to be completely integrable since these equations are connected either by Bäcklund transformations or reciprocal links. It is shown that similar results must hold for all hierarchies emerging out of singularity hierarchies via reciprocal links. Furthermore, general aspects of the results are discussed.

  6. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Chan, Hiu Ning; Malomed, Boris; Chow, Kwok Wing

    2015-11-01

    Previous works in the literature on water waves have demonstrated that the fourth-order evolution of gravity waves in deep water will be governed by a higher order nonlinear Schrödinger equation. In the presence of two wave trains, the system is described by a higher order coupled nonlinear Schrödinger system. Through a gauge transformation, these evolution equations are reduced to a coupled derivative nonlinear Schrödinger system. The goal here is to study rogue waves, unexpectedly large displacements from an equilibrium position, through the Hirota bilinear transformation theoretically. The connections between the onset of rogue waves and modulation instability are investigated. The range of cubic nonlinearity allowing rogue wave formation is elucidated. Under a finite group velocity mismatch between the two components, the existence regime for rogue waves is extended as compared to the case with a single wave train. The amplification ratio of the amplitude can be higher than that of the single component nonlinear Schrödinger equation. Partial financial support has been provided by the Research Grants Council through contracts HKU711713E and HKU17200815.

  7. Impulsive two-point boundary value problems for nonlinear qk-difference equations

    NASA Astrophysics Data System (ADS)

    Mardanov, Misir J.; Sharifov, Yagub A.

    2016-08-01

    In this study, impulsive two-point boundary value problems for nonlinear qk -difference equations is considered. Note that this problem contains the similar problem with antiperiodic boundary conditions as a partial case. The theorems on existence and uniqueness of the solution of the considered problem are proved. Obtained here results not only enlarges the class of considered boundary problems and also strengthens them.

  8. Solution blow-up for a class of parabolic equations with double nonlinearity

    SciTech Connect

    Korpusov, Maxim O

    2013-03-31

    We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.

  9. A quadrature based method of moments for nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin L.; Vedula, Prakash

    2011-09-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.

  10. Stochastic nonlinear wave equation with memory driven by compensated Poisson random measures

    SciTech Connect

    Liang, Fei; Gao, Hongjun

    2014-03-15

    In this paper, we study a class of stochastic nonlinear wave equation with memory driven by Lévy noise. We first show the existence and uniqueness of global mild solutions using a suitable energy function. Second, under some additional assumptions we prove the exponential stability of the solutions.

  11. Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains

    NASA Astrophysics Data System (ADS)

    Kozhevnikova, L. M.; Khadzhi, A. A.

    2015-08-01

    The paper is concerned with the solvability of the Dirichlet problem for a certain class of anisotropic elliptic second-order equations in divergence form with low-order terms and nonpolynomial nonlinearities \\displaystyle \\sumα=1n(aα(x,u,\

  12. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  13. Solution blow-up for a class of parabolic equations with double nonlinearity

    NASA Astrophysics Data System (ADS)

    Korpusov, Maxim O.

    2013-03-01

    We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.

  14. Nonlinear quantum-dynamical system based on the Kadomtsev-Petviashvili II equation

    NASA Astrophysics Data System (ADS)

    Zarmi, Yair

    2013-06-01

    The structure of soliton solutions of classical integrable nonlinear evolution equations, which can be solved through the Hirota transformation, suggests a new way for the construction of nonlinear quantum-dynamical systems that are based on the classical equations. In the new approach, the classical soliton solution is mapped into an operator, U, which is a nonlinear functional of the particle-number operators over a Fock space of quantum particles. U obeys the evolution equation; the classical soliton solutions are the eigenvalues of U in multi-particle states in the Fock space. The construction easily allows for the incorporation of particle interactions, which generate soliton effects that do not have a classical analog. In this paper, this new approach is applied to the case of the Kadomtsev-Petviashvili II equation. The nonlinear quantum-dynamical system describes a set of M = (2S + 1) particles with intrinsic spin S, which interact in clusters of 1 ≤ N ≤ (M - 1) particles.

  15. On Insensitivity of the Chi-Square Model Test to Nonlinear Misspecification in Structural Equation Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Satorra, Albert

    2009-01-01

    In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…

  16. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  17. Bounds on the Fourier coefficients for the periodic solutions of non-linear oscillator equations

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1988-01-01

    The differential equations describing nonlinear oscillations (as seen in mechanical vibrations, electronic oscillators, chemical and biochemical reactions, acoustic systems, stellar pulsations, etc.) are investigated analytically. The boundedness of the Fourier coefficients for periodic solutions is demonstrated for two special cases, and the extrapolation of the results to higher-dimensionsal systems is briefly considered.

  18. Subcritical Hopf bifurcation in dynamical systems described by a scalar nonlinear delay differential equation.

    PubMed

    Larger, Laurent; Goedgebuer, Jean-Pierre; Erneux, Thomas

    2004-03-01

    A subcritical Hopf bifurcation in a dynamical system modeled by a scalar nonlinear delay differential equation is studied theoretically and experimentally. The subcritical Hopf bifurcation leads to a significant domain of bistability where stable steady and time-periodic states coexist.

  19. Dynamics of a nonautonomous soliton in a generalized nonlinear Schroedinger equation

    SciTech Connect

    Yang Zhanying; Zhang Tao; Zhao Lichen; Feng Xiaoqiang; Yue Ruihong

    2011-06-15

    We solve a generalized nonautonomous nonlinear Schroedinger equation analytically by performing the Darboux transformation. The precise expressions of the soliton's width, peak, and the trajectory of its wave center are investigated analytically, which symbolize the dynamic behavior of a nonautonomous soliton. These expressions can be conveniently and effectively applied to the management of soliton in many fields.

  20. Analysis of backward differentiation formula for nonlinear differential-algebraic equations with 2 delays.

    PubMed

    Sun, Leping

    2016-01-01

    This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true. PMID:27441132

  1. Multilevel Modeling of Two Cyclical Processes: Extending Differential Structural Equation Modeling to Nonlinear Coupled Systems

    ERIC Educational Resources Information Center

    Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.

    2005-01-01

    The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…

  2. Tensor-GMRES method for large sparse systems of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  3. An approximation theory for nonlinear partial differential equations with applications to identification and control

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  4. Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations

    NASA Astrophysics Data System (ADS)

    Armstrong, Scott N.

    We study the fully nonlinear elliptic equation F(Du,Du,u,x)=f in a smooth bounded domain Ω, under the assumption that the nonlinearity F is uniformly elliptic and positively homogeneous. Recently, it has been shown that such operators have two principal "half" eigenvalues, and that the corresponding Dirichlet problem possesses solutions, if both of the principal eigenvalues are positive. In this paper, we prove the existence of solutions of the Dirichlet problem if both principal eigenvalues are negative, provided the "second" eigenvalue is positive, and generalize the anti-maximum principle of Clément and Peletier [P. Clément, L.A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (2) (1979) 218-229] to homogeneous, fully nonlinear operators.

  5. Study of Bunch Instabilities By the Nonlinear Vlasov-Fokker-Planck Equation

    SciTech Connect

    Warnock, Robert L.; /SLAC

    2006-07-11

    Instabilities of the bunch form in storage rings may be induced through the wake field arising from corrugations in the vacuum chamber, or from the wake and precursor fields due to coherent synchrotron radiation (CSR). For over forty years the linearized Vlasov equation has been applied to calculate the threshold in current for an instability, and the initial growth rate. Increasing interest in nonlinear aspects of the motion has led to numerical solutions of the nonlinear Vlasov equation, augmented with Fokker-Planck terms to describe incoherent synchrotron radiation in the case of electron storage rings. This opens the door to much deeper studies of coherent instabilities, revealing a rich variety of nonlinear phenomena. Recent work on this topic by the author and collaborators is reviewed.

  6. Solution of nonlinear Gribov-Levin-Ryskin-Mueller-Qiu evolution equation for gluon distribution function

    NASA Astrophysics Data System (ADS)

    Devee, Mayuri; Sarma, J. K.

    2014-03-01

    In this paper we have determined the behavior of gluon distribution function by solving the Gribov-Levin-Reskin-Mueller-Qiu (GLR-MQ) evolution equation,which is nonlinear in gluon density. The moderate Q2 behavior of G(x, t), where t = ln(Q2/Λ2), is obtained by employing the Regge like behaviour of gluon distribution function at small-x. Here Q2 behavior of nonlinear gluon distribution function is investigated for small values x = 10-2, 10-3, 10-4 and 10-5 rexpectively. Our predictions are compared with different parametrisations and are found in good agreement. It is observed from our results that with the nonlinear corrections incorporated, the strong growth of G(x,t) that corresponds to the linear QCD evolution equation is slowed down. Moreover essential taming of gluon distribution function is observed for R = 2 GeV-1 as expected.

  7. Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.

  8. On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations

    NASA Astrophysics Data System (ADS)

    Friedlander, Susan; Vicol, Vlad

    2011-11-01

    We consider an active scalar equation that is motivated by a model for magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast, the critically diffusive equation is globally well-posed (cf Friedlander and Vicol (2011 Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 283-301)). In this case we give an example of a steady state that is nonlinearly unstable, and hence produces a dynamo effect in the sense of an exponentially growing magnetic field.

  9. Alpha models for rotating Navier-Stokes equations in geophysics with nonlinear dispersive regularization

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik

    Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.

  10. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory

    NASA Astrophysics Data System (ADS)

    Bona, J. L.; Chen, M.; Saut, J.-C.

    2004-05-01

    In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.

  11. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations

    NASA Astrophysics Data System (ADS)

    Bich, Dao Huy; Xuan Nguyen, Nguyen

    2012-12-01

    In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge-Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency-amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.

  12. Evidence for self-refraction in a convergence zone: NPE (Nonlinear progressive wave equation) model results

    NASA Technical Reports Server (NTRS)

    Mcdonald, B. Edward; Plante, Daniel R.

    1989-01-01

    The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.

  13. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  14. Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.

    2015-10-01

    This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.

  15. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    SciTech Connect

    Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang

    2011-04-15

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.

  16. On the compatibility equations of nonlinear and linear elasticity in the presence of boundary conditions

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2015-12-01

    We use Hodge-type orthogonal decompositions for studying the compatibility equations of the displacement gradient and the linear strain with prescribed boundary displacements. We show that the displacement gradient is compatible if and only if for any equilibrated virtual first Piola-Kirchhoff stress tensor field, the virtual work done by the displacement gradient is equal to the virtual work done by the prescribed boundary displacements. This condition is very similar to the classical compatibility equations for the linear strain. Since these compatibility equations for linear and nonlinear strains involve infinite-dimensional spaces and consequently are not easy to use in practice, we derive alternative compatibility equations, which are written in terms of some finite-dimensional spaces and are more useful in practice. Using these new compatibility equations, we present some non-trivial examples that show that compatible strains may become incompatible in the presence of prescribed boundary displacements.

  17. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation

    NASA Astrophysics Data System (ADS)

    Dong, Huanhe; Zhang, Yong; Zhang, Xiaoen

    2016-07-01

    A discrete matrix spectral problem is presented and the hierarchy of discrete integrable systems is derived. Their Hamiltonian structures are established. As to the discrete integrable system, nonlinearization of the spatial parts of the Lax pairs and the adjoint Lax pairs generate a new integrable symplectic map. Based on the theory, a new integrable symplectic map and a family of finite-dimension completely integrable systems are given. Especially, two explicit equations are obtained under the Bargmann constraint. Finally, the symmetry of the discrete equation is provided according to the recursion operator and the seed symmetry. Although the solutions of the discrete equations have been gained by many methods, there are few articles that solving the discrete equation via the symmetry. So the solution of the discrete lattice equation is obtained through the symmetry theory.

  18. Solution of nonlinear partial differential equations using the Chebyshev spectral method

    NASA Astrophysics Data System (ADS)

    Kapania, R. K.; Eldred, L. B.

    1991-05-01

    The spectral method is a powerful numerical technique for solving engineering differential equations. The method is a specialization of the method of weighted residuals. Trial functions that are easily and exactly differentiable are used. Often the functions used also satisfy an orthogonality equation, which can improve the efficiency of the approximation. Generally, the entire domain is modeled, but multiple sub-domains may be used. A Chebyshev-Collocation Spectral method is used to solve a two-dimensional, highly nonlinear, two parameter Bratu's equation. This equation previously assumed to have only symmetric solutions are shown to have regions where solutions that are non-symmetric in x and y are valid. Away from these regions an accurate and efficient technique for tracking the equation's multi-valued solutions was developed. It is found that the accuracy of the present method is very good, with a significant improvement in computer time.

  19. Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities

    NASA Astrophysics Data System (ADS)

    Sun, Yuan Gong; Wong, James S. W.

    2007-10-01

    We present new oscillation criteria for the second order forced ordinary differential equation with mixed nonlinearities: where , p(t) is positive and differentiable, [alpha]1>...>[alpha]m>1>[alpha]m+1>...>[alpha]n. No restriction is imposed on the forcing term e(t) to be the second derivative of an oscillatory function. When n=1, our results reduce to those of El-Sayed [M.A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proc. Amer. Math. Soc. 118 (1993) 813-817], Wong [J.S.W. Wong, Oscillation criteria for a forced second linear differential equations, J. Math. Anal. Appl. 231 (1999) 235-240], Sun, Ou and Wong [Y.G. Sun, C.H. Ou, J.S.W. Wong, Interval oscillation theorems for a linear second order differential equation, Comput. Math. Appl. 48 (2004) 1693-1699] for the linear equation, Nazr [A.H. Nazr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998) 123-125] for the superlinear equation, and Sun and Wong [Y.G. Sun, J.S.W. Wong, Note on forced oscillation of nth-order sublinear differential equations, JE Math. Anal. Appl. 298 (2004) 114-119] for the sublinear equation.

  20. Travelling-wave and separated variable solutions of a nonlinear Schroedinger equation

    NASA Astrophysics Data System (ADS)

    Bountis, Tassos; Nobre, Fernando D.

    2016-08-01

    Some interesting nonlinear generalizations have been proposed recently for the linear Schroedinger, Klein-Gordon, and Dirac equations of quantum and relativistic physics. These novel equations involve a real parameter q and reduce to the corresponding standard linear equations in the limit q → 1. Their main virtue is that they possess plane-wave solutions expressed in terms of a q-exponential function that can vanish at infinity, while preserving the Einstein energy-momentum relation for all q. In this paper, we first present new travelling wave and separated variable solutions for the main field variable Ψ ( x → , t ) , of the nonlinear Schroedinger equation (NLSE), within the q-exponential framework, and examine their behavior at infinity for different values of q. We also solve the associated equation for the second field variable Φ ( x → , t ) , derived recently within the context of a classical field theory, which corresponds to Ψ ∗ ( x → , t ) for the linear Schroedinger equation in the limit q → 1. For x ∈ ℜ, we show that certain perturbations of these q-exponential solutions Ψ(x, t) and Φ(x, t) are unbounded and hence would lead to divergent probability densities over the full domain -∞ < x < ∞. However, we also identify ranges of q values for which these solutions vanish at infinity, and may therefore be physically important.

  1. Lie symmetry properties of nonlinear reaction-diffusion equations with gradient-dependent diffusivity

    NASA Astrophysics Data System (ADS)

    Cherniha, Roman; King, John R.; Kovalenko, Sergii

    2016-07-01

    Complete descriptions of the Lie symmetries of a class of nonlinear reaction-diffusion equations with gradient-dependent diffusivity in one and two space dimensions are obtained. A surprisingly rich set of Lie symmetry algebras depending on the form of diffusivity and source (sink) in the equations is derived. It is established that there exists a subclass in 1-D space admitting an infinite-dimensional Lie algebra of invariance so that it is linearisable. A special power-law diffusivity with a fixed exponent, which leads to wider Lie invariance of the equations in question in 2-D space, is also derived. However, it is shown that the diffusion equation without a source term (which often arises in applications and is sometimes called the Perona-Malik equation) possesses no rich variety of Lie symmetries depending on the form of gradient-dependent diffusivity. The results of the Lie symmetry classification for the reduction to lower dimensionality, and a search for exact solutions of the nonlinear 2-D equation with power-law diffusivity, also are included.

  2. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  3. Heteroclinic Structure of Parametric Resonance in the Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Conforti, M.; Mussot, A.; Kudlinski, A.; Rota Nodari, S.; Dujardin, G.; De Biévre, S.; Armaroli, A.; Trillo, S.

    2016-07-01

    We show that the nonlinear stage of modulational instability induced by parametric driving in the defocusing nonlinear Schrödinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearized Floquet analysis.

  4. Dispersion relation of the nonlinear Klein-Gordon equation through a variational method.

    PubMed

    Amore, Paolo; Raya, Alfredo

    2006-03-01

    We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equation in the case of strong nonlinearities using a method based on the linear delta expansion. All the results obtained in this article are fully analytical, never involve the use of special functions, and can be used to obtain systematic approximations to the exact results to any desired degree of accuracy. We compare our findings with similar results in the literature and show that our approach leads to better and simpler results.

  5. High-order rogue waves in vector nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Guo, Boling; Zhao, Li-Chen

    2014-04-01

    We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber. PMID:24827185

  6. A method for exponential propagation of large systems of stiff nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Friesner, Richard A.; Tuckerman, Laurette S.; Dornblaser, Bright C.; Russo, Thomas V.

    1989-01-01

    A new time integrator for large, stiff systems of linear and nonlinear coupled differential equations is described. For linear systems, the method consists of forming a small (5-15-term) Krylov space using the Jacobian of the system and carrying out exact exponential propagation within this space. Nonlinear corrections are incorporated via a convolution integral formalism; the integral is evaluated via approximate Krylov methods as well. Gains in efficiency ranging from factors of 2 to 30 are demonstrated for several test problems as compared to a forward Euler scheme and to the integration package LSODE.

  7. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  8. Global series solutions of nonlinear differential equations with shocks using Walsh functions

    NASA Astrophysics Data System (ADS)

    Gnoffo, Peter A.

    2014-02-01

    An orthonormal basis set composed of Walsh functions is used for deriving global solutions (valid over the entire domain) to nonlinear differential equations that include discontinuities. Function gn(x) of the set, a scaled Walsh function in sequency order, is comprised of n piecewise constant values (square waves) across the domain xa⩽x⩽xb. Only two square wave lengths are allowed in any function and a new derivation of the basis functions applies a fractal-like algorithm (infinitely self-similar) focused on the distribution of wave lengths. This distribution is determined by a recursive folding algorithm that propagates fundamental symmetries to successive values of n. Functions, including those with discontinuities, may be represented on the domain as a series in gn(x) with no occurrence of a Gibbs phenomenon (ringing) across the discontinuity. A much more powerful, self-mapping characteristic of the series is closure under multiplication - the product of any two Walsh functions is also a Walsh function. This self-mapping characteristic transforms the solution of nonlinear differential equations to the solution of systems of polynomial equations if the original nonlinearities can be represented as products of the dependent variables and the convergence of the series for n→∞ can be demonstrated. Fundamental operations (reciprocal, integral, derivative) on Walsh function series representations of functions with discontinuities are defined. Examples are presented for solution of the time dependent Burger's equation and for quasi-one-dimensional nozzle flow including a shock.

  9. Nonlinear quantum-mechanical system associated with Sine-Gordon equation in (1 + 2) dimensions

    SciTech Connect

    Zarmi, Yair

    2014-10-15

    Despite the fact that it is not integrable, the (1 + 2)-dimensional Sine-Gordon equation has N-soliton solutions, whose velocities are lower than the speed of light (c = 1), for all N ≥ 1. Based on these solutions, a quantum-mechanical system is constructed over a Fock space of particles. The coordinate of each particle is an angle around the unit circle. U, a nonlinear functional of the particle number-operators, which obeys the Sine-Gordon equation in (1 + 2) dimensions, is constructed. Its eigenvalues on N-particle states in the Fock space are the slower-than-light, N-soliton solutions of the equation. A projection operator (a nonlinear functional of U), which vanishes on the single-particle subspace, is a mass-density generator. Its eigenvalues on multi-particle states play the role of the mass density of structures that emulate free, spatially extended, relativistic particles. The simplicity of the quantum-mechanical system allows for the incorporation of perturbations with particle interactions, which have the capacity to “annihilate” and “create” solitons – an effect that does not have an analog in perturbed classical nonlinear evolution equations.

  10. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  11. Blow-up of solutions of an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity

    NASA Astrophysics Data System (ADS)

    Korpusov, M. O.; Panin, A. A.

    2014-10-01

    We consider an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity. Under certain conditions on the operators in the equation, we prove its local (in time) solubility and give sufficient conditions for finite-time blow-up of solutions of the corresponding abstract Cauchy problem. The proof uses a modification of a method of Levine. We give examples of Cauchy problems and initial-boundary value problems for concrete non-linear equations of mathematical physics.

  12. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    SciTech Connect

    Zhong, Wei-Ping; Belić, Milivoj; Malomed, Boris A.; Huang, Tingwen

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of a transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.

  13. Global Stability Analysis of Some Nonlinear Delay Differential Equations in Population Dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Liu, Anping; Foryś, Urszula

    2016-02-01

    By using the direct Lyapunov method and constructing appropriate Lyapunov functionals, we investigate the global stability for the following scalar delay differential equation with nonlinear term y'(t)=f(1-y(t), y(t-τ ))-cy(t), where c is a positive constant and f: {R}^2 → R is of class C^1 and satisfies some additional requirements. This equation is a generalization of the SIS model proposed by Cooke (Rocky Mt J Math 7: 253-263, 1979). Criterions of global stability for the trivial and the positive equilibria of this delay equation are given. A special case of the function f depending only on the variable y(t-τ ) is also considered. Both general and special cases of this equation are often used in biomathematical modelling.

  14. Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Marchiolli, M. A.; Mizrahi, Solomon S.; Moussa, M. H. Y.

    1994-01-01

    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too.

  15. Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent

    SciTech Connect

    Alkhutov, Yu A; Zhikov, V V

    2014-03-31

    The paper is concerned with the solvability of the initial-boundary value problem for second-order parabolic equations with variable nonlinearity exponents. In the model case, this equation contains the p-Laplacian with a variable exponent p(x,t). The problem is shown to be uniquely solvable, provided the exponent p is bounded away from both 1 and ∞ and is log-Hölder continuous, and its solution satisfies the energy equality. Bibliography: 18 titles.

  16. A nonlinear parabolic equation with discontinuity in the highest order and applications

    NASA Astrophysics Data System (ADS)

    Chen, Robin Ming; Liu, Qing

    2016-01-01

    In this paper we establish a viscosity solution theory for a class of nonlinear parabolic equations with discontinuities of the sign function type in the second derivatives of the unknown function. We modify the definition of classical viscosity solutions and show uniqueness and existence of the solutions. These results are related to the limit behavior for the motion of a curve by a very small power of its curvature, which has applications in image processing. We also discuss the relation between our equation and the total variation flow in one space dimension.

  17. Explicit Solution of Nonlinear ZK-BBM Wave Equation Using Exp-Function Method

    NASA Astrophysics Data System (ADS)

    Mahmoudi, J.; Tolou, N.; Khatami, I.; Barari, A.; Ganji, D. D.

    This study is devoted to studying the (2+1)-dimensional ZK-BBM (Zakharov-Kuznetsov-Benjamin-Bona-Mahony) wave equation in an analytical solution. The analysis is based on the implementation a new method, called Exp-function method. The obtained results from the proposed approximate solution have been verified with those obtained by the extended tanh method. It shows that the obtained results of these methods are the same; while Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear partial differential equations of engineering problems in the terms of accuracy and efficiency.

  18. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    PubMed

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results. PMID:27478733

  19. Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation

    NASA Astrophysics Data System (ADS)

    Wang, Yi

    2012-06-01

    In this paper, one quasi-periodically forced nonlinear beam equation utt+uxxxx+μu+ɛg(ωt,x)u3=0,μ>0,x∈[0,π] with hinged boundary conditions is considered. Here ɛ is a small positive parameter, g( ωt, x) is real analytic in all variables and quasi-periodic in t with a frequency vector ω = ( ω1, ω2, … , ωm). It is proved that the above equation admits small-amplitude quasi-periodic solutions.

  20. Exact Traveling Wave Solutions of a Higher-Dimensional Nonlinear Evolution Equation

    NASA Astrophysics Data System (ADS)

    Lee, Jonu; Sakthivel, Rathinasamy; Wazzan, Luwai

    The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh-coth method is implemented to obtain single soliton solutions whereas the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.

  1. The nonlinear wave equation for higher harmonics in free-electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1981-01-01

    The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.

  2. Presentation of special series with computed recurrently coefficients of solutions of nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Filimonov, M.; Masih, A.

    2016-06-01

    One of the analytical methods of presenting solutions of nonlinear partial differential equations is the method of special series in powers of specially selected functions called basis functions. The coefficients of such series are found successively as solutions of linear differential equations. To find recurrence, the coefficient is achieved by the choice of basis functions, which may also contain arbitrary functions. By using such functional arbitrariness, it allows in some cases to prove the global convergence of the corresponding constructed series, as well as the solvability of the boundary value problem.

  3. Global existence and nonexistence of the solution of a forced nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Bo-ling; Wu, Yong-hui

    1995-07-01

    In this article, we prove that the solution of the forced nonlinear Schrödinger equation (1.1) below for u0∈H1 and Q(t)∈C1 with u0(0)=Q(0) exists globally if and only if ∫T0||Q'(t)||2 dt<∞. This result positively answers the conjecture of Q. Y. Bu [``On well-posedness of the forced NLS equation,'' Appl. Anal. 46, 219-239 (1992)].

  4. Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras

    NASA Astrophysics Data System (ADS)

    Grahovski, Georgi G.; Mikhailov, Alexander V.

    2013-12-01

    Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.

  5. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    SciTech Connect

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  6. Behavior of Tvd Limiters on the Solution of Non-Linear Hyperbolic Equation

    NASA Astrophysics Data System (ADS)

    Qureshi, K. R.; Lee, C.-H.

    The main objective of the present work is to solve the non-linear inviscid Burger equation using the second-order TVD scheme with the different TVD limiters. These limiters include Non-MUSCL (monotone upwind scalar conservation laws) Harten-Yee upwind limiters, Roe-Sweby upwind limiters and Davis-Yee symmetric TVD limiters. These limiters are then used in conjunction with the explicit finite difference second order TVD scheme to model the flow in which discontinuity is present. Non-linear Burger equation was solved for this purpose to capture a one dimensional traveling discontinuity. Every limiter was individually tested for its ability to resolve the discontinuity in as few mesh point as possible. In addition, each limiter's capability to eliminate spurious oscillations associated with numerical computation of discontinuities was investigated. The results showed that all the TVD limiters were able to completely eliminate the spurious oscillations except Roe-Sweby limiter that caused the solution to diverge.

  7. Approximation of small-amplitude weakly coupled oscillators by discrete nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Dmitry; Penati, Tiziano; Paleari, Simone

    2016-08-01

    Small-amplitude weakly coupled oscillators of the Klein-Gordon lattices are approximated by equations of the discrete nonlinear Schrödinger type. We show how to justify this approximation by two methods, which have been very popular in the recent literature. The first method relies on a priori energy estimates and multi-scale decompositions. The second method is based on a resonant normal form theorem. We show that although the two methods are different in the implementation, they produce equivalent results as the end product. We also discuss the applications of the discrete nonlinear Schrödinger equation in the context of existence and stability of breathers of the Klein-Gordon lattice.

  8. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  9. Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation.

    PubMed

    Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun

    2016-08-01

    In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system. PMID:27586626

  10. Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation

    NASA Astrophysics Data System (ADS)

    Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun

    2016-08-01

    In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.

  11. A new approximate analytical approach for dispersion relation of the nonlinear Klein-Gordon equation.

    PubMed

    Lim, C. W.; Wu, B. S.; He, L. H.

    2001-12-01

    A novel approach is presented for obtaining approximate analytical expressions for the dispersion relation of periodic wavetrains in the nonlinear Klein-Gordon equation with even potential function. By coupling linearization of the governing equation with the method of harmonic balance, we establish two general analytical approximate formulas for the dispersion relation, which depends on the amplitude of the periodic wavetrain. These formulas are valid for small as well as large amplitude of the wavetrain. They are also applicable to the large amplitude regime, which the conventional perturbation method fails to provide any solution, of the nonlinear system under study. Three examples are demonstrated to illustrate the excellent approximate solutions of the proposed formulas with respect to the exact solutions of the dispersion relation. (c) 2001 American Institute of Physics.

  12. Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with central symmetry

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim

    2015-05-01

    The concept of nonlinear self-adjointness, introduced by Ibragimov, has significantly extends approaches to constructing conservation laws associated with symmetries since it incorporates the strict self-adjointness, the quasi self-adjointness as well as the usual linear self-adjointness. Using this concept, the nonlinear self-adjointness condition for the Klein-Gordon-Fock equation was established and subsequently used to construct simplified but infinitely many nontrivial and independent conserved vectors. The Noether's theorem was further applied to the Klein-Gordon-Fock equation to explore more distinct first integrals, result shows that conservation laws constructed through this approach are exactly the same as those obtained under strict self-adjointness of Ibragimov's method.

  13. A Haar wavelet collocation method for coupled nonlinear Schrödinger-KdV equations

    NASA Astrophysics Data System (ADS)

    Oruç, Ömer; Esen, Alaattin; Bulut, Fatih

    2016-04-01

    In this paper, to obtain accurate numerical solutions of coupled nonlinear Schrödinger-Korteweg-de Vries (KdV) equations a Haar wavelet collocation method is proposed. An explicit time stepping scheme is used for discretization of time derivatives and nonlinear terms that appeared in the equations are linearized by a linearization technique and space derivatives are discretized by Haar wavelets. In order to test the accuracy and reliability of the proposed method L2, L∞ error norms and conserved quantities are used. Also obtained results are compared with previous ones obtained by finite element method, Crank-Nicolson method and radial basis function meshless methods. Error analysis of Haar wavelets is also given.

  14. Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths

    NASA Astrophysics Data System (ADS)

    Chu, Jixun; Coron, Jean-Michel; Shang, Peipei

    2015-10-01

    We study an initial-boundary-value problem of a nonlinear Korteweg-de Vries equation posed on the finite interval (0, 2 kπ) where k is a positive integer. The whole system has Dirichlet boundary condition at the left end-point, and both of Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the origin is not asymptotically stable for the linearized system around the origin. We prove that the origin is (locally) asymptotically stable for the nonlinear system if the integer k is such that the kernel of the linear Korteweg-de Vries stationary equation is of dimension 1. This is for example the case if k = 1.

  15. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  16. Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation

    NASA Astrophysics Data System (ADS)

    Jones, Christopher K. R. T.; Marangell, Robert; Miller, Peter D.; Plaza, Ramón G.

    2014-12-01

    This paper is a detailed and self-contained study of the stability properties of periodic traveling wave solutions of the nonlinear Klein-Gordon equation utt-uxx+V‧(u)=0, where u is a scalar-valued function of x and t, and the potential V(u) is of class C2 and periodic. Stability is considered both from the point of view of spectral analysis of the linearized problem (spectral stability analysis) and from the point of view of wave modulation theory (the strongly nonlinear theory due to Whitham as well as the weakly nonlinear theory of wave packets). The aim is to develop and present new spectral stability results for periodic traveling waves, and to make a solid connection between these results and predictions of the (formal) modulation theory, which has been developed by others but which we review for completeness.

  17. Collapse for the higher-order nonlinear Schrödinger equation

    DOE PAGESBeta

    Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; Horikis, T. P.; Karachalios, N. I.; Kevrekidis, P. G.

    2016-02-01

    We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less

  18. Nonlinear closed loop optimal control: a modified state-dependent Riccati equation.

    PubMed

    Rafee Nekoo, S

    2013-03-01

    The state-dependent Riccati equation (SDRE), as a controller, has been introduced and implemented since the 90s. In this article, the other aspects of this controller are declared which shows the capability of this technique. First, a general case which has control nonlinearities and time varying weighting matrix Q is solved with three approaches: exact solution (ES), online control update (OCU) and power series approximation (PSA). The proposed PSA in this paper is able to deal with time varying or state-dependent Q in nonlinear systems. As a result of having the solution of nonlinear systems with complex Q containing constraints, using OCU and proposed PSA, a method is introduced to prevent the collision of an end-effector of a robot and an obstacle which shows the adaptability of the SDRE controller. Two examples to support the idea are presented and conferred. Supplementing constraints to the SDRE via matrix Q, this approach is named a modified SDRE.

  19. Extended Painlevé Expansion, Nonstandard Truncation and Special Reductions of Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Lou, Sen-yue

    1998-05-01

    To study a nonlinear partial differential equation (PDE), the Painleve expansion developed by Weiss, Tabor and Carnevale (WTC) is one of the most powerful methods. In this paper, using any singular manifold, the expansion series in the usual Painleve analysis is shown to be resummable in some different ways. A simple nonstandard truncated expansion with a quite universal reduction function is used for many nonlinear integrable and nonintegrable PDEs such as the Burgers, Korteweg de-Vries (KdV), Kadomtsev-Petviashvli (KP), Caudrey-Dodd-Gibbon-Sawada-Kortera (CDGSK), Nonlinear Schrödinger (NLS), Davey-Stewartson (DS), Broer-Kaup (BK), KdV-Burgers (KdVB), λf4 , sine-Gordon (sG) etc.

  20. Determining the multiplicity of a root of a nonlinear algebraic equation

    NASA Astrophysics Data System (ADS)

    Kalitkin, N. N.; Poshivailo, I. P.

    2008-07-01

    Newton’s method is most frequently used to find the roots of a nonlinear algebraic equation. The convergence domain of Newton’s method can be expanded by applying a generalization known as the continuous analogue of Newton’s method. For the classical and generalized Newton methods, an effective root-finding technique is proposed that simultaneously determines root multiplicity. Roots of high multiplicity (up to 10) can be calculated with a small error. The technique is illustrated using numerical examples.

  1. Investigating stability using nonlinear quasihomogeneous approximation to differential equations with impulsive action

    SciTech Connect

    Dvirny, A. I.; Slyn'ko, V. I. E-mail: vitstab@ukr.net

    2014-06-01

    Inverse theorems to Lyapunov's direct method are established for quasihomogeneous systems of differential equations with impulsive action. Conditions for the existence of Lyapunov functions satisfying typical bounds for quasihomogeneous functions are obtained. Using these results, we establish conditions for an equilibrium of a nonlinear system with impulsive action to be stable, using the properties of a quasihomogeneous approximation to the system. The results are illustrated by an example of a large-scale system with homogeneous subsystems. Bibliography: 30 titles. (paper)

  2. Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Zhou, Gang

    2007-05-01

    In this paper we consider generalized nonlinear Schrödinger equations with external potentials. We find the expressions for the fourth and the sixth order Fermi golden rules (FGRs), conjectured in Gang and Sigal [Rev. Math. Phys. 17, 1143-1207 (2005); Geom. Funct. Anal. 16, No. 7, 1377-1390 (2006)]. The FGR is a key condition in a study of the asymptotic dynamics of trapped solitons.

  3. Well-posedness for a generalized derivative nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Hayashi, Masayuki; Ozawa, Tohru

    2016-11-01

    We study the Cauchy problem for a generalized derivative nonlinear Schrödinger equation with the Dirichlet boundary condition. We establish the local well-posedness results in the Sobolev spaces H1 and H2. Solutions are constructed as a limit of approximate solutions by a method independent of a compactness argument. We also discuss the global existence of solutions in the energy space H1.

  4. A combined modification of Newton`s method for systems of nonlinear equations

    SciTech Connect

    Monteiro, M.T.; Fernandes, E.M.G.P.

    1996-12-31

    To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

  5. A Family of Ellipse Methods for Solving Non-Linear Equations

    ERIC Educational Resources Information Center

    Gupta, K. C.; Kanwar, V.; Kumar, Sanjeev

    2009-01-01

    This note presents a method for the numerical approximation of simple zeros of a non-linear equation in one variable. In order to do so, the method uses an ellipse rather than a tangent approach. The main advantage of our method is that it does not fail even if the derivative of the function is either zero or very small in the vicinity of the…

  6. Wave operators to a quadratic nonlinear Klein-Gordon equation in two space dimensions revisited

    NASA Astrophysics Data System (ADS)

    Hayashi, Nakao; Naumkin, Pavel I.; Tonegawa, Satoshi

    2012-08-01

    We continue to study the existence of the wave operators for the nonlinear Klein-Gordon equation with quadratic nonlinearity in two space dimensions {(partialt2-Δ+m2) u=λ u2,( t,x) in{R}×{R}2}. We prove that if u1+in{H}^{3/2+3γ,1}( {R}2),{ }u2+in{H}^{1/2+3γ,1}( {R} 2), where {γin( 0,1/4)} and the norm {Vert u1+Vert_{{H}1^{3/2+γ}}+Vert u2+Vert_{{H}1^{1/2+γ}}≤ρ,} then there exist ρ > 0 and T > 1 such that the nonlinear Klein-Gordon equation has a unique global solution {uin{C}( [ T,infty) ;{H}^{1/2}( {R}2) ) } satisfying the asymptotics Vert u( t) -u0 ( t) Vert _{{H}^{1/2}} ≤ Ct^{-1/2-γ} for all t > T, where u 0 denotes the solution of the free Klein-Gordon equation.

  7. Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations

    NASA Astrophysics Data System (ADS)

    Clausen, Jens; Guerreschi, Gian Giacomo; Tiersch, Markus; Briegel, Hans J.

    2014-08-01

    We formulate a multiple-encounter model of the radical pair mechanism that is based on a random coupling of the radical pair to a minimal model environment. These occasional pulse-like couplings correspond to the radical encounters and give rise to both dephasing and recombination. While this is in agreement with the original model of Haberkorn and its extensions that assume additional dephasing, we show how a nonlinear master equation may be constructed to describe the conditional evolution of the radical pairs prior to the detection of their recombination. We propose a nonlinear master equation for the evolution of an ensemble of independently evolving radical pairs whose nonlinearity depends on the record of the fluorescence signal. We also reformulate Haberkorn's original argument on the physicality of reaction operators using the terminology of quantum optics/open quantum systems. Our model allows one to describe multiple encounters within the exponential model and connects this with the master equation approach. We include hitherto neglected effects of the encounters, such as a separate dephasing in the triplet subspace, and predict potential new effects, such as Grover reflections of radical spins, that may be observed if the strength and time of the encounters can be experimentally controlled.

  8. Nonlinear evolution-type equations and their exact solutions using inverse variational methods

    NASA Astrophysics Data System (ADS)

    Kara, A. H.; Khalique, C. M.

    2005-05-01

    We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painlevé properties are also suggested.

  9. Integral and integrable algorithms for a nonlinear shallow-water wave equation

    NASA Astrophysics Data System (ADS)

    Camassa, Roberto; Huang, Jingfang; Lee, Long

    2006-08-01

    An asymptotic higher-order model of wave dynamics in shallow water is examined in a combined analytical and numerical study, with the aim of establishing robust and efficient numerical solution methods. Based on the Hamiltonian structure of the nonlinear equation, an algorithm corresponding to a completely integrable particle lattice is implemented first. Each "particle" in the particle method travels along a characteristic curve. The resulting system of nonlinear ordinary differential equations can have solutions that blow-up in finite time. We isolate the conditions for global existence and prove l1-norm convergence of the method in the limit of zero spatial step size and infinite particles. The numerical results show that this method captures the essence of the solution without using an overly large number of particles. A fast summation algorithm is introduced to evaluate the integrals of the particle method so that the computational cost is reduced from O( N2) to O( N), where N is the number of particles. The method possesses some analogies with point vortex methods for 2D Euler equations. In particular, near singular solutions exist and singularities are prevented from occurring in finite time by mechanisms akin to those in the evolution of vortex patches. The second method is based on integro-differential formulations of the equation. Two different algorithms are proposed, based on different ways of extracting the time derivative of the dependent variable by an appropriately defined inverse operator. The integro-differential formulations reduce the order of spatial derivatives, thereby relaxing the stability constraint and allowing large time steps in an explicit numerical scheme. In addition to the Cauchy problem on the infinite line, we include results on the study of the nonlinear equation posed in the quarter (space-time) plane. We discuss the minimum number of boundary conditions required for solution uniqueness and illustrate this with numerical

  10. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model

    NASA Astrophysics Data System (ADS)

    Ştefănescu, R.; Navon, I. M.

    2013-03-01

    In the present paper we consider a 2-D shallow-water equations (SWE) model on a β-plane solved using an alternating direction fully implicit (ADI) finite-difference scheme on a rectangular domain. The scheme was shown to be unconditionally stable for the linearized equations. The discretization yields a number of nonlinear systems of algebraic equations. We then use a proper orthogonal decomposition (POD) to reduce the dimension of the SWE model. Due to the model nonlinearities, the computational complexity of the reduced model still depends on the number of variables of the full shallow - water equations model. By employing the discrete empirical interpolation method (DEIM) we reduce the computational complexity of the reduced order model due to its depending on the nonlinear full dimension model and regain the full model reduction expected from the POD model. To emphasize the CPU gain in performance due to use of POD/DEIM, we also propose testing an explicit Euler finite difference scheme (EE) as an alternative to the ADI implicit scheme for solving the swallow water equations model. We then proceed to assess the efficiency of POD/DEIM as a function of number of spatial discretization points, time steps, and POD basis functions. As was expected, our numerical experiments showed that the CPU time performances of POD/DEIM schemes are proportional to the number of mesh points. Once the number of spatial discretization points exceeded 10000 and for 90 DEIM interpolation points, the CPU time decreased by a factor of 10 in case of POD/DEIM implicit SWE scheme and by a factor of 15 for the POD/DEIM explicit SWE scheme in comparison with the corresponding POD SWE schemes. Moreover, our numerical tests revealed that if the number of points selected by DEIM algorithm reached 50, the approximation errors due to POD/DEIM and POD reduced systems have the same orders of magnitude, thus supporting the theoretical results existing in the literature.

  11. Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrödinger equation with spatially modulated nonlinearities and potentials.

    PubMed

    Xu, Si-Liu; Cheng, Jia-Xi; Belić, Milivoj R; Hu, Zheng-Long; Zhao, Yuan

    2016-05-01

    We derive analytical solutions to the cubic-quintic nonlinear Schrödinger equation with potentials and nonlinearities depending on both propagation distance and transverse space. Among other, circle solitons and multi-peaked vortex solitons are found. These solitary waves propagate self-similarly and are characterized by three parameters, the modal numbers m and n, and the modulation depth of intensity. We find that the stable fundamental solitons with m = 0 and the low-order solitons with m = 1, n ≤ 2 can be supported with the energy eigenvalues E = 0 and E ≠ 0. However, higher-order solitons display unstable propagation over prolonged distances. The stability of solutions is examined by numerical simulations. PMID:27137617

  12. Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrödinger equation with spatially modulated nonlinearities and potentials.

    PubMed

    Xu, Si-Liu; Cheng, Jia-Xi; Belić, Milivoj R; Hu, Zheng-Long; Zhao, Yuan

    2016-05-01

    We derive analytical solutions to the cubic-quintic nonlinear Schrödinger equation with potentials and nonlinearities depending on both propagation distance and transverse space. Among other, circle solitons and multi-peaked vortex solitons are found. These solitary waves propagate self-similarly and are characterized by three parameters, the modal numbers m and n, and the modulation depth of intensity. We find that the stable fundamental solitons with m = 0 and the low-order solitons with m = 1, n ≤ 2 can be supported with the energy eigenvalues E = 0 and E ≠ 0. However, higher-order solitons display unstable propagation over prolonged distances. The stability of solutions is examined by numerical simulations.

  13. THE LOSS OF ACCURACY OF STOCHASTIC COLLOCATION METHOD IN SOLVING NONLINEAR DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

    SciTech Connect

    Webster, Clayton G; Tran, Hoang A; Trenchea, Catalin S

    2013-01-01

    n this paper we show how stochastic collocation method (SCM) could fail to con- verge for nonlinear differential equations with random coefficients. First, we consider Navier-Stokes equation with uncertain viscosity and derive error estimates for stochastic collocation discretization. Our analysis gives some indicators on how the nonlinearity negatively affects the accuracy of the method. The stochastic collocation method is then applied to noisy Lorenz system. Simulation re- sults demonstrate that the solution of a nonlinear equation could be highly irregular on the random data and in such cases, stochastic collocation method cannot capture the correct solution.

  14. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

    PubMed

    Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2016-04-12

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing. PMID:27035946

  15. Discovering governing equations from data by sparse identification of nonlinear dynamical systems

    PubMed Central

    Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing. PMID:27035946

  16. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  17. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).

    PubMed

    Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre

    2012-10-01

    A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.

  18. Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution.

    PubMed

    Malacarne, L C; Mendes, R S; Pedron, I T; Lenzi, E K

    2001-03-01

    The nonlinear diffusion equation partial delta rho/delta t=D Delta rho(nu) is analyzed here, where Delta[triple bond](1/r(d-1))(delta/delta r)r(d-1-theta) delta/delta r, and d, theta, and nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact point-source solution is obtained, enabling us to describe a large class of subdiffusion [ theta>(1-nu)d], "normal" diffusion [theta=(1-nu)d] and superdiffusion [theta<(1-nu)d]. Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.

  19. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Succi, Sauro

    2015-05-01

    We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations for fluid dynamics in the context of astrophysical simulations, to solve the nonlinear Schrödinger equation in the Madelung formulation. The probability density of the wave function is discretized into moving particles, whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum pressure tensor, for which a robust discretization is found. We demonstrate our numerical method on a variety of numerical test problems involving the simple harmonic oscillator, soliton-soliton collision, Bose-Einstein condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation. Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution, making it well suited to study problems with collapsing solutions.

  20. A direct probabilistic approach to solve state equations for nonlinear systems under random excitation

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Qiu, Zhiping

    2016-09-01

    In this paper, a direct probabilistic approach (DPA) is presented to formulate and solve moment equations for nonlinear systems excited by environmental loads that can be either a stationary or nonstationary random process. The proposed method has the advantage of obtaining the response's moments directly from the initial conditions and statistical characteristics of the corresponding external excitations. First, the response's moment equations are directly derived based on a DPA, which is completely independent of the Itô/filtering approach since no specific assumptions regarding the correlation structure of excitation are made. By solving them under Gaussian closure, the response's moments can be obtained. Subsequently, a multiscale algorithm for the numerical solution of moment equations is exploited to improve computational efficiency and avoid much wall-clock time. Finally, a comparison of the results with Monte Carlo (MC) simulation gives good agreement. Furthermore, the advantage of the multiscale algorithm in terms of efficiency is also demonstrated by an engineering example.

  1. Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross-Pitaevskii Equation

    NASA Astrophysics Data System (ADS)

    Dohnal, Tomáš; Uecker, Hannes

    2016-06-01

    We rigorously analyze the bifurcation of stationary so-called nonlinear Bloch waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasiperiodic functions and which in a formal asymptotic expansion are obtained from solutions of the so-called algebraic coupled mode equations. Here we justify this expansion by proving the existence of NLBs and estimating the error of the formal asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other classes of solutions of the GP equation, in particular to so-called out-of-gap solitons and truncated NLBs, and present some numerical experiments concerning the stability of these solutions.

  2. Nonlinear Schrödinger equation from generalized exact uncertainty principle

    NASA Astrophysics Data System (ADS)

    Rudnicki, Łukasz

    2016-09-01

    Inspired by the generalized uncertainty principle, which adds gravitational effects to the standard description of quantum uncertainty, we extend the exact uncertainty principle approach by Hall and Reginatto (2002 J. Phys. A: Math. Gen. 35 3289), and obtain a (quasi)nonlinear Schrödinger equation. This quantum evolution equation of unusual form, enjoys several desired properties like separation of non-interacting subsystems or plane-wave solutions for free particles. Starting with the harmonic oscillator example, we show that every solution of this equation respects the gravitationally induced minimal position uncertainty proportional to the Planck length. Quite surprisingly, our result successfully merges the core of classical physics with non-relativistic quantum mechanics in its extremal form. We predict that the commonly accepted phenomenon, namely a modification of a free-particle dispersion relation due to quantum gravity might not occur in reality.

  3. Effects of randomness, dissipation and interaction on solitons of the cubic nonlinear Schrodinger equation and related nonlinear wave models

    NASA Astrophysics Data System (ADS)

    Nguyen, Quan Minh

    2011-12-01

    We investigate the propagation of solitons of the perturbed nonlinear Schrodinger equation (NLSE) via asymptotic perturbation techniques and numerical simulations. The dissertation consists of several inter-related projects [22, 98, 103, 108, 109] that are focused on the effects of nonlinear processes and randomness on dynamics of pulses of light in optical waveguides. We particularly consider two of the most important nonlinear processes affecting pulse dynamics in multichannel optical waveguides: weak cubic loss and delayed Raman response. In the presence of weak cubic loss [98], we obtain the analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Furthermore, we show that amplitude dynamics in an N-channel waveguide system is described by a Lotka-Volterra model for N competing species. We find the conditions on the time slot width and the soliton's equilibrium amplitude value under which the transmission is stable. The predictions of the reduced Lotka-Volterra model are confirmed by numerical solution of a coupled-NLSE model, which takes into account intra-pulse and inter-pulse effects due to cubic nonlinearity and cubic loss. These results uncover an interesting analogy between the dynamics of energy exchange in pulse collisions and population dynamics in Lotka-Volterra models. In the presence of delayed Raman response [103,108,109], we show that the dynamics of pulse amplitudes in an N-channel transmission system in differential phase shift keying (DPSK) scheme is described by an N-dimensional predator-prey model. We find the equilibrium states with non-zero amplitudes and prove their stability by obtaining the Lyapunov function. We then show that stable transmission can be achieved by a proper choice of the frequency profile of linear amplifier gain. We also investigate the impact of Raman self- and collsion

  4. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    SciTech Connect

    Schüler, D.; Alonso, S.; Bär, M.; Torcini, A.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  5. Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Zhu, Zuo-Nong

    2016-08-01

    In this paper, we try to understand the geometry for a nonlocal nonlinear Schrödinger equation (nonlocal NLS) and its discrete version introduced by Ablowitz and Musslimani, Phys. Rev. Lett. 110, 064105 (2013); Phys. Rev. E 90, 042912 (2014). We show that, under the gauge transformations, the nonlocal focusing NLS and the nonlocal defocusing NLS are, respectively, gauge equivalent to a Heisenberg-like equation and a modified Heisenberg-like equation, and their discrete versions are, respectively, gauge equivalent to a discrete Heisenberg-like equation and a discrete modified Heisenberg-like equation. Although the geometry related to the nonlocal NLS and its discrete version is not very clear, from the gauge equivalence, we can see that the properties between the nonlocal NLS and its discrete version and NLS and discrete NLS have significant difference. By constructing the Darboux transformation for discrete nonlocal NLS equations including the cases of focusing and defocusing, we derive their discrete soliton solutions, which differ from the ones obtained by using the inverse scattering transformation.

  6. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  7. Growth of Sobolev Norms in the Cubic Nonlinear Schrödinger Equation with a Convolution Potential

    NASA Astrophysics Data System (ADS)

    Guardia, Marcel

    2014-07-01

    Fix s > 1. Colliander et al. proved in (Invent Math 181:39-113, 2010) the existence of solutions of the cubic defocusing nonlinear Schrödinger equation in the two torus whose s-Sobolev norm undergoes arbitrarily large growth as time evolves. In this paper we generalize their result to the cubic defocusing nonlinear Schrödinger equation with a convolution potential. Moreover, we show that the speed of growth is the same as the one obtained for the cubic defocusing nonlinear Schrödinger equation in Guardia and Kaloshin (Growth of Sobolev norms in the cubic defocusing Nonlinear Schrödinger Equation. To appear in the Journal of the European Mathematical Society, 2012).

  8. Soliton synchronization in the focusing nonlinear Schrödinger equation.

    PubMed

    Sun, Yu-Hao

    2016-05-01

    The focusing nonlinear Schrödinger equation (NLSE) describes propagation of quasimonochromatic waves in weakly nonlinear media. The aim of this study is to determine conditions of soliton synchronization in the NLSE in terms of the solitons' position and phase parameters. For this purpose, the concept of asymptotic middle states of solitons in the NLSE is first introduced. With soliton solutions of the NLSE, it is shown that soliton synchronization can be achieved by synchronizing the asymptotic middle states of the solitons, and conditions of soliton synchronization in terms of the solitons' position and phase parameters are given. Although the interaction of the solitons is nonlinear, the conditions are linear equations. Then, aided with the synchronization conditions, simple initial conditions are presented for producing synchronized interaction of solitons without the need to obtain analytic expressions for the synchronized interaction of the solitons. The initial conditions are summations of fundamental solitons with no mutual overlap, so they might be convenient to implement in applicative contexts.

  9. Soliton synchronization in the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Hao

    2016-05-01

    The focusing nonlinear Schrödinger equation (NLSE) describes propagation of quasimonochromatic waves in weakly nonlinear media. The aim of this study is to determine conditions of soliton synchronization in the NLSE in terms of the solitons' position and phase parameters. For this purpose, the concept of asymptotic middle states of solitons in the NLSE is first introduced. With soliton solutions of the NLSE, it is shown that soliton synchronization can be achieved by synchronizing the asymptotic middle states of the solitons, and conditions of soliton synchronization in terms of the solitons' position and phase parameters are given. Although the interaction of the solitons is nonlinear, the conditions are linear equations. Then, aided with the synchronization conditions, simple initial conditions are presented for producing synchronized interaction of solitons without the need to obtain analytic expressions for the synchronized interaction of the solitons. The initial conditions are summations of fundamental solitons with no mutual overlap, so they might be convenient to implement in applicative contexts.

  10. Symbolic computation of analytic approximate solutions for nonlinear fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Yezhi; Liu, Yinping; Li, Zhibin

    2013-01-01

    The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad

  11. A New Family of Schroder's Method and Its Variants Based on Power Means for Multiple Roots of Nonlinear Equations

    ERIC Educational Resources Information Center

    Kanwar, V.; Sharma, Kapil K.; Behl, Ramandeep

    2010-01-01

    In this article, we derive one-parameter family of Schroder's method based on Gupta et al.'s (K.C. Gupta, V. Kanwar, and S. Kumar, "A family of ellipse methods for solving non-linear equations", Int. J. Math. Educ. Sci. Technol. 40 (2009), pp. 571-575) family of ellipse methods for the solution of nonlinear equations. Further, we introduce new…

  12. Numerical modeling considerations for an applied nonlinear Schrödinger equation.

    PubMed

    Pitts, Todd A; Laine, Mark R; Schwarz, Jens; Rambo, Patrick K; Hautzenroeder, Brenna M; Karelitz, David B

    2015-02-20

    A model for nonlinear optical propagation is cast into a split-step numerical framework via a variable stencil-size Crank-Nicolson finite-difference method for the linear step and a choice of two different nonlinear integration schemes for the nonlinear step. The model includes Kerr, Raman scattering, and ionization effects (as well as linear and nonlinear shock, diffraction, and dispersion). We demonstrate the practical importance of numerical effects when interpreting computational studies of high-intensity optical pulse propagation in physical materials. Examples demonstrate the significant error that can arise in discrete, limited precision implementations as one attempts to improve practical operator accuracy through increased operator support size and sampling frequency. We also demonstrate the effect of the method used to obtain the finite-difference operator coefficients defining the equations ultimately used in the discrete model. Smooth, plausible, but incorrect solutions may result from these numerical effects. This implies the necessity of a complete, precise description of all numerical methods when reporting results of computational physics investigations in order to ensure proper interpretation and reproducibility. PMID:25968209

  13. High Order Finite Volume Nonlinear Schemes for the Boltzmann Transport Equation

    SciTech Connect

    Bihari, B L; Brown, P N

    2005-03-29

    The authors apply the nonlinear WENO (Weighted Essentially Nonoscillatory) scheme to the spatial discretization of the Boltzmann Transport Equation modeling linear particle transport. The method is a finite volume scheme which ensures not only conservation, but also provides for a more natural handling of boundary conditions, material properties and source terms, as well as an easier parallel implementation and post processing. It is nonlinear in the sense that the stencil depends on the solution at each time step or iteration level. By biasing the gradient calculation towards the stencil with smaller derivatives, the scheme eliminates the Gibb's phenomenon with oscillations of size O(1) and reduces them to O(h{sup r}), where h is the mesh size and r is the order of accuracy. The current implementation is three-dimensional, generalized for unequally spaced meshes, fully parallelized, and up to fifth order accurate (WENO5) in space. For unsteady problems, the resulting nonlinear spatial discretization yields a set of ODE's in time, which in turn is solved via high order implicit time-stepping with error control. For the steady-state case, they need to solve the non-linear system, typically by Newton-Krylov iterations. There are several numerical examples presented to demonstrate the accuracy, non-oscillatory nature and efficiency of these high order methods, in comparison with other fixed-stencil schemes.

  14. A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media

    NASA Astrophysics Data System (ADS)

    Baruch, G.; Fibich, G.; Tsynkov, S.

    2009-06-01

    We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newton's method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1D and for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the "augmented" paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.

  15. Existence and uniqueness of solutions to a class of nonlinear-operator-differential equations arising in automated spaceship navigation

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.

    1981-01-01

    A proof is given of the existence and uniqueness of the solution to the automatic control problem with a nonlinear state equation of the form y' = f(t,y,u) and nonlinear operator controls u = U(y) acting onto the state function y which satisfies the initial condition y(t) = x(t) for t or = 0.

  16. Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrödinger equation

    SciTech Connect

    Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang

    2014-11-15

    We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested.

  17. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems

    PubMed Central

    Venturi, D.; Karniadakis, G. E.

    2014-01-01

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519

  18. Spinodal Decomposition for theCahn-Hilliard Equation in Higher Dimensions:Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Maier-Paape, Stanislaus; Wanner, Thomas

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation where Ω⊂n, n∈{1,2,3 }, is a bounded domain with sufficiently smooth boundary, and f is cubic-like, for example f(u) =u-u3. Based on the results of [26] the nonlinear Cahn-Hilliard equation will be discussed. This equation generates a nonlinear semiflow in certain affine subspaces of H2(Ω). In a neighborhood Uɛ with size proportional to ɛn around the constant solution , where μ lies in the spinodal region, we observe the following behavior. Within a local inertial manifold containing there exists a finite-dimensional invariant manifold which dominates the behavior of all solutions starting with initial conditions from a small ball around with probability almost 1. The dimension of is proportional to ɛ-n and the elements of exhibit a common geometric quantity which is strongly related to a characteristic wavelength proportional to ɛ.

  19. Switching of bound vector solitons for the coupled nonlinear Schroedinger equations with nonhomogenously stochastic perturbations

    SciTech Connect

    Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian

    2012-12-15

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schroedinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  20. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    SciTech Connect

    Aydogmus, F.

    2015-02-15

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

  1. Bipolar solitons of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxuan; Feng, Qi; Lin, Chengyou; Chen, Zhaoyang; Ding, Yingchun

    2016-11-01

    The focusing nonlinear Schrödinger equation (NLSE) is a universal model for studying solitary waves propagation in nonlinear media. The NLSE is especially important in understanding how solitons on a condensate background (SCB) appear from a small perturbation through modulation instability. We study theoretically the one- and two-soliton solutions of the NLSE in presence of a condensate by using the dressing method. It is found that a class of bipolar elliptically polarized solitons with the choice of specific parameters in the one- and two-soliton solutions. Collisions among these solitons are studied by qualitative analysis and graphical illustration. We also generalize the concept of the quasi-Akhmediev breather to the bipolar solitons and show how it can be used for wave profile compression down to the extremely short duration. Our results extend previous studies in this area of the SCB and play an important role in the theory of freak wave.

  2. Systematic generation of nonlinear discretized dynamic equilibrium equations of spinning cantilevers

    NASA Technical Reports Server (NTRS)

    El-Essawi, M.; Utku, S.; Salama, M.

    1982-01-01

    General nonlinear discretized governing equations of motion of spinning elastic solids and structures are adjusted for the case of a spinning cantilever with initial geometric imperfections. Consideration is given to second degree nonlinearities in the strain-displacement and velocity-displacement relationships. Parameters of the discretization are developed to include the type and number of the coordinate functions used in the admissible trial solution in order to unify the discretization approaches associated with stationarity principles. The coordinate functions comprise both sets of continuous and piecewise continuous functions employed in the Rayleigh-Ritz and the finite element methods, respectively. Coefficient matrices are provided which contain the energy density expressions and which are adaptable to computer programming.

  3. Manipulation of light in a generalized coupled Nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Radha, R.; Vinayagam, P. S.; Porsezian, K.

    2016-08-01

    We investigate a generalized coupled nonlinear Schrodinger (GCNLS) equation containing Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM) and Four Wave Mixing (FWM) describing the propagation of electromagnetic radiation through an optical fibre and generate the associated Lax-pair. We then construct bright solitons employing gauge transformation approach. The collisional dynamics of bright solitons indicates that it is not only possible to manipulate intensity (energy) between the two modes (optical beams), but also within a given mode unlike the Manakov model which does not have the same freedom. The freedom to manipulate intensity (energy) in a given mode or between two modes arises due to a suitable combination of SPM, XPM and FWM. While SPM and XPM are controlled by an arbitrary real parameter each, FWM is governed by two arbitrary complex parameters. The above model may have wider ramifications in nonlinear optics and Bose-Einstein Condensates (BECs).

  4. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGESBeta

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; Estep, Donald

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  5. Scalable libraries for solving systems of nonlinear equations and unconstrained minimization problems.

    SciTech Connect

    Gropp, W. D.; McInnes, L. C.; Smith, B. F.

    1997-10-27

    Developing portable and scalable software for the solution of large-scale optimization problems presents many challenges that traditional libraries do not adequately meet. Using object-oriented design in conjunction with other innovative techniques, they address these issues within the SNES (Scalable Nonlinear Equation Solvers) and SUMS (Scalable Unconstrained Minimization Solvers) packages, which are part of the multilevel PETSCs (Portable, Extensible Tools for Scientific computation) library. This paper focuses on the authors design philosophy and its benefits in providing a uniform and versatile framework for developing optimization software and solving large-scale nonlinear problems. They also consider a three-dimensional anisotropic Ginzburg-Landau model as a representative application that exploits the packages' flexible interface with user-specified data structures and customized routines for function evaluation and preconditioning.

  6. Decay Rates to Equilibrium for Nonlinear Plate Equations with Degenerate, Geometrically-Constrained Damping

    SciTech Connect

    Geredeli, Pelin G.; Webster, Justin T.

    2013-12-15

    We analyze the convergence to equilibrium of solutions to the nonlinear Berger plate evolution equation in the presence of localized interior damping (also referred to as geometrically constrained damping). Utilizing the results in (Geredeli et al. in J. Differ. Equ. 254:1193–1229, 2013), we have that any trajectory converges to the set of stationary points N . Employing standard assumptions from the theory of nonlinear unstable dynamics on the set N , we obtain the rate of convergence to an equilibrium. The critical issue in the proof of convergence to equilibria is a unique continuation property (which we prove for the Berger evolution) that provides a gradient structure for the dynamics. We also consider the more involved von Karman evolution, and show that the same results hold assuming a unique continuation property for solutions, which is presently a challenging open problem.

  7. Application of MSOR iteration with Newton scheme for solutions of 1D nonlinear porous medium equations

    NASA Astrophysics Data System (ADS)

    Chew, J. V. L.; Sulaiman, J.

    2016-06-01

    This paper considers Newton-MSOR iterative method for solving 1D nonlinear porous medium equation (PME). The basic concept of proposed iterative method is derived from a combination of one step nonlinear iterative method which known as Newton method with Modified Successive Over Relaxation (MSOR) method. The reliability of Newton-MSOR to obtain approximate solution for several PME problems is compared with Newton-Gauss-Seidel (Newton-GS) and Newton-Successive Over Relaxation (Newton-SOR). In this paper, the formulation and implementation of these three iterative methods have also been presented. From four examples of PME problems, numerical results showed that Newton-MSOR method requires lesser number of iterations and computational time as compared with Newton-GS and Newton-SOR methods.

  8. Blow-up in p-Laplacian heat equations with nonlinear boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Juntang; Shen, Xuhui

    2016-10-01

    In this paper, we investigate the blow-up of solutions to the following p-Laplacian heat equations with nonlinear boundary conditions: {l@{quad}l}(h(u))_t =nabla\\cdot(|nabla u|pnabla u)+k(t)f(u) &{in } Ω×(0,t^{*}), |nabla u|ppartial u/partial n=g(u) &on partialΩ×(0,t^{*}), u(x,0)=u0(x) ≥ 0 & {in } overline{Ω},. where {p ≥ 0} and {Ω} is a bounded convex domain in {RN}, {N ≥ 2} with smooth boundary {partialΩ}. By constructing suitable auxiliary functions and using a first-order differential inequality technique, we establish the conditions on the nonlinearities and data to ensure that the solution u( x, t) blows up at some finite time. Moreover, the upper and lower bounds for the blow-up time, when blow-up does occur, are obtained.

  9. Solitary waves in the nonlinear Dirac equation in the presence of external driving forces

    DOE PAGESBeta

    Mertens, Franz G.; Cooper, Fred; Quintero, Niurka R.; Shao, Sihong; Khare, Avinash; Saxena, Avadh

    2016-01-05

    In this paper, we consider the nonlinear Dirac (NLD) equation in (1 + 1) dimensions with scalar–scalar self interaction g2/κ + 1 (Ψ¯Ψ)κ + 1 in the presence of external forces as well as damping of the form f(x) - iμγ0Ψ, where both f and Ψ are two-component spinors. We develop an approximate variational approach using collective coordinates (CC) for studying the time dependent response of the solitary waves to these external forces. This approach predicts intrinsic oscillations of the solitary waves, i.e. the amplitude, width and phase all oscillate with the same frequency. The translational motion is also affected,more » because the soliton position oscillates around a mean trajectory. For κ = 1 we solve explicitly the CC equations of the variational approximation for slow moving solitary waves in a constant external force without damping and find reasonable agreement with solving numerically the CC equations. Finally, we then compare the results of the variational approximation with no damping with numerical simulations of the NLD equation for κ = 1, when the components of the external force are of the form fj = rj exp(–iΚx) and again find agreement if we take into account a certain linear excitation with specific wavenumber that is excited together with the intrinsic oscillations such that the momentum in a transformed NLD equation is conserved.« less

  10. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  11. Symbolic computation of analytic approximate solutions for nonlinear differential equations with initial conditions

    NASA Astrophysics Data System (ADS)

    Lin, Yezhi; Liu, Yinping; Li, Zhibin

    2012-01-01

    The Adomian decomposition method (ADM) is one of the most effective methods for constructing analytic approximate solutions of nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, and the two-step Adomian decomposition method (TSADM) combined with the Padé technique, a new algorithm is proposed to construct accurate analytic approximations of nonlinear differential equations with initial conditions. Furthermore, a MAPLE package is developed, which is user-friendly and efficient. One only needs to input a system, initial conditions and several necessary parameters, then our package will automatically deliver analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the validity of the package. Our program provides a helpful and easy-to-use tool in science and engineering to deal with initial value problems. Program summaryProgram title: NAPA Catalogue identifier: AEJZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4060 No. of bytes in distributed program, including test data, etc.: 113 498 Distribution format: tar.gz Programming language: MAPLE R13 Computer: PC Operating system: Windows XP/7 RAM: 2 Gbytes Classification: 4.3 Nature of problem: Solve nonlinear differential equations with initial conditions. Solution method: Adomian decomposition method and Padé technique. Running time: Seconds at most in routine uses of the program. Special tasks may take up to some minutes.

  12. On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations

    NASA Astrophysics Data System (ADS)

    Cuccagna, Scipio; Mizumachi, Tetsu

    2008-11-01

    We consider nonlinear Schrödinger equations iu_t +Δ u +β (|u|^2)u=0 , text{for} (t,x)in mathbb{R}× mathbb{R}^d, where d ≥ 3 and β is smooth. We prove that symmetric finite energy solutions close to orbitally stable ground states converge to a sum of a ground state and a dispersive wave as t → ∞ assuming the so called the Fermi Golden Rule (FGR) hypothesis. We improve the “sign condition” required in a recent paper by Gang Zhou and I.M.Sigal.

  13. On the blow-up solutions for the nonlinear fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Zhu, Shihui

    2016-07-01

    This paper is dedicated to the blow-up solutions for the nonlinear fractional Schrödinger equation arising from pseudorelativistic Boson stars. First, we compute the best constant of a gG-N inequality by the profile decomposition theory and variational arguments. Then, we find the sharp threshold mass of the existence of finite-time blow-up solutions. Finally, we study the dynamical properties of finite-time blow-up solutions around the sharp threshold mass by giving a refined compactness lemma.

  14. Singular ring solutions of critical and supercritical nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Fibich, Gadi; Gavish, Nir; Wang, Xiao-Ping

    2007-07-01

    We present new singular solutions of the nonlinear Schrödinger equation (NLS) iψt(t,r)+ψ+{d-1}/{r}ψr+|2σψ=0, 1

  15. Vortex collapse for the L2-critical nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Simpson, G.; Zwiers, I.

    2011-08-01

    The focusing cubic nonlinear Schrödinger equation in two dimensions admits vortex solitons, standing wave solutions with spatial structure, Q(m)(r, θ) = eimθR(m)(r). In the case of spin m = 1, we prove there exists a class of data that collapse with the vortex soliton profile at the log-log rate. This extends the work of Merle and Raphaël (the case m = 0) and suggests that the L2 mass that may be concentrated at a point during generic collapse may be unbounded. Difficulties with m ⩾ 2, or when the spin symmetry is broken, are also discussed.

  16. A nonlinear Zakharov-Kuznetsov equation in magnetized plasma with q-nonextensive electrons velocity distribution

    SciTech Connect

    Bains, A. S.; Saini, N. S.; Gill, T. S.; Tribeche, Mouloud

    2011-10-15

    By using the reductive perturbation method (RPM), a nonlinear Zakharov-Kuznetsov (ZK) equation for ion-acoustic solitary waves (IASWs) is derived for a magnetized plasma in which the electrons are nonextensively distributed. The combined effects of electron nonextensivity, strength of magnetic field, and obliqueness on the ion acoustic (IA) solitary profile are analyzed. Three different ranges of the nonextensive q-parameter are considered. It is observed that the system may support both compressive as well as rarefactive solitons. The magnetic field has no effect on the amplitude of solitary waves whereas the obliqueness affects both the amplitude as well as the width of the solitary wave structures.

  17. Stabilization of the solution of a doubly nonlinear parabolic equation

    SciTech Connect

    Andriyanova, È R; Mukminov, F Kh

    2013-09-30

    The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles.

  18. Time-evolution of quantum systems via a complex nonlinear Riccati equation. II. Dissipative systems

    NASA Astrophysics Data System (ADS)

    Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar

    2016-10-01

    In our former contribution (Cruz et al., 2015), we have shown the sensitivity to the choice of initial conditions in the evolution of Gaussian wave packets via the nonlinear Riccati equation. The formalism developed in the previous work is extended to effective approaches for the description of dissipative quantum systems. By means of simple examples we show the effects of the environment on the quantum uncertainties, correlation function, quantum energy contribution and tunnelling currents. We prove that the environmental parameter γ is strongly related with the sensitivity to the choice of initial conditions.

  19. Bifurcation and exact traveling wave solutions of a modified nonlinearly dispersive mK (m,n,k) equation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Chen, Li-Qun; Zhang, Jianming

    2013-10-01

    Bifurcation and exact solutions of the modified nonlinearly dispersive mK (m,n,k) equation with nonlinear dispersion um-1ut+a(un)x+b(uk)xxx = 0,nk≠0 are investigated in this paper. As a result, under different parameter conditions, abundant compactons, peakons and solitary solutions including not only some known results but also some new ones are obtained. We also point out the original reason of the existence of the non-smooth traveling wave solutions. The approach we used here is also suitable for the study of traveling wave solutions of some other nonlinear equations.

  20. Obtaining General Relativity's N-body non-linear Lagrangian from iterative, linear algebraic scaling equations

    NASA Astrophysics Data System (ADS)

    Nordtvedt, K.

    2015-11-01

    A local system of bodies in General Relativity whose exterior metric field asymptotically approaches the Minkowski metric effaces any effects of the matter distribution exterior to its Minkowski boundary condition. To enforce to all orders this property of gravity which appears to hold in nature, a method using linear algebraic scaling equations is developed which generates by an iterative process an N-body Lagrangian expansion for gravity's motion-independent potentials which fulfills exterior effacement along with needed metric potential expansions. Then additional properties of gravity - interior effacement and Lorentz time dilation and spatial contraction - produce additional iterative, linear algebraic equations for obtaining the full non-linear and motion-dependent N-body gravity Lagrangian potentials as well.

  1. On some p-Laplacian equation with electromagnetic fields and critical nonlinearity in ℝN

    NASA Astrophysics Data System (ADS)

    Liang, Sihua; Zhang, Jihui

    2015-04-01

    In this paper, we consider the existence and multiplicity of solutions for p-Laplacian equation with electromagnetic fields and critical nonlinearity in ℝN: - ɛ p Δ p , A u + V ( x ) |u| p - 2 u = |u| p* - 2 u + h ( x , |u| p ) |u| p - 2 u for x ∈ ℝN, where Δ p , A u ( x ) ≔ div ( |u ∇ u + i A ( x ) u | p - 2 ( ∇ u + i A ( x ) u ) . By using Lions' second concentration compactness principle and concentration compactness principle at infinity to prove that the (PS)c condition holds locally and by variational method, we show that this equation has at least one solution provided that ɛ < E , for any m ∈ ℕ, it has m pairs of solutions if ɛ < E m , where E and E m are sufficiently small positive numbers.

  2. Parametric reduced models for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  3. A Nonlinear Programming Perspective on Sensitivity Calculations for Systems Governed by State Equations

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael

    1997-01-01

    This paper discusses the calculation of sensitivities. or derivatives, for optimization problems involving systems governed by differential equations and other state relations. The subject is examined from the point of view of nonlinear programming, beginning with the analytical structure of the first and second derivatives associated with such problems and the relation of these derivatives to implicit differentiation and equality constrained optimization. We also outline an error analysis of the analytical formulae and compare the results with similar results for finite-difference estimates of derivatives. We then attend to an investigation of the nature of the adjoint method and the adjoint equations and their relation to directions of steepest descent. We illustrate the points discussed with an optimization problem in which the variables are the coefficients in a differential operator.

  4. Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution

    NASA Astrophysics Data System (ADS)

    Kokurin, M. Yu.

    2016-09-01

    A group of iteratively regularized methods of Gauss-Newton type for solving irregular nonlinear equations with smooth operators in a Hilbert space under the condition of normal solvability of the derivative of the operator at the solution is considered. A priori and a posteriori methods for termination of iterations are studied, and estimates of the accuracy of approximations obtained are found. It is shown that, in the case of a priori termination, the accuracy of the approximation is proportional to the error in the input data. Under certain additional conditions, the same estimate is established for a posterior termination from the residual principle. These results generalize known similar estimates for linear equations with a normally solvable operator.

  5. Influence of high-order nonlinear fluctuations in the multivariate susceptible-infectious-recovered master equation

    NASA Astrophysics Data System (ADS)

    Bayati, Basil S.; Eckhoff, Philip A.

    2012-12-01

    We perform a high-order analytical expansion of the epidemiological susceptible-infectious-recovered multivariate master equation and include terms up to and beyond single-particle fluctuations. It is shown that higher order approximations yield qualitatively different results than low-order approximations, which is incident to the influence of additional nonlinear fluctuations. The fluctuations can be related to a meaningful physical parameter, the basic reproductive number, which is shown to dictate the rate of divergence in absolute terms from the ordinary differential equations more so than the total number of persons in the system. In epidemiological terms, the effect of single-particle fluctuations ought to be taken into account as the reproductive number approaches unity.

  6. On Self-Similar Solutions to a Kinetic Equation Arising in Weak Turbulence Theory for the Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Kierkels, A. H. M.; Velázquez, J. J. L.

    2016-06-01

    We construct a family of self-similar solutions with fat tails to a quadratic kinetic equation. This equation describes the long time behaviour of weak solutions with finite mass to the weak turbulence equation associated to the nonlinear Schrödinger equation. The solutions that we construct have finite mass, but infinite energy. In Kierkels and Velázquez (J Stat Phys 159:668-712, 2015) self-similar solutions with finite mass and energy were constructed. Here we prove upper and lower exponential bounds on the tails of these solutions.

  7. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Jian-Hui; Wang, Zi-Qi; Liu, Chong; Li, Min; Qi, Feng-Hua; Guo, Rui

    2016-01-01

    We study the nonlinear waves on constant backgrounds of the higher-order generalized nonlinear Schrödinger (HGNLS) equation describing the propagation of ultrashort optical pulse in optical fibers. We derive the breather, rogue wave, and semirational solutions of the HGNLS equation. Our results show that these three types of solutions can be converted into the nonpulsating soliton solutions. In particular, we present the explicit conditions for the transitions between breathers and solitons with different structures. Further, we investigate the characteristics of the collisions between the soliton and breathers. Especially, based on the semirational solutions of the HGNLS equation, we display the novel interactions between the rogue waves and other nonlinear waves. In addition, we reveal the explicit relation between the transition and the distribution characteristics of the modulation instability growth rate.

  8. Localized structures of the (3+1)-dimensional nonlinear Schrödinger equation with different diffractions and power-law nonlinearities in PT-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Wang, Li-Hua; Li, Ji-Tao; Li, Shao-Feng; Liu, Quan-Tao

    2016-06-01

    We study a (3+1)-dimensional variable-coefficient nonlinear Schrödinger equation with different diffractions and power-law nonlinearity in PT-symmetric potentials. Considering different PT-symmetric potentials, we obtain two kinds of analytical sech-type localized soliton solutions. From these solutions, we analytically discuss the powers and power-flow densities. Moreover, we study compression and expansion of localized structures in the periodic distributed amplification system.

  9. A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation

    SciTech Connect

    Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro

    2015-05-15

    In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.

  10. Remarks on the Non-Linear Differential Equation the Second Derivative of Theta Plus A Sine Theta Equals 0.

    ERIC Educational Resources Information Center

    Fay, Temple H.; O'Neal, Elizabeth A.

    1985-01-01

    The authors draw together a variety of facts concerning a nonlinear differential equation and compare the exact solution with approximate solutions. Then they provide an expository introduction to the elliptic sine function suitable for presentation in undergraduate courses on differential equations. (MNS)

  11. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    SciTech Connect

    Heydari, M.H.; Hooshmandasl, M.R.; Cattani, C.; Maalek Ghaini, F.M.

    2015-02-15

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.

  12. Unification of the general non-linear sigma model and the Virasoro master equation

    SciTech Connect

    Boer, J. de; Halpern, M.B. |

    1997-06-01

    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfy the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.

  13. Some Remarks on the Riccati Equation Expansion Method for Variable Separation of Nonlinear Models

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Peng; Dai, Chao-Qing

    2015-10-01

    Based on the Riccati equation expansion method, 11 kinds of variable separation solutions with different forms of (2+1)-dimensional modified Korteweg-de Vries equation are obtained. The following two remarks on the Riccati equation expansion method for variable separation are made: (i) a remark on the equivalence of different solutions constructed by the Riccati equation expansion method. From analysis, we find that these seemly independent solutions with different forms actually depend on each other, and they can transform from one to another via some relations. We should avoid arbitrarily asserting so-called "new" solutions; (ii) a remark on the construction of localised excitation based on variable separation solutions. For two or multi-component systems, we must be careful with excitation structures constructed by all components for the same model lest the appearance of some un-physical structures. We hope that these results are helpful to deeply study exact solutions of nonlinear models in physical, engineering and biophysical contexts.

  14. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.

    PubMed

    Schüler, D; Alonso, S; Torcini, A; Bär, M

    2014-12-01

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude. PMID:25554062

  15. Rogue waves in electronegative space plasmas: The link between the family of the KdV equations and the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.

    2016-05-01

    We examine the likelihood of the ion-acoustic rogue waves propagation in a non-Maxwellian electronegative plasma in the framework of the family of the Korteweg-de Vries (KdV) equations (KdV/modified KdV/Extended KdV equation). For this purpose, we use the reductive perturbation technique to carry out this study. It is known that the family of the KdV equations have solutions of distinct structures such as solitons, shocks, kinks, cnoidal waves, etc. However, the dynamics of the nonlinear rogue waves is governed by the nonlinear Schrödinger equation (NLSE). Thus, the family of the KdV equations is transformed to their corresponding NLSE developing a weakly nonlinear wave packets. We show the possible region for the existence of the rogue waves and define it precisely for typical parameters of space plasmas. We investigate numerically the effects of relevant physical parameters, namely, the negative ion relative concentration, the nonthermal parameter, and the mass ratio on the propagation of the rogue waves profile. The present study should be helpful in understanding the salient features of the nonlinear structures such as, ion-acoustic solitary waves, shock waves, and rogue waves in space and in laboratory plasma where two distinct groups of ions, i.e. positive and negative ions, and non-Maxwellian (nonthermal) electrons are present.

  16. A boundary condition to the Khokhlov-Zabolotskaya equation for modeling strongly focused nonlinear ultrasound fields

    SciTech Connect

    Rosnitskiy, P. Yuldashev, P. Khokhlova, V.

    2015-10-28

    An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.

  17. Tensor-Krylov methods for solving large-scale systems of nonlinear equations.

    SciTech Connect

    Bader, Brett William

    2004-08-01

    This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor methods to large-scale problems by developing three tensor-Krylov methods that base each iteration upon a linear model augmented with a limited second-order term, which provides information lacking in a (nearly) singular Jacobian. The advantage of the new tensor-Krylov methods over existing large-scale tensor methods is their ability to solve the local tensor model to a specified accuracy, which produces a more accurate tensor step. The performance of these methods in comparison to Newton-GMRES and tensor-GMRES is explored on three Navier-Stokes fluid flow problems. The numerical results provide evidence that tensor-Krylov methods are generally more robust and more efficient than Newton-GMRES on some important and difficult problems. In addition, the results show that the new tensor-Krylov methods and tensor- GMRES each perform better in certain situations.

  18. Spatially localized solutions of the Hammerstein equation with sigmoid type of nonlinearity

    NASA Astrophysics Data System (ADS)

    Oleynik, Anna; Ponosov, Arcady; Kostrykin, Vadim; Sobolev, Alexander V.

    2016-11-01

    We study the existence of fixed points to a parameterized Hammerstein operator Hβ, β ∈ (0 , ∞ ], with sigmoid type of nonlinearity. The parameter β < ∞ indicates the steepness of the slope of a nonlinear smooth sigmoid function and the limit case β = ∞ corresponds to a discontinuous unit step function. We prove that spatially localized solutions to the fixed point problem for large β exist and can be approximated by the fixed points of H∞. These results are of a high importance in biological applications where one often approximates the smooth sigmoid by discontinuous unit step function. Moreover, in order to achieve even better approximation than a solution of the limit problem, we employ the iterative method that has several advantages compared to other existing methods. For example, this method can be used to construct non-isolated homoclinic orbit of a Hamiltonian system of equations. We illustrate the results and advantages of the numerical method for stationary versions of the FitzHugh-Nagumo reaction-diffusion equation and a neural field model.

  19. Parallel numerical integration of Maxwell's full-vector equations in nonlinear focusing media

    NASA Astrophysics Data System (ADS)

    Bennett, Paul Murray

    Maxwell's equations governing the evolution of ultrashort intense coherent pulses of light in a nonlinear focusing dielectric are presented. A discretization of this model using Kane Yee's grid is presented. Initial and boundary conditions are derived, and a serial finite difference algorithm using Yee's grid with the initial and boundary conditions is given. A parallelization of the serial algorithm to more aptly handle the large computational size is performed, and speedup and efficiency results of the parallel program are presented. The parallel code is first used to study the effect of the focusing nonlinearity upon dispersionless pulse propagation. Indications are given of the development of shocks on the optical carrier wave and upon the pulse envelope. The parallel code is then used to study the effect of varying the focusing of the light by varying the intensity as a way to compensate linear dispersion. Blow-up of the pulse in finite propagation distance is demonstrated, and the dependence of the blow-up position upon the intensity of the light is presented. Optical saturation is considered to counter blow-up of intense pulses. Finally, the parallel code is used to study the evolution of intense ultrashort optical pulses in a model featuring nonlinear dispersion, focusing, and optical saturation.

  20. Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity.

    PubMed

    Sakaguchi, Hidetsugu; Malomed, Boris A

    2006-02-01

    We introduce a dynamical model of a Bose-Einstein condensate based on the two-dimensional Gross-Pitaevskii equation, in which the nonlinear coefficient is a function of radius. The model describes a situation with spatial modulation of the negative atomic scattering length, via the Feshbach resonance controlled by a properly shaped magnetic of optical field. We focus on the configuration with the nonlinear coefficient different from zero in a circle or annulus, including the case of a narrow ring. Two-dimensional axisymmetric solitons are found in a numerical form, and also by means of a variational approximation; for an infinitely narrow ring, the soliton is found in an exact form (in the latter case, exact solitons are also found in a two-component model). A stability region for the solitons is identified by means of numerical and analytical methods. In particular, if the nonlinearity is supported on the annulus, the upper stability border is determined by azimuthal perturbations; the stability region disappears if the ratio of the inner and outer radii of the annulus exceeds a critical value . The model gives rise to bistability, as the stationary solitons coexist with stable axisymmetric breathers, whose stability region extends to higher values of the norm than that of the static solitons. The collapse threshold strongly increases with the radius of the inner hole of the annulus. Vortex solitons are found too, but they are unstable.

  1. Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schrodinger equation

    PubMed

    Clarke; Grimshaw; Malomed

    2000-05-01

    We consider in detail the self-trapping of a soliton from a wave pulse that passes from a defocusing region into a focusing one in a spatially inhomogeneous nonlinear waveguide, described by a nonlinear Schrodinger equation in which the dispersion coefficient changes its sign from normal to anomalous. The model has direct applications to dispersion-decreasing nonlinear optical fibers, and to natural waveguides for internal waves in the ocean. It is found that, depending on the (conserved) energy and (nonconserved) "mass" of the initial pulse, four qualitatively different outcomes of the pulse transformation are possible: decay into radiation; self-trapping into a single soliton; formation of a breather; and formation of a pair of counterpropagating solitons. A corresponding chart is drawn on a parametric plane, which demonstrates some unexpected features. In particular, it is found that any kind of soliton(s) (including the breather and counterpropagating pair) eventually decays into pure radiation with an increase of energy, the initial "mass" being kept constant. It is also noteworthy that a virtually direct transition from a single soliton into a pair of symmetric counterpropagating ones seems possible. An explanation for these features is proposed. In two cases when analytical approximations apply, viz., a simple perturbation theory for broad initial pulses and the variational approximation for narrow ones, comparison with direct simulations shows reasonable agreement. PMID:11031639

  2. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  3. Wave–vortex interactions in the nonlinear Schrödinger equation

    SciTech Connect

    Guo, Yuan Bühler, Oliver

    2014-02-15

    This is a theoretical study of wave–vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave–vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave–vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  4. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

    SciTech Connect

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2002-02-28

    For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied.

  5. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    SciTech Connect

    Ronald C. Davidson; W. Wei-li Lee; Hong Qin; Edward Startsev

    2001-11-08

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed.

  6. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    SciTech Connect

    Emami, F.; Hatami, M.; Keshavarz, A. R.; Jafari, A. H.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  7. BÄCKLUND Transformations and Lax Pairs for the Nonlinear Klein-Gordon Equation with Symbolic Computation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Ge; Gao, Yi-Tian; Wei, Guang-Mei

    In this paper, the nonlinear Klein-Gordon equation describing the propagation of pulse waves in plasma or waveguide is investigated. With symbolic computation, the generalized Bäcklund Transformations (BTs) for this equation are constructed under different conditions. It is shown that the BTs published in the previous literature for the Sine-Gordon equation, Sinh-Gordon equation, and Liouville equation all turn out to be special cases of the results in the present paper. Moreover, the corresponding Lax pairs are explicitly derived from the obtained BTs through some transformations.

  8. Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations

    NASA Astrophysics Data System (ADS)

    Baldwin, D.; Göktaş, Ü.; Hereman, W.

    2004-10-01

    A new algorithm is presented to find exact traveling wave solutions of differential-difference equations in terms of tanh functions. For systems with parameters, the algorithm determines the conditions on the parameters so that the equations might admit polynomial solutions in tanh. Examples illustrate the key steps of the algorithm. Through discussion and example, parallels are drawn to the tanh-method for partial differential equations. The new algorithm is implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute traveling wave solutions of nonlinear polynomial differential-difference equations. Use of the package, implementation issues, scope, and limitations of the software are addressed. Program summaryTitle of program: DDESpecialSolutions.m Catalogue identifier:ADUJ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUJ Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: Created using a PC, but can be run on UNIX and Apple machines Operating systems under which the program has been tested: Windows 2000 and Windows XP Programming language used: Mathematica, version 3.0 or higher Memory required to execute with typical data: 9 MB Number of processors used: 1 Has the code been vectorised or parallelized?: No Number of lines in distributed program, including test data, etc.: 3221 Number of bytes in distributed program, including test data, etc.: 23 745 Nature of physical problem: The program computes exact solutions to differential-difference equations in terms of the tanh function. Such solutions describe particle vibrations in lattices, currents in electrical networks, pulses in biological chains, etc. Method of solution: After the differential-difference equation is put in a traveling frame of reference, the coefficients of a candidate polynomial solution in tanh are solved for. The resulting traveling wave solutions are tested by

  9. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  10. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  11. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  12. Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation

    NASA Astrophysics Data System (ADS)

    Agafontsev, Dmitry; Zakharov, Vladimir

    2013-04-01

    We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with

  13. The Three-Component Defocusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Biondini, Gino; Kraus, Daniel K.; Prinari, Barbara

    2016-05-01

    We present a rigorous theory of the inverse scattering transform (IST) for the three-component defocusing nonlinear Schrödinger (NLS) equation with initial conditions approaching constant values with the same amplitude as {xto±∞} . The theory combines and extends to a problem with non-zero boundary conditions three fundamental ideas: (i) the tensor approach used by Beals, Deift and Tomei for the n-th order scattering problem, (ii) the triangular decompositions of the scattering matrix used by Novikov, Manakov, Pitaevski and Zakharov for the N-wave interaction equations, and (iii) a generalization of the cross product via the Hodge star duality, which, to the best of our knowledge, is used in the context of the IST for the first time in this work. The combination of the first two ideas allows us to rigorously obtain a fundamental set of analytic eigenfunctions. The third idea allows us to establish the symmetries of the eigenfunctions and scattering data. The results are used to characterize the discrete spectrum and to obtain exact soliton solutions, which describe generalizations of the so-called dark-bright solitons of the two-component NLS equation.

  14. A space-time collocation scheme for modified anomalous subdiffusion and nonlinear superdiffusion equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.

    2016-01-01

    This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method.

  15. Standing wave and global existence to nonlocal nonlinear Schrödinger equations: the two-dimensional case

    NASA Astrophysics Data System (ADS)

    Gan, Zaihui

    2016-07-01

    In this paper, we consider the standing waves and the global existence for two-dimensional nonlocal nonlinear Schrödinger equations. It is a coupled system which describes the spontaneous generation of a magnetic field in a cold plasma under the static limit. The main difficulty in the proofs lies in exploring the inner structure of the equations due to the fact that the nonlocal terms violate the inner scaling invariance, which may cause the non-zero energy for the ground state. For this reason, we first make a proper use of the inner structure of the equations to establish the existence of standing waves, and then we apply an energy scaling to obtain the instability of standing waves. Finally we show a sharp threshold for the global existence of solutions to the nonlocal nonlinear Schrödinger equations by a variational method, which depends again on the inner structure of the equations under consideration.

  16. Some results on the one-dimensional linear wave equation with van der Pol type nonlinear boundary conditions and the Korteweg-de Vries-Burgers equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng

    Many physical phenomena can be described by nonlinear models. The last few decades have seen an enormous growth of the applicability of nonlinear models and of the development of related nonlinear concepts. This has been driven by modern computer power as well as by the discovery of new mathematical techniques, which include two contrasting themes: (i) the theory of dynamical systems, most popularly associated with the study of chaos, and (ii) the theory of integrable systems associated, among other things, with the study of solitons. In this dissertation, we study two nonlinear models. One is the 1-dimensional vibrating string satisfying wtt - wxx = 0 with van der Pol boundary conditions. We formulate the problem into an equivalent first order Hyperbolic system, and use the method of characteristics to derive a nonlinear reflection relation caused by the nonlinear boundary conditions. Thus, the problem is reduced to the discrete iteration problem of the type un+1 = F( un). Periodic solutions are investigated, an invariant interval for the Abel equation is studied, and numerical simulations and visualizations with different coefficients are illustrated. The other model is the Korteweg-de Vries-Burgers (KdVB) equation. In this dissertation, we proposed two new approaches: One is what we currently call First Integral Method, which is based on the ring theory of commutative algebra. Applying the Hilbert-Nullstellensatz, we reduce the KdVB equation to a first-order integrable ordinary differential equation. The other approach is called the Coordinate Transformation Method, which involves a series of variable transformations. Some new results on the traveling wave solution are established by using these two methods, which not only are more general than the existing ones in the previous literature, but also indicate that some corresponding solutions presented in the literature contain errors. We clarify the errors and instead give a refined result.

  17. Subharmonic phase clusters in the complex Ginzburg-Landau equation with nonlinear global coupling.

    PubMed

    García-Morales, Vladimir; Orlov, Alexander; Krischer, Katharina

    2010-12-01

    A wide variety of subharmonic n -phase cluster patterns was observed in experiments with spatially extended chemical and electrochemical oscillators. These patterns cannot be captured with a phase model. We demonstrate that the introduction of a nonlinear global coupling (NGC) in the complex Ginzburg-Landau equation has subharmonic cluster pattern solutions in wide parameter ranges. The NGC introduces a conservation law for the oscillatory state of the homogeneous mode, which describes the strong oscillations of the mean field in the experiments. We show that the NGC causes a pronounced 2:1 self-resonance on any spatial inhomogeneity, leading to two-phase subharmonic clustering, as well as additional higher resonances. Nonequilibrium Ising-Bloch transitions occur as the coupling strength is varied.

  18. Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats

    NASA Astrophysics Data System (ADS)

    Li, Wan-Tong; Wang, Jia-Bing; Zhang, Li

    2016-08-01

    This paper is concerned with the new types of entire solutions other than traveling wave solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. We first establish the existence and properties of spatially periodic solutions connecting two steady states. Then new types of entire solutions are constructed by combining the rightward and leftward pulsating traveling fronts with different speeds and a spatially periodic solution. Finally, for a class of special heterogeneous reaction, we further establish the uniqueness of entire solutions and the continuous dependence of such an entire solution on parameters, such as wave speeds and the shifted variables. In other words, we build a five-dimensional manifold of solutions and the traveling wave solutions are on the boundary of the manifold.

  19. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    SciTech Connect

    Derek Gaston; Chris Newman; Glen Hansen; Damien Lebrun-Grandie

    2009-10-01

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.

  20. MOOSE: A PARALLEL COMPUTATIONAL FRAMEWORK FOR COUPLED SYSTEMS OF NONLINEAR EQUATIONS.

    SciTech Connect

    G. Hansen; C. Newman; D. Gaston

    2009-05-01

    Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even with large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.