Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé
2016-02-28
When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.
Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong
2009-09-14
A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.
Quasiequilibrium nonlinearities in Faraday and Kerr rotation from spin-polarized carriers in GaAs
Joshua, Arjun; Venkataraman, V.
2010-01-04
Semiconductor Bloch equations (SBEs), which microscopically describe optical properties in terms of the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. Recently, Nemec et al. reported circularly polarized pump-probe absorption spectra in the quasiequilibrium regime for carrier spin-polarized bulk GaAs at room temperature, which lacked a suitable microscopic theoretical understanding. We have very recently explained their results by solving the spin-SBEs in the quasiequilibrium regime (spin-Bethe-Salpeter equation), and accounted for spin-dependent mechanisms of optical nonlinearity. Here, we extend our theory to the microscopic calculation of Kerr and Faraday rotation in the quasiequilibrium regime, for which there are no experimental or theoretical results available.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
Vegas Olmos, J; Monroy, I; Liu, Y; Garcia Larrode, M; Turkiewicz, J; Dorren, H; Koonen, A
2004-09-06
We demonstrate an all-optical label and payload separator based on nonlinear polarization rotation in a semiconductor optical amplifier (SOA). The proposed scheme uses a packet format composed of a label and payload information signal combined with a control signal by using polarization division multiplexing. The control signal is employed to separate the label from the payload signal by exploiting nonlinear polarization rotation in a SOA. Experimental results show a label from payload suppression factor of 22 dB. This scheme operates asynchronously and does not need external control signal. Clean and wide open eye diagrams are obtained for both the payload and the label signal operating at bit-rates of 10 Gbit/s and 625 Mbit/s, respectively.
Chow, K K; Yamashita, S; Song, Y W
2009-04-27
We demonstrate widely tunable wavelength conversion based on cross-phase modulation induced nonlinear polarization rotation in a carbon nanotubes (CNTs) deposited D-shaped fiber. A 5-centimeter-long CNT-deposited D-shaped fiber is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero signal. Wavelength tunable converted signal over 40 nm is obtained with around 2.5-dB power penalty in the bit-error-rate measurements.
Chang, You Min; Lee, Junsu; Lee, Ju Han
2010-09-13
Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.
Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Liu, Jian Guo; Zhu, Ning Hua
2014-05-05
We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).
A Translational Polarization Rotator
NASA Technical Reports Server (NTRS)
Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah
2012-01-01
We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Ma, Wanzhuo; Liu, Peng; Zhang, Peng; Bo, Baoxue; Zhang, Yan
2016-10-01
A simple approach to generate passively harmonic mode-locked pulse trains in thulium-doped fiber laser based on nonlinear polarization rotation is proposed and demonstrated. Three different ways of mode-locked techniques have been employed in our structure to generate passively high-order harmonic mode-locked pulse trains; 128th-order passively harmonic mode-locked pulse train is achieved in the experiment and the repetition rate is 406.8 MHz. With the increase of the pump power, multiwavelength output can be tuned. A segment of dispersion compensation fiber is used to compensate the dispersion in the cavity; thus, the single pulse width is compressed from 617 to 48 ps.
Soliton mode locking by nonlinear Faraday rotation
Wabnitz, S.; Westin, E.; Frey, R.; Flytzanis, C.
1996-11-01
We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation. {copyright} {ital 1996 Optical Society of America.}
Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin
2014-03-10
We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.
NASA Astrophysics Data System (ADS)
Feng, Xianghua; Ji, Jiarong; Dou, Wenhua; Zhang, Guomin
2012-10-01
The physical mechanisms for the polarization rotation of the light in a bulk semiconductor optical amplifier (SOA) originate from the significant nonuniform distributions of carrier density across the active region. Due to this carrier density's nonuniformity, the effective refractive indexes experienced by transverse-electric (TE) and transverse-magnetic (TM) modes of the probe are different. This results in a phase shift between TE and TM modes of the light upon leaving the SOA. The bulk SOA polarization rotation's law can be analyzed theoretically and experimentally based on the method of measuring output power in a pump-probe scheme. The experiment employs polarizer driving by walking electromotor and power meter, the light power of every orientation is measured. The transformation law of output polarization is find for obvious polarization rotation in other perpendicular axes based on connection of ellipse in difference axes.
Yongjun, Wang; Qinghua, Tian; Zhi, Wang; Xiaoqing, Zhu; Chen, Wu; Chao, Shang; Xin, Xiangjun
2016-03-10
In this paper, we establish a simple model to analyze the semiconductor optical amplifier's (SOA) nonlinear polarization rotation (NPR) and acquire the variable curves of phase difference between TE and TM modes with bias current, pump power, probe power, and linewidth enhancement factor (LEF). The results indicate that the optical switch based on the SOA's NPR can be realized by changing the pump's optical power and the main operating parameters, such as bias current and hold beam power, and then the pump power can be determined. On this basis, a time-space-time (T-S-T) optical packet switching node is proposed, in which the SOA's NPR switch is the basic element. Then, the T-S and S-T experimental systems are set up, and the experimental results demonstrate that the proposed switch scheme can implement the optical switching function in accordance with the routing requirement. The signal-to-noise ratio (SNR) exceeds 20 dB, and the extinction ratio (ER) is more than 10 dB after being delayed and switched in the node.
NASA Astrophysics Data System (ADS)
Wang, L. Y.; Xu, W. C.; Luo, Z. C.; Cao, W. J.; Luo, A. P.; Dong, J. L.; Wang, H. Y.
2011-10-01
We experimentally demonstrate a passively Q-switched mode-locking (QML) operation in an Erbium-doped fiber ring laser with net normal dispersion by using nonlinear polarization rotation technique. A 2 m long section of dispersion compensating fiber (DCF) with extra large positive dispersion was inserted into the cavity to ensure the fiber laser working in the region of net positive dispersion. By carefully adjusting the polarization controller, both uniform dissipative mode-locking pulses with fundamental repetition rate and QML pulse trains with tunable repetition rate from 71.58 to 98.83 kHz are achieved. It is found that the QML operation is caused by the interaction between the polarization state of the pulse and the intracavity polarizer.
Rotational Doppler effect in nonlinear optics
NASA Astrophysics Data System (ADS)
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
NASA Astrophysics Data System (ADS)
Xiao, Xiaosheng; Hua, Yi
2016-10-01
All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.
Nonlinear polarization evolution of hybridly polarized beams by isotropic Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Gu, Bing; Wen, Bo; Rui, Guanghao; Cui, Yiping
2016-11-01
Theoretically, we propose an investigation of the vectorial light field interacting with the isotropic Kerr medium. We obtain the analytical expression of the focal field of the hybrid polarized beam based on the vectorial Rayleigh-Sommerfeld formulas under the paraxial condition. Then we numerically simulate the far-field vectorial self-diffraction behavior and nonlinear ellipse rotation of a hybrid polarized beam by isotropic Kerr nonlinearity. Experimentally, we observe the vectorial self-diffraction behavior of the femtosecond-pulsed hybridly polarized beam in carbon disulfide at 800 nm, which is in agreement with the theoretical predictions. Our results demonstrate that the self-diffraction intensity pattern and the distribution of state of polarization (SoP) of a hybridly polarized beam could be manipulated by tuning the magnitude of the isotropic optical nonlinearity, which may find interesting applications in nonlinear mechanism analysis, nonlinear characterization technique, and spin angular momentum (SAM) manipulation.
Polarization Rotator For LCTV Spatial Light Modulator
NASA Technical Reports Server (NTRS)
Juday, Richard; Soutar, Colin
1995-01-01
Polarization varies electronically to select complex-amplitude operating curve. Curve best suited to specific optical-correlator task selected rapidly and repeatedly by use of simple electronic command. Operating curves adjusted only with difficulty, by mechanical rotation of polarizer. Contains electronically-variable polarization-rotating device in place of fixed polarizer, and possibly additional device in place of fixed analyzer.
Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator.
Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori
2015-07-27
We report polarization independent Bragg grating wavelength filter with high diffraction efficiency. A rib waveguide polarization rotator and antisymmetric grating structure for fundamental to first order diffraction are used to generate the polarization rotation Bragg diffraction. The diffraction efficiencies and peak wavelengths become the same for two orthogonal input polarizations. Strong diffraction is attained easily. The concept was verified by simulation and experiment. Polarization independent band-pass filter consisting of polarization beam splitter and polarization rotation Bragg diffraction was experimentally demonstrated.
Nonlinear electrodynamics and CMB polarization
Cuesta, Herman J. Mosquera; Lambiase, G. E-mail: lambiase@sa.infn.it
2011-03-01
Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.
Transmission intensity disturbance in a rotating polarizer
NASA Astrophysics Data System (ADS)
Fan, J. Y.; Li, H. X.; Wu, F. Q.
2008-01-01
Random disturbance was observed in transmission intensity in various rotating prism polarizers when they were used in optical systems. As a result, the transmitted intensity exhibited cyclic significant deviation from the Malus cosine-squared law with rotation of prisms. The disturbance spoils the light quality transmitted through the polarizer thus dramatically depresses the accuracies of measurements when the prim polarizers were used in light path. A rigorous model is presented based on the solid basis of multi-beams interference, and theoretical results show good agreement with measured values and also indicate effective method for reducing the disturbance.
Polarization rotation, reference frames, and Mach's principle
NASA Astrophysics Data System (ADS)
Brodutch, Aharon; Terno, Daniel R.
2011-12-01
Polarization of light rotates in a gravitational field. The accrued phase is operationally meaningful only with respect to a local polarization basis. In stationary space-times, we construct local reference frames that allow us to isolate the Machian gravimagnetic effect from the geodetic (mass) contribution to the rotation. The Machian effect is supplemented by the geometric term that arises from the choice of standard polarizations. The phase accrued along a close trajectory is gauge-independent and is zero in the Schwarzschild space-time. The geometric term may give a dominant contribution to the phase. We calculate polarization rotation for several trajectories and find it to be more significant than is usually believed, pointing to its possible role as a future gravity probe.
Reducing parametric backscattering by polarization rotation
Barth, Ido; Fisch, Nathaniel J.
2016-10-01
When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.
Reducing parametric backscattering by polarization rotation
Barth, Ido; Fisch, Nathaniel J.
2016-10-01
When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less
Reducing parametric backscattering by polarization rotation
NASA Astrophysics Data System (ADS)
Barth, Ido; Fisch, Nathaniel J.
2016-10-01
When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Although the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.
Electrically rotating suspended films of polar liquids
NASA Astrophysics Data System (ADS)
Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.
2011-02-01
Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Polarization Properties of Rotation Powered Pulsars
NASA Technical Reports Server (NTRS)
Harding Alice K.
2009-01-01
Polarization measurements of rotation-powered pulsars and their nebulae have unique diagnostic potential. The polarization position angle of the pulsar wind nebula, as is know for the Crab pulsar, can tell us the orientation of the spin axis. Phase-resolved polarimetry of pulsars has had enormous diagnostic capability at radio and optical wavelengths and could also be a powerful diagnostic in the X-ray range. Measurement of the polarization properties as a function of pulse phase can therefore provide a multidimensional mapping of the pulsar emission. In the 'rotating vector' model, radiation originating near a magnetic pole is expected to show a characteristic S-shaped swing of the position angle vs. pulse phase. In this case it is possible to determine the magnetic inclination and viewing angles. Radiation originating further from the poles or further above the neutron star surface will have a more complex polarization signature, as a result of relativistic effects of aberration and time-of-flight delays and may also cause depolarization of the signal. I will discuss predicted polarization properties of pulsed emission in polar cap models, where radiation originates near the neutron star surface at the magnetic poles, and in slot gap and outer gap models, where radiation originates over a range of altitudes out to the speed-of-light cylinder.
Rotating black string with nonlinear source
Hendi, S. H.
2010-09-15
In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.
Wave Modes Trapped in Rotating Nonlinear Potentials
NASA Astrophysics Data System (ADS)
Li, Yongyao; Pang, Wei; Malomed, Boris A.
We study modes trapped in a rotating ring with the local strength of the nonlinearity modulated as \\cos (2θ ) , where θ is the azimuthal angle. This modulation pattern may be of three different types: self-focusing (SF), self-defocusing (SDF), and alternating SF-SDF. The model, based on the nonlinear Schrödinger (NLS) equation with periodic boundary conditions, applies to the light propagation in a twisted pipe waveguide, and to a Bose-Einstein condensate (BEC) loaded into a toroidal trap, under the action of the rotating nonlinear pseudopotential induced by means of the Feshbach resonance in an inhomogeneous external field. This is the difference from the recently considered similar setting with the rotating linear potential. In the SF, SDF, and alternating regimes, four, three, and five different types of stable trapped modes are identified, respectively: even, odd, second-harmonic (2H), symmetry-breaking, and 2H-breaking ones. The shapes and stability of these modes, together with transitions between them, are investigated in the first rotational Brillouin zone. Ground-state modes are identified in each regime. Boundaries between symmetric and asymmetric modes are also found in an analytical form, by means of a two-mode approximation.
Reducing parametric backscattering by polarization rotation
NASA Astrophysics Data System (ADS)
Barth, Ido; Fisch, Nathaniel
2016-10-01
When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based, analytical estimation for the reflectivity reduction agrees with simulations. This work was supported by NNSA Grant No. DE- NA0002948, AFOSR Grant No. FA9550-15-1-0391, and DOE Contract No. DE-AC02-09CH11466.
Electromagnetic nonlinear gyrokinetics with polarization drift
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-15
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Electromagnetic nonlinear gyrokinetics with polarization drift
NASA Astrophysics Data System (ADS)
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-01
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Polarization Shaping for Control of Nonlinear Propagation
NASA Astrophysics Data System (ADS)
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M.; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W.
2016-12-01
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization—radially symmetric vector beams and Poincaré beams with lemon and star topologies—in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Submicron omega-shaped plasmonic polarization rotator
NASA Astrophysics Data System (ADS)
Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.
2014-10-01
In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.
Extremely compact slanted waveguide hybrid plasmonic polarization rotator
NASA Astrophysics Data System (ADS)
Nikoufard, Mahmoud; Hatami, Mohsen
2017-01-01
In this study, we proposed a novel slanted waveguide hybrid plasmonic polarization splitter based on mode evolution at 1.55 μm wavelength on silicon-on-insulator technology. The TM polarization is rotated to the TE polarization with a conversion length of 370 nm, polarization conversion efficiency of 85% and polarization extinction ratio larger than 18 dB.
Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics
NASA Astrophysics Data System (ADS)
Mosquera Cuesta, Herman J.; Lambiase, Gaetano; Pereira, Jonas P.
2017-01-01
Huge electromagnetic fields are known to be present during the late stages of the dynamics of supernovae. Thus, when dealing with electrodynamics in this context, the possibility may arise to probe nonlinear theories (generalizations of the Maxwellian electromagnetism). We firstly solve Einstein field equations minimally coupled to an arbitrary (current-free) nonlinear Lagrangian of electrodynamics (NLED) in the slow rotation regime a ≪M (black hole's mass), up to first order in a /M . We then make use of the robust and self-contained Born-Infeld Lagrangian in order to compare and contrast the physical properties of such NLED spacetime with its Maxwellian counterpart (a slowly rotating Kerr-Newman spacetime), especially focusing on the astrophysics of both neutrino flavor oscillations (νe→νμ , ντ ) and spin-flip (νl→νr, "l " stands for "left" and "r " stands for "right", change of neutrino handedness) mass level crossings, the equivalent to gyroscopic precessions. Such analysis proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), intrinsically associated with the assumption the electromagnetism is nonlinear, the neutrino dynamics in core-collapse supernovae could be significantly changed. In such an astrophysical environment, a positive enhancement (reduction of the electron fraction Ye<0.5 ) of the r-process may take place. Consequently, it might result in hyperluminous supernova explosions due to enlargement, in atomic number and amount, of the decaying nuclides. Finally, we envisage some physical scenarios that may lead to short-lived charged black holes with high charge-to-mass ratios (associated with unstable highly magnetized neutron stars) and ways to possibly disentangle theories of the electromagnetism from other black hole observables (by means of light polarization measurements).
Freely-tunable broadband polarization rotator for terahertz waves
NASA Astrophysics Data System (ADS)
Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu
It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.
Note: Fast, small, accurate 90° rotator for a polarizer.
Shelton, David P; O'Donnell, William M; Norton, James L
2011-03-01
A permanent magnet stepper motor is modified to hold a dichroic polarizer inside the motor. Rotation of the polarizer by 90° ± 0.04° is accomplished within 80 ms. This device is used for measurements of the intensity ratio for two orthogonal linear polarized components of a light beam. The two selected polarizations can be rapidly alternated to allow for signal drift compensation, and the two selected polarizations are accurately orthogonal.
Apodised aperture using rotation of plane of polarization
Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.
1975-09-01
An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.
Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence
NASA Astrophysics Data System (ADS)
Salhi, A.; Jacobitz, F. G.; Schneider, K.; Cambon, C.
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Polarization of a probe laser beam due to nonlinear QED effects
NASA Astrophysics Data System (ADS)
Shakeri, Soroush; Kalantari, Seyed Zafarollah; Xue, She-Sheng
2017-01-01
Nonlinear QED interactions induce different polarization properties on a given probe beam. We consider the polarization effects caused by the photon-photon interaction in laser experiments, when a laser beam propagates through a constant magnetic field or collides with another laser beam. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian for both time-dependent and constant background field to explore the time evolution of the Stokes parameters Q, U, and V describing polarization. Assuming an initially linearly polarized probe laser beam, we also calculate the induced ellipticity and rotation of the polarization plane.
Measurement of Small Optical Polarization Rotations
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2009-01-01
When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…
Polarization rotation under two-photon Raman resonance for magnetometry
Pradhan, S.; Behera, R.; Das, A. K.
2012-04-23
The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.
Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation
NASA Astrophysics Data System (ADS)
Faccio, Daniele; Wright, Ewan M.
2017-03-01
The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than forty years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-P T symmetry induced by the medium rotation.
Quantitative nonlinear dielectric microscopy of periodically polarized ferroelectric domains
NASA Astrophysics Data System (ADS)
Gao, Chen; Duewer, Fred; Lu, Yalin; Xiang, X.-D.
1998-08-01
A nonlinear dielectric scanning tip microwave near-field microscope capable of submicron quantitative imaging of nonlinear dielectric constant was developed. This nondestructive technique was used to image the nonlinear dielectric constant profiles of an yttrium-doped LiNbO3 single crystal with periodically polarized ferroelectric domains.
Polar rotation angle identifies elliptic islands in unsteady dynamical systems
NASA Astrophysics Data System (ADS)
Farazmand, Mohammad; Haller, George
2016-02-01
We propose rotation inferred from the polar decomposition of the flow gradient as a diagnostic for elliptic (or vortex-type) invariant regions in non-autonomous dynamical systems. We consider here two- and three-dimensional systems, in which polar rotation can be characterized by a single angle. For this polar rotation angle (PRA), we derive explicit formulas using the singular values and vectors of the flow gradient. We find that closed level sets of the PRA reveal elliptic islands in great detail, and singular level sets of the PRA uncover centers of such islands. Both features turn out to be objective (frame-invariant) for two-dimensional systems. We illustrate the diagnostic power of PRA for elliptic structures on several examples.
Hamiltonian chaos in nonlinear optical polarization dynamics
NASA Astrophysics Data System (ADS)
David, D.; Holm, D. D.; Tratnik, M. V.
1990-03-01
This paper applies Hamiltonian methods to the Stokes representation of the one-beam and two-beam problems of polarized optical pulses propagating as travelling waves in nonlinear media. We treat these two dynamical systems as follows. First, we use the reduction method of Marsden and Weinstein to map each of the systems to the two-dimensional sphere, S 2. The resulting reduced systems are then analyzed from the viewpoints of their stability properties and of bifurcations with symmetry; in particular, several degenerate bifurcations are found and described. We also establish the presence of chaotic dynamics in these systems by demonstrating the existence of Smale horseshoe maps in the three- and four-dimensional cases, as well as Arnold diffusion in the higher-dimensional cases. The method we use to establish such complex dynamics is the Mel'nikov technique, as extended by Holmes and Marsden, and Wiggins for the higher-dimensional cases. These results apply to perturbations of homoclinic and heteroclinic orbits of the reduced integrable problems for static, as well as travelling-wave, solutions describing either a single opt ical beam, or two such beams counterpropagating. Thus, we show that these optics problems exhibit complex dynamics and predict the experimental consequences of this dynamics.
Kwok, C H; Chow, C W; Tsang, H K; Lin, Chinlon; Bjarklev, A
2006-06-15
We study the conversion bandwidth of the cross-polarization-modulation (XPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show that the conversion bandwidth can be extended to cover a very wide band, including S-, C-, and L-bands for 10 Gbit/s NRZ signals (a total bandwidth of 120 nm is experimentally demonstrated). We also study the theoretical bandwidth limit for 40 Gbit/s NRZ signals. A significant extension of the conversion bandwidth using the XPoIM approach compared with the four-wave mixing approach previously reported is demonstrated.
Scattering of circularly polarized light by a rotating black hole
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Shoom, Andrey A.
2012-07-01
We study scattering of polarized light by a rotating (Kerr) black hole of mass M and angular momentum J. In order to keep trace of the polarization dependence of photon trajectories one can use the following dimensionless parameter: ɛ=±(ωM)-1, where ω is the photon frequency and the sign + (-) corresponds to the right (left) circular polarization. We assume that |ɛ|≪1 and use the modified geometric optics approximation developed in [Phys. Rev. D 84, 044026 (2011)]; that is, we include the first order in ɛ polarization-dependent terms into the eikonal equation. These corrections modify late-time behavior of photons. We demonstrate that the photon moves along a null curve, which in the limit ɛ=0 becomes a null geodesic. We focus on the scattering problem for polarized light. Namely, we consider the following problems: (i) How does the photon’s bending angle depend on its polarization? (ii) How does the position of the image of a pointlike source depend on its polarization? (iii) How does the arrival time of photons depend on their polarization? We perform the numerical calculations that illustrate these effects for an extremely rotating black hole and discuss their possible applications.
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
Sharma, R. P. Sharma, Swati Gaur, Nidhi
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.
Nonlinear flap-lag axial equations of a rotating beam
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1977-01-01
It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-01-01
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
NASA Astrophysics Data System (ADS)
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-10-01
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.
Dynamics of elastic nonlinear rotating composite beams with embedded actuators
NASA Astrophysics Data System (ADS)
Ghorashi, Mehrdaad
2009-08-01
A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.
Wigner rotations and Iwasawa decompositions in polarization optics.
Han, D; Kim, Y S; Noz, M E
1999-07-01
Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of massive and massless particles, respectively. It is shown to be possible to produce combinations of optical filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized light waves. The symmetry transformations in special relativity lead to a set of experiments which can be performed in optics laboratories.
Searching for Faraday rotation in cosmic microwave background polarization
NASA Astrophysics Data System (ADS)
Ruiz-Granados, B.; Battaner, E.; Florido, E.
2016-08-01
We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.
NASA Astrophysics Data System (ADS)
Wu, Yuefeng; Li, Fang; Zhang, Wentao; Xiao, Hao; Liu, Yuliang
2008-11-01
Polarization-induced phase noise in Michelson interferometer with imperfect Faraday rotator mirrors was investigated. This kind of noise generates from the rotation angle errors of Faraday rotator mirrors and external polarization perturbation. The conversion factor κ, representing the magnitude conversion ability from polarization-noise to polarization induced phase-noise, have been theoretically evaluated and experimentally investigated.
Coriolis effects on nonlinear oscillations of rotating cylinders and rings
NASA Technical Reports Server (NTRS)
Padovan, J.
1976-01-01
The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.
Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Denisov, V. I.; Denisova, I. P.; Pimenov, A. B.; Sokolov, V. A.
2016-11-01
In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.
Nonlinear r-modes in rapidly rotating relativistic stars.
Stergioulas, N; Font, J A
2001-02-12
The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications, provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3D general-relativistic hydrodynamical evolutions. We find that (1) on dynamical time scales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one-the maximum r-mode amplitude is of order unity. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes. (3) The kinematical drift associated with r-modes appears to be present in our simulations, but confirmation requires more precise initial data.
Macroscopic rotation of photon polarization induced by a single spin.
Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc
2015-02-17
Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network.
Rotational polarities of sudden impulses in the magnetotail lobe
NASA Technical Reports Server (NTRS)
Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.
1992-01-01
A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.
NASA Astrophysics Data System (ADS)
Sahoo, Sushree S.; Bhowmick, Arup; Mohapatra, Ashok K.
2017-03-01
We have studied the rotation of an elliptically polarized light propagating through thermal rubidium vapor with efficient four-wave mixing (FWM) and cross-phase modulation (XPM). These nonlinear processes are enhanced by Zeeman coherence within the degenerate sub-levels of the two-level atomic system. The elliptically polarized light with small ellipticity is considered as the superposition of a strong-linearly-polarized pump beam and a weak-orthogonal-polarized probe beam. The interference of the probe and the newly generated light field due to degenerate FWM and their gain in the medium due to a large XPM induced by the pump beam leads to the rotation of the elliptical polarized light. A theoretical analysis of the probe propagation through the nonlinear medium was used to explain the experimental observation and the fitting of the experimental data gives the estimates of the third-order non-linear susceptibilities associated with FWM and XPM. Our study can provide useful parameters for the generation of efficient squeezed vacuum states and squeezed polarization states of light. Furthermore our study finds application in controlling the diffraction of a linearly-polarized light beam traversing the medium.
Applications of ultrafast wavefront rotation in highly nonlinear optics
NASA Astrophysics Data System (ADS)
Quéré, F.; Vincenti, H.; Borot, A.; Monchocé, S.; Hammond, T. J.; Taec Kim, Kyung; Wheeler, J. A.; Zhang, Chunmei; Ruchon, T.; Auguste, T.; Hergott, J. F.; Villeneuve, D. M.; Corkum, P. B.; Lopez-Martens, R.
2014-06-01
This paper provides an overview of ultrafast wavefront rotation of femtosecond laser pulses and its various applications in highly nonlinear optics, focusing on processes that lead to the generation of high-order harmonics and attosecond pulses. In this context, wavefront rotation can be exploited in different ways, to obtain new light sources for time-resolved studies, called ‘attosecond lighthouses’, to perform time-resolved measurements of nonlinear optical processes, using ‘photonic streaking’, or to track changes in the carrier-envelope relative phase of femtosecond laser pulses. The basic principles are explained qualitatively from different points of view, the experimental evidence obtained so far is summarized, and the perspectives opened by these effects are discussed.
NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES
Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh
2013-02-10
We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.
Rotation-induced nonlinear wavepackets in internal waves
Whitfield, A. J. Johnson, E. R.
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Rotation-induced nonlinear wavepackets in internal waves
NASA Astrophysics Data System (ADS)
Whitfield, A. J.; Johnson, E. R.
2014-05-01
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Rotation of plasma membrane proteins measured by polarized fluorescence depletion
NASA Astrophysics Data System (ADS)
Barisas, B. George; Rahman, Noorul A.; Yoshida, Thomas M.; Roess, Deborah A.
1990-05-01
We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.
Switchable polarization rotation of visible light using a plasmonic metasurface
NASA Astrophysics Data System (ADS)
Earl, Stuart K.; James, Timothy D.; Gómez, Daniel E.; Marvel, Robert E.; Haglund, Richard F.; Roberts, Ann
2017-01-01
A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface) occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.
The role of rotation and polar-cap currents on pulsar radio emission and polarization
Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in
2013-06-01
Perturbations such as rotation and polar-cap current (PC-current) have been believed to greatly affect the pulsar radio emission and polarization. The two effects have not been considered simultaneously in the literature; each one of these has been considered separately, and a picture has been deduced by simply superposing them, but such an approach can lead to spurious results. Hence, by considering pulsar rotation and PC-current perturbations together instead of one at a time, we have developed a single particle curvature radiation model, which is expected to be much more realistic. By simulating a set of typical pulse profiles, we have made an attempt to explain most of the observational results of pulsar radio emission and polarization. The model predicts that due to the perturbations the leading side component can become either stronger or weaker than the corresponding trailing one in any given cone, depending on the passage of the sight line and modulation (nonuniform source distribution). Further, we find that the phase delay of the polarization angle inflection point with respect to the core component greatly depends on the viewing geometry. The correlation between the sign reversal of circular polarization and the polarization angle swing in the case of core-dominated pulsars becomes obscure once the perturbations and modulation become significant. However, the correlation between the negative circular polarization and the increasing polarization angle and vice versa is very clear in the case of conal-double pulsars. The 'kinky'-type distortions in polarization angle swing could be due to the incoherent superposition of modulated emission in the presence of strong perturbations.
Adjustable Nonlinear Mechanism System for Wideband Energy Harvesting in Rotational Circumstances
NASA Astrophysics Data System (ADS)
Zhang, Y.; Nakano, K.; Zheng, R.; Cartmell, M. P.
2016-09-01
Nonlinear energy harvesters have already been exhibited to draw energy from ambient vibration owing to their particular dynamic characteristics, and are feasible to desirable responses for broadband excitations of bistable and monostable systems. This study proposes an energy harvester for rotational applications, in which a cantilever beam pasted piezoelectric film and magnets with the same polarity are comprised as a nonlinear vibrating system. As the rotationally angular velocity gradually increases, the tensile stress to the cantilever beam is also self-adjusted with the increscent centrifugal force, causing the potential barriers of bistable type become shallow, so that the cantilever beam has the ability to maintain the high energy orbit motion from bistable hardening type to monostable hardening behavior. From the implemented results, the valid bandwidth of angular frequency can be improved from 26 rad/s - 132 rad/s to 15 rad/s - 215 rad/s, under the case of the effect of centrifugal force on nonlinear vibrating behavior. It demonstrates that the centrifugal force can significantly promote the performance of nonlinear energy harvesters.
Automated control of optical polarization for nonlinear microscopy
NASA Astrophysics Data System (ADS)
Brideau, Craig; Stys, Peter K.
2012-03-01
Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide
NASA Astrophysics Data System (ADS)
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-01
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide.
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-05
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm(2) and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-01
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313
Cao, Junjie; Jia, Hongzhi
2015-11-15
We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.
Cao, Junjie; Jia, Hongzhi
2015-11-01
We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.
NASA Astrophysics Data System (ADS)
Cao, Junjie; Jia, Hongzhi
2015-11-01
We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.
Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation.
Kleijn, Emil; Williams, Peter J; Whitbread, Neil D; Wale, Michael J; Smit, Meint K; Leijtens, Xaveer J M
2012-09-24
Earlier it was observed that polarization rotation in an AWG built from birefringent waveguides can result in sidelobes in its response. This effect was measured in a polarization sensitive AWG with an orthogonal layout. Now we investigate through detailed simulation whether this effect also exists in polarization desensitised AWGs. It is shown that a dispersion compensated AWG does not suffer from a polarization sidelobe. Alternatively, the AWG can be designed to minimize polarization rotation to suppress the sidelobe.
Nonlinear Fishbone Dynamics in Spherical Tokamaks with Toroidal Rotation
NASA Astrophysics Data System (ADS)
Wang, Feng; Fu, G. Y.
2015-11-01
Fishbone is ubiquitous in tokamak plasmas with fast ions. A numerical study of nonlinear dynamics of fishbone has been carried out in this work. Realistic parameters of NSTX are used to understand instability and nonlinear frequency chirping in tokamak plasmas. First, the effects of shear toroidal rotation are considered for fishbone instability. It's shown that with low qmin, it has small effects on the mode; while with high qmin, a new unstable region with a strong ballooning feature in mode structure appears. Second, a detailed study of nonlinear frequency chirping and energetic particles' dynamics is carried out. Linearly, the mode is driven by both trapped and passing particles, with dresonance condition ωd ~= ω for trapped particles and ωϕ +ωθ ~= ω for passing particles. As the mode grows, resonance particles oscillate and move outward in Pϕ space, which reduces particles' frequency. We believe that this is the main reason for the mode frequency chirping down. Finally, as the mode frequency chirping down, particles with lower orbit frequencies, which are non-resonant linearly, can turn into resonant particles in the nonlinear regime. This effect can sustain a quasi-steady state mode amplitude.
Rotation Matrix Method for Analyzing Noisy Nonlinear Data
NASA Astrophysics Data System (ADS)
Chu, P. C.; Ivanov, L. M.; Margolina, T. M.
2005-12-01
Analysis on noisy nonlinear data is to solve a set of algebraic equations. Three factors affect the accuracy of reconstruction: (a) large condition number of the coefficient matrix, (b) high noise-to-signal ratio in the source term, and (c) no a-priori knowledge of noise statistics. To improve the reconstruction accuracy, the set of linear algebraic equations is transformed into a new one with minimum condition number and noise-to-signal ratio using the rotation matrix. The procedure does not require any knowledge of low-order statistics of noises. Several examples including highly distorted Lorenz attractor, Black Sea circulations illustrate the benefit of using this procedure.
Bounded Nonlinear Control of a Rotating Pendulum System
NASA Astrophysics Data System (ADS)
Luyckx, L.; Loccufier, M.; Noldus, E.
2004-08-01
We are interested in the output feedback control of mechanical systems governed by the Euler-Lagrange formalism. The systems are collocated actuator-sensor controlled and underactuated. We present a design method by means of a specific example : the set point control of a rotating pendulum. We use constrained output feedback, whereby the control inputs satisfy a priori imposed upper bounds. The closed loop stability analysis relies on the direct method of Liapunov. This results in a frequency criterion on the controller's linear dynamic component and some restrictions on its nonlinearities. The control parameters are tuned for maximizing closed loop damping.
Highly efficient pulse cleaner via nonlinear ellipse rotation in liquid CS2 for ultrashort pulses.
Liu, H J; Sun, Q B; Huang, N; Wen, J; Wang, Z L
2013-06-01
A highly efficient pulse cleaner based on nonlinear ellipse rotation (NER) in a liquid medium of CS(2) is investigated for the temporal contrast enhancement of ultrashort pulses. In theory, a nonlinear transmissivity higher than 60% can be achieved with the temporal contrast improved by about four orders of magnitude, on the condition that the extinction ratio of the polarizer-analyzer pair is better than 10(4). In a proof of principle experiment, the cleaned pulses at the mJ level with total transmissivity as high as 30% are obtained via NER, in which the temporal contrast is enhanced by about three orders of magnitude. This provides a simple and feasible technology for improving the temporal contrast of an ultrashort and ultraintense laser system in the future.
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.
2006-01-01
The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.
Strong Rotation of an Erupting Quiescent Polar Crown Prominence
NASA Technical Reports Server (NTRS)
2010-01-01
On 5-6 June 2007, a large quiescent polar crown prominence was observed to erupt by the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This eruption was particularly visible in the 304 A channel of the Extreme Ultraviolet Imager (EUVI) telescopes. A detailed analysis of the fine structures in the images allows the three-dimensional structure of the erupting prominence to be derived. The prominence is seen to undergo substantial rotation of at least 90 along the radial axis as it rises, with indications that additional rotation occurred before the prominence rose into the STEREO fields of view. Two temporary structures ("spurs") are seen to form at an angle to the main spine of the prominence, and are interpreted as signs of reconnection. These reconnection events contribute to the overall rotation of the prominence. A significant fraction of the prominence material is drained through new field lines caused by one of the reconnection events, resulting in only a weak coronal mass ejection event observed by the STEREO and SOHO coronagraphs. The eruption is interpreted as being initiated by the helical kink instability, with subsequent modification by the reconnection events.
Continuum estimates of rotational dielectric friction and polar solvation
Maroncelli, M.
1997-01-01
Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}
Cavity-based high-efficiency and wideband 90° polarization rotator
NASA Astrophysics Data System (ADS)
Wang, Jiang; Shen, Zhongxiang; Wu, Wen
2016-10-01
We present a high-efficiency wideband 90° polarization rotator based on 2D array of substrate integrated waveguide cavities etched with three twisted slots, which can rotate a horizontally polarized incident wave into an outgoing vertically polarized wave. The twisted slots etched on the surface of the cavity are utilized to couple the wave into and out of the cavity with the polarization direction rotated. As a proof-of-concept, a prototype of the proposed rotator is fabricated and measured in the microwave regime. The proposed 90° polarization rotator features a low insertion loss of about 0.5 dB in the pass band with a factional bandwidth of 28.6%, as well as high polarization rotation efficiency of over 90%.
Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror
NASA Technical Reports Server (NTRS)
Li, Steven
2011-01-01
A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.
Nonlinear Compton scattering in a strong rotating electric field
NASA Astrophysics Data System (ADS)
Raicher, Erez; Eliezer, Shalom; Zigler, Arie
2016-12-01
The nonlinear Compton scattering rate in a rotating electric field is explicitly calculated. For this purpose, an approximate solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for implementation in kinetic codes. The spectrum is numerically calculated for present-day optical and x-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Substantial deviations between the two models, in both the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonic spectrum for electrons with low asymptotic momentum compared to the field amplitude. This discrete structure is a clear imprint of the electric field frequency, as opposed to the Volkov-Ritus rate, which reduces to the constant crossed field rate for the physical conditions under consideration. Our model predictions can be tested with present-day laser facilities.
Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion
Budker, D.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V.
2000-03-10
Nonlinear magneto-optical rotation (NMOR) is investigated at highlight powers where the rotation is significantly modified by AC Stark shifts. These shifts are shown to change the overall sign of rotation for closed F-->F+1 transitions as light power is increased. The effect is demonstrated by measurements in rubidium and density matrix calculations. The results are important for applications of nonlinear optical rotation such as sensitive magnetometry.
Ma, Yangjin; Liu, Yang; Guan, Hang; Gazman, Alexander; Li, Qi; Ding, Ran; Li, Yunchu; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael
2015-06-15
In integrated photonics, the design goal of a polarization splitter/rotator (PSR) has been separating the TE0 and TM0 modes in a waveguide. This is a natural choice. But in theory, a PSR only needs to project the incoming State Of Polarization (SOP) orthogonally to its output ports, using any orthogonal mode basis set in the fiber. In this article, we introduce a novel PSR design that alternatively takes the linear combination of TE0 and TM0 (TE0 +/- TM0) as orthogonal bases. By contrast, existing approaches exclusively use TE0 and TM0 as their basis set. The design is based on two symmetric and robust structures: a bi-layer taper and a Y-junction, and involves no bends. To prove the concept, we incorporated it into a four-channel polarization insensitive wavelength division multiplexing (PI-WDM) receiver fabricated in a standard CMOS Si photonics process. 40 Gb/s data rate and 0.7 +/- 0.2 dB polarization dependent loss (PDL) is demonstrated on each channel. Lastly, we propose an improved PSR design with 12 μm device length, < 0.1 dB PDL, < 0.4 dB insertion loss and < 0.05 dB wavelength dependence across C-band for both polarizations. Overall, our PSR design concept is simple, easy to realize and presents a new perspective for future PSR designs.
Atmospheric effects on earth rotation and polar motion
NASA Technical Reports Server (NTRS)
Salstein, David A.
1988-01-01
The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.
Surface plasmon induced polarization rotation and optical vorticity in a single mode waveguide.
Davids, P S; Block, B A; Reshotko, M R; Cadien, K C
2007-07-23
The control and manipulation of the mode polarization state in a single mode dielectric waveguide is of considerable significance for optical information processing utilizing the polarization state to store digital information and integrated photonic devices used for high speed signaling. Here we report on an integrated on-chip mode polarization rotation based on short metal Cu electrodes placed in close proximity to the dielectric waveguide core. Polarization mode rotation with specific rotation of 10(4) degrees/mm is observed for offset metallic electrodes placed diagonally along a single mode dielectric waveguide. The mechanism for the polarization rotation is shown to be directional coupling into guided surface plasmon modes at the metal corners and coupling between the guided plasmon modes. This inter-plasmon coupling gives rise to giant polarization rotation and optical vorticity (helical power flow) in the waveguide.
Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.
2016-07-01
We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2] rotation parameters in n-dimensional spacetime where [ x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, { dM}={ TdS}+{{{sum _{i=1}k}}}Ω id{J}i+{ Ud}{Q}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.
Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com
2014-09-01
SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.
Jiang, Lun; Li, Na; Zhang, Li-Zhong; Wang, Chao; An, Yan; Hu, Yuan
2016-11-20
We assessed the problem of low mixing efficiency caused by unstable signal polarization because of a moving reflector in a laser communication terminal with a periscopic scanner. A real-time polarization compensation method based on rotating waveplates is presented, which keeps the receiving signal light polarization at 45° linear polarized and improves system mixing efficiency. A geometric model of the laser communication terminal was first established, its polarization transmission characteristics were analyzed by three-dimensional polarization tracks, and a system polarization transmission matrix was calculated. The relationship between scan angle and polarization of the output signal was simulated. The connections between a polarization-compensating λ/4 waveplate and the λ/2 waveplate rotation angle and scan angle were established. These findings will pave the way for real-time polarization control technology for coherent free-space laser communications.
Rotational Inerfia of Continents: A Proposed Link between Polar Wandering and Plate Tectonics.
Kane, M F
1972-03-24
A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.
Rotational inertia of continents: A proposed link between polar wandering and plate tectonics
Kane, M.F.
1972-01-01
A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.
NASA Astrophysics Data System (ADS)
Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.
2013-09-01
The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (<30°/μm) in the near UV for a long-pitch (13.8-μm) CLC mixture composed of the low-birefringence nematic host ZLI-1646 doped with a low concentration (e.g., 1 wt%) of the chiral dopant CB 15. This experimental finding is verified theoretically using a mathematical model developed by Belyakov, which improves on de Vries' original model for optical rotation far from the selective reflection peak by taking into account the nonlinearity of optical rotatory power as a function of liquid crystal (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1992-01-01
This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).
NASA Astrophysics Data System (ADS)
Zhao, Jingcheng; Cheng, Yongzhi
2016-10-01
In this paper, a high-efficiency and broadband reflective linear polarization rotator based on anisotropic metamaterial is proposed, which is verified by simulation and experiment. Simulated results indicate that our design can achieve 90° polarization rotation from 5.7 to 10.3 GHz with the relative bandwidth of 57.5 %, which is agreement well with experiment. The further simulated results indicate that our design can achieve linear polarization conversion or rotation by 90° under oblique incident angles with large range for both transverse electric and transverse magnetic waves. Finally, the amplitude and phase of reflective coefficients with different polarization, and surface current distribution of the unit cell structure are simulated to explain the physics mechanism of the high-efficiency and broadband polarization rotation. Our design will provide an important reference for the practical applications of the metamaterial in polarization manipulation.
Nonlinear Accelerator with Transverse Motion Integrable in Normalized Polar Coordinates
Nagaitsev, S.; Kharkov, Y.; Morozov, I.A.; Zolkin, T.V.; /Chicago U.
2012-05-01
Several families of nonlinear accelerator lattices with integrable transverse motion were suggested recently. One of the requirements for the existence of two analytic invariants is a special longitudinal coordinate dependence of fields. This paper presents the particle motion analysis when a problem becomes integrable in the normalized polar coordinates. This case is distinguished from the others: it yields an exact analytical solution and has a uniform longitudinal coordinate dependence of the fields (since the corresponding nonlinear potential is invariant under the transformation from the Cartesian to the normalized coordinates). A number of interesting features are revealed: while the frequency of radial oscillations is independent of the amplitude, the spread of angular frequencies in a beam is absolute. A corresponding spread of frequencies of oscillations in the Cartesian coordinates is evaluated via the simulation of transverse Schottky noise.
Morgen, Michael Mark
1997-05-01
We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.
Polarization rotation vector solitons in a graphene mode-locked fiber laser.
Song, Yu Feng; Zhang, Han; Tang, Ding Yuan; Shen, De Yuan
2012-11-19
Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.
Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe2.
Song, Xinlin; Xie, Saien; Kang, Kibum; Park, Jiwoong; Sih, Vanessa
2016-08-10
Time-resolved Kerr rotation and photoluminescence measurements are performed on MOCVD-grown monolayer tungsten diselenide (WSe2). We observe a surprisingly long-lived Kerr rotation signal (∼80 ns) at 10 K, which is attributed to spin/valley polarization of the resident holes. This polarization is robust to transverse magnetic field (up to 0.3 T). Wavelength-dependent measurements reveal that only excitation near the free exciton energy generates this long-lived spin/valley polarization.
A spin rotator for producing a longitudinally polarized electron beam with MAMI
NASA Astrophysics Data System (ADS)
Steffens, K.-H.; Andresen, H. G.; Blume-Werry, J.; Klein, F.; Aulenbacher, K.; Reichert, E.
1993-02-01
The design and performance characteristics of a full 4 π-space spin rotator for 100 keV electrons are described. The spin rotator was developed as part of the acceleration scheme for polarized electrons in the MAINZ race track microtron cascade MAMI [1]. It allows to orientate the polarization vector in any direction before injection. Thus it is possible to optimize the longitudinal polarization component, required for experiments with polarized high energy electrons, at target position. With this scheme various experimental halls can be supplied with longitudinally polarized electrons in the full energy range of MAMI between 180 and 855 MeV.
Sun, Minghao; He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Peng, Cheng; He, Yonghong; Ma, Hui
2014-05-10
Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.
NASA Astrophysics Data System (ADS)
Qu, Weixing; Tabisz, George C.
2006-05-01
Expressions for nonlinear optical rotation are presented based on the quantum theory of optical birefringence of Atkins and Barron [Proc. R. Soc. London, Ser. A 304, 303 (1968); 306, 119 (1968)]. As concrete examples, the ordinary and nonlinear optical rotations are calculated with density functional theory (DFT) methodology for some simple single-ring molecules, namely, oxaziridine, diaziridine, and their derivatives, and for two, somewhat more complicated, conformations of uridine. For the single-ring molecules, (1) the angles of the ordinary optical rotation are mostly positive and (2) the contributions of the nonlinear effect to the total optical rotation depend both on the nature of the substituted species and of the host atom located on the ring. For the two conformations of uridine, (1) the signs of nonlinear optical rotation differ even though their ordinary optical rotations have the same sign and (2) whether the molecular structures are geometrically optimized with Hartree-Fock or DFT methodologies has no significant effect on the calculated nonlinear optical rotation when gauge-including atomic orbitals were used, even though the basis sets are small. These studies are expected to be helpful for interpretation of experimental results on nonlinear optical rotation by molecules underway in our research group.
Zhang, Xiaofan; Zhu, Xiaosong; Liu, Xi; Wang, Dian; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2017-03-15
We propose and theoretically demonstrate a method to generate attosecond XUV pulses with tunable ellipticity from aligned molecules irradiated by a bichromatic counterrotating circularly polarized (BCCP) driving laser field. By rotating the BCCP field, the attoseond XUV pulse varies from being left elliptically polarized to right elliptically polarized. The rotation of the BCCP field can be easily achieved by adjusting the relative phases between the two circularly polarized components. This scheme will benefit a broad range of applications, including the exploration of chiral-sensitive properties of the light-matter interaction and time-resolved imaging of magnetic structures.
Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He
NASA Astrophysics Data System (ADS)
Abney, Josh; Broering, Mark; Korsch, Wolfgang
2016-03-01
Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.
Silicon waveguide polarization rotation Bragg grating with resonator cavity section
NASA Astrophysics Data System (ADS)
Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori
2017-04-01
Bragg grating with resonator cavity that converts the input polarization to orthogonal polarization is reported. The device works similar to a Fabry–Pérot or ring resonators and very narrow polarization independent wavelength peak can be generated. The transfer matrix methods are used to examine the device characteristics. A 0.2-nm-wide polarization independent transmission wavelength peak was obtained by experiment. We also show theoretically using finite-difference-time-domain method that a flat-top response can be obtained by a two cavity structure.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
Differential rotation of the unstable nonlinear r -modes
NASA Astrophysics Data System (ADS)
Friedman, John L.; Lindblom, Lee; Lockitch, Keith H.
2016-01-01
At second order in perturbation theory, the r -modes of uniformly rotating stars include an axisymmetric part that can be identified with differential rotation of the background star. If one does not include radiation reaction, the differential rotation is constant in time and has been computed by Sá. It has a gauge dependence associated with the family of time-independent perturbations that add differential rotation to the unperturbed equilibrium star: For stars with a barotropic equation of state, one can add to the time-independent second-order solution arbitrary differential rotation that is stratified on cylinders (that is a function of distance ϖ to the axis of rotation). We show here that the gravitational radiation-reaction force that drives the r -mode instability removes this gauge freedom; the exponentially growing differential rotation of the unstable second-order r -mode is unique. We derive a general expression for this rotation law for Newtonian models and evaluate it explicitly for slowly rotating models with polytropic equations of state.
Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection
Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui
2016-01-01
Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325
NASA Technical Reports Server (NTRS)
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
The effect of nonlinear traveling waves on rotating machinery
NASA Astrophysics Data System (ADS)
Jauregui-Correa, Juan Carlos
2013-08-01
The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.
Capillary compressor of femtosecond laser pulses with nonlinear rotation of polarisation ellipse
Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu
2012-03-31
The process of nonlinear rotation of the polarisation ellipse of laser radiation, occurring simultaneously with the broadening of the pulse spectrum due to nonlinear self-phase modulation in a gas-filled capillary, is studied. It is shown that the maximal rotation of the polarisation ellipse is experienced by the spectral components, shifted towards the short-wavelength side with respect to the central wavelength of the initial laser pulse. Using the effect of polarisation ellipse rotation, an eightfold increase in the energy contrast ratio of a 28-fs light pulse, obtained by compression of the radiation pulse from an ytterbium laser with the duration 290 fs, is implemented.
Jing, Juan-Juan; Zhou, Jin-Song; Xiangli, Bin; Lü, Qun-Bo; Wei, Ru-Yi
2010-06-01
The principle of reflecting rotating Fourier transform spectrometer was introduced in the present paper. The nonlinear problem of optical path difference (OPD) of rotating Fourier transform spectrometer universally exists, produced by the rotation of rotating mirror. The nonlinear OPD will lead to fictitious recovery spectrum, so it is necessary to compensate the nonlinear OPD. Three methods of correction for the nonlinear OPD were described and compared in this paper, namely NUFFT method, OPD replace method and interferograms fitting method. The result indicates that NUFFT was the best method for the compensation of nonlinear OPD, OPD replace method was better, its precision was almost the same as NUFFT method, and their relative error are superior to 0.13%, but the computation efficiency of OPD replace method is slower than NUFFT method, while the precision and computation efficiency of interferograms fitting method are not so satisfied, because the interferograms are rapid fluctuant especially around the zero optical path difference, so it is unsuitable for polynomial fitting, and because this method needs piecewise fitting, its computation efficiency is the slowest, thus the NUFFT method is the most suited method for the nonlinear OPD compensation of reflecting rotating Fourier transform spectrometer.
Electric Vector Rotations of π/2 in Polarized Circumstellar SiO Maser Emission
NASA Astrophysics Data System (ADS)
Kemball, A. J.; Diamond, P. J.; Richter, L.; Gonidakis, I.; Xue, R.
2011-12-01
This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately π/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes {I, Q, U, V} properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle θ between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile ml (θ) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile mc (θ).
ELECTRIC VECTOR ROTATIONS OF {pi}/2 IN POLARIZED CIRCUMSTELLAR SiO MASER EMISSION
Kemball, A. J.; Xue, R.; Diamond, P. J.; Gonidakis, I.; Richter, L.
2011-12-10
This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately {pi}/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes (I, Q, U, V) properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle {theta} between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile m{sub l} ({theta}) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile m{sub c} ({theta}).
Self-Calibration of BICEP1 Three-Year Data and Constraints on Astrophysical Polarization Rotation
NASA Technical Reports Server (NTRS)
Kaufman, J. P.; Miller, N. J.; Shimon, M.; Barkats, D.; Bischoff, C.; Buder, I.; Keating, B. G.; Kovac, J. M.; Ade, P. A. R.; Aikin, R.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Filippini, J.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kernasovskiy, S. S.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.
2014-01-01
Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB's temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that BICEP1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of alpha = -2.77deg +/- 0.86deg (statistical) +/- 1.3deg (systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the BICEP1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy's magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this "self-calibration" process, we find that the upper limit on the tensor-to-scalar ratio decreases
Tong, Lianming; Miljković, Vladimir D; Käll, Mikael
2010-01-01
We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light.
Faisal, F H M; Abdurrouf, A
2008-03-28
Recent reports on intense-field pump-probe experiments for high-order harmonic generation (HHG) from coherently rotating linear molecules have revealed remarkable characteristic effects of the simultaneous variation of the polarization geometry and the time delay on the high-order harmonic signals. We analyze the effects and give a unified theoretical account of the experimental observations. Furthermore, characteristic behavior at critical polarization angles are found that can help to identify the molecular orbital symmetry in connection with the problem of molecular imaging from the HHG data.
Rotation of the cosmic microwave background polarization from weak gravitational lensing.
Dai, Liang
2014-01-31
When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1987-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Polarization of Directly Imaged Young Giant Planets as a Probe of Mass, Rotation, and Clouds
NASA Technical Reports Server (NTRS)
Marley, Mark Scott; Sengupta, Sujan
2012-01-01
Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.
Band gap engineering strategy via polarization rotation in perovskite ferroelectrics
Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.
2014-04-14
We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.
Krummrich, Peter M; Ronnenberg, David; Schairer, Wolfgang; Wienold, Daniel; Jenau, Frank; Herrmann, Maximilian
2016-05-30
Lightning events can cause fast polarization rotations and phase changes in optical transmission fibers due to strong electrical currents and magnetic fields. Whereas these are unlikely to affect legacy transmission systems with direct detection, different mechanisms have to be considered in systems with local oscillator based coherent receivers and digital signal processing. A theoretical analysis reveals that lightning events can result in polarization rotations with speeds as fast as a few hundred kRad/s. We discuss possible mechanisms how such lightning events can affect coherent receivers with digital signal processing. In experimental investigations with a high current pulse generator and transponder prototypes, we observed post FEC errors after polarization rotation events which can be expected from lightning strikes.
Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide
Kim, Sangsik; Qi, Minghao
2015-01-01
We present a polarization rotation and coupling scheme that rotates a TE0 mode in a silicon waveguide and simultaneously couples the rotated mode to a hybrid plasmonic (HP0) waveguide mode. Such a polarization rotation can be realized with a partially etched asymmetric hybrid plasmonic waveguide consisting of a silicon strip waveguide, a thin oxide spacer, and a metal cap made from copper, gold, silver or aluminum. Two implementations, one with and one without the tapering of the metal cap are presented, and different taper shapes (linear and exponential) are also analyzed. The devices have large 3 dB conversion bandwidths (over 200 nm at near infrared) and short length (< 5 μm), and achieve a maximum coupling factor of ∼ 78% with a linearly tapered silver metal cap. PMID:25969038
NASA Astrophysics Data System (ADS)
Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong
2016-01-01
Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles.
Square-wave self-modulation in diode lasers with polarization-rotated optical feedback.
Gavrielides, Athanasios; Erneux, Thomas; Sukow, David W; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake
2006-07-01
The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied in detail. Specifically, the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. Square-wave self-modulated polarization intensities oscillating in antiphase are observed experimentally. We find numerically that these oscillations naturally appear for a broad range of values of parameters, provided that the feedback is sufficiently strong and the differential losses in the normally unsupported polarization mode are small. We then investigate the laser equations analytically and find that the square-wave oscillations are the result of a bifurcation phenomenon.
Square-wave self-modulation in diode lasers with polarization-rotated optical feedback
NASA Astrophysics Data System (ADS)
Gavrielides, Athanasios; Erneux, Thomas; Sukow, David W.; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake
2006-07-01
The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied in detail. Specifically, the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. Square-wave self-modulated polarization intensities oscillating in antiphase are observed experimentally. We find numerically that these oscillations naturally appear for a broad range of values of parameters, provided that the feedback is sufficiently strong and the differential losses in the normally unsupported polarization mode are small. We then investigate the laser equations analytically and find that the square-wave oscillations are the result of a bifurcation phenomenon.
Real-time image difference detection using a polarization rotation spacial light modulator
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)
1990-01-01
An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization rotation spacial light modulator display such as a multi-pixel liquid crystal display or a magneto optical rotation type. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.
Real-time image difference detection using a polarization rotation spacial light modulator
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)
1988-01-01
An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization-rotation spatial light modulator display such as a multi-pixel liquid crystal display or a magnetooptical rotation type display. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.
Pulse train induced rotational excitation and orientation of a polar molecule.
Tyagi, Ashish; Arya, Urvashi; Vidhani, Bhavna; Prasad, Vinod
2014-08-14
We investigate theoretically the rotational excitation and field free molecular orientation of polar HBr molecule, interacting with train of ultrashort laser pulses. By adjusting the number of pulses, pulse period and the intensity of the pulse, one can suppress a population while simultaneously enhancing the desired population in particular rotational state. We have used train of laser pulses of different shaped pulse envelopes. The dynamics and orientation of molecules in the presence of pulse train of different shapes is studied and explained.
Nonlinear modes and symmetry breaking in rotating double-well potentials
NASA Astrophysics Data System (ADS)
Li, Yongyao; Pang, Wei; Malomed, Boris A.
2012-08-01
We study modes trapped in a rotating ring carrying the self-focusing (SF) or self-defocusing (SDF) cubic nonlinearity and double-well potential cos2θ, where θ is the angular coordinate. The model, based on the nonlinear Schrödinger (NLS) equation in the rotating reference frame, describes the light propagation in a twisted pipe waveguide, as well as in other optical settings, and also a Bose-Einstein condensate (BEC) trapped in a torus and dragged by the rotating potential. In the SF and SDF regimes, five and four trapped modes of different symmetries are found, respectively. The shapes and stability of the modes and the transitions between them are studied in the first rotational Brillouin zone. In the SF regime, two symmetry-breaking transitions are found, of subcritical and supercritical types. In the SDF regime, an antisymmetry-breaking transition occurs. Ground states are identified in both the SF and SDF systems.
NASA Astrophysics Data System (ADS)
Mikheev, G. M.; Vanyukov, V. V.; Mogileva, T. N.; Puzyr', A. P.; Bondar', V. S.; Svirko, Yu. P.
2014-07-01
The effect of laser radiation polarization on the nonlinear scattering of light in aqueous suspensions of detonation nanodiamonds (DNDs) in a regime of optical power limiting (OPL) has been studied. It is established that the nonlinear transmission coefficient of DND suspension in the OPL regime in a field of nanosecond laser pulses with a wavelength of 532 nm is independent of the polarization of incident radiation. The nonlinear scattering of light observed at an angle of 90° in the plane perpendicular to the plane of polarization of the incident radiation depends on the polarization angle in accordance with a trigonometric law. It is shown that the ratio of the signals of scattered radiation for the vertical and horizontal polarizations exhibits nonmonotonic dependence on the laser-beam power density. The results are explained by the Rayleigh-Mie scattering and a change in the size of scattering centers as a result of the effect of a laser upon the DND suspension.
Vortex Nucleation in a Dissipative Variant of the Nonlinear Schroedinger Equation Under Rotation
2014-12-01
For this purpose we have pro- duced long-term simulations of the DGPE (2.3) starting from the stationary state bearing no vorticity. Two typical...address: http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html [Movies#1 and #2]. The simulations were chosen for rotations that are slightly above critical...periphery. This is precisely what we observe in numerical simulations where smaller values of γ give rise to final configurations with a smaller
Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current
2014-01-01
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490
Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current.
Guslienko, Konstantin Y; Sukhostavets, Oksana V; Berkov, Dmitry V
2014-01-01
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.
NASA Astrophysics Data System (ADS)
Pen, Ue-Li; Wang, Xin; Yang, I.-Sheng
2017-02-01
From the basic concepts of general relativity, we investigate the rotation of the polarization angle by a moving gravitational lens. In particular, we clarify the existing confusion in the literature by showing and explaining why such rotation must explicitly depend on the relative motion between the observer and the lens. We update the prediction of such effect on the double pulsar PSR J0737-3039 and estimate a rotation angle of ˜10-7rad . Despite its tiny signal, this is 10 orders of magnitude larger than the previous prediction by Ruggiero and Tartaglia [1], which apparently was misguided by the confusion in the literature.
Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets
NASA Astrophysics Data System (ADS)
Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.
2017-01-01
We perform polarimetry analysis of 20 active galactic nuclei (AGN) jets using the Very Long Baseline Array (VLBA) at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4, and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec-scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength-dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16,900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2 . Significant transverse rotation measure gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magnetoionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.
Nonlinear TE-polarized surface polaritons on graphene
NASA Astrophysics Data System (ADS)
Bludov, Yuliy V.; Smirnova, Daria A.; Kivshar, Yuri S.; Peres, N. M. R.; Vasilevskiy, Mikhail I.
2014-01-01
We analyze the propagation of electromagnetic waves along the surface of a nonlinear dielectric medium covered by a graphene layer. We reveal that this system can support and stabilize nonlinear transverse electric (TE) plasmon polaritons. We demonstrate that these nonlinear TE modes have a subwavelength localization in the direction perpendicular to the surface, with the intensity much higher than that of an incident wave which excites the polariton.
Fully nonlinear three-dimensional convection in a rapidly rotating layer
Julien, K.; Knobloch, E.
1999-06-01
Fully nonlinear three-dimensional convection in a rotating layer is studied for large Taylor numbers. In this regime, the leading order nonlinearity arises from the distortion of the horizontally averaged temperature profile. As a result, steady rolls, squares, hexagons, triangles, and a pattern called patchwork quilt all have identical Nusselt numbers. A similar degeneracy is present in overstable convection with six patterns having identical time-averaged Nusselt numbers and oscillation frequencies. These results are obtained via an asymptotic expansion in the Taylor number that determines, for each Rayleigh number, the time-averaged Nusselt number and oscillation frequency from the solution of a nonlinear eigenvalue problem for the vertical temperature profile. A number of other patterns are determined by a weakly nonlinear analysis that cannot be extended into the fully nonlinear regime by the present methods, but these patterns are necessarily unstable. {copyright} {ital 1999 American Institute of Physics.}
Development of Calibration-Free Imaging Ellipsometry Using Dual-Rotation of Polarizer and Analyzer
NASA Astrophysics Data System (ADS)
Cheon, Hyuknyeong; Bak, Heung-Jin; Oh, Hyekeun; Lee, Eun-Kyu; An, Ilsin
2007-08-01
Imaging ellipsometry is developed in the dual-rotation mode of a polarizer and an analyzer. In this system, the polarizer and analyzer are rotated by a stepping motor at 1:1 ratio and the offset between the azimuths of both elements is kept constant. For data reduction, a two-dimensional array detector collects multiple intensity images during rotation and waveform analysis is performed for each pixel. This system generates second and fourth harmonics in intensity waveform and \\{Δ, \\Psi\\} images are deduced from the amplitudes of these harmonics without considering their phases, which leads to calibration-free imaging ellipsometry. This system works well with an offset between two elements but it becomes less susceptible to an offset-setting error with a smaller offset. Besides the ease of operation, this system is simple to construct as no complicated control mechanism is required for each component.
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi
2016-04-15
We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.
Duncan, Paul G.
2002-01-01
Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.
NASA Astrophysics Data System (ADS)
Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang
2014-05-01
The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.
Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang
2014-05-02
The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
Linear and nonlinear dynamic instability of rotating polytropes
NASA Astrophysics Data System (ADS)
Williams, Harold A.; Tohline, Joel E.
1987-04-01
A three-dimensional hydrodynamic computer program is used to study the growth of nonaxisymmetric structures in rapidly rotating, self-gravitating polytropes. Models with polytropic index n = 0.8, 1.0, 1.3, 1.5, and 1.8 are studied. The initially axisymmetric equilibria are constructed by the Ostriker-Mark self-consistent-field method. The nonaxisymmetric pattern that develops out of low-amplitude random noise is a two-armed spiral with a well-defined pattern speed and growth rate which closely match properties of the toroidal mode predicted from the linear, second-order tensor-virial equation. A Fourier analysis of each polytrope's azimuthal density distribution shows that, even in the linear amplitude regime, higher-order angular patterns also develop exponentially in time. The higher-order patterns ultimately move in synchronization with the broad two-armed spiral, creating a narrow two-armed spiral. As the polytropic index is decreased, a more open and centrally more barlike pattern develops.
Crack identification for rotating machines based on a nonlinear approach
NASA Astrophysics Data System (ADS)
Cavalini, A. A., Jr.; Sanches, L.; Bachschmid, N.; Steffen, V., Jr.
2016-10-01
In a previous contribution, a crack identification methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic forces at certain frequencies attaining combinational resonances, together with a pseudo-random optimization code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral responses of the flexible rotor. The conditions under which combinational resonances appear were determined by using the method of multiple scales. In real conditions, the breathing phenomenon arises from the stress and strain distribution on the cross-sectional area of the crack. This mechanism behavior follows the static and dynamic loads acting on the rotor. Therefore, the breathing crack can be simulated according to the Mayes' model, in which the crack transition from fully opened to fully closed is described by a cosine function. However, many contributions try to represent the crack behavior by machining a small notch on the shaft instead of the fatigue process. In this paper, the open and breathing crack models are compared regarding their dynamic behavior and the efficiency of the proposed identification technique. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory (LFM). The open crack model is based on LFM and the breathing crack model corresponds to the Mayes' model, which combines LFM with a given breathing mechanism. For illustration purposes, a rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning ball bearings is used to compose a finite element model of the system. Then, numerical simulation is performed to determine the dynamic behavior of the rotor. Finally, the results of the inverse problem conveyed show that the methodology is a reliable tool that is able to estimate satisfactorily the location and depth of the crack.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-01-01
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688
NASA Astrophysics Data System (ADS)
Ferreira, L. A.; Santos, J. L.; Farahi, F.
1995-10-01
Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.
Variable Polarization from Co-Rotating Interaction Regions in Massive Star Winds
NASA Astrophysics Data System (ADS)
Ignace, Richard; St. Louis, Nicole; Tremblay, Patrick; Proulx-Giraldeau, Felix
2017-01-01
Co-rotating Interaction Regions (CIRs) are a well-known phenomenon in the solar wind, and is a favored culprit for certain cyclical behavior observed in the spectra of some massive stars. A prime example are the discrete absorption components (DACs) seen in the UV wind lines of many O stars. Here we report on modeling for the variable continuum polarization that could arise from the presence of CIR structures. Considerations are limited to optically thin scattering. Using a core-halo approach for winds that are thick to electron scattering, an application to observed variable polarization of WR6 (EZ CMa; HD 50896) is presented.
Ferreira, L A; Santos, J L; Farahi, F
1995-10-01
Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.
NASA Astrophysics Data System (ADS)
Solookinejad, G.
2016-09-01
In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
NASA Astrophysics Data System (ADS)
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-10-01
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—< {{\\tilde{v}}r}\\tilde{n}{{\\tilde{v}}θ}> is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux < {{\\tilde{v}}r}\\tilde{n}{{\\tilde{v}}θ}> in strong electrostatic turbulence is calculated using the Hasegawa-Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.
Circularly polarized few-cycle optical rogue waves: Rotating reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Xu, Shuwei; Porsezian, K.; He, Jingsong; Cheng, Yi
2013-12-01
The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.
Transverse spin diffusion and spin rotation in very dilute, spin-polarized 3-4He mixtures
NASA Astrophysics Data System (ADS)
Candela, D.; McAllaster, D. R.; Wei, L.-J.
1991-10-01
We report measurements of the transverse-spin-diffusion coefficient D⊥ and the spin-rotation parameter Ωτ⊥ for two very dilute 3-4He mixtures (x3=1.82×10-3 and 6.26×10-4) spin polarized by an 8-T magnetic field. Brute-force spin polarization up to 40% was achieved at the lowest temperature, 6 mK. We find that Ωτ⊥ increases monotonically as the temperature is reduced through the Fermi temperature TF, in disagreement with the only previous experiment but in good agreement with recent theory. Unlike the earlier experiment, which measured spin echoes, the present experiments employed a spin-wave technique that avoids nonlinear excitation of the spin field. We compare our results with the recent calculations of Jeon and Mullin for spin transport in dilute gases with arbitrary polarization and degeneracy. The best fit to the data is obtained by scaling the quasiparticle interaction V(q) proposed by Ebner by a modest factor, 1.07. The corresponding s-wave scattering length is a=-1.21 Å. Good agreement is found for Ωτ⊥(T) at both concentrations and all temperatures, and for D⊥/Ωτ⊥(T) apart from the lower concentration at T<20 mK. The discrepancy in D⊥/Ωτ⊥ at the lowest temperatures and x3 could be explained by an unanticipated polarization dependence or by modification of the spin-wave boundary condition by processes occurring at the interface between the mixture and the silica cavity wall.
Non-linear vacuum polarization in strong fields
Gyulassy, M.
1981-07-01
The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.
NASA Technical Reports Server (NTRS)
Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.
2004-01-01
We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.
Miaoling, Li; Lehua, Qi; Hejun, Li
2012-01-01
A novel image analysis technique was proposed for microstructure investigation of carbon/carbon (C/C) composites. The rotational polarization microscopy was developed to meet the special imaging requirements. The samples of C/C composites were observed in reflection polarized light microscope, where the analyzer was rotated instead of the stage, and the polarizer was taken out. The bireflectance of like-graphite negative uniaxial crystal was analyzed. It was the theoretic foundation of image collection and data processing. The analyzer was rotated through 36 × 10° intervals without any movement of the specimen. The polished cross-section of C/C composites took micrographs at each analyzer orientation. All image data collected from the same field of view were processed by image registration and image fusion. The synthesized images were obtained by calculating the maximum and minimum gray values and their differences at each point of the million pixels at 18 orientations of the analyzer. They are unique and quite reliable to be applied to analyze the microstructure of C/C composites. Subsequently, image segmentation was performed, and the feature parameters of each component were calculated. Good agreement was found between the results from image analysis and experimental data.
Polarization rotator of arbitrary angle based on simple slot-array
NASA Astrophysics Data System (ADS)
Liu, Xiaoming; Cao, Xiaohang; Yu, Junsheng; Chen, Xiaodong; Yao, Yuan; Qi, Limei; Chen, Zhijiao; Zhou, Jun
2015-12-01
A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS). Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW) array. Moreover, low insertion loss can be achieved based on metallic material.
Renormalized vacuum polarization on rotating warped AdS3 black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.; Louko, Jorma
2015-01-01
We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.
NASA Technical Reports Server (NTRS)
Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Hivon, E. F.; Holzapel, W. L.; Hristov, V. V.; Jones, W. C.; Kaufman, J.; Keating, B. G.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.; Matsumura, T.; Nguyen, H. T.; Ponthieu, N.; Pryke, C.; Wollack, E.
2012-01-01
The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.
Imaging of polarization rotation in transmission resonances of periodic plasmonic structures
NASA Astrophysics Data System (ADS)
Arora, Pankaj; Krishnan, Ananth
2014-05-01
We imaged polarization rotation of transmitted light in 1D Periodic Plasmonic Structures (PPS) fabricated on thin metal coated dielectric substrate. Several PPS of 50% duty cycle and extremely low aspect ratio (height to width ratio) of 0.1 were designed using rigorous coupled wave analysis to exhibit transmission plasmonic resonances at optical wavelengths (400 nm to 700 nm). PPS were fabricated using electron beam lithography, evaporation and lift-off process on glass substrates coated with thin metal. The PPS were characterized using normally incident broadband visible light and crossaxis Polarizer Analyzer setup, with the transmitted light imaged in direct and momentum space using a camera. When the cross axis Polarizer Analyzer were positioned at +45° & -45° respectively w.r.t. plane of incidence, bright emissions of Green, Yellow or Red colors corresponding to transmission plasmonic resonances of the PPS with different periods, were observed in both direct and Fourier planes, instead of completely dark images. From the measured emission momentum in Fourier plane images and spectra of collected light, the emissions were attributed to the excitations of surface plasmons and the reason for surface plasmon excitation in this arrangement is strong coupling of hybrid modes with each other caused by the anisotropy introduced by grating which strongly enhances the efficiency of Polarization rotation. The presented structures behave as frequency selective half wave plates in transmission configuration and could also be used to eliminate the effect of direct beam while imaging the coupling to surface plasmons in periodic structures.
Rotatable spin-polarized electron source for inverse-photoemission experiments
Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.
2014-01-15
We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.
NASA Astrophysics Data System (ADS)
Park, Hee Su; Sharma, Aditya
2016-12-01
We calculate the operation wavelength range of polarization controllers based on rotating wave plates such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbitrary birefringence compensation are numerically estimated. The results present the acceptable phase retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-quarter-wave plate combination, and thereby determines the operation wavelength range of a given design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary birefringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show that the two configurations have the identical range of acceptable phase retardance within the uncertainty of our numerical method.
Static configurations and nonlinear waves in rotating nonuniform self-gravitating fluids.
Nekrasov, A K
2006-02-01
The equilibrium states and low-frequency waves in rotating nonuniform self-gravitating fluids are studied. The effect of a central object is included. Two-dimensional static configurations accounting for self-gravity, external gravity, and nonuniform rotation are considered for three models connecting the pressure with the mass density: thermodynamic equilibrium, polytropic pressure, and constant mass density. Explicit analytical solutions for equilibrium have been found in some cases. The low-frequency waves arising due to the vertical and horizontal fluid inhomogeneities are considered in the linear and nonlinear regimes. The relationship between the background pressure and mass density is supposed to be arbitrary in the wave analysis. It is shown that the waves considered can be unstable in the cases of polytropic pressure and constant mass density. The additional nonlinear term proportional to the product of the pressure and mass density perturbations, which is usually omitted, is kept in our nonlinear equations. There have been found conditions for this term to be important. Stationary nonlinear wave equations having solutions in the form of coherent vortex structures are obtained in a general form. The importance of involving real static configurations in the consideration of wave perturbations is emphasized.
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik
Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.
ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS
Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.
2011-04-10
We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.
Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets
NASA Astrophysics Data System (ADS)
Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.
2011-04-01
We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.
Shimizu, Keisuke; Hojo, Hajime; Ikuhara, Yuichi; Azuma, Masaki
2016-10-01
Polarization rotation induced by an external electric field in piezoelectric materials such as PbZr1-x Tix O3 is generally regarded as the origin of their large piezoelectric responses. Here, the piezoelectric responses of high-quality cobalt-substituted BiFeO3 epitaxial thin films with monoclinic distortions are systematically examined. It is demonstrated that polarization rotation plays a crucial role in improving the piezoelectric responses in this material.
NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND
Shoda, M.; Yokoyama, T.
2016-04-01
Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.
NASA Astrophysics Data System (ADS)
Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef
2009-05-01
A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.
Castro-Lopez, Marta; Brinks, Daan; Sapienza, Riccardo; van Hulst, Niek F
2011-11-09
Resonant optical antennas are ideal for nanoscale nonlinear optical interactions due to their inherent strong local field enhancement. Indeed second- and third-order nonlinear response of gold nanoparticles has been reported. Here we compare the on- and off-resonance properties of aluminum, silver, and gold nanoantennas, by measuring two-photon photoluminescence. Remarkably, aluminum shows 2 orders of magnitude higher luminescence efficiency than silver or gold. Moreover, in striking contrast to gold, the aluminum emission largely preserves the linear incident polarization. Finally, we show the systematic resonance control of two-photon excitation and luminescence polarization by tuning the antenna width and length independently. Our findings point to aluminum as a promising metal for nonlinear plasmonics.
General relativistic x ray (UV) polarization rotations as a quantitative test for black holes
NASA Technical Reports Server (NTRS)
Stark, Richard F.
1989-01-01
It is now 11 years since a potentially easily observable and quantitative test for black holes using general relativistic polarization rotations was proposed (Stark and Connors 1977, and Connors and Stark 1977). General relativistic rotations of the x ray polarization plane of 10 to 100 degrees with x ray energy (between 1 and 100 keV) are predicted for black hole x ray binaries. (Classically, by symmetry, there is no rotation.) Unfortunately, x ray polarimetry has not been taken sufficiently seriously during this period, and this test has not yet been performed. A similar (though probably less clean) effect is expected in the UV for supermassive black holes in some quasars active galactic nuclei. Summarizing: (1) a quantitative test (proposed in 1977) for black holes exists; (2) x ray polarimetry of galactic x ray binaries sensitive to at least 1/2 percent between 1 keV and 100 keV is needed (polarimetry in the UV of quasars and AGN will also be of interest); and (3) proportional counters using timerise discrimination were shown in laboratory experiments able to perform x ray polarimetry and this and other methods need to be developed.
Triaxial Earth's rotation: Chandler wobble, free core nutation and diurnal polar motion (Abstract)
NASA Astrophysics Data System (ADS)
Sun, R.; Shen, W.-B.
2015-08-01
In this study, we formulate two-layered triaxial Earth rotation theory, focusing on the influence of the triaxiality on the Chandler wobble (CW), free core nutation (FCN) and diurnal polar motion. We estimate the frequencies of the normal modes CW and FCN, and results show that though the influence of two-layer triaxiality on the CW and FCN frequencies are very small, there appear some new natures. The response of the Earth's polar motion to the excitation consists of two parts. One is in response to the same frequency excitation and the other is in response to the opposite frequency excitation. For an Earth model with triaxial mantle and core, both of these two parts have four resonant frequencies rather than two that are suggested by rotational symmetric Earth model. However, due to the small strength of these new resonances, the effects of these resonances are only significant when the excitation frequencies are very near to these resonance frequencies. In addition, compared to the biaxial case, the influences of the triaxiality on the prograde and retrograde diurnal polar motions excited by ocean tide component K1 are estimated as - 1.4 μas and - 0.9 μas respectively, which should be taken into account in theory. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41128003, 41021061).
Nonlinear polarization of ionic liquids: theory, simulations, experiments
NASA Astrophysics Data System (ADS)
Kornyshev, Alexei
2010-03-01
Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.
Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs
NASA Astrophysics Data System (ADS)
Snyder, P. B.
2004-11-01
Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
NASA Astrophysics Data System (ADS)
Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi
2012-02-01
Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).
On the nonlinear interfacial instability of rotating core-annular flow
NASA Technical Reports Server (NTRS)
Coward, Aidrian V.; Hall, Philip
1993-01-01
The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.
Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields
NASA Astrophysics Data System (ADS)
Mosquera Cuesta, Herman J.
2017-02-01
Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born–Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.
Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform.
Sacher, Wesley D; Huang, Ying; Ding, Liang; Barwicz, Tymon; Mikkelsen, Jared C; Taylor, Benjamin J F; Lo, Guo-Qiang; Poon, Joyce K S
2014-05-05
We demonstrate novel polarization management devices in a custom-designed silicon nitride (Si(3)N(4)) on silicon-on-insulator (SOI) integrated photonics platform. In the platform, Si(3)N(4) waveguides are defined atop silicon waveguides. A broadband polarization rotator-splitter using a TM0-TE1 mode converter in a composite Si(3)N(4)-silicon waveguide is demonstrated. The polarization crosstalk, insertion loss, and polarization dependent loss are less than -19 dB, 1.5 dB, and 1.0 dB, respectively, over a bandwidth of 80 nm. A polarization controller composed of polarization rotator-splitters, multimode interference couplers, and thin film heaters is also demonstrated.
New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion
NASA Astrophysics Data System (ADS)
Salstein, D. A.; Stamatakos, N.
2014-12-01
We are reviewing the state of the art in available datasets for both atmospheric angular momentum (AAM) and oceanic angular momentum (OAM) for the purposes of analysis and prediction of both polar motion and length of day series. Both analyses and forecasts of these quantities have been used separately and in combination to aid in short and medium range predictions of Earth rotation parameters. The AAM and OAM combination, with the possible addition of hydrospheric angular momentum can form a proxy index for the Earth rotation parameters themselves due to the conservation of angular momentum in the Earth system. Such a combination of angular momentum of the geophysical fluids has helped in forecasts within periods up to about 10 days, due to the dynamic models, and together with extended statistical predictions of Earth rotation parameters out even as far as 90 days, according to Dill et al. (2013). We assess other dataset combinations that can be used in such analysis and prediction efforts for the Earth rotation parameters, and demonstrate the corresponding skill levels in doing so.
Relaxation of rotational angular momentum of polar diatomic molecules in simple liquids
Padilla, A.; Perez, J.
2007-03-15
The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocorrelation function of the angular momentum. This non-Markovian theory was previously applied to the study of the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation components involved in the angular momentum correlation function. In these equations, the time-dependent angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evolution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed. The theory is applied to the study of the angular momentum relaxation processes of HCl diluted in liquid SF{sub 6}, a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed in the scope of the same theory.
Square-wave oscillations in edge-emitting diode lasers with polarization-rotated optical feedback
NASA Astrophysics Data System (ADS)
Gavrielides, A.; Erneux, T.; Sukow, D. W.; Burner, G.; McLachlan, T.; Miller, J.; Amonette, J.
2006-04-01
The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied experimentally and theoretically. Square-wave self-modulated polarization intensities of a period close to twice the delay τ of the feedback gradually appear through a sequence of bifurcations starting with a Hopf bifurcation (Gavrielides et al, Proc. SPIE 6115, to appear, 2006). In Gavrielides et al (submitted, 2006), squarewave solutions were determined analytically from the laser equations in the limit of large τ. A condition on the laser parameters was derived explaining why square-wave oscillations are preferentially observed for suffciently large feedback strength. In this paper, we concentrate on the relaxation oscillations that always appear at each intensity jump between the plateaus of the square-wave. We show analytically that if the feedback strength is progressively decreased, a bifurcation to sustained relaxation oscillations is possible for one of the two plateaus.
Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave.
Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan
2015-08-05
We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell's law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.
NASA Astrophysics Data System (ADS)
Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu
2016-10-01
Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.
Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave
NASA Astrophysics Data System (ADS)
Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan
2015-08-01
We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.
Iino, T.; Toyosaki, N.; Katsuki, T.; Noda, T.; Natsume, T.; Yaginuma, T.; Hosoda, S.; Furuse, M.
1987-09-01
The perfusion territories in polar representations of stress Tl-201 rotational myocardial imaging in patients with angina pectoris who had one diseased coronary segment were analyzed. The lesions proximal or distal to the first major septal perforator in left anterior descending arteries were detected by the presence or absence of defects at the base of the anterior septum. Right coronary artery lesions were detected by the presence of defects at the basal posterior septum, in contrast to the preservation of myocardial uptake at this portion in lesions of the left circumflex artery. The specific defect patterns were detected in cases with lesions at the first diagonal, obtuse marginal, and posterolateral branches. Recognition of these defects in the polar maps allows detailed detection of diseased coronary arterial branches.
Photonic crystal fiber polarization rotator based on the topological Zeeman effect.
Chen, Lei; Zhang, Wei-Gang; Yan, Tie-Yi; Wang, Li; Sieg, Jonathan; Wang, Biao; Zhou, Quan; Zhang, Li-Yu
2015-08-01
A photonic crystal fiber polarization rotator (PR) is proposed based on the topological Zeeman effect. The proposed PR is achieved by permanently twisting a segment of sixfold symmetric photonic crystal fiber with a matched length, and under the optimized parameters, the PR can offer an almost 100% polarization conversion ratio in the wavelength of 1.55-μm band (∼200 nm bandwidth) and a compact length of about 157 μm based on the numerical simulation result of the full-vector finite-element method. The proposed in-line PCF PR can be easily fabricated based on state-of-art PCF manufacturing, and it is a potential inexpensive candidate in the application of modern communication systems.
Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate
NASA Astrophysics Data System (ADS)
Pradhan, S.
2016-03-01
The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.
Rotative polarization system of millimetric wave for detecting fiber orientation in CFRP
Urabe, K. )
1992-02-01
A new system for nondestructive and contact-free detection of fiber orientation in fiber reinforced composites such as CFRP was devised using 35 GHz millimetric wave. In this system, by rotating the polarization of the wave and compensating it after passing through the sample, changes of anisotropy caused by changes in fiber orientation of unidirectional CFRP or carbon fiber prepreg can be easily and efficiently checked. Scanning detection of fiber direction and of fiber misorientation are also possible with high sensitivity. Results of measurements with successful sensitivity are shown for several kinds of unidirectional samples with artificial fiber misorientations. 5 refs.
NASA Astrophysics Data System (ADS)
Kaufman, Jonathan Philip
The BICEP1 and BICEP2 telescopes studied the temperature and polarization of the Cosmic Microwave Background (CMB) from 2006 -- 2008 and 2010 -- 2012, respectively, producing the deepest maps of polarization created to date. From BICEP2 three-year data, we detect B-mode polarization at the degree-scale above the expectation from lensed-ΛCDM to greater than 5sigma significance, consistent with that expected from gravitational waves created during Inflation. Instrumental systematic effects have been characterized and ruled out, and galactic foreground contamination is disfavored by the data. Additionally, correlations between temperature and B-mode polarization and between E-mode and B-mode polarization show evidence of polarization rotation of --1° to 5sigma significance; however, adding systematic uncertainty reduces this significance to ˜ 2sigma. These measurements, combined with other CMB and astrophysical measurements, point to possible parity violating physics like cosmic birefringence, but more precise calibration techniques are required to break the degeneracy between cosmic polarization rotation and systematic effects. Improved calibration is possible with current generation technology and may be achieved within the next few years. In this work, I present experimental and analysis techniques employed for BICEP1 and BICEP2 to measure B-mode polarization and temperature and polarization correlations, as well as the scientific motivation, results, and a path forward for future measurements.
Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds
NASA Astrophysics Data System (ADS)
Handel, P. H.
2007-05-01
When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud
Camley, Brian A; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan
2014-10-14
Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell's internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell's methods for coordinating collective cell motility.
Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics
NASA Astrophysics Data System (ADS)
Quéré, Fabien
2014-05-01
Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
NASA Astrophysics Data System (ADS)
Roundy, Shad; Tola, Jeffry
2014-10-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph.
Nonlinear filter for pattern recognition invariant to illumination and to out-of-plane rotations.
Lefebvre, Daniel; Arsenault, Henri H; Roy, Sébastien
2003-08-10
Automatic target recognition in uncontrolled conditions is a difficult task because many parametersare involved. This study deals with the recognition of targets under limited out-of-plane rotations while maintaining invariance to ambient light illumination. Contrast invariance is achieved by using the recently developed locally adaptive contrast-invariant filter, a method that yields correlation peaks whose values are invariant under any linear transformation of intensity. To reduce the sensitivity to the orientation of the object we replace the reference in the nonlinear filter by a synthetic discriminant filter. The range used for out-of-plane rotations was 40 degrees with a depression angle of 20 degrees. We present results for unsegmented targets on complex backgrounds with the presence of false targets.
Jiang, Min; Wang, Guanghui; Jiao, Wenxiang; Ying, Zhoufeng; Zou, Ningmu; Ho, Ho-Pui; Sun, Tianyu; Zhang, Xuping
2017-01-15
We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.
Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells
Budker, D.; Hollberg, L.; Kitching, J.; Kimball, D.F.; Pustelny, S.; Yashchuk, V.V.
2005-01-01
Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane antirelaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a 40-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.
Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells
Budker, Dmitry; Hollberg. Leo; Kimball, Derek F.; Kitching J.; Pustelny Szymon; Yashchuk, Valeriy V.
2004-08-12
Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.
Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.
2004-06-04
Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers.
Yuan, Y; Axelrod, D
1995-01-01
Polarized fluorescence recovery after photobleaching (PFRAP) is a technique for measuring the rate of rotational motion of biomolecules on living, nondeoxygenated cells with characteristic times previously ranging from milliseconds to many seconds. Although very broad, that time range excludes the possibility of quantitatively observing freely rotating membrane protein monomers that typically should have a characteristic decay time of only several microseconds. This report describes an extension of the PFRAP technique to a much shorter time scale. With this new system, PFRAP experiments can be conducted with sample time as short as 0.4 microseconds and detection of possible characteristic times of less than 2 microseconds. The system is tested on rhodamine-alpha-bungarotoxin-labeled acetylcholine receptors (AChRs) on myotubes grown in primary cultures of embryonic rat muscle, in both endogenously clustered and nonclustered regions of AChR distribution. It is found that approximately 40% of the AChRs in nonclustered regions undergoes rotational diffusion fast enough to possibly arise from unrestricted monomer Brownian motion. The AChRs in clusters, on the other hand, are almost immobile. The effects of rat embryonic brain extract (which contains AChR aggregating factors) on the myotube AChR were also examined by the fast PFRAP system. Brain extract is known to abolish the presence of endogenous clusters and to induce the formation of new clusters. It is found here that rotational diffusion of AChR in the extract-induced clusters is as slow as that in endogenous clusters on untreated cells but that rotational diffusion in the nonclustered regions of extract-treated myotubes remains rapid. Images FIGURE 3 PMID:8527682
el-Saeidy
2000-02-01
The radial clearance in rolling bearing systems, required to compensate for dimensional changes associated with thermal expansion of the various parts during operation, may cause dimensional attrition and comprise bearing life, if unloaded operation occurs and balls skid [D. Childs and D. Moyer, ASME J. Eng. Gas Turb. Power 107, 152-159 (1985)]. Also, it can cause jumps in the response to unbalance excitation. These undesirable effects may be eliminated by introducing two or more loops into one of the bearing races so that at least two points of the ring circumference provide a positive zero clearance [D. Childs, Handbook of Rotordynamics, edited by F. Ehrich (McGraw-Hill, NY, 1992)]. The deviation of the outer ring with two loops, known as ovality, is one of the bearing distributed defects. Although this class of imperfections has received much work, none of the available studies has simulated the effect of the outer ring ovality on the dynamic behavior of rotating machinery under rotating unbalance with consideration of ball bearing nonlinearities, shaft elasticity, and speed of rotation. To fill this gap, the equations of motion of a rotor-ball bearing system are formulated using finite-elements (FE) discretization and Lagrange's equations. The analyses are specialized to a rigid-rotor system, by retaining the rigid body modes only in the FE solution. Samples of the results are presented in both time domain and frequency domain for a system with and without outer ring ovality. It is found that with ideal bearings (no ovality), the vibration spectrum is qualitatively and quantitatively the same in both the horizontal and vertical directions. When the ring ovality is introduced, however, the spectrum in both orthogonal planes is no longer similar. And magnitude of the bearing load has increased in the form of repeated random impacts, between balls and rings, in the horizontal direction (direction of maximum clearance) compared to a continuous contact along the
Generation of four-photon polarization entangled states with cross-Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Wang, Meiyu; Yan, Fengli
2015-05-01
We show how to prepare three different types of four-photon polarization entangled states among four modes. The scheme only use cross-Kerr medium, polarization beam splitters and X homodyne measurements on coherent light fields, which can be efficiently implemented in quantum optical laboratories. GHZ states and symmetric Dick states can be generated in deterministic way based on the scheme. With the possible availability of suitable strong Kerr nonlinearity, another type of entangled state called genuine four-photon entangled state can be realized as well.
NASA Astrophysics Data System (ADS)
Kim, Sangsik; Qi, Minghao
2015-12-01
Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.
Kim, Sangsik; Qi, Minghao
2015-01-01
Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300–1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below −40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands. PMID:26680655
Kim, Sangsik; Qi, Minghao
2015-12-18
Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.
Rotational instability of the electric polarization and divergence of the shear elastic compliance
NASA Astrophysics Data System (ADS)
Cordero, F.; Langhammer, H. T.; Müller, T.; Buscaglia, V.; Nanni, P.
2016-02-01
The rotational instability of the electric polarization P during phase transformations between ferroelectric phases is of great practical interest, since it may be accompanied by extremely large values of the piezoelectric coefficient, and a divergence of the coupled shear compliance contributes to such enhancements. In the literature, this has been explicitly calculated in the framework of the Landau theory and discussed with specific numerical simulations involving tetragonal, orthorhombic, and rhombohedral ferroelectric phases. When monoclinic phases are involved, such an approach is practically impossible, and an approximated treatment has been proposed, based on the observation that in those cases there are shear strains almost linearly coupled to the transverse component of P , implying a divergence of the Curie-Weiss type in the associated compliances. Here the argument is extended to the general case of transitions whose major effect is a rotation of the polarization, and the limits of its validity are discussed. As experimental verification, the elastic response of BaTiO3 is measured and analyzed, together with those of other ferroelectric perovskites available in the literature, such as KNN.
NASA Astrophysics Data System (ADS)
Emam, Mahmoud; Han, Qi; Yu, Liyang; Zhang, Ye; Niu, Xiamu
2015-07-01
Copy-move is one of the most common methods for image manipulation. Several methods have been proposed to detect and locate the tampered regions, while many methods failed when the copied regions are rotated before being pasted. A rotational invariant detecting method using Polar Complex Exponential Transform (PCET) is proposed in this paper. Firstly, the original image is divided into overlapping circular blocks, and PCET is employed to each block to extract the rotation-invariant robust features. Secondly, the Approximate Nearest Neighbors (ANN) of each feature vector are collected by Locality Sensitive Hashing (LSH). Experimental results show that the proposed technique is robust to rotation.
NASA Astrophysics Data System (ADS)
Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran
2016-05-01
A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.
Rotational excitation of simple polar molecules by H2 and electrons in diffuse clouds
NASA Astrophysics Data System (ADS)
Liszt, H. S.
2012-02-01
Context. Emission from strongly-polar molecules could be a probe of physical conditions in diffuse molecular gas. Aims: We wish to provide basic information needed to interpret emission from molecules having higher dipole moments than CO, originating in diffuse clouds where the density is relatively low and the temperature and electron fraction are relatively high compared to dark clouds. Methods: Parameter studies in LVG models are used to show how the low-lying rotational transitions of common polar molecules HCO+, HCN and CS vary with number density, column density and electron fraction; with molecular properties such as the charge state and permanent dipole moment; and with observational details such as the transition that is observed. Physically-based models are used to check the parameter studies and provide a basis for relating the few extant observations. Results: Parameter studies of LVG radiative transfer models show that lines of polar molecules are uniformly brighter for ions, for lower J-values and for higher dipole moments. Excitation by electrons is more important for J = 1-0 lines and contributes rather less to the brightness of CS J = 2-1 lines. If abundances are like those seen in absorption, the HCO+J = 1-0 line will be the brightest line after CO, followed by HCN (1-0) and CS (2-1). Because of the very weak rotational excitation in diffuse clouds, emission brightnesses and molecular column densities retain a nearly-linear proportionality under fixed physical conditions, even when transitions are quite optically thick; this implies that changes in relative intensities among different species can be used to infer changes in their relative abundances.
Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators
NASA Technical Reports Server (NTRS)
Daugherty, Joseph K.; Harding, Alice K.
1994-01-01
We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
A review on prognostic techniques for non-stationary and non-linear rotating systems
NASA Astrophysics Data System (ADS)
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma
NASA Technical Reports Server (NTRS)
Huang, T. S.; Birmingham, T. J.
1992-01-01
Spatial variations of density and temperature along a magnetic field line are evaluated for a plasma undergoing adiabatic motion in a rotating magnetosphere. The effects of centrifugal and gravitational forces are accounted for, as is anisotropy in the pitch angle distribution functions of individual species. A polarization electric field is invoked to eliminate the net electric charge density resulting from the aforementioned mass dependent forces and different anisotropies. The position of maximum density in a two-component, electron-ion plasma is determined both in the absence and in the presence of the polarization effect and compared. A scale height, generalized to include anisotropies, is derived for the density fall-off. The polarization electric field is also included in the parallel guiding center equation; equilibrium points are determined and compared in both individual and average senses with the position of density maximum. Finally a transverse (to magnetic field lines) electric component is deduced as a consequence of dissimilar charge neutralization on adjacent field lines. The E x B velocity resultant from such a 'fringing' electric field is calculated and compared with the magnitude of other drifts.
Bills, Bruce G.; James, Thomas S.; Mengel, John G.
1999-01-01
Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to
Attosecond nonlinear polarization and light-matter energy transfer in solids
NASA Astrophysics Data System (ADS)
Sommer, A.; Bothschafter, E. M.; Sato, S. A.; Jakubeit, C.; Latka, T.; Razskazovskaya, O.; Fattahi, H.; Jobst, M.; Schweinberger, W.; Shirvanyan, V.; Yakovlev, V. S.; Kienberger, R.; Yabana, K.; Karpowicz, N.; Schultze, M.; Krausz, F.
2016-06-01
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
NASA Astrophysics Data System (ADS)
Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan
2017-03-01
Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.
Wang, Meiyu; Yan, Fengli; Gao, Ting
2016-01-01
We propose a theoretical protocol for preparing four-photon polarization entangled decoherence-free states, which are immune to the collective noise. With the assistance of the cross-Kerr nonlinearities, a two-photon spatial entanglement gate, two controlled-NOT gates, a four-photon polarization entanglement gate are inserted into the circuit, where X homodyne measurements are aptly applied. Combined with some swap gates and simple linear optical elements, four-photon polarization entangled decoherence-free states which can be utilized to represent two logical qubits, |0〉L and |1〉L are achieved at the output ports of the circuit. This generation scheme may be implemented with current experimental techniques. PMID:27901116
Wu, S Q; Hartemann, F V
2010-04-13
The standard Big Bang universe model is mainly based on linear interactions, except during exotic periods such as inflation. The purpose of the present proposal is to explore the effects, if any, of vacuum polarization in the very high energy density environment of the early universe. These conditions can be found today in astrophysical settings and may also be emulated in the laboratory using high intensity advanced lasers. Shortly after the Big Bang, there once existed a time when the energy density of the universe corresponded to a temperature in the range 10{sup 8} - 10{sup 9} K, sufficient to cause vacuum polarization effects. During this period, the nonlinear vacuum polarization may have had significant modifications on the propagation of radiation. Thus the thermal spectrum of the early universe may have been starkly non-Planckian. Measurements of the cosmic microwave background today show a spectrum relatively close to an ideal blackbody. Could the early universe have shown spectral deviations due to nonlinear vacuum effects? If so, is it possible to detect traces of those relic photons in the universe today? Found in galactic environments, compact objects such as blazars and magnetars can possess astronomically large energy densities that far exceed anything that can be created in the laboratory. Their field strengths are known to reach energy levels comparable to or surpassing the energy corresponding to the Schwinger critical field E {approx} 10{sup 18} V/m. Nonlinear vacuum effects become prominent under these conditions and have garnered much interest from the astronomical and theoretical physics communities. The effects of a nonlinear vacuum may be of crucial importance for our understanding of these objects. At energies of the order of the electron rest mass, the most important interactions are described by quantum electrodynamics (QED). It is predicted that nonlinear photon-photon interactions will occur at energies approaching the Schwinger
Effects of rotation on the nonlinear friction of a damped dimer sliding on a periodic substrate.
Neide, I G; Kenkre, V M; Gonçalves, S
2010-10-01
Rotational effects on the nonlinear sliding friction of a damped dimer moving over a substrate are studied within a largely one-dimensional model. The model consists of two masses connected rigidly, internally damped, and sliding over a sinusoidal (substrate) potential while being free to rotate in the plane containing the masses and the direction of sliding. Numerical simulations of the dynamics performed by throwing the dimer with an initial center of mass velocity along the substrate direction show a richness of phenomena including the appearance of three separate regimes of motion. The orientation of the dimer performs tiny oscillations around values that are essentially constant in each regime. The constant orientations form an intricate pattern determined by the ratio of the dimer length to the substrate wavelength as well as by the initial orientations chosen. Corresponding evolution of the center of mass velocity consists, respectively, of regular oscillations in the first and the third regimes, but a power law decay in the second regime; the center of mass motion is effectively damped in this regime because of the coupling to the rotation. Depending on the initial orientation of the dimer, there is considerable variation in the overall behavior. For small initial angles to the vertical, an interesting formal connection can be established to earlier results known in the literature for a vibrating, rather than rotating, dimer. But for large angles, on which we focus in the present paper, quite different evolution occurs. Some of the numerical observations are explained successfully on the basis of approximate analytical arguments but others pose puzzling problems.
Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu E-mail: tschu008@163.com
2014-02-21
We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom.
NASA Astrophysics Data System (ADS)
Lites, Bruce W.
1987-09-01
A formalism for estimating the crosstalk error among Stokes I,Q,U,V introduced by seeing-induced image motion is presented. This formalism is applied to several modulation schemes for polarization involving rotating waveplates, and it is evaluated using an observed power spectrum of image motion obtained from the Vacuum Tower Telescope at the National Solar Observatory/Sunspot. It is shown that rotating waveplates offer an acceptable alternative for measurements of absorption line polarization of features observed on the solar disk, provided the detection can be carried out at video frame rates or faster.
Effects of polar ice on the earth's rotation and gravitational potential
NASA Technical Reports Server (NTRS)
Trupin, Andrew S.
1993-01-01
The contributions of the Antarctic and the Greenland ice sheets to the earth's gravity, displacement, and rotation are estimated using gridded values of the net surface accumulation rates in the ice sheets of these two regions. It is found that the contributions to the low-order zonal harmonic coefficients of the earth's gravitational potential from Antarctica are between 2 and 10 times larger than the uncertainties of the zonal harmonics derived from satellite solutions; for Greenland, the coefficients are within an order of magnitude of the uncertainties of the satellite solutions. Polar contributions to the displacement of the center of mass of the solid earth, as seen in the frame of reference of satellites tracked from the earth surface, range from less than 1 mm to 1.5 cm over a 60-yr period.
Electric Polarization Rotation in a Hexaferrite with Long-Wavelength Magnetic Structures
NASA Astrophysics Data System (ADS)
Kimura, T.; Lawes, G.; Ramirez, A. P.
2005-04-01
We report on the control of electric polarization (P) by using magnetic fields (B) in a hexaferrite having magnetic order above room temperature (RT). The material investigated is hexagonal Ba0.5Sr1.5Zn2Fe12O22, which is a nonferroelectric helimagnetic insulator in the zero-field ground state. By applying B, the system undergoes successive metamagnetic transitions, and shows concomitant ferroelectric order in some of the B-induced phases with long-wavelength magnetic structures. The magnetoelectrically induced P can be rotated 360° by external B. This opens up the potential for not only RT magnetoelectric devices but also devices based on the magnetically controlled electro-optical response.
Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures.
Kimura, T; Lawes, G; Ramirez, A P
2005-04-08
We report on the control of electric polarization (P) by using magnetic fields (B) in a hexaferrite having magnetic order above room temperature (RT). The material investigated is hexagonal Ba0.5Sr1.5Zn2Fe12O22, which is a nonferroelectric helimagnetic insulator in the zero-field ground state. By applying B, the system undergoes successive metamagnetic transitions, and shows concomitant ferroelectric order in some of the B-induced phases with long-wavelength magnetic structures. The magnetoelectrically induced P can be rotated 360 degrees by external B. This opens up the potential for not only RT magnetoelectric devices but also devices based on the magnetically controlled electro-optical response.
Faraday rotation from magnesium II absorbers toward polarized background radio sources
Farnes, J. S.; O'Sullivan, S. P.; Corrigan, M. E.; Gaensler, B. M.
2014-11-01
Strong singly ionized magnesium (Mg II) absorption lines in quasar spectra typically serve as a proxy for intervening galaxies along the line of sight. Previous studies have found a correlation between the number of these Mg II absorbers and the Faraday rotation measure (RM) at ≈5 GHz. We cross-match a sample of 35,752 optically identified non-intrinsic Mg II absorption systems with 25,649 polarized background radio sources for which we have measurements of both the spectral index and RM at 1.4 GHz. We use the spectral index to split the resulting sample of 599 sources into flat-spectrum and steep-spectrum subsamples. We find that our flat-spectrum sample shows significant (∼3.5σ) evidence for a correlation between Mg II absorption and RM at 1.4 GHz, while our steep-spectrum sample shows no such correlation. We argue that such an effect cannot be explained by either luminosity or other observational effects, by evolution in another confounding variable, by wavelength-dependent polarization structure in an active galactic nucleus, by the Galactic foreground, by cosmological expansion, or by partial coverage models. We conclude that our data are most consistent with intervenors directly contributing to the Faraday rotation along the line of sight, and that the intervening systems must therefore have coherent magnetic fields of substantial strength ( B-bar =1.8±0.4 μG). Nevertheless, the weak nature of the correlation will require future high-resolution and broadband radio observations in order to place it on a much firmer statistical footing.
NASA Astrophysics Data System (ADS)
Duan, Zhi Xin; Li, Wen Liang; Qiu, Ming Hui
2012-04-01
Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 12A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ⩽ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.
Duan, Zhi Xin; Li, Wen Liang; Qiu, Ming Hui
2012-04-14
Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 1(2)A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ≤ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-15
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achieved is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.
ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6
Su, Yingna; Van Ballegooijen, Adriaan
2013-02-10
A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.
Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing
2015-01-01
A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434
The tidal-rotational shape of the Moon and evidence for polar wander.
Garrick-Bethell, Ian; Perera, Viranga; Nimmo, Francis; Zuber, Maria T
2014-08-14
The origin of the Moon's large-scale topography is important for understanding lunar geology, lunar orbital evolution and the Moon's orientation in the sky. Previous hypotheses for its origin have included late accretion events, large impacts, tidal effects and convection processes. However, testing these hypotheses and quantifying the Moon's topography is complicated by the large basins that have formed since the crust crystallized. Here we estimate the large-scale lunar topography and gravity spherical harmonics outside these basins and show that the bulk of the spherical harmonic degree-2 topography is consistent with a crust-building process controlled by early tidal heating throughout the Moon. The remainder of the degree-2 topography is consistent with a frozen tidal-rotational bulge that formed later, at a semi-major axis of about 32 Earth radii. The probability of the degree-2 shape having both tidal-heating and frozen shape characteristics by chance is less than 1%. We also infer that internal density contrasts eventually reoriented the Moon's polar axis by 36 ± 4°, to the configuration we observe today. Together, these results link the geology of the near and far sides, and resolve long-standing questions about the Moon's large-scale shape, gravity and history of polar wander.
Generation of polarized shear Alfven waves by a rotating magnetic field source
Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Sharma, A. Surjalal; Papadopoulos, D.
2009-09-15
Experiments are performed in the Large Plasma Device at the University of California, Los Angeles to study the propagation of field-aligned, polarized kinetic shear Alfven waves radiated from a rotating magnetic field source created via a novel phased orthogonal loop antenna. Both right and left hand circular polarizations are generated at a wide range of frequencies from 0.21{<=}{omega}/{omega}{sub ci}<0.93. Propagation parallel to the background magnetic field near the Alfven velocity is observed along with a small parallel wave magnetic field component implying a shear mode. The peak-to-peak magnitude of the wave magnetic field, 33 cm away from the antenna, is on the order of 0.8% of the background field and drops off in the far field. The full width at half maximum of the wave energy changes little over a distance of 2.5 parallel wavelengths while the exponential decrease in wave energy as a function of distance can be attributed to collisional damping. Evidence of electron heating and ionization is observed during the pulse.
NASA Astrophysics Data System (ADS)
Dymnikova, Irina; Galaktionov, Evgeny
2016-03-01
In nonlinear electrodynamics minimally coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have obligatory de Sitter center. By the Gürses-Gürsey algorithm they are transformed to regular axially symmetric solutions asymptotically Kerr-Newman for a distant observer. Rotation transforms de Sitter center into de Sitter equatorial disk embedded as a bridge into a de Sitter vacuum surface. The de Sitter surfaces satisfy p = -ρ and have properties of a perfect conductor and ideal diamagnetic. The Kerr ring singularity is replaced with the superconducting current which serves as a non-dissipative electromagnetic source of the asymptotically Kerr-Newman geometry. Violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media.
A nonlinear circular ring model with rotating effects for tire vibrations
NASA Astrophysics Data System (ADS)
Vu, Trong Dai; Duhamel, Denis; Abbadi, Zouhir; Yin, Hai-Ping; Gaudin, Arnaud
2017-02-01
Rolling noise contributes significantly to the noise inside cars. This noise comes from the tire/road contact and for low frequencies (0-400 Hz), it is mainly transmitted into the cabin through structural vibrations. Thus estimating this noise requires modelling the tire vibrations by taking into account the rotating effects and the contact with rough surfaces. Concerning the model of rolling tire, a formulation of a deformable solid is constructed by using an Arbitrary Lagrangian Eulerian approach. This formulation is applied on a new simplified tire model which is a circular ring including shear stresses and nonlinear effects due to the vehicle load. This model is successfully validated by comparison with FEM results.
Non-linear rotation-free shell finite-element models for aortic heart valves.
Gilmanov, Anvar; Stolarski, Henryk; Sotiropoulos, Fotis
2017-01-04
Hyperelastic material models have been incorporated in the rotation-free, large deformation, shell finite element (FE) formulation of (Stolarski et al., 2013) and applied to dynamic simulations of aortic heart valve. Two models used in the past in analysis of such problem i.e. the Saint-Venant and May-Newmann-Yin (MNY) material models have been considered and compared. Uniaxial tests for those constitutive equations were performed to verify the formulation and implementation of the models. The issue of leaflets interactions during the closing of the heart valve at the end of systole is considered. The critical role of using non-linear anisotropic model for proper dynamic response of the heart valve especially during the closing phase is demonstrated quantitatively. This work contributes an efficient FE framework for simulating biological tissues and paves the way for high-fidelity flow structure interaction simulations of native and bioprosthetic aortic heart valves.
Chen, Frank; Goodfellow, John; Liu, Shi; ...
2015-09-21
In this article, terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO3 while monitoring the time-dependent ferroelectric polarization through its nonlinear optical response. Modulations in the intensity of the second harmonic light generated by the film correspond to on–off ratios of 220 × gateable on femtosecond timescales. Polarization modulations comparable to the built-in static polarization are observed.
Gavrielides, Athanasios; Sukow, David W; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake
2010-05-01
Numerical and experimental results are presented for an edge-emitting diode laser with delayed optical feedback, where the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. We examine the bifurcation structure and dynamics that give rise to a class of periodic, polarization-modulated solutions, the simplest of which is a square wave solution with a period related to but longer than twice the external cavity roundtrip time. Such solutions typically emerge when the feedback is strong and the differential losses in the normally unsupported polarization mode are small. We also observe more complex waveforms that maintain the same periodicity.
NASA Astrophysics Data System (ADS)
Gavrielides, Athanasios; Sukow, David W.; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake
2010-05-01
Numerical and experimental results are presented for an edge-emitting diode laser with delayed optical feedback, where the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. We examine the bifurcation structure and dynamics that give rise to a class of periodic, polarization-modulated solutions, the simplest of which is a square wave solution with a period related to but longer than twice the external cavity roundtrip time. Such solutions typically emerge when the feedback is strong and the differential losses in the normally unsupported polarization mode are small. We also observe more complex waveforms that maintain the same periodicity.
Non-linear dynamics and instability of a rotating shaft-disk system
NASA Astrophysics Data System (ADS)
Chang, C. O.; Cheng, J. W.
1993-01-01
The instability and non-linear dynamics of a slender rotating shaft with a rigid disk at the mid-span are analyzed. The shaft is simply supported at both ends and is made of a viscoelastic material. The stability criteria are determined from the linear equations of motion based on the small strain assumption. The bifurcation of the double zero eigenvalue point on the stability boundaries in the parametric space is analyzed by using center manifold theory on the non-linear equations of motion, for which a large transverse displacement of the shaft is assumed. Analytical expressions for the radius of synchronous whirling and the radius and precession rate of non-synchronous whirling near the double zero eigenvalue point are obtained explicitly. The behaviors of the parametric points away from the stability boundaries are analyzed numerically. The general effects on the precession rate for these points are somewhat different from those for the parametric points in the vicinity of the double zero eigenvalue.
Nonlinear dynamics and synchronisation of pendula attached to a rotating hub
NASA Astrophysics Data System (ADS)
Warminski, J.; Szmit, Z.; Latalski, J.
2014-04-01
A model of a nonlinear system composed of a hub with attached two pendula rotating in a horizontal plane is studied in the paper. Each single pendulum, treated as a stiff and massless rod with a lumped mass, is connected to the hub by a flapping hinge. Nonlinear stiffness and viscous damping of the hinge is taken into consideration. The system is excited by an external torque generated by a DC motor which is considered as an ideal system with torque given by a harmonic function. For small oscillations the problem is linearised and then solved analytically. An influence of the structural parameters like mass of the hub and pendula length on natural end excited vibrations is presented. Large oscillations are studied by a continuation technique, directly from the original Ordinary Differential Equations of motion (ODE). The complete synchronisation, phase synchronisation, bifurcations and transition through resonances are analysed considering the influence of the mass of the hub. The existence of chaotic oscillations of the system and paths leading to chaos are demonstrated as well.
NASA Astrophysics Data System (ADS)
Song, Byeongju; Park, Byeongjin; Sohn, Hoon; Lim, Cheol-Woo; Park, Jae-Roung
2015-04-01
Rotating shafts in drop lifts of manufacturing facilities are susceptible to fatigue cracks as they are under repetitive heavy loading and high speed spins. However, it is challenging to use conventional contact transducers to monitor these shafts as they are continuously spinning with a high speed. In this study, a noncontact crack detection technique for a rotating shaft is proposed using air-coupled transducers (ACTs). (1) Low frequency (LF) and high frequency (HF) sinusoidal inputs are simultaneously applied to a shaft using two ACTs, respectively. A fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands at the modulation frequencies, which are the sum and difference of the two input frequencies Then LF and HF inputs are independently applied to the shaft using each ACT. These three ultrasonic responses are measured using another ACT. (2) The damage index (DI) is defined as the energy of the first sideband components, which corresponding to the frequency sum and difference between HF and LF inputs. (3) Steps 1 and 2 are repeated with various combinations of HF and LF inputs. Crack existence is detected through an outlier analysis of the DIs. The effectiveness of the proposed technique is investigated using a steel shaft with a real fatigue crack.
Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation
Carretero-González, R.; Kevrekidis, P. G.; Kolokolnikov, T.
2016-03-01
In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show howmore » these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.« less
Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation
Carretero-González, R.; Kevrekidis, P. G.; Kolokolnikov, T.
2016-03-01
In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ^{2/3}. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show how these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.
Nonlinear and detuning effects of the nutation angle in precessionally forced rotating cylinder flow
NASA Astrophysics Data System (ADS)
Lopez, Juan M.; Marques, Francisco
2016-06-01
The flow in a rapidly rotating cylinder forced to precess through a nutation angle α is investigated numerically, keeping all parameters constant except α , and tuned to a triadic resonance at α =1∘ . When increasing α , the flow undergoes a sequence of well-characterized bifurcations associated with triadic resonance, involving heteroclinic and homoclinic cycles, for α up to about 4∘. For larger α , we identify two chaotic regimes. In the first regime, with α between about 4∘ and 27∘, the bulk flow retains remnants of the helical structures associated with the triadic resonance, but there are strong nonlinear interactions between the various azimuthal Fourier components of the flow. For the larger α regime, large detuning effects lead to the triadic resonance dynamics being completely swamped by boundary layer eruptions. The azimuthal mean flow at large angles results in a large mean deviation from solid-body rotation and the flow is characterized by strong shear at the boundary layers with temporally chaotic eruptions.
NASA Astrophysics Data System (ADS)
Volkova, E. A.; Popov, A. M.; Tikhonova, O. V.
2013-03-01
The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schrödinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.
NASA Technical Reports Server (NTRS)
Kogut, J.
1981-01-01
The NIMBUS 7 Scanning Multichannel Microwave Radiometer (SMMR) data are analyzed. The impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures is evaluated. The algorithms used to retrieve the geophysical parameters are tested, refined, and compared with values derived by other techniques. The technical approach taken is described and the results presented.
Xu, Shoujun; Rochester, Simon M.; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Budker, Dmitry
2006-06-28
We report on the design, characterization, and applicationsof a sensitive atomic magnetic gradiometer. The device is based onnonlinear magneto-optical rotation in alkali-metal (87Rb) vapor, and usesfrequency-modulated laser light. The magnetic field produced by a sampleis detected by measuring the frequency of a resonance in optical rotationthat arises when the modulation frequency equals twice the Larmorprecession frequency of the Rb atoms. The gradiometer consists of twoatomic magnetometers. The rotation of light polarization in eachmagnetometer is detected with a balanced polarimeter. The sensitivity ofthe gradiometer is 0.8 nG/Hz1/2 for near-DC (0.1 Hz) magnetic fields,with a baseline of 2.5 cm. For applications in nuclear magnetic resonance(NMR) and magnetic resonance imaging (MRI), a long solenoid that piercesthe magnetic shields provides a ~;0.5 G leading field for the nuclearspins in the sample. Our apparatus is particularly suited for remotedetection of NMR and MRI. We demonstrate a point-by-point free inductiondecay measurement and a spin echo reconstructed with a pulse sequencesimilar to the Carr-Purcell-Meiboom-Gill (CPMG) pulse. Additionalapplications and future improvements are also discussed.
Right-hand polarized 4fce auroral roar emissions: 2. Nonlinear generation theory
NASA Astrophysics Data System (ADS)
Yoon, P. H.; LaBelle, J.; Weatherwax, A. T.
2016-08-01
Auroral roar emissions are commonly interpreted as Z (or upper hybrid) mode naturally excited by precipitating auroral electrons. Subsequent conversion to escaping radiation makes it possible for these emissions to be detected on the ground. Most emissions are detected as having left-hand (L) circular (or ordinary O) polarization, but the companion paper presents a systematic experimental study on the rare occurrence of the right-hand polarized, or equivalently, extraordinary (X) mode 4fce emission. A similar observation was reported earlier by Sato et al. (2015). The suggested emission mechanism is the nonlinear coalescence of two upper hybrid roars at 2fce. The present paper formulates a detailed theory for such an emission mechanism.
Gu, Bing; Wen, Bo; Rui, Guanghao; Xue, Yuxiong; Zhan, Qiwen; Cui, Yiping
2016-04-01
Light fields with structured polarization distribution interacting with structured media will result in many novel optical effects in both the linear and nonlinear regimes. In this work, we report a theoretical investigation of both vectorial self-diffraction behaviors and polarization evolution characteristics of a radially polarized beam induced by anisotropic Kerr nonlinearity. By taking the polarization-orientation dependence of the third-order refractive nonlinearity, we study the far-field vectorial self-diffraction patterns of the radially polarized beam using the vectorial Rayleigh-Sommerfeld formulas. Numerical results reveal that the self-diffraction patterns with a four-fold rotational symmetry exhibit hybrid states of polarization. Moreover, the interaction of radially polarized beams with the anisotropic nonlinear Kerr media leads to the redistribution of the spin angular momentum (SAM) flux in the far-field plane. The presented work opens up new avenues for varying polarization and SAM through anisotropic optical nonlinearity.
Quasiequilibrium optical nonlinearities from spin-polarized carriers in GaAs
NASA Astrophysics Data System (ADS)
Joshua, Arjun; Venkataraman, V.
2008-02-01
Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.
Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2
NASA Technical Reports Server (NTRS)
Penney, C. M.; St.peters, R. L.; Lapp, M.
1973-01-01
An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.
Xu, Yin; Xiao, Jinbiao
2016-01-01
On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112
NASA Astrophysics Data System (ADS)
Xu, Yin; Xiao, Jinbiao
2016-06-01
On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of ‑31.41/‑22.43 dB and ‑34.74/‑33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence.
A non-linear induced polarization effect on transient electromagnetic soundings
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel
2016-10-01
In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.
NASA Astrophysics Data System (ADS)
Geil, Paul M.; Gaensler, B. M.; Wyithe, J. Stuart B.
2011-11-01
Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionization history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio observations. This leakage leads to a portion of the complex linear polarization signal finding its way into Stokes I, and inhibits the detection of the non-polarized cosmological signal from the epoch of reionization. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionization in the presence of contamination by polarized foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarization leakage and redshifted 21-cm emission by neutral hydrogen from the epoch of reionization. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarization leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionization in its late stages (z≈ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionized cavities in the intergalactic medium.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1986-01-01
The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1987-01-01
The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree goemetric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of Pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.
NASA Astrophysics Data System (ADS)
Devi, Seema; Agarwal, Asha; Pandey, Kiran; Pradhan, Asima
2015-03-01
Reflectance spectroscopy contains information of scatterers and absorbers present inside biological tissues and has been successfully used to diagnose disease. Success of any diagnostic tool depends upon the potential of statistical algorithm to extract appropriate diagnostic features from the measured optical data. In our recent study, we have used the potential of the classification algorithm, Nonlinear Maximum Representation and Discrimination Features (NMRDF) to extract important diagnostic features from reflectance spectra of normal and dysplastic human cervical tissue. This NMRDF algorithm uses the higher order correlation information in the input data, which helps to represent the asymmetrically distributed data and provides the closed form solution of the nonlinear transform for maximum discrimination. We have recorded unpolarized, co and cross-polarized reflectance spectra from 350nm to 650nm, illuminating the human cervical tissue epithelium with white light source. A total of 139 samples were divided into training and validation data sets. The input parameters were optimized using training data sets to extract the appropriate nonlinear features from the input reflectance spectra. These extracted nonlinear features are used as input for nearest mean classifier to calculate the sensitivity and specificity for both training as well as validation data sets. We have observed that co-polarized components provide maximum sensitivity and specificity compared to cross-polarized components and unpolarized data. This is expected since co-polarized light provides subsurface information while cross-polarized and unpolarized data mask the vital epithelial information through high diffuse scattering.
Current-induced giant polarization rotation using a ZnO single crystal doped with nitrogen ions
Tate, Naoya; Kawazoe, Tadashi; Nomura, Wataru; Ohtsu, Motoichi
2015-01-01
Giant polarization rotation in a ZnO single crystal was experimentally demonstrated based on a novel phenomenon occurring at the nanometric scale. The ZnO crystal was doped with N+ and N2+ ions serving as p-type dopants. By applying an in-plane current using a unique arrangement of electrodes on the device, current-induced polarization rotation of the incident light was observed. From the results of experimental demonstrations and discussions, it was verified that this novel behavior originates from a specific distribution of dopants and the corresponding light–matter interactions in a nanometric space, which are allowed by the existence of such a dopant distribution. PMID:26246456
NASA Astrophysics Data System (ADS)
Tobin, Taylor; Kemball, Athol J.
2017-01-01
The near circumstellar environment (NCSE) around Asymptotic Giant Branch (AGB) stars is chaotic, exhibiting shocks, turbulence, velocity gradients, and a potentially dynamically significant magnetic field (Vlemmings et al. 2005). Very Long Baseline Interferometry (VLBI) of masers emanating from these environments can provide sub-milliarcsecond angular resolution of the NCSE (Kemball 2002). Solidifying the origin of the polarization in these masers may be the key to understanding the magnitude and behavior of these stars' magnetic fields (eg. Goldreich et al. 1973; Elitzur 1996). However, other theories of polarized maser transport do not rely heavily on the magnetic field; some are more dependent on anisotropic pumping (Elitzur 1996; Watson 2009) or anisotropic resonant scattering (Asensio Ramos et al. 2005; Houde 2014). One optimal test of these theories is their ability to account for a π/2 rotation of the Electric Vector Position Angle (EVPA) observed in some maser features. The profile of linear polarization across such a feature varies with the generating mechanism. In this study, we utilize multi-epoch observations of ν=1, J=1-0 SiO maser emission around TX Cam (Diamond & Kemball 2003; Kemball et al. 2009; Gonidakis et al. 2010) to analyze a single feature with a π/2 rotation that persisted for five epochs and compare it to the behavior expected according to various theories of maser polarization. In addition, we analyze the low levels of circular polarization - now achievable due to recent improvements in millimeter-wavelength circular polarization reduction (Kemball & Richter 2011) - and compare their correlation with other parameters to further test these polarization generation theories.
Sharples, Thomas R; Luxford, Thomas F M; Townsend, Dave; McKendrick, Kenneth G; Costen, Matthew L
2015-11-28
We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.
Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.
Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía
2016-08-01
EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.
Rotation of X-ray polarization in the glitches of a silicon crystal monochromator
Sutter, John P.; Boada, Roberto; Bowron, Daniel T.; Stepanov, Sergey A.; Díaz-Moreno, Sofía
2016-01-01
EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the ‘glitches’ produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample’s quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample’s quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches. PMID:27504076
Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690
NASA Astrophysics Data System (ADS)
Bekhoucha, Ferhat; Rechak, Said; Duigou, Laëtitia; Cadou, Jean-Marc
2015-05-01
This paper deals with the computation of backbone curves bifurcated from a Hopf bifurcation point in the framework of nonlinear free vibrations of a rotating flexible beams. The intrinsic and geometrical equations of motion for anisotropic beams subjected to large displacements are used and transformed with Galerkin and harmonic balance methods to one quadratic algebraic equation involving one parameter, the pulsation. The latter is treated with the asymptotic numerical method using Padé approximants. An algorithm, equivalent to the Lyapunov-Schmidt reduction is proposed, to compute the bifurcated branches accurately from a Hopf bifurcation point, with singularity of co-rank 2, related to a conservative and gyroscopic dynamical system steady state, toward a nonlinear periodic state. Numerical tests dealing with clamped, isotropic and composite, rotating beams show the reliability of the proposed method reinforced by accurate results.
Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.
NASA Astrophysics Data System (ADS)
Zaghloul, A. R. M.
2013-09-01
The single-element rotating-polarizer ellipsometer is where a rotating polarizer is inserted into the incident beam and the reflected-signal intensity is detected using a photodetector. The polarizer is either rotated mechanically or electromagnetically. The angle of incidence of the beam is adjusted to detect the angles where the detector signal is dc. The ellipsometric function of the film-substrate system under measurement is of a unity magnitude at those detected angle(s). The number of required measurements (such angles of incidence) is related (directly proportional) to the number of system parameters to be determined: film thickness is one parameter, film optical constant is two parameters, and substrate optical constant is two parameters. The more parameters to be determined, the more the number of measurements required. This creates film-thickness bands, which number and width depend on the system physical properties and the wavelength used for measurement, and where a continuum exists above a certain film-thickness value. Accordingly, full characterization of film-substrate systems is limited to systems with large film thicknesses for the required multiple angles of incidence to exist. In this paper, we use only one detected angle of incidence to fully characterize the film-substrate system. This allows for film-substrate systems with much smaller film thicknesses to be fully characterized. A fast genetic algorithm is used to heuristically obtain all the system parameters: film thickness and optical constants of the film and the substrate, or any subset thereof.
Xu, Yin; Xiao, Jinbiao
2016-01-20
A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20 dB. In addition, fabrication tolerances and field evolution are also presented.
Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro
2007-04-15
The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors.
Nonlinear effects related to circularly polarized dispersive Alfvén waves
NASA Astrophysics Data System (ADS)
Sharma, Swati; Gaur, Nidhi; Sharma, R. P.
2016-09-01
In situ measurements of solar wind have strongly implicated its turbulent behavior. The observed power spectra report a breakpoint around length scales of the order of ion scales. As one of the responsible mechanisms for the observed steepening in power spectrum, our approach includes a right circularly polarized dispersive Alfvén wave (DAW) with finite frequency correction which, when subjected to transverse collapse/filamentation instability, may possibly result in steepening of spectrum and progressive transfer of energy from larger scales to smaller scales. We have studied the nonlinear effects associated with coupling of DAW with kinetic Alfvén wave in solar wind at 1 A.U. The formation of localized structures provides a clue about the emergence of turbulence. Numerical simulation is performed to study localization and power spectral density of the field and density fluctuations. The results show steeper spectrum indicating transfer of large scale turbulent energy down to small scales.
NASA Astrophysics Data System (ADS)
Lahaye, N.; Zeitlin, V.
2015-12-01
Studies of stability of tropical cyclones (TC) are mostly performed either in over-simplified (2D Euler, e.g. [1]), or in over-complexified "all-inclusive", e.g. [2], models. TC have very high Rossby numbers, so Lighthill radiation is operational and instabilities are radiative. Yet, the quantitative results for radiative instabilities of vortices are available only for simplified vortex profiles, e.g. [3]. TC evolve in the essentially moist and precipitating atmosphere, yet studies of precise dynamical role of moisture in developing instability are scarce [4]. We use the moist-convective Rotating Shallow Water model of [5], the simplest possible one which includes inertia-gravity gravity waves (IGW) and the effects of moisture and precipitation. Unstable modes are investigated by means of a linear stability analysis, then the nonlinear saturation is simulated in cases with precipitation off (dry), precipitation on but evaporation off (moist-precipitating), and precipitation and evaporation on (moist-precipitating-evaporating). Our main results are: Linear stability: Main instability: ageostrophic barotropic instability Unstable modes: mixed Rossby - inertia gravity waves. Dry saturation: Axisymmetrization of the TC Intensification of winds inside the radius of maximum wind Bursts in the IGW emission Moist-precipitating saturation: Amplification of the IGW emission with respect to the dry case Amplification of the wind intensification mechanism Moist-precipitating-evaporating saturation: Appearance of convectively-coupled IGWs Net intensification of wind (even at the radius of maximum wind) References: J.P. Kossin and W.H. Schubert, J. Atmos. Sci., 58, 2196, 2001. Y.C. Kwon and W.M. Frank, J. Atmos. Sci., 65, 106, 2008. S. Le Dizes and P. Billant, Phys. Fluids, 21, 1, 2009. D.A. Schecter and M.T. Montgomery, J. Atmos. Sci., 64, 314, 2007. F. Bouchut, J. Lambaerts, G. Lapeyre, and V. Zeitlin, Phys. Fluids, 21, 126601, 2009. Figure: Nondimensional vorticity (colors
Ardavan, Houshang; Ardavan, Arzhang; Singleton, John
2003-11-01
We investigate the spectral features of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency omega > omega differing from an integral multiple of omega) at the same time. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. Although all of the processes involved are linear, we find that the broadband emission contains frequencies that are higher than omega by a factor of the order of (omega/omega)2. This generation of frequencies not required for the creation of the source stems from mathematically rigorous consequences of the familiar classical expression for the retarded potential. The results suggest practical applications for superluminal polarization currents as broadband radio-frequency and infrared sources.
Interlocked chiral/polar domain walls and large optical rotation in Ni{sub 3}TeO{sub 6}
Wang, Xueyun; Huang, Fei-Ting; Yang, Junjie; Oh, Yoon Seok; Cheong, Sang-Wook
2015-07-01
Chirality, i.e., handedness, pervades much of modern science from elementary particles, DNA-based biology to molecular chemistry; however, most of the chirality-relevant materials have been based on complex molecules. Here, we report inorganic single-crystalline Ni{sub 3}TeO{sub 6}, forming in a corundum-related R3 structure with both chirality and polarity. These chiral Ni{sub 3}TeO{sub 6} single crystals exhibit a large optical specific rotation (α)—1355° dm{sup −1} cm{sup 3} g{sup −1}. We demonstrate, for the first time, that in Ni{sub 3}TeO{sub 6}, chiral and polar domains form an intriguing domain pattern, resembling a radiation warning sign, which stems from interlocked chiral and polar domain walls through lowering of the wall energy.
NASA Astrophysics Data System (ADS)
Zhang, Xiaofan; Li, Liang; Zhu, Xiaosong; Liu, Xi; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2016-11-01
We investigate the polarization properties of high harmonics generated with the bichromatic counter-rotating circularly polarized (BCCP) laser fields by numerically solving the time-dependent Schrödinger equation (TDSE). It is found that the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity reversions and the classical trajectories of continuum electrons is established. It is shown that the electrons ionized at one lobe of laser field can be divided into different groups based on the different lobes they recombine at, and the harmonics generated by adjacent groups have opposite helicities. Our study performs a detailed analysis of high harmonics in terms of electron trajectories and depicts a clear and intuitive physical picture of the HHG process in BCCP laser fields.
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS
SNYDER,P.B; WILSON,H.R; XU,X.Q; WEBSTER,A.J
2004-06-01
Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.
Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim
2016-05-01
It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.
NASA Astrophysics Data System (ADS)
Li, Yucui
1996-04-01
The field and imaging formulas of two orthogonally polarized Gaussian light beams through a nonlinear parabolic graded-index rod lens are derived by use of a variational approach and the ABCD law of Gaussian beam propagation. The effects of power and position of one optical beam on the field and propagation and imaging properties of the other optical beam are analyzed.
Wu, T; Peng, X; Lin, Z; Guo, H
2015-10-01
We demonstrate an all-optical (4)He atomic magnetometer experimental scheme based on an original Bell-Bloom configuration. A single intensity-modulated linearly polarized laser beam is used both for generating spin polarization within a single (4)He vapor and probing the spin precessing under a static magnetic field. The transmitted light signal from the vapor is then phase-sensitively detected at the modulation frequency and its harmonics, which lead to the atomic magnetic resonance signals. Based on this structure, a liquid crystal is added in our magnetometer system and constitutes a polarization rotator. By controlling the voltage applied on the liquid crystal, the light linear polarization vector can be kept perpendicular with the ambient magnetic field direction, which in turn provides the maximum resonance signal amplitude. Moreover, the system exhibits a magnetic-field noise floor of about 2pT/√Hz, which is not degraded due to the presence of the liquid crystal and varying magnetic field direction. The experiment results prove that our method can eliminate the dead-zone effect, improve the system spatial isotropy, and thus be suitable in mobile applications.
NASA Astrophysics Data System (ADS)
Dawber, Matthew
2013-03-01
In this talk I will present results on two superlattice systems which contain ultra fine layers of PbTiO3 and another perovskite material. In recent years, much work has been done on the PbTiO3/SrTiO3 system, with a focus on improper ferroelectricity and the arrangement of ferroelectric domains. Here, we consider two different partner materials for PbTiO3, each of which introduces markedly different behavior in the resulting superlattice. PbTiO3/SrRuO3 superlattices with ultra-thin SrRuO3 layers were studied both experimentally and using density functional theory. Due to the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the thickness of the PbTiO3 layers, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The compositional inversion symmetry breaking is seen in this bi-color superlattice due to the combined variation of A and B site ions within the superlattice. We have also achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO3/CaTiO3 superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. These results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. Work supported by NSF DMR1055413
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Tang, Qinglin; Zhang, Yong
2016-11-01
In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation [31]. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method [4] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian coordinates transform [14], we first reformulate the FSE into a new equation without rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new FSE. In parallel to the numerical schemes, we also prove some existence and nonexistence results for the ground states. Dynamical laws of some standard quantities, including the mass, energy, angular momentum and the center of mass, are stated. The ground states properties with respect to the fractional order and/or rotating frequencies, dynamics involving decoherence and turbulence together with some interesting phenomena are reported.
NASA Astrophysics Data System (ADS)
Luo, Ting
As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical
NASA Astrophysics Data System (ADS)
Liu, Ping; Yang, Junbo; Gao, Shaobo; Liang, Linmei
2016-10-01
The polarization control(PC), as one of the important issues in photonic information technologies, has attracted great attention. In this paper, we proposed an efficient and compact polarization converter on silicon-on-insulator (SOI) platform based on asymmetrical direction couplers (ADCs). The ADCs consists of two parallel fully etched straight waveguides with different sizes in both width and height. This polarization converter can realize direct conversion between the TE0 mode and the TM0 mode with high conversion efficiency. Numerical simulations show that the present PC has a good fabrication tolerance for the variation of the waveguide width and height with high polarization conversion efficiency up to 82%.
NASA Astrophysics Data System (ADS)
Nakayama, Hiroyuki; Fujii, Yasumasa; Ishiguro, Masateru; Nakamura, Ryosuke; Yokogawa, Sozo; Yoshida, Fumi; Mukai, Tadashi
2000-07-01
We present the results of photo-polarimetric observations for asteroids 9 Metis (S-type, main belt asteroid (MBA)), 52 Europa (C-type, MBA), and 1036 Ganymed (S-type, near-Earth asteroid), obtained at six wavelength bands. It is found, combining our new data with previous observations, that (1) larger maximum value of negative polarization Pmin=-1.37% and higher polarization slope h=0.27% deg -1 occur in 52 Europa, while smaller Pmin and lower h appear, i.e., -0.84%, 0.11% deg -1 for 9 Metis and -0.57%, 0.095% deg -1 for 1036 Ganymed. These results confirm the general trend of polarization-phase angle curves found previously between C- and S-type asteroids (see B. Goidet-Devel et al. 1995, Planet Space Sci.43, 779-786). (2) An increase of polarization with wavelength from 0.42 to 0.76 μm is found from the data with their root-mean-square errors in 9 Metis and 1036 Ganymed, in contrast with vice versa dependence in 52 Europa. (3) A relation of Pmin and geometric albedo A, presented in D. F. Lupishko and R. A. Mohamed (1996, Planet Space Sci.46, 47-74), leads to the resulting values of A for 0.15, 0.082, and 0.24 for 9 Metis, 52 Europa, and 1036 Ganymed, respectively. (4) The polarization observed for 9 Metis shows a significant time variation modified with the rotation of asteroid, but no clear relation between lightcurve and polarization curve appears. For 52 Europa and 1036 Ganymed, the observed time variation of polarization is weak. (5) A comparison of model simulation to the observations of lightcurve and geometric albedo A variation for 9 Metis suggests the existence of inhomogeneous albedo features on its surface, where the albedo was derived from the relation of Pmin and A.
Broadband Rotational Energy Harvesting with Non-linear Oscillator and Piezoelectric Transduction
NASA Astrophysics Data System (ADS)
Fu, H.; Yeatman, E. M.
2016-11-01
Rotational energy is widely distributed in many industrial and domestic applications, such as ventilation systems, moving vehicles and miniature turbines. This paper reports the design and implementation of a bi-stable rotational energy harvester with wide bandwidth and low operating frequency. The rotational energy is converted into electricity by magnetic plucking of a piezoelectric cantilever using a driving magnet mounted on a rotating host. The bistable condition is achieved by introducing a fixed magnet above the tip magnet at the cantilever's free end. The repulsive magnetic force between the magnets creates two equilibrium positions for the piezoelectric beam. The harvester is designed to operate in the high energy orbit (interwell vibration mode) to extract more energy from the rotational energy source. Harvesters with and without bistability are compared experimentally, showing the difference of power extraction on both the output power and bandwidth. The method proposed in this paper provides a simple and efficient way to extract rotational energy from the ambient environment.
NASA Astrophysics Data System (ADS)
Zuev, Vladimir V.; Gerasimov, Vladislav V.; Pravdin, Vladimir L.; Pavlinskiy, Aleksei V.; Nakhtigalova, Daria P.
2017-01-01
Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval accuracy and number of calibration coefficients depend on the selected function. The commonly used calibration function (linear in reciprocal temperature 1/T with two calibration coefficients) ignores all types of broadening of individual PRR lines of atmospheric N2 and O2 molecules. However, the collisional (pressure) broadening dominates over other types of broadening of PRR lines in the troposphere and can differently affect the accuracy of tropospheric temperature measurements depending on the PRR lidar system. We recently derived the calibration function in the general analytical form that takes into account the collisional broadening of all N2 and O2 PRR lines (Gerasimov and Zuev, 2016). This general calibration function represents an infinite series and, therefore, cannot be directly used in the temperature retrieval algorithm. For this reason, its four simplest special cases (calibration functions nonlinear in 1/T with three calibration coefficients), two of which have not been suggested before, were considered and analyzed. All the special cases take the collisional PRR lines broadening into account in varying degrees and the best function among them was determined via simulation. In this paper, we use the special cases to retrieve tropospheric temperature from real PRR lidar data. The calibration function best suited for tropospheric temperature retrievals is determined from the comparative analysis of temperature uncertainties yielded by using these functions. The absolute and relative statistical uncertainties of temperature retrieval are given in an analytical form assuming Poisson statistics of photon counting. The vertical tropospheric temperature
NASA Astrophysics Data System (ADS)
López-Domínguez, Jesús A.; Lucchese, Robert R.
2016-03-01
Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.
Monjur, Mehjabin Sultana; Tseng, Shih; Tripathi, Renu; Shahriar, M S
2014-06-01
In this paper, we show that our proposed hybrid optoelectronic correlator (HOC), which correlates images using spatial light modulators (SLMs), detectors, and field-programmable gate arrays (FPGAs), is capable of detecting objects in a scale and rotation invariant manner, along with the shift invariance feature, by incorporating polar Mellin transform (PMT). For realistic images, we cut out a small circle at the center of the Fourier transform domain, as required for PMT, and illustrate how this process corresponds to correlating images with real and imaginary parts. Furthermore, we show how to carry out shift, rotation, and scale invariant detection of multiple matching objects simultaneously, a process previously thought to be incompatible with PMT-based correlators. We present results of numerical simulations to validate the concepts.
Generation of radially polarized beams using an image-rotating resonator.
Armstrong, Darrell Jewell; Phillips, Mark Christopher; Smith, Arlee Virgil
2003-01-01
We generate optical vortex beams in a nanosecond optical parametric oscillator based on an image-rotating resonator. This efficient new method of vortex generation should be adaptable to pulsed or continuous lasers.
Inelastic Scattering of NO by Kr: Rotational Polarization over a Rainbow.
Chadwick, Helen; Nichols, Bethan; Gordon, Sean D S; Hornung, Balazs; Squires, Eleanor; Brouard, Mark; Kłos, Jacek; Alexander, Millard H; Aoiz, F Javier; Stolte, Steven
2014-10-02
We use molecular beams and ion imaging to determine quantum state resolved angular distributions of NO radicals after inelastic collision with Kr. We also determine both the sense and the plane of rotation (the rotational orientation and alignment, respectively) of the scattered NO. By full selection and then detection of the quantum parity of the NO molecule, our experiment is uniquely sensitive to quantum interference. For forward-scattered NO, we report hitherto unseen changes in the plane and sense of rotation with scattering angle and show, remarkably, that the rotation of the NO molecule after collision can be near-maximally oriented for certain transitions and scattering angles. These effects are enhanced by the full parity selection in the experiment and result from the interplay between attractive and repulsive forces.
NASA Astrophysics Data System (ADS)
Ma, Wenhui
2016-04-01
Strain-driven and temperature-driven monoclinic-orthorhombic phase transition in epitaxial PbTiO3 exhibit similar behavior under electric field, i.e., polarization discontinuity is reduced at the first-order ferroelectric-ferroelectric transition whose latent heat vanishes at a critical point. Due to critical phenomena the energy barrier for polarization rotation significantly diminishes, and hence thermodynamic response functions tend to diverge in the induced monoclinic states. Phenomenological calculations show that dielectric and piezoelectric properties are highly tunable by in-plane strain and electric field, and large electromechanical response may occur in epitaxial PbTiO3 thin films at room temperature. Phenomenological calculations show that large electrocaloric responsivity can also be expected at room temperature by manipulating the phase transition.
NASA Astrophysics Data System (ADS)
Yan, Bo; Zhong, Kesong; Ma, Hongfeng; Li, Yun; Sui, Chenghua; Wang, Juanzhuan; Shi, Yi
2017-01-01
A planar chiral metamaterial (PCMM) comprizing double-layer sandwich structure utilizing metal-silicides in the shape of windmill is proposed in the infrared region (IR). Giant circular dichroism (CD) and polarization rotation are observed simultaneously. Furthermore, the effect of Drude model parameters (ωp,ωτ) of metal-silicides on CD and optical activity are also investigated. The results show that CD and optical activity reach maximum if ωp and ωτ are in the distribution of narrow trumpet shape.
Watanabe, A
1993-01-01
1. The optical rotation signal of nerve associated with excitation was recorded from peripheral nerve taken from a walking leg of a spiny lobster and its properties were analysed. 2. The polarity of the optical rotation signal was reversed when the site of stimulation was changed with reference to the site of optical recording, so that the direction of impulse conduction was reversed, in most of the preparations. 3. Apart from the main response, which is associated with the conducted impulse, a pre-response was found to exist, which manifested itself on anodic stimulation, in a tetrodotoxin-treated nerve, or during the refractory period of the nerve, when the site of stimulation was close to the site of optical recording. The polarity of the pre-response was also reversed when the site of stimulation was changed with reference to the site of optical recording. 4. When the nerve was inclined from the horizontal level, so that the angle of incidence of light to the nerve was changed, the main response changed its amplitude and sometimes its polarity, whereas the pre-response remained practically unchanged. Thus the dependence on the angle of incidence was different between the pre-response and the main response. 5. It is suggested that the dependence of amplitude and polarity of the main response on the angle of incidence of light cannot be explained by the change in molecular axes of the membrane macromolecules, but can only be explained by their conformational change; and therefore the main response can be used as a monitor for the molecular conformation. PMID:8410706
NASA Astrophysics Data System (ADS)
Luo, Tao; Smoller, Joel
2009-03-01
We prove the existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler-Poisson (Euler-Poisson) equations in three spatial dimensions with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions considered in the classical Auchmuty-Beals paper. We prove the non-linear dynamical stability of these solutions with perturbations having the same total mass and symmetry as the rotating star solution. We also prove finite time stability of W^{1, infty}(mathbb {R}3) solutions where the perturbations are entropy-weak solutions of the Euler-Poisson equations. Finally, we give a uniform (in time) a priori estimate for entropy-weak solutions of the Euler-Poisson equations.
Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments
NASA Astrophysics Data System (ADS)
Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K.
2004-02-01
We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal networks which are set in motion by active processes at work in cells.
NASA Astrophysics Data System (ADS)
Gao, Q. D.; Budny, R. V.
2015-03-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
Yan, Zhiyu; Li, Xiaohui; Tang, Yulong; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2015-02-23
We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.
NASA Astrophysics Data System (ADS)
Xiu, Xiao-Ming; Li, Qing-Yang; Lin, Yan-Fang; Dong, Hai-Kuan; Dong, Li; Gao, Ya-Jun
2016-10-01
With the assistance of weak cross-Kerr nonlinearities, we present a preparation scheme of four-photon polarization-entangled decoherence-free states, which can be used to construct the minimal optical decoherence-free subspaces where a logical qubit is fully protected against collective decoherence. To complete the preparation task, one spatial entanglement process, two polarization entanglement processes, and one detecting process are applied. The fulfillments of the above processes are contributed by a cross-Kerr nonlinear interaction between the signal photons and a coherent state via Kerr media. Exploiting the available single-photon resource and simple linear optics elements, this scheme is feasible and desirable to be extended to the construction of multiphoton decoherence-free states against the collective decoherence.
Enhancement of third-order nonlinear optical susceptibility of Alq_{3} in polar aprotic solvents.
Derkowska-Zielinska, Beata
2017-02-01
The influence of solvent polarity on nonlinear optical properties of tris-(8-hydroxyquinoline)-aluminum (Alq_{3}) was investigated by the degenerate four-wave mixing method at the 532 nm. It was obtained that the effective values of the third-order nonlinear optical susceptibility (χeff⟨3⟩) and the second-order hyperpolarizability (γ_{eff}) of Alq_{3} depend on the solvent polarity. Additionally, it was found that Alq_{3} dissolved in dimethyl sulfoxide has the highest values of χeff⟨3⟩ and γ_{eff}. Furthermore, two Stegeman's figures of merit were also calculated. The obtained results suggest that Alq_{3} is also promising material for application in all-optical signal processing devices.
Mateo, Eduardo F; Zhou, Xiang; Li, Guifang
2011-01-17
An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Buti, B.
1990-01-01
Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.
Pan, Huilin; Yang, Jiayue; Wang, Fengyan; Liu, Kopin
2014-11-06
The transition state in the Cl + CH4 reaction is of Cl-H-C collinear geometry, which serves as the bottleneck to reaction. When the reactant CH4 is antisymmetrically stretch-excited to ν3 = 1 by absorbing a linearly polarized photon, all four C-H bonds are collectively excited, and any one of the H atoms could be attacked by the Cl atom. At first sight, it is not obvious how an excited spherical-top molecule like CH4 is aligned and what consequences will be on chemical reactivity by polarizing the CH4 reagents. As shown here, an enormous steric effect on reactivity is observed, which depends sensitively on the selected rotational states. By exploiting various rotational branches in optical excitation, we quantify the degree of stereospecificity for a few lowest rovibrational states of the aligned CH4(ν3 = 1) reagents, as well as account for the hyperfine depolarization factor. This information lays the foundation for a full stereorequirement study of the Cl + CH4(ν3 = 1) reaction.
NASA Astrophysics Data System (ADS)
Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.
2016-04-01
How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.
Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae
Sorcia, Marco; Benítez, Erika; Cabrera, José I.; Hiriart, David; López, José M.; Mújica, Raúl
2014-10-10
An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP = 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.
Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo
2005-12-15
The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880 eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the s-polarization configuration was 2.6% at an incidence angle of around 45 deg. As the result of the analysis based on the rotating-analyzer method, the polarizance of the polarizer and the degree of linear polarization of the incident light at 880 eV were found to be 0.997{+-}0.002 and 0.993{+-}0.004, respectively.
Morsy-Osman, Mohamed; Zhuge, Qunbi; Chen, Lawrence R; Plant, David V
2011-12-12
We propose the use of pilot-aided (PA) transmission, enabled by single-sideband-subcarrier modulation of both quadratures in the DSP-domain, in single-carrier systems to mitigate jointly laser phase noise and fiber nonlinearity. In addition to tolerance against laser phase noise, we show that the proposed scheme also improves the nonlinear tolerance of both polarization-division-multiplexed (PDM) QPSK and 16-QAM coherent transmission systems by increasing the maximum allowable launch power by 1 dB and 1.5 dB, respectively. The improved nonlinear performance of both systems also manifests itself as an increase in the maximum reach by 720 km and 480 km, respectively. Finally, when digital-to-analog converters (DACs) with lower bit resolutions are used at the transmitter, PA transmission is shown to preserve the same performance improvement over the non-PA case.
Wang, Yunzheng; Zhang, Liqiang; Zhuo, Zhuang; Guo, Songzhen
2016-07-20
We propose a cross-splicing method, for the first time to our knowledge, to compensate the effect of fiber birefringence in a polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution. This method has been investigated numerically and experimentally. The results indicate that stable mode-locking pulses can be obtained in the cavity with this method; otherwise, no mode-locking states are achieved. The design processes of the laser cavity are presented. Pulses with single pulse energy of 2.1 nJ are generated at pump power of 460 mW. The spectral bandwidth and pulse duration are 17.5 nm and 11.7 ps, respectively. The tunability of the laser is also studied. The central wavelength can be tuned from 1023.2 to 1045.9 nm.
Bell, Marcus G; Dale, Robert E; van der Heide, Uulke A; Goldman, Yale E
2002-01-01
The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters,
and
, of the probe angular distribution (beta) relative to the fiber axis and
, a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale. PMID:12124286
NASA Astrophysics Data System (ADS)
Hill, Charles A.; Beckman, Shawn; Chinone, Yuji; Goeckner-Wald, Neil; Hazumi, Masashi; Keating, Brian; Kusaka, Akito; Lee, Adrian T.; Matsuda, Frederick; Plambeck, Richard; Suzuki, Aritoki; Takakura, Satoru
2016-07-01
We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
Gao, Q. D.; Budny, R. V.
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
Valle, A; Sciamanna, M; Panajotov, K
2007-10-01
In this paper we report on a theoretical investigation of the nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers (VCSELs) under current modulation. Special attention is given to the comparison with a previously studied case of single-transverse mode VCSEL emitting in two orthogonal polarizations. The consideration of spatial effects in VCSEL modifies the polarization dynamics that accompanies the period doubling route to chaos for large modulation amplitudes. Depending on the modulation parameters, the excitation of a higher order transverse mode may either induce chaotic pulsing in an otherwise regularly pulsating VCSEL, or induce a time-periodic pulsing dynamics in an otherwise chaotic VCSEL. Bifurcation diagrams obtained for different modulation frequencies, several values of the dichroism, and different transverse mode characteristics allow us to identify the different scenarios of polarization dynamics in a directly modulated VCSEL. Temporal analysis of carrier number radial profile reveals considerable changes for the multitransverse mode case only constituting the physical origin of the reported changes in the temporal and polarization dynamics.
Kochetkova, M S; Martyanov, M A; Poteomkin, A K; Khazanov, E A
2010-06-07
A system of differential equations describing, neglecting diffraction, the propagation of laser radiation in a medium with birefringence and cubic nonlinearity is derived. It is shown that the efficiency of depolarization compensation by means of a 90 degrees polarization rotator or a Faraday mirror decreases with increasing B-integral (nonlinear phase incursion). Comparison of the effectiveness of the considered method in the case of incident linear and circular polarization showed that for the circular polarization the optimal angle of polarization rotator is different from 90 degrees and the degree of polarization is less than for the linear one.
NASA Astrophysics Data System (ADS)
Sukow, David W.; Gilfillan, Taylor; Pope, Brenton; Torre, Maria S.; Gavrielides, Athanasios; Masoller, Cristina
2012-09-01
We study experimentally the dynamics of vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated (PR) optical feedback, such that the natural lasing polarization of a VCSEL is rotated by 90 deg and then is reinjected into the laser. We observe noisy, square-wave-like polarization switchings with periodicity slightly longer than twice the delay time, which degrade to (or alternate with) bursts of irregular oscillations. We present results of simulations that are in good agreement with the observations. The simulations demonstrate that close to threshold the regular switching is very sensitive to noise, while well above threshold is less affected by the noise strength. The frequency splitting between the two polarizations plays a key role in the switching regularity, and we identify wide parameter regions where deterministic and robust switching can be observed.
NASA Astrophysics Data System (ADS)
El-Agez, Taher M.; Taya, Sofyan A.; El Tayyan, Ahmed A.
2011-03-01
We propose theoretically an improved spectroscopic ellipsometer to study the optical properties of solids. In this system, the polarizer and the analyzer are rotating synchronously in the same direction at a speed ratio 1:3. The light intensity received by the detector contains six Fourier coefficients, one dc and five ac. One can independently extract the ellipsometric parameters as well as the optical constants of a sample using any of six different sets of the Fourier coefficients. A comparison among these sets is presented to find the optimal set corresponding to the minimum percent error in the calculation of the real and imaginary parts of the dielectric function. The results from the simulated spectra of the complex refractive index of c-Si, ZnSe, and GaP are presented.
Square waveforms in edge-emitting diode laser subject to polarization-rotated optical feedback
NASA Astrophysics Data System (ADS)
Gavrielides, A.; Erneux, T.; Sukow, D. W.; Burner, G.; McLachlan, T.; Miller, J.; Amonette, J.
2006-02-01
The response of a diode laser resulting from an incoherent delayed optical feedback is considered from numerical and experimental perspectives. We concentrate on a class of solutions that appear as regular square waveforms. A two-field model is used and the bifurcation diagram of these square-wave regimes is studied. Conditions under which they typically appear are determined. The roles of various parameters are examined, particularly with regard to the gains and losses of the two polarization modes. Numerical results are in close agreement with experiments.
Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields
NASA Astrophysics Data System (ADS)
Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong
2014-04-01
Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.
Nonlinear Modeling, Analysis, and Control of Instruments Using Rotating Unbalanced Mass Actuators
1998-08-04
problem involving the mechanical properties of the system . The RUM device consists of a mass on a lever arm rotating at a constant angular velocity. The... mechanisms . Using a robotics approach will allow for the mechanics of the problem by addressing how individual components of the system interact...mapping function) is a function of q. The next several sections discuss the calculations of the kinematics of a mechanical system . These kinematics
NASA Astrophysics Data System (ADS)
Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo
2005-12-01
The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the 880eV were found to be 0.997±0.002 and 0.993±0.004, respectively.
Chen, Frank; Goodfellow, John; Liu, Shi; Grinberg, Ilya; Hoffman, Matthias; Damodaran, Anoop R.; Zhu, Yi; Zhang, Xiaohang; Takeuchi, Ichiro; Rappe, Andrew; Martin, Lane W.; Wen, Haidan; Lindenberg, Aaron M.
2015-09-21
In this article, terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO_{3} while monitoring the time-dependent ferroelectric polarization through its nonlinear optical response. Modulations in the intensity of the second harmonic light generated by the film correspond to on–off ratios of 220 × gateable on femtosecond timescales. Polarization modulations comparable to the built-in static polarization are observed.
Polarization instability of Raman solitons ejected during supercontinuum generation.
Chao, Qing; Wagner, Kelvin H
2015-12-28
We numerically investigate polarization instability of soliton fission and the polarization dynamics of Raman solitons ejected during supercontinuum generation in a photonics crystal fiber using the coupled vector generalized nonlinear Schrödinger equations for both linear and circular birefringent fibers. The evolution of the state of polarizations of the ejected Raman soliton as representated on the Poincaré sphere is affected by both nonlinear and linear polarization rotations on the Poincaré sphere. The polarization dynamics reveal the presence of a polarization separatrix and the emergence of stable slow and unstable fast eigen-polarizations for the Raman solitons ejected in the supercontinuum generation process. Circularly birefringent fiber is investigated and found to simplify the nonlinear polarization dynamics.
NASA Astrophysics Data System (ADS)
Popkov, A. F.; Kulagin, N. E.; Soloviov, S. V.; Sukmanova, K. S.; Gareeva, Z. V.; Zvezdin, A. K.
2015-10-01
The room temperature multiferroic BiFeO3, by far the most studied experimentally, exhibits outstanding ferroelectric properties with a cycloidal magnetic order in the bulk and many unexpected advantages for possible applications in spintronics, sensor techniques, and photovoltaics. To consider ferroelectric and magnetic phase transitions in multiferroic BiFeO3 under electric field, we suggest the Ginsburg-Landau-like approach based on the symmetry and P -ω -L coupling, where the order parameters are: P is the electric polarization, ω is the axial vector of antidistorsion (describing a rotation of the oxygen octahedrons), and L is the antiferromagnetic vector. The theoretical model is consistent with experiment and ab initio calculations data. We give the complete set of numerical coefficients of the model and explore the behavior of P and ω vectors in strong electric field. The proposed approach is particularly promising for the analysis of magnetoelectric phenomena whose length scale is significantly larger than the length of the cell used in ab initio calculations. The considered cycloid problem is the clear example of such a system. Electric field-induced transformations of cycloid are exemplified on an epitaxial BiFeO3 film grown on the (001)-oriented substrate. We show that the jump of vectors P and ω in the field E =6 MV/m is accompanied by a jump of a cycloid spin rotation plane. This effect is of particular interest for spintronics and nanoelectronics.
Navarro, M C; Witkowski, L Martin; Tuckerman, L S; Le Quéré, P
2010-03-01
A reduced model to decrease the number of degrees of freedom of the discretized Navier-Stokes equations to a small set that nevertheless captures the essential dynamics of the flow is proposed. The Rayleigh-Bénard convection problem in a cylinder of aspect ratio one where the lower and upper disks, maintained at hot and cold temperatures, respectively, rotate at equal and opposite angular velocities has been chosen to test the technique. The nonlinear dynamics is rich and complex when the temperature difference between disks and their angular velocity is varied. Representatives states--stationary, periodic near sinusoidal, and near heteroclinic--are presented. In each case, the reduced model is compared with temporal integration, and we show that 41 degrees of freedom are sufficient to reproduce the signal. We discuss the strengths and weaknesses of the algorithm by which we build our reduced model.
NASA Technical Reports Server (NTRS)
Hodges, D. H.; Ormiston, R. A.
1973-01-01
The nonlinear partial differential equations for the flapping and lead-lag degrees of freedom of a torisonally rigid, rotating cantilevered beam are derived. These equations are linearized about an equilibrium condition to study the flap-lag stability characteristics of hingeless helicopter rotor blades with zero twist and uniform mass and stiffness in the hovering flight condition. The results indicate that these configurations are stable because the effect of elastic coupling more than compensates for the destabilizing flap-lag Coriolis and aerodynamic coupling. The effect of higher bending modes on the lead-lag damping was found to be small and the common, centrally hinged, spring restrained, rigid blade approximation for elastic rotor blades was shown to be resonably satisfactory for determining flap-lag stability. The effect of pre-cone was generally stabilizing and the effects of rotary inertia were negligible.
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.; Tanner, J. A.
1984-01-01
An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.
NASA Astrophysics Data System (ADS)
Stoller, Patrick C.; Kim, Beop-Min; Rubenchik, Alexander M.; Reiser, Karen M.; Da Silva, Luiz B.
2001-05-01
The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in a rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter (gamma) related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.
Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B
2001-03-03
The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.
NASA Astrophysics Data System (ADS)
Mansfield, Jessica C.; Ugryumova, Nadya; Knapp, Karen M.; Matcher, Stephen J.
2006-09-01
Equine articular cartilage has been imaged using both polarization-sensitive optical coherence tomography (PS-OCT) and non-linear microscopy. PS-OCT has been used to spatially map the birefringence in the cartilage and we have found that in the vicinity of the lesion the images display a characteristic disruption in the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. x2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We have also imaged the cartilage using non-linear microscopy and compare the scans taken with second harmonic generation (SHG) light and the two photon fluorescence (TPF) light. SHG images collected using 800 nm excitation reveals the spatial distribution of collagen fibers, whilst TPF images clearly shows the distribution of intracellular and pericellular fluorophores.
Baroclinic turbulence on the polar β-plane in the rotating tank: Down to submesoscale
NASA Astrophysics Data System (ADS)
Zhang, Yang; Afanasyev, Y. D.
2016-11-01
The energy spectra of the baroclinic turbulence are examined in finely resolved laboratory flows. A wide range of wavenumbers and frequencies is accessible, including those dynamically similar to the oceanic meso- and submesoscales. Oceanographically relevant phenomena observed in the experiments include Rossby waves, alternating zonal jets, baroclinically unstable coastal currents as well as submesoscale filaments and eddies. Independent spectral decomposition methodologies (Fourier and Fourier-Bessel) applied in Cartesian and polar coordinates respectively provide a complementary framework for representing and interpreting the measured flows. Evolution of energy spectra in the wavenumber domain demonstrates that energy concentrates in zonal modes. The spectra in the frequency-wavenumber domain reveal a significant role of the linear dynamics in the form of the Rossby waves and baroclinic instability modes. The spectral analyses are extended to obtain energy fluxes between lengthscales and reveal an inverse cascade at larger (meso-) scales and a direct cascade at smaller (submeso-) scales.
NASA Technical Reports Server (NTRS)
Bassom, Andrew P.; Seddougui, Sharon O.
1991-01-01
There exist two types of stationary instability of the flow over a rotating disc corresponding to the upper branch, inviscid mode and the lower branch mode, which has a triple deck structure, of the neutral stability curve. A theoretical study of the linear problem and an account of the weakly nonlinear properties of the lower branch modes have been undertaken by Hall and MacKerrell respectively. Motivated by recent reports of experimental sightings of the lower branch mode and an examination of the role of suction on the linear stability properties of the flow here, the effects are studied of suction on the nonlinear disturbance described by MacKerrell. The additional analysis required in order to incorporate suction is relatively straightforward and enables the derivation of an amplitude equation which describes the evolution of the mode. For each value of the suction, a threshold value of the disturbance amplitude is obtained; modes of size greater than this threshold grow without limit as they develop away from the point of neutral stability.
NASA Astrophysics Data System (ADS)
Ema, S. A.; Hossen, M. R.; Mamun, A. A.
2016-04-01
The nonlinear propagation of ion-acoustic (IA) waves in a strongly coupled plasma system containing Maxwellian electrons and nonthermal ions has been theoretically and numerically investigated. The well-known reductive perturbation technique is used to derive both the Burgers and Korteweg-de Vries (KdV) equations. Their shock and solitary wave solutions have also been numerically analyzed in understanding localized electrostatic disturbances. It has been observed that the basic features (viz. polarity, amplitude, width, etc.) of IA waves are significantly modified by the effect of polarization force and other plasma parameters (e.g., the electron-to-ion number density ratio and ion-to-electron temperature ratio). This is a unique finding among all theoretical investigations made before, whose probable implications are discussed in this investigation. The implications of the results obtained from this investigation may be useful in understanding the wave propagation in both space and laboratory plasmas.
Kalkan, Erol; ,
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
Rahman, N A; Pecht, I; Roess, D A; Barisas, B G
1992-01-01
We report the first application of polarized fluorescence depletion (PFD), a technique which combines the sensitivity of fluorescence detection with the long lifetimes of triplet probes, to the measurement of membrane protein rotational diffusion on individually selected, intact mammalian cells. We have examined the rotation of type I Fc epsilon receptors (Fc epsilon RI) on rat mucosal mast cells of the RBL-2H3 line in their resting monomeric and differently oligomerized states using as probes IgE and three monoclonal antibodies (mAbs; H10, J17, and F4) specific for the Fc epsilon RI. PFD experiments using eosin (EITC)-IgE show that individual Fc epsilon RI on cells have a rotational correlation time (RCT) at 4 degrees C of 79 +/- 4 microseconds. Similarly, Fc epsilon RI-bound EITC-Fab fragments of the J17 Fc epsilon RI-specific mAb exhibit an RCT of 76 +/- 6 microseconds. These values agree with previous measurements of Fc epsilon RI-bound IgE rotation by time-resolved phosphorescence anisotropy methods. Receptor-bound EITC-conjugated divalent J17 antibody exhibits an increased RCT of 140 +/- 6 microseconds. This is consistent with the ability of this mAb to form substantial amounts of Fc epsilon RI dimers on these cell surfaces. The ratio of limiting to initial anisotropy in these experiments remains constant at about 0.5 from 5 degrees C through 25 degrees C for IgE, Fab, and intact mAb receptor ligands. Extensive cross-linking by second antibody of cell-bound IgE, of intact Fc epsilon RI-specific mAbs or of their Fab fragments, however, produced large fixed anisotropies demonstrating, under these conditions, receptor immobilization in large aggregates. PFD using the mAbs H10 and F4 as receptor probes yielded values for triplet lifetimes, RCT values, and anisotropy parameters essentially indistinguishable from those obtained with the mAb J17 clone. Possible explanations for these observations are discussed. PMID:1547323
NASA Astrophysics Data System (ADS)
Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.
Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide
NASA Astrophysics Data System (ADS)
Wu, Yuexiang; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan
2017-03-01
We consider the transverse electric (TE) surface plasmon polaritons (SPPs) supported by a graphene parallel plate waveguide bounded by Kerr-type nonlinear media in the mid-infrared and terahertz frequencies. Through theoretical analysis of the exact dispersion relations, we reveal the existence conditions of the even mode and odd mode of nonlinear TE SPPs in this system. To be specific, if the linear permittivity of the nonlinear cladding is larger than the permittivity of the core, it only supports the even mode and two branches of the dispersion curve exist. However, when the linear permittivity of the nonlinear cladding is smaller than the permittivity of the core, both even and odd modes can be supported. Moreover, it is found that the propagation constant of even and odd modes decreases with the increasing Fermi energy of graphene.
Surprisal analysis of rotational-translational energy transfer - Non-linear versus linear rotors
NASA Technical Reports Server (NTRS)
Green, S.
1979-01-01
Surprisal versus energy gap analyses of state-to-state cross sections are presented for a number of linear rigid rotors excited by collisions with atoms for H2-H, H2-He, HCl-He, HCl-Ar, CO-He, CS-H2 (j=0) OCS-H2 (j=0) and HN2(+)-He, where (j=0) indicates that the hydrogen molecule was constrained to remain in its lowest level. Different systems exhibit wide variations in the slope of the surprisal plot and in certain cases, enough to indicate that the energy gap may not be the static dynamical constraint. Similar analyses are presented for nonlinear rotors excited by atoms for H2CO-He and H2O-He. For these, the data show a great deal of scatter, indicating that the reduced energy gap is probably not the appropriate independent variable.
Singh, Kamal P.; Ropars, Guy; Brunel, Marc; Le Floch, Albert
2006-03-15
We investigate the two-dimensional optical rotor of a weakly modulated vectorial bistable laser submitted to a single or multiple stochastic perturbations. In the Langevin-type equation of the rotor the role of an even or odd input forcing function on the system dynamics is isolated. Through these two inputs of optical and magnetic natures we verify that the stochastic resonance exists only when the periodic modulation acts on the even parity optical input. When two mutually correlated noises are simultaneously submitted to the input functions of opposite parities, we find a critical regime of the noise interplay whereby one stable state becomes noise-free. In this case, the residence time of the light vector in the noise-free state diverges which leads to a collapse of the output signal-to-noise ratio. But, in this critical regime also obtained when one noise drives both the even and odd functions, if the system symmetry is broken through an independent lever control, we can recover the switching cycle due to a new response mechanism, namely, the dual stochastic response, with a specific output signal-to-noise ratio expression. Both the theoretical analysis and the experiment show that the signal-to-noise ratio now displays a robust behavior for a large range of the input noise amplitude, and a plateau with respect to the input signal amplitude. Furthermore, we isolate an original signature of this synchronization mechanism in the residence-time distribution leading to a broadband forcing frequency range. These noise interplay effects in a double well potential are of generic nature and could be found in other nonlinear systems.
Nonlinear dust acoustic waves with polarization force effects in Kappa distribution plasma
NASA Astrophysics Data System (ADS)
Chen, Hui; Zhou, Suyun; Luo, Rongxiang; Liu, Sanqiu
2017-01-01
The propagation characteristics of dust acoustic solitary waves (DASWs) in dusty plasmas with the effects of polarization force and superthermal ions are studied. First, the polarization force induced by superthermal ions is obtained. It is shown that the superthermality of background ions affect the Debye screening of dust grains as well as the polarization force significantly. Then for small amplitude solitary waves, the KdV equation is obtained by applying the reductive perturbation technique. And for the arbitrary amplitude solitary waves, the Sagdeev potential method is employed and the Sagdeev potential is analyzed. In both case, the effects of the polarization force associated the ions’ superthermality on the characteristic of the DASWs are analyzed.
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.
2014-10-01
We present molecular photoelectron angular distributions (MPADs) in multi-photon ionization processes by circularly polarized attosecond UV laser pulses. Simulations are performed on the single electron aligned molecular ion H_2^+ by solving corresponding 3D time-dependent Schrödinger equations. Numerical results of molecular above threshold ionization (MATI) show that rotations of MPADs with respect to the molecular and polarization axes depend on pulse intensities and photoelectron kinetic energies. We attribute the rotation to Γ, the difference between parallel and perpendicular ionization probabilities. It is found that in a resonant ionization process, the rotation angle is also a function of the symmetry of intermediate electronic states. The coherent population transfer between the initial and the resonant electronic states is controlled by pulse intensities. Such dependence of rotations on the pulse intensity is absent in Rydberg resonant ionizations as well as in MATI at large energy photons ℏω > Ip, where ω is angular frequency of photons and Ip is the molecular ionization potential. We describe these processes by a multi-photon perturbation theory model. Effects of molecular alignment and pulse ellipticities on rotations are investigated, confirming the essence of the ionization parameter Γ in rotations of MPADs.
Polarization mixing optical parametric oscillator.
Pearl, Shaul; Smith, Arlee Virgil; Arie, Ady; Blau, Pinhas; Kalmani, Gal
2005-05-01
We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated. The output spectrum has a narrow linewidth (below the instrumentation bandwidth of 1 nm) and is highly stable with respect to variations in the crystal temperature.
Polar self-assembled thin films for non-linear optical materials
Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan
2000-01-01
The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.
NASA Astrophysics Data System (ADS)
van der Male, Pim; van Dalen, Karel N.; Metrikine, Andrei V.
2016-11-01
Existing models for the analysis of offshore wind turbines account for the aerodynamic action on the turbine rotor in detail, requiring a high computational price. When considering the foundation of an offshore wind turbine, however, a reduced rotor model may be sufficient. To define such a model, the significance of the nonlinear velocity and history dependency of the aerodynamic force on a rotating blade should be known. Aerodynamic interaction renders the dynamics of a rotating blade in an ambient wind field nonlinear in terms of the dependency on the wind velocity relative to the structural motion. Moreover, the development in time of the aerodynamic force does not follow the flow velocity instantaneously, implying a history dependency. In addition, both the non-uniform blade geometry and the aerodynamic interaction couple the blade motions in and out of the rotational plane. Therefore, this study presents the Euler-Bernoulli formulation of a twisted rotating blade connected to a rigid hub, excited by either instantaneous or history-dependent aerodynamic forces. On this basis, the importance of the history dependency is determined. Moreover, to assess the nonlinear contributions, both models are linearized. The structural response is computed for a stand-still and a rotating blade, based on the NREL 5-MW turbine. To this end, the model is reduced on the basis of its first three free-vibration mode shapes. Blade tip response predictions, computed from turbulent excitation, correctly account for both modal and directional couplings, and the added damping resulting from the dependency of the aerodynamic force on the structural motion. Considering the deflection of the blade tip, the history-dependent and the instantaneous force models perform equally well, providing a basis for the potential use of the instantaneous model for the rotor reduction. The linearized instantaneous model provides similar results for the rotating blade, indicating its potential
Yuan, Kai-Jun Chelkowski, Szczepan; Bandrauk, André D.
2015-04-14
We study effects of pulse durations on molecular photoelectron angular distributions (MPADs) in ultrafast circular polarization ultraviolet resonant ionization processes. Simulations performed on aligned H{sub 2}{sup +} by numerically solving time dependent Schrödinger equations show rotations of MPADs with respect to the molecular symmetry axes. It is found that in multi-photon resonant ionization processes, rotation angles are sensitive to pulse durations, which we attribute to the coherent resonant excitation between the ground state and the intermediate excited electronic state induced by Rabi oscillations. Multi-photon nonresonant and single photon ionization processes are simulated and compared which exhibit a constant rotation angle. An asymmetry parameter is introduced to describe the pulse duration sensitivity by perturbation theory models. Influence of pulse frequency detunings on MPADs is also investigated where oscillations of rotations are absent at long pulse durations due to nonresonance excitation.
NASA Astrophysics Data System (ADS)
Barker, Adrian J.
2016-06-01
I present results from the first global hydrodynamical simulations of the elliptical instability in a tidally deformed gaseous planet (or star) with a free surface. The elliptical instability is potentially important for tidal evolution of the shortest-period hot Jupiters. I model the planet as a spin-orbit aligned or anti-aligned, and non-synchronously rotating, tidally deformed, homogeneous fluid body. A companion paper presented an analysis of the global modes and instabilities of such a planet. Here I focus on the non-linear evolution of the elliptical instability. This is observed to produce bursts of turbulence that drive the planet towards synchronism with its orbit in an erratic manner. If the planetary spin is initially anti-aligned, the elliptical instability also drives spin-orbit alignment on a similar time-scale as the spin synchronization. The instability generates differential rotation inside the planet in the form of zonal flows, which play an important role in the saturation of the instability, and in producing the observed burstiness. These results are broadly consistent with the picture obtained using a local Cartesian model (where columnar vortices played the role of zonal flows). I also simulate the instability in a container that is rigid (but stress-free) rather than free, finding broad quantitative agreement. The dissipation resulting from the elliptical instability could explain why the shortest-period hot Jupiters tend to have circular orbits inside about 2-3 d, and predicts spin synchronization (and spin-orbit alignment) out to about 10-15 d. However, other mechanisms must be invoked to explain tidal circularization for longer orbital periods.
NASA Astrophysics Data System (ADS)
Gubarkova, Ekaterina V.; Kirillin, Mikhail Yu.; Dudenkova, Varvara V.; Timashev, Peter S.; Kotova, Svetlana L.; Kiseleva, Elena B.; Timofeeva, Lidia B.; Belkova, Galina V.; Solovieva, Anna B.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.
2016-12-01
A combination of approaches to the image analysis in cross-polarization optical coherence tomography (CP OCT) and high-resolution imaging by nonlinear microscopy and atomic force microscopy (AFM) at the different stages of atherosclerotic plaque development is studied. This combination allowed us to qualitatively and quantitatively assess the disorganization of collagen in the atherosclerotic arterial tissue (reduction and increase of CP backscatter), at the fiber (change of the geometric distribution of fibers in the second-harmonic generation microscopy images) and fibrillar (violation of packing and different nature of a basket-weave network of fibrils in the AFM images) organization levels. The calculated CP channel-related parameters are shown to have a statistically significant difference between stable and unstable (also called vulnerable) plaques, and hence, CP OCT could be a potentially powerful, minimally invasive method for vulnerable plaques detection.
NASA Astrophysics Data System (ADS)
Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; Otani, C.; Sekimoto, Y.; Tajima, O.; Tomita, N.; Yoshida, M.; Won, E.
2016-08-01
Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.
NASA Astrophysics Data System (ADS)
Wu, Sheldon S. Q.; Hartemann, F. V.; Barty, C. P. J.
2010-03-01
A study of thermally-induced vacuum polarization stemming from the Euler-Heisenberg nonlinear radiation correction to Maxwell equations is conducted. While nonlinear effects associated with photon-photon scattering in the photon gas had been previously calculated, we present an analysis in the framework of stochastic electrodynamics. To lowest order of approximation, it is shown that the phase velocity of light is reduced in the presence of intense ambient electromagnetic radiation. Therefore Cherenkov radiation can be generated when charged particles traverse a region of intense blackbody radiation. Suitable conditions may be found in astrophysical environments. Cosmic ray electrons and positrons in the GeV to TeV range meet the energy requirement for this process to occur. We present calculations of the emission characteristics and conditions under which Cherenkov radiation may be observed. This effect combined with synchrotron and inverse Compton processes may lead to a more complete understanding of cosmic ray propagation. Also of interest, the question of the linearity of the relic cosmic microwave background is under investigation using this formalism and will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Inoue, Takeshi; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A.; Aoki, T.; Asahi, K.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshimi, A.; Yoshida, H. P.; Sakemi, Y.
Toward an experimental search for an electron electric dipole moment by using laser cooled francium atoms, a development of a rubidium (Rb) atomic magnetometer based on a nonlinear magneto-optical rotation (NMOR) effect is presented. In order to obtain a narrow linewidth of the NMOR spectrum, a wall relaxation time of a paraffin coated glass cell, which confined the Rb atom, was experimentally confirmed. A residual field inside a magnetic shield was also evaluated.
NASA Astrophysics Data System (ADS)
Ibragimov, Ranis N.
2016-12-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
Tao, Wei; Bao, Hongchun; Gu, Min
2011-05-01
Real-time monitoring the variation of chlorophyll distributions and cellular structures in leaves during plant growth provides important information for understanding the physiological statuses of plants. Two-photon-excited autofluorescence imaging and second harmonic generation imaging of leaves can be used for monitoring the nature intrinsic fluorophores distribution and cellular structures of leaves by the use of the near-infrared region of light which has minimal light absorption by endogenous molecules and thus increases tissue penetration. However, the two-photon absorption peak of intrinsic fluorophores of a ficus benjamina leaf is 50 nm away from the second harmonic generation excitation wavelength, which cannot be effectively excited by a femtosecond laser beam with one central wavelength. This paper shows that a highly polarized supercontinuum light generated from a birefringent nonlinear photonic crystal fiber with two zero-dispersion wavelengths can effectively excite two-photon autofluorescence as well as second harmonic generation signals for simultaneously monitoring intrinsic fluorophore distributions and non-centrosymmetric structures of leaves.
Galimov, A.A.; Glazov, N.P.; Ivanov, V.T.
1985-08-01
The protection of metallic structures from corrosion is effected by cathodic polarization and protective coatings. At sites of damage extending through the insulation an intense corrosion process, which causes the formation of corrosion pits, in which signifiant redistribution of the protective current occurs, takes place. Considered in this paper is the distribution of the current on an electrode with a corrosion pit of arbitrary shape in the example of an electrochemical system consisting of disk electrodes located in a cylindrical bath with a lateral insulator surface. The overall analysis of the numerical results points out the significant redistribution of the current on a protected metallic surface when corrosion pits appear.
Nonlinear polarization waves in a two-component Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kartashov, Y. V.; Larré, P.-É.; Pavloff, N.
2014-03-01
A two-component Bose-Einstein condensate whose dynamics is described by a system of coupled Gross-Pitaevskii equations accommodates waves with different symmetries. A first type of waves corresponds to excitations for which the motion of both components is locally in phase. For the second type of waves, the two components have a counterphase local motion. When the values of the inter- and intracomponent interaction constants are different, the long-wavelength behavior of these two modes corresponds to two types of sound with different velocities. In the limit of weak nonlinearity and small dispersion, the first mode is described by the well-known Korteweg-de Vries equation. In the same limit, we show that the second mode can be described by the Gardner equation if the values of the two intracomponent interaction constants are sufficiently close. This leads to a rich variety of nonlinear excitations (solitons, kinks, algebraic solitons, breathers) which do not exist in the Korteweg-de Vries description.
NASA Astrophysics Data System (ADS)
Yang, Feng; Guo, Yichen; Zong, Zhihao; Hao, Xuehong; Shi, Yiwen; Tang, Minghua
2016-07-01
Nd3+/Zr4+-cosubstituted bismuth titanate (BNTZ x , x = 0, 0.05, 0.1, 0.3, and 0.5) thin films have been fabricated by chemical solution deposition and their polarization hysteresis loops, leakage current, and capacitance butterfly loops investigated. Results show that, at Zr content of x = 0.1, both capacitance and remanent polarization can be greatly improved. The BNTZ0.1 film also exhibits fatigue-free, excellent leakage current characteristics ( I ≈ 9.44 × 10-9 A) at applied voltage of 3 V. High-quality c-axis-oriented BNTZ x = 0.1 films with improved electrical properties were fabricated; this finding supports the feasibility of engineering polarization rotation in ferroelectric bismuth titanate (as suggested theoretically by Roy et al. in Appl. Phys. Lett. 102:182901, 2013).
Vacuum polarization of massive spinor and vector fields in the spacetime of a nonlinear black hole
Matyjasek, Jerzy
2007-10-15
Building on general formulas obtained from the approximate renormalized effective action, the stress-energy tensor of the quantized massive spinor and vector fields in the spacetime of the regular black hole is constructed. Such a black hole is the solution to the coupled system of nonlinear electrodynamics and general relativity. A detailed analytical and numerical analysis of the stress-energy tensor in the exterior region is presented. It is shown that for small values of the charge as well as large distances from the black hole the leading behavior of the stress-energy tensor is similar to that in the Reissner-Nordstroem geometry. Important differences appear when the inner horizon becomes close to the event horizon. A special emphasis is put on the extremal configuration and it is shown that the stress-energy tensor is regular inside the event horizon of the extremal black hole.
Highly nonlinear polarization-maintaining photonic crystal fiber with nanoscale GaP strips.
Amin, Md Nafiz; Faisal, Mohammad
2016-12-10
A highly birefringent silica photonic crystal fiber (PCF) is proposed with nanoscale gallium phosphide strips at the core and modified spiral cladding air hole distribution. Optical properties of the PCF are simulated using the finite element method. Significant influences of low-refractive-index slot region confinement and high-index strips confinement are observed for two different modes. This introduces a high birefringence of ∼0.58 at 1.55 μm wavelength. Moreover, a high nonlinearity coefficient of the order of ∼10^{4} W^{-1} km^{-1} is achieved in the wavelength range from 1.4 to 1.7 μm. The proposed fiber will find promising applications in coherent optical communications and sensing applications.
NASA Astrophysics Data System (ADS)
Marder, Seth R.; Gorman, Christopher B.; Cheng, Lap-Tak A.; Tiemann, Bruce G.
1993-02-01
We recently reported that there is an optimal combination of donor and acceptor strengths for a given molecular length and bridge structure that maximizes (beta) . For this combination, there is the correct degree of bond length alternation and asymmetry in the molecule. Our recent findings suggest that molecules that can be viewed as asymmetric cyanines with relatively small amounts of bond length alternation are nearly optimal. In this manner, we have identified molecules with nonlinearities many times that of conventional chromophores for a given length. In this paper, we will present a new computational analysis that allows the correlation of bond length alternation with hyperpolarizabilities and will present EFISH data on simple donor-acceptor polyene chromophores.
NASA Astrophysics Data System (ADS)
Kunz, Anna-Pitschna E.; van Gunsteren, Wilfred F.
2009-08-01
A new charge-on-spring (COS) model for water is introduced (COS/D). It includes a sublinear dependence of the induced dipole on the electric field for large field strength to include the effect of hyperpolarizability by damping the polarizability. Only two new parameters were introduced to define the damping of the polarizability. In the parametrization procedure, these two damping parameters, the two Lennard-Jones parameters, the charge on the oxygen, and the distance between the virtual site and the oxygen atom were varied to reproduce the density, the heat of vaporization, the dielectric permittivity, and the position of the first peak in the radial distribution function of liquid water at room temperature and pressure. In this way, a model was obtained that correctly describes a variety of thermodynamic, dynamic, and dielectric properties of water while still preserving the simplicity of the COS model, which allows a straightforward introduction of explicit polarization into (bio)molecular force fields.
NASA Astrophysics Data System (ADS)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J.
2016-07-01
We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3-10 GHz. We have devised a general polarization modeling technique that allows us to identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.
Sharples, Thomas R.; Luxford, Thomas F. M.; McKendrick, Kenneth G.; Costen, Matthew L.; Townsend, Dave
2015-11-28
We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A{sup 2}Σ{sup +}, v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm{sup −1}. We report differential cross sections for scattering into NO(A{sup 2}Σ{sup +}, v = 0, N′ = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N′. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.
Nonlinear magneto-optic quantum microcavity
NASA Astrophysics Data System (ADS)
Frey, Robert; Andre, Regis; Flytzanis, Christos
2002-05-01
The study of the linear, nonlinear, and photo-induced behavior in a magneto-optic micro-cavity in the strong coupling regime is investigated using the reflectivity and magneto-optic Kerr rotation techniques. The photo-induced modifications of the strong coupling regime are traced to the light induced changes of the exciton transition by many body interactions and band filling effects. At a fluence of 1 (mu) J/cm-2 the saturation and blue shift of the quantum well exciton transition produce strong modifications of the lower polariton frequency which induce nonlinear magneto-optic Kerr rotations of 30 degrees at a magnetic field amplitude of 0.2 Tesla. With no applied magnetic field polarization rotations of more than 10 degrees are photo- induced by 1 (mu) J/cm-2 fluence circularly polarized pump pulses. Such a physical effect could be interesting for high contrast fast optical signal processing when room temperature operation becomes available.
Wang, Chunhui; Lee, Xiaobao; Cui, Tianxiang; Qu, Yang; Li, Yunxi; Li, Hailong; Wang, Qi
2016-03-01
The direction rule of the laser beam traveling through a deflected polarizing beam splitter (PBS) cube is derived. It reveals that, due to the influence of end-face reflection of the PBS at the detector side, the emergent beam coming from the incident beam parallels the direction of the original case without rotation, with only a very small translation interval between them. The formula of the translation interval is also given. Meanwhile, the emergent beam from the return signal at the detector side deflects at an angle twice that of the PBS rotation angle. The correctness has been verified by an experiment. The intensity transmittance of the emergent beam when propagating in the PBS is changes very little if the rotation angle is less than 35 deg. In a 3D imaging lidar system, by rotating the PBS cube by an angle, the direction of the return signal optical axis is separated from that of the origin, which can decrease or eliminate the influence of direct reflection caused by the prism end face on target return signal detection. This has been checked by experiment.
Corzilius, Björn
2016-10-21
Dynamic nuclear polarization (DNP) is a powerful method to enhance sensitivity especially of solid-state magic-angle spinning (MAS) NMR by up to several orders of magnitude. The increased interest both from a practical as well as theoretical viewpoint has spawned several fields of active research such as the development of new polarizing agents with improved or unique properties and description of the underlying DNP mechanisms such as solid effect (SE) and cross effect (CE). Even though a novel class of unique polarizing agents based on high-spin metal ions such as Gd(iii) and Mn(ii) has already been utilized for MAS DNP a theoretical description of the involved DNP mechanism is still incomplete. Here, we review several aspects of DNP-relevant electron-paramagnetic resonance (EPR) properties of the general class of these half-integer high-spin metal ions with isotropic Zeeman interaction but significant zero-field splitting (ZFS). While the SE can be relatively easily described similar to that of a S = 1/2 system and is assumed to be effective only for polarizing agents featuring a narrow central EPR transitions (i.e., mS = -1/2 → +1/2) with respect to the nuclear Larmor frequency, the CE between two high-spin ions requires a more detailed theoretical investigation due to a multitude of possible transitions and matching conditions. This is especially interesting in light of recent understanding of CE being induced by MAS-driven level anti-crossings (LACs) between dipolar-coupled electron spins. We discuss the requirements of such CE-enabling LACs to occur due to anisotropy of ZFS, the expected adiabaticity, and the resulting possibilities of high-spin metal ion pairs to act as polarizing agents for DNP. This theoretical description serves as a framework for a detailed experimental study published directly following this work.
NASA Technical Reports Server (NTRS)
Mcguire, James P., Jr.; Chipman, Russell A.
1991-01-01
In the previous paper in this series (McGuire and Chipman, 1990), a formulation was established for the calculation and analysis of diffraction image quality in polarizing optical systems illuminated with partially polarized, partially coherent light. In the present paper, the effect of second- and fourth-order polarization aberrations on the image plane diffraction patterns are examined. The amplitude response matrix is calculated for optical systems with small numerical apertures. Numerical results are presented for optical systems with circular apertures for three of the aberration types.
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide; Mie, Youichi
2015-02-01
We develop a general framework of using the Lagrangian variables for calculating the energy of waves on a steady Euler flow and the mean flow induced by their nonlinear interaction. With the mean flow at hand we can determine, without ambiguity, all the coefficients of the amplitude equations to third order in amplitude for a rotating flow subject to a steady perturbation breaking the circular symmetry of the streamlines. Moreover, a resonant triad of waves is identified which brings in the secondary instability of the Moore-Saffman-Tsai-Widnall instability, and with the aid of the energetic viewpoint, resonant amplification of the waves without bound is numerically confirmed.
NASA Astrophysics Data System (ADS)
Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.
2014-05-01
We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.
NASA Astrophysics Data System (ADS)
Peräntie, J.; Hagberg, J.; Uusimäki, A.; Tian, J.; Han, P.
2012-08-01
The special characteristics of polarization rotation and accompanying electric-field-induced ferroelectric-ferroelectric phase transitions in <001>-poled Pb(Mg1/3Nb2/3)1-xTixO3 (x = 27.4, 28.8, and 30.7 mol. %) single crystals close to the morphotropic phase boundary region were studied by means of dielectric and thermal measurements as a function of a unipolar electric field at various temperatures. Discontinuous first-order-type phase transition behavior was evidenced by distinct and sharp changes in polarization and thermal responses with accompanying hysteresis as a function of the electric field. All compositions of crystals showed either one or two reversible discontinuities along the polarization rotation paths, which can be understood by electric-field-induced phase transition sequences to the tetragonal phase through different monoclinic phases previously observed along the polarization rotation path. Together with increasing polarization, a field-induced reversible decrease in temperature was observed with increasing electric field, indicating increased dipolar entropy during the electric-field-induced phase transitions. Constructed electric field-temperature phase diagrams based on the polarization and thermal data suggest that the complex polarization rotation path extends to a wider composition range than previously observed. The measured thermal response showed that a transition from the monoclinic to the tetragonal phase produced a greater thermal change in comparison with a transition within two monoclinic phases.
Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.
2012-01-01
Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457
Energy Transfer in Rotating Turbulence
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
Wang, Li-Jie; Zhong, Rong-Lin; Sun, Shi-Ling; Xu, Hong-Liang; Pan, Xiu-Mei; Su, Zhong-Min
2014-07-07
Recently, a new sulfide cluster fullerene, Sc2S@Cs (10528)-C72 containing two pairs of fused pentagons has been isolated and characterized (Chen et al., J. Am. Chem. Soc., 2012, 134, 7851). Inspired by this investigation, we propose a question: what properties will be influenced by the interaction between the encapsulated V-shaped polar molecule and C72? To answer this question, four encapsulated metallic fullerenes (EMFs) M2N@C72 (M = Sc or Y, N = S or O) along with pristine Cs-C72 (10528) were investigated by quantum chemistry methods. The results show that the Egap (3.01-3.14 eV) of M2N@C72 are significantly greater than that of pristine Cs-C72 (10528) (2.34 eV). This indicates that the stabilities of these EMFs increase by encapsulating the V-shaped polar molecule into the fullerene. Furthermore, the natural bond orbital (NBO) charge analysis indicates electron transfer from M2N to C72 cage, which plays a crucial role in enhancing first hyperpolarizability (βtot). The βtot follows the order of 1174 au (Y2O@C72) ≈ 1179 au (Sc2O@C72) > 886 au (Y2S@C72) ≈ 864 au (Sc2S@C72) > 355 au (C72). This indicates that the βtot of M2N@C72 is more remarkable than that of pristine Cs-C72 (10528) due to the induction effect of the encapsulated molecule. Compared with sulfide cluster fullerenes (Y2S@C72 and Sc2S@C72), oxide cluster fullerenes (Sc2O@C72 and Y2O@C72) show much larger βtot due to the small ionic radius and the large electronegativity of oxygen. In contrast, the metal element (scandium and yttrium) has a slight influence on the βtot. Thus, oxide cluster fullerenes are candidates to become promising nonlinear optical materials with higher performance.
Timbs, M M; Thompson, N L
1990-01-01
Polarized fluorescence photobleaching recovery has been used to monitor slow rotational motions of a fluorescently-labeled anti-dinitrophenyl mouse IgGl monoclonal antibody (ANO2) specifically bound to substrate-supported monolayers composed of a mixture of distearoylphosphatidylcholine (DSPC) and dinitrophenyldioleoylphosphatidylethanolamine (DNP-DOPE). ANO2 antibodies were labeled with a new bifunctional carbocyanine fluorophore that has two amino-reactive groups; steady-state fluorescence anisotropy data confirmed the expected result that the ANO2-conjugated bifunctional probe had less independent flexibility than ANO2-conjugated unifunctional fluorescence labels. Rotational mobilities were also measured for the fluorescent lipid 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine (dil) in DSPC and in mixed DSPC/DNP-DOPE monolayers in the presence and absence of unlabeled ANO2 antibodies. The apparent rotational correlation time and fractional mobility of ANO2 on supported monolayers were approximately 70 and approximately 0.3 s, respectively. These measured parameters of rotational mobility did not depend on the ANO2 surface density or on kinetic factors, but addition of unlabeled polyclonal anti-(mouse IgG) antibodies significantly decreased the apparent mobile fraction. The measured fluorescence recovery curves for dil were consistent with two fluorophore populations with rotational correlation times of approximately 4 and approximately 100 s and a population of immobile fluorescent lipid. No difference in fluorescence recovery and decay curves was measured for dil in DSPC monolayers, DSPC/DNP-DOPE monolayers, and DSPC/DNP-DOPE monolayers treated with unlabeled ANO2 antibodies. PMID:2207246
Domingue, Scott R.; Bartels, Randy A.
2013-01-01
The intrinsic weak birefringence in all-normal dispersion highly nonlinear fiber, particularly ultra-high-numerical-aperture fiber, generates supercontinuum with long term polarization instabilities, even for seed pulses launched along the perceived slow axis of the fiber. Highly co/anti-correlated fluctuations in energy between regions of power spectral density mask the extent of the spectral noise in total integrated power measurements. The instability exhibits a seed pulse power threshold above which the output polarization state of the supercontinuum seeds from noise. Eliminating this instability through the utilization of nonlinear fiber with a large designed birefringence, encourages the exploration of compression schemes and seed sources. Here, we include an analysis of the difficulties for seeding supercontinuum with the highly attractive ANDi-type lasers. Lastly, we introduce an intuitive approach for understanding supercontinuum development and evolution. By modifying the traditional characteristic dispersion and nonlinear lengths to track pulse properties within the nonlinear fiber, we find simple, descriptive handles for supercontinuum evolution. PMID:23736583
NASA Astrophysics Data System (ADS)
Agarwal, Shilpi; Rana, Puneet
2016-04-01
In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.
NASA Astrophysics Data System (ADS)
Khurana, Meenakshi; Rana, Puneet; Srivastava, Sangeet
2016-12-01
In the present paper, we present both linear and nonlinear analyses to investigate thermal instability on a rotating non-Newtonian viscoelastic nanofluid layer under the influence of a magnetic field. In the linear stability analysis, the stationary and oscillatory modes of convection are obtained for various controlling parameters using the normal mode technique. Both Nusselt and Sherwood numbers are calculated after employing the minimal truncated Fourier series to steady and unsteady state. The main findings conclude that rotation and strain retardation parameter increase the value of the critical Rayleigh number in the neutral stability curve which delays the onset of convection in the nanofluid layer while the stress relaxation parameter enhances the convection. The magnetic field stabilizes the system for low values of the Taylor number (rotation) but an inverse trend is observed for high Taylor number. Both Nusselt and Sherwood numbers initially oscillate with time until the steady state prevails and they decrease with both Chandrasekhar and Taylor numbers. The magnitude of the streamlines and the contours of both isotherms and iso-nanohalines concentrate near the boundaries for large values of Ra, indicating an increase in convection.
Second-harmonic generation in shear wave beams with different polarizations
Spratt, Kyle S. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
NASA Astrophysics Data System (ADS)
Abdel-Wahed, Mohamed; Akl, Mohamed
2016-09-01
Analysis of the MHD Nanofluid boundary layer flow over a rotating disk with a constant velocity in the presence of hall current and non-linear thermal radiation has been covered in this work. The variation of viscosity and thermal conductivity of the fluid due to temperature and nanoparticles concentration and size is considered. The problem described by a system of P.D.E that converted to a system of ordinary differential equations by the similarity transformation technique, the obtained system solved analytically using Optimal Homotopy Asymptotic Method (OHAM) with association of mathematica program. The velocity profiles and temperature profiles of the boundary layer over the disk are plotted and investigated in details. Moreover, the surface shear stress, rate of heat transfer explained in details.
NASA Astrophysics Data System (ADS)
Wu, Wenjue; Zhou, Yue; Sun, Ji; Dai, Yitang; Yin, Feifei; Dai, Jian; Xu, Kun
2016-11-01
We proposed a mode-locked all-polarization-maintaining erbium-doped fiber laser base on a nonlinear amplifying loop mirror (NALM). The laser can generate 1.6 ps pulses at 1550 nm with the energy of 1 nJ that can be compressed down to 100 fs with the compressor outside the cavity. The repetition rate of the output pulse is 12MHz. Such configuration of laser is easier controlled and self starting long term operation, and is highly desirable for industrial applications, such as micro-machining.
Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan
2014-01-01
A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will output as the TE0 mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a < 0.5 dB insertion loss with < −17 dB crosstalk in C optical communication band. Fabrication tolerance analysis is also performed with respect to the deviations of MMI coupler width, PS width, slab height and upper-cladding refractive index, showing that this device could work well even when affected by considerable fabrication errors. With such a robust performance with a large bandwidth, this device offers potential applications for CMOS-compatible polarization diversity, especially in the booming 100 Gb/s coherent optical communications based on silicon photonics technology. PMID:25402029
Wang, Jing; Niu, Ben; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Qi, Minghao; Gan, Fuwan
2014-06-02
A novel silicon-on-insulator (SOI) polarization splitter-rotator is proposed based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will evolve into the TE0 mode in the wide output arm while the input TE0 mode excites the TE0 mode in the narrow arm. The numerical simulation results show that the mode conversion efficiency increases with the lengths of the tapers and the Y-junction for the output waveguide widths in a large range. This proposed device has < 0.4 dB insertion loss with > 12 dB extinction ratio in an ultra-broad wavelength range from 1350 nm to 1750 nm. With such a broad operating bandwidth, this device offers potential applications for polarization diversity operating across every communication bands. Fabrication tolerance analysis is also performed in terms of the device width variation, the slab height variation and the variation of the upper-cladding refractive index.
Hillhouse, John W.; Miller, David M.; Turrin, Brent D.
2010-01-01
We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Wash, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N = 40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6–C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with
Hillhouse, John W.; Miller, David M.; Turrin, Brent D.; Reynolds, Robert E.; Miller, David M.
2010-01-01
We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Walsh, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N=40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6-C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with
NASA Astrophysics Data System (ADS)
Do, K. D.
2017-02-01
Equations of motion of extensible and shearable slender beams with large translational and rotational motions under external loads in three-dimensional space are first derived in a vector form. Boundary feedback controllers are then designed to ensure that the beams are practically K∞-exponentially stable at the equilibrium. The control design, well-posedness, and stability analysis are based on two Lyapunov-type theorems developed for a class of evolution systems in Hilbert space. Numerical simulations on a slender beam immersed in sea water are included to illustrate the effectiveness of the proposed control design.
NASA Astrophysics Data System (ADS)
Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi
2014-12-01
Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.
Nonlinear Dynamics of the Leggett Equation
NASA Astrophysics Data System (ADS)
Ragan, Robert J.
1995-01-01
We study the nonlinear dynamics of spin-polarized Fermi liquids. Our starting point is the equation of motion for the magnetization derived by Leggett and Rice, which accounts for spin-rotation effects in the limit of small polarization. We also include later modifications to the theory by Meyerovich, and Jeon and Mullin, which account for polarization dependences of the transport coefficients. In the analysis of NMR experiments the methods of current research can be summarized as follows: (a) to linearize the Leggett equation by considering small amplitude oscillations (small tip angles), (b) to use perturbation theory to account for small spin-rotation effects, (c) to exploit the simple helical solution which describes spin-echo experiments. In this thesis, we report progress in several directions: (1) We extend the linear theory to describe bounded spin diffusion with spin-rotation and finite-polarization effects. The analysis is valid for arbitrary tip angles and arbitrary degree of nonlinearity. (2) We show that because of the spin-rotation effect, the helical solution exhibits a Castiang instability for large tip angles. In the limit of small damping, we use the inverse scattering theory developed by Levy to display the full nonlinear evolution of the instabilities. (3) We use perturbation theory to show that anisotropy in the spin diffusion coefficients gives rise to multiple spin echoes, even in the absence of spin -rotation effects. This description applies to experiments on ^3He-^4He solutions at ^3He concentrations of 3-5%. This experiment provides a unique means of verifying the theory of Jeon and Mullin. We also report some exact results in the theory of anisotropic spin diffusion.
Visualizing molecular unidirectional rotation
NASA Astrophysics Data System (ADS)
Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian
2015-07-01
We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.
NASA Technical Reports Server (NTRS)
Korycansky, D. G.
1991-01-01
Two-dimensional nonlinear hydrodynamic calculations are presented which may help assess the effectiveness of the instability in transporting angular momentum in the equatorial zones of stars and planets which are stably stratified with respect to convection. The calculations were made by numerically integrating the 2D axisymmetric Navier-Stokes equations, including viscosity and heat conduction. The instability was followed into the nonlinear regime. The maximum rms velocity amplitude was found to correlate well with the product of the linear growth rate and radial length scale of the instability, consistent with the idea that the instability grows to an amplitude such that an eddy turnover time becomes equal to the growth time defined by the inverse of the growth rate. The time scale for angular momentum to be redistributed to a state of marginal stability was consistent with this picture. The results suggest that in physical situations a state of marginal stability will be maintained, since departures from such a state will be rapidly corrected.
NASA Technical Reports Server (NTRS)
Mcguire, James P., Jr.; Chipman, Russell A.
1990-01-01
The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.
NASA Astrophysics Data System (ADS)
Lytova, M.; Lorin, E.; Bandrauk, A. D.
2016-07-01
We present a detailed analysis of the propagation dynamics of short and intense circularly polarized pulses in an aligned diatomic gas. Compared to linearly polarized intense pulses, high harmonic generation (HHG) and the coherent generation of attosecond pulses in the intense-circular-polarization case are a new research area. More specifically, we numerically study the propagation of intense and short circularly polarized pulses in the one-electron H2+ molecular gas, using a micro-macro Maxwell-Schrödinger model. In this model, the macroscopic polarization is computed from the solution of a large number of time-dependent Schrödinger equations, the source of dipole moments, and using a trace operator. We focus on the intensity and the phase of harmonics generated in the H2+ gas as a function of the pulse-propagation distance. We show that short coherent circularly polarized pulses of same helicity can be generated in the molecular gas as a result of cooperative phase-matching effects.
Waddill, G. D.; Willis, R. F.
1999-10-01
This report details the construction and testing of a unique analyzer for spin-polarized photoemission studies of magnetic materials. This report details the progress of this project for the period from 9/1/96 through 8/31/99. Progress can be divided into two distinct areas. These are the fabrication, construction, and initial testing of the instrumentation, and the concurrent program of preliminary investigations into materials and experiments appropriate for future studies using the instrumentation developed. The analyzer complete with special input electron optics and Mott detector has been assembled in a special design UHV chamber equipped with all the capabilities needed to perform the described programs of research. These include a sophisticated five motorized axis sample manipulator with low and high temperature capability and rapid temperature cycling (acquired in collaboration with Dr. J.G. Tobin of LLNL), vacuum leak detection and gauging, in situ thin film growth instrumentation, and sample cleaning and magnetizing capabilities, The initial testing of the analyzer has been completed with successful data acquisition using both the multichannel detector mode, and spin-dependent using the Mott detector channeltrons. The data collected using the Mott detector were not truly spin dependent (see below), but demonstrate the operation of the lens and detector design. Acquisition of truly spin-dependent data await use of the EPU. Preliminary indications suggest that the analyzer performs at or above the original design parameters. In the second area of progress, we have conducted a number of preliminary studies toward the ends of identifying appropriate initial systems for investigation, and to further explore new experiments that the new instrumentation will help to pioneer. More detailed descriptions of all of these advances are given.
Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F
2014-11-28
Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.
Perceiving polarization with the naked eye: characterization of human polarization sensitivity
Temple, Shelby E.; McGregor, Juliette E.; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E.; Roberts, Nicholas W.
2015-01-01
Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance. We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration. PMID:26136441
Perceiving polarization with the naked eye: characterization of human polarization sensitivity.
Temple, Shelby E; McGregor, Juliette E; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E; Roberts, Nicholas W
2015-07-22
Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance.We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration.
Fiscal-Ladino, Jhon A; Obando-Ceballos, Mónica; Rosero-Moreano, Milton; Montaño, Diego F; Cardona, Wilson; Giraldo, Luis F; Richter, Pablo
2017-02-08
Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L(-1) and 43 ng L(-1), the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples.
Xiong, Ming; Feng, Xueshang; Liu, Ying D.; Davies, Jackie A.; Harrison, Richard A.; Owens, Mathew J.; Davis, Chris J.
2013-11-01
Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B{sub ∥} and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression I∝r {sup –3}. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r{sub sheath} and the mass of plasma at that position M{sub sheath} can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B{sub ∥sheath} at r{sub sheath} can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.
NASA Astrophysics Data System (ADS)
Kim, Bitnarae; Jang, Hannuree; Nam, Myung Jin; Kim, Hee Joon; Son, Jeong-Sul
2015-04-01
The Haenam area in the southern tip of Korean Peninsula, which experienced broad hydrothermal transition during the Late Cretaceous and Early Tertiary times and whose geology is composed of granitic rocks, quartz porphyry, andesite, rhyolite, tuff and sedimentary rocks, is known to have many clay-alunite and gold-silver deposits. For the investigation of new gold deposits near an existing gold mine, both electrical-resistivity and induced polarization (IP) surveys have been conducted based on dipole-dipole array with 10 m-electrode spacing. The survey line is set to be 200 m and nearly normal to the geological strike. Together with the surveys, an investigation borehole was drilled about 130 m away from the survey line, and coring has been conducted during the drilling. For the interpretation of IP data, linear inversion of IP data based on approximate linearization has been conducted after making 3D inversion of electrical-resistivity data. The inversion result shows that area of high intrinsic chargeability complies with area of high-salinity, which is interpreted from the borehole data. However, the linear inversion has high chance to contain unwanted error during the inversion process since the inversion is based on the linearization approximation of a non-linear problem by assuming the value of intrinsic chargeability is very small. In this study, we first develop an efficient non-linear inversion algorithm to invert the IP data based on finite element method using tetrahedral elements. Then, we apply the developed algorithm to synthetic IP data and compare its results with those from existing IP inversion algorithms. Finally, we make non-linear inversion of the Haenam field data not only to interpret the data more precisely but also to compare its results with existing-interpretation results from linear-IP inversion. The analysis confirms that the non-linear time domain IP inversion reflects the geological characteristics in the survey area, complying with
NASA Astrophysics Data System (ADS)
Straathof, G. B.; Hinsbergen, D. V.; Kuiper, K. F.; Cunningham, W.; Wijbrans, J.
2007-12-01
Here we test the role of vertical axis rotations during transpressional mountain building. To this end, we carried out a paleomagnetic study in the NE Gobi Altai of southern Mongolia, sampling widely exposed lower Cretaceous lavas allowing comparison of rotation histories of the Ih Bogd, Baga Bogd and Artz Bogd restraining bends at the eastern termination of the Bogd strike-slip zone. We provide new 40Ar/39Ar ages to show that the stratigraphy of mafic lavas and fluvio-lacustrine sediments on the southern flanks of Mt Ih Bogd and Mt Baga Bogd have ages between ~125 and ~122 Ma, and a mafic sill that intrudes the sequence has an age of 118.2 ± 0.8 Ma. The lavas are older than previously dated lavas south of Artz Bogd, with ages of 119-115 Ma. Paleomagnetic results from the 119-115 Ma lavas south of Artz Bogd show a significant steeper inclination than both results from 125-122 Ma lavas of Baga Bogd and Ih Bogd, as well as from newly sampled and previously published younger lavas and necks of the 107-92 Ma Tsost Magmatic Field and Shovon and Khurmen Uul basalts. We explain this result by insufficient averaging of secular variation and small errors induced by overcorrection of bedding tilt. We show that individual lavas in the SE Artz Bogd locality represent individual spot readings of the Earth's magnetic field and integrate all results obtained from lower Cretaceous lavas in the Gobi Altai. We present a pole, or rather, an apparent polar wander path without significant plate motion from ~125-95 Ma, with n=126, ë=80.8, ö=158.4, ê=25.3, A95=2.5, paleo-latitude = 48.2 with a scatter Së=16.7 (Sl=15.3, Su=17.8) and a regionally consistent direction for the Gobi Altai of D/I = 11.1/65.9, ÄD/ÄI = 3.8/1.9. This is one of the best-determined paleopoles/APWP's for Asia. There is no significant deviation of the 125-95 Ma pole position of the Gobi Altai from the reference positions of Eurasia. Formation of the Ih Bogd, Baga Bogd and Artz Bogd restraining bends was thus
NASA Technical Reports Server (NTRS)
Dickey, Jean O.
1995-01-01
The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.
NASA Astrophysics Data System (ADS)
Steiner, Maureen B.
2003-06-01
paleopoles are displaced counterclockwise relative to those of the Colorado Plateau, and in amounts consistent with other coeval craton-Colorado Plateau pole pairs. Together, six coeval paleopoles indicate that the Colorado Plateau has rotated clockwise by about 9.0 ± 3° since Late Pennsylvanian time. The cratonic Summerville paleopole also removes the uncertainty over the Jurassic North American apparent polar wander path. The statistically identical Summerville and lower Morrison paleopoles form a substantial data set, five paleopoles, which indicate that NA APW traced a path roughly along 60° latitude. The five paleopoles stand in stark contrast to the paleopole from the slightly older (5-8 Ma) Moat Volcanics. Spreading rates in the central Atlantic do not allow NA plate motion that would include both paleopoles positions. Because the weight of the data, five paleopoles from widely spaced localities and different tectonic blocks, the Moat Volcanics pole cannot be representative of North America in the Middle Jurassic.
NASA Astrophysics Data System (ADS)
Perlicki, Krzysztof
2010-03-01
A low-cost statistical polarization mode dispersion/polarization dependent loss emulator is presented in this article. The emulator was constructed by concatenating 15 highly birefringence optical-fiber segments and randomly varying the mode coupling between them by rotating the polarization state. The impact of polarization effects on polarization division multiplexing transmission quality was measured. The designed polarization mode dispersion/polarization dependent loss emulator was applied to mimic the polarization effects of real optical-fiber links.
Zanchet, A; Roncero, O; González-Lezana, T; Rodríguez-López, A; Aguado, A; Sanz-Sanz, C; Gómez-Carrasco, S
2009-12-31
The state-to-state differential cross sections for some atom + diatom reactions have been calculated using a new wave packet code, MAD-WAVE3, which is described in some detail and uses either reactant or product Jacobi coordinates along the propagation. In order to show the accuracy and efficiency of the coordinate transformation required when using reactant Jacobi coordinates, as recently proposed [ J. Chem. Phys. 2006 , 125 , 054102 ], the method is first applied to the H + D(2) reaction as a benchmark, for which exact time-independent calculations are also performed. It is found that the use of reactant coordinates yields accurate results, with a computational effort slightly lower than that when using product coordinates. The H(+) + D(2) reaction, with the same masses but a much deeper insertion well, is also studied and exhibits a completely different mechanism, a complex-forming one which can be treated by statistical methods. Due to the longer range of the potential, product Jacobi coordinates are more efficient in this case. Differential cross sections for individual final rotational states of the products are obtained based on exact dynamical calculations for some selected total angular momenta, combined with the random phase approximation to save the high computational time required to calculate all partial waves with very long propagations. The results obtained are in excellent agreement with available exact time-independent calculations. Finally, the method is applied to the Li + HF system for which reactant coordinates are very well suited, and quantum differential cross sections are not available. The results are compared with recent quasiclassical simulations and experimental results [J. Chem. Phys. 2005, 122, 244304]. Furthermore, the polarization of the product angular momenta is also analyzed as a function of the scattering angle.
NASA Technical Reports Server (NTRS)
Le Vine, David
2016-01-01
Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Funning, G. J.
2009-12-01
We compare several techniques for the analysis of geodetic time series with the ultimate aim to characterize the physical processes which are represented therein. We compare three methods for the analysis of these data: Principal Component Analysis (PCA), Non-Linear PCA (NLPCA), and Rotated PCA (RPCA). We evaluate each method by its ability to isolate signals which may be any combination of low amplitude (near noise level), temporally transient, unaccompanied by seismic emissions, and small scale with respect to the spatial domain. PCA is a powerful tool for extracting structure from large datasets which is traditionally realized through either the solution of an eigenvalue problem or through iterative methods. PCA is an transformation of the coordinate system of our data such that the new "principal" data axes retain maximal variance and minimal reconstruction error (Pearson, 1901; Hotelling, 1933). RPCA is achieved by an orthogonal transformation of the principal axes determined in PCA. In the analysis of meteorological data sets, RPCA has been seen to overcome domain shape dependencies, correct for sampling errors, and to determine principal axes which more closely represent physical processes (e.g., Richman, 1986). NLPCA generalizes PCA such that principal axes are replaced by principal curves (e.g., Hsieh 2004). We achieve NLPCA through an auto-associative feed-forward neural network (Scholz, 2005). We show the geophysical relevance of these techniques by application of each to a synthetic data set. Results are compared by inverting principal axes to determine deformation source parameters. Temporal variability in source parameters, estimated by each method, are also compared.
Melrose, D.B.; Judge, A.C.
2004-11-01
A polarized maser is assumed to operate in an anisotropic medium with natural modes polarized differently to the maser. It is shown that when the spatial growth rate and the generalized Faraday rotation rate are comparable, the polarization of the growing radiation is different from those of the maser and medium. In particular, for a lineary polarized maser operating in a medium with linearly polarized natural modes, the growing radiation is partially circularly polarized. This provides a previously unrecognized source of circular polarization that may be relevant to pulsar radio emission.
2016-01-01
Modeling and prediction of polar organic chemical integrative sampler (POCIS) sampling rates (Rs) for 73 compounds using artificial neural networks (ANNs) is presented for the first time. Two models were constructed: the first was developed ab initio using a genetic algorithm (GSD-model) to shortlist 24 descriptors covering constitutional, topological, geometrical and physicochemical properties and the second model was adapted for Rs prediction from a previous chromatographic retention model (RTD-model). Mechanistic evaluation of descriptors showed that models did not require comprehensive a priori information to predict Rs. Average predicted errors for the verification and blind test sets were 0.03 ± 0.02 L d–1 (RTD-model) and 0.03 ± 0.03 L d–1 (GSD-model) relative to experimentally determined Rs. Prediction variability in replicated models was the same or less than for measured Rs. Networks were externally validated using a measured Rs data set of six benzodiazepines. The RTD-model performed best in comparison to the GSD-model for these compounds (average absolute errors of 0.0145 ± 0.008 L d–1 and 0.0437 ± 0.02 L d–1, respectively). Improvements to generalizability of modeling approaches will be reliant on the need for standardized guidelines for Rs measurement. The use of in silico tools for Rs determination represents a more economical approach than laboratory calibrations. PMID:27363449
Rotation rate measurement and calculation for calcite crystals in a C-point mode
NASA Astrophysics Data System (ADS)
Herne, Catherine M.; O'Brien, Ann E.
2016-09-01
A polarization singularity mode offers a unique tool for actuating an array of birefringent calcite crystals, and measurement of the rotation rates of these crystals is in turn a way to image modes with varying polarization. In this work, we show the calculated and measured rotation rates of individual calcite crystals in a C-point mode and their dependence on three key factors: polarization, mode intensity profile, and crystal size. The C-point is a polarization singularity mode in which the mode has a circularly polarized center surrounded by elliptically polarized regions, with the orientation of the ellipse varying azimuthally and the degree of ellipticity changing radially. The beam is focused into an optical trapping region, and micron-sized birefringent calcite crystals in solution are positioned at key points in the mode. The crystals experience different torques at each location. The spin angular momentum of the light is proportional to the degree of ellipticity and to the intensity at each point in the mode. Our technique for generating C-point modes results in an intensity profile with a nonlinear radial dependence. Our crystal growth process generates crystals of varying width and thickness; the crystal size and shape affect the drag forces and light torque acting on them. We explain the crystal growth process and estimations of torque, demonstrate the rate and direction of rotation of calcite crystals placed at different points in the laser mode, and discuss the difference between the estimated and measured rotation rates.
NASA Technical Reports Server (NTRS)
Malacinski, G. M.
1983-01-01
Amphibian egg polarity and the mechanism which generates the polarity is addressed. Of particular concern is the question of whether the activation rotation which responds to gravity is a prerequisite for normal development.
Boota, Muhammad; Houwman, Evert P; Dekkers, Matthijn; Nguyen, Minh D; Vergeer, Kurt H; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus
2016-01-01
Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case.
Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus
2016-01-01
Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857
Nonlinear optical magnetometry with accessible in situ optical squeezing
Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.
2014-11-14
In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.
Kuzmina, M S; Martyanov, M A; Poteomkin, A K; Khazanov, E A; Shaykin, A A
2011-10-24
We consider a problem of laser radiation propagating in a medium with birefringence of two types: linear birefringence independent of intensity and polarization, and intensity and polarization dependent circular birefringence caused by cubic nonlinearity. It is shown theoretically and experimentally that the efficiency of the broadly employed method of linear depolarization compensation by means of a 90° polarization rotator decreases with increasing В-integral (nonlinear phase incursion induced by cubic nonlinearity). The accuracy of polarization transformation by means of a half-wave and a quarter-wave plate also decreases if В > 1. By the example of a λ/4 plate it is shown that this parasitic effect may be suppressed considerably by choosing an optimal angle of inclination of the optical axis of the plate.
Discrete phase changes within nonlinear steepened magnetosonic waves - Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Smith, Edward J.; Buti, B.; Matsumoto, Hiroshi; Brinca, Armando
1990-01-01
Some features of steepened magnetosonic waves are discussed with reference to the Giacobini-Zinner data set. In particular, attention is given to the discovery of discrete intervals of both phase rotation and lack of phase rotation within a single wavelength and also to the presence of intervals of 'backward' rotations (right-hand polarized in the spacecraft frame) within the magnetosonic wave. Possible explanations of these features are reviewed, and it is suggested that these features are nonlinear manifestations of the wave steepening process.
NASA Astrophysics Data System (ADS)
Ortega, Alejandra; Perez-Martinez, Ana Laura; Ogawa, Takeshi; Smith, Francis; Walser, Ardie; Dorsinville, Roger
A highly-conjugated polar dye with three aromatic rings connected with azo groups was prepared and it was incorporated in polycinnamate. It showed a third-order nonlinear susceptibility of 8 × 10-10 esu determined by a Z-scan technique. The unpoled and poled films show the same susceptibility indicating the polymer film could not be poled. The open aperture Z-scan showed negligible two-photon absorption at 1064 nm.
NASA Astrophysics Data System (ADS)
Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.
2014-06-01
The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.
Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM.
Wang, Wei; Zhuge, Qunbi; Gao, Yuliang; Qiu, Meng; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Plant, David V
2014-07-28
We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.
NASA Technical Reports Server (NTRS)
Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.
2008-01-01
Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not
Nonlinear optical spectroscopy of chiral molecules.
Fischer, Peer; Hache, François
2005-10-01
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality. They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest.
Nonlinearity-reduced interferometer
NASA Astrophysics Data System (ADS)
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen; ...
2016-01-01
Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, amore » strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO
Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen; Kravchenko, Ivan I; Yu, Pu; Chen, L. Q.; Kalinin, Sergei V; Wisinger, Nina Balke; Li, Qian
2016-01-01
Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, a strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO system
Mohan, Sabitha; Lange, Jens; Graener, Heinrich; Seifert, Gerhard
2012-12-17
The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.
Mahmood, T; Cannon, B M; Astar, W; Carter, G M
2014-12-29
Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10^{-9} bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline.
Metasurface polarization splitter.
Slovick, Brian A; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I; Briggs, Dayrl P; Moitra, Parikshit; Krishnamurthy, Srini; Valentine, Jason
2017-03-28
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.This article is part of the themed issue 'New horizons for nanophotonics'.
Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Rewoldt, G.; Tang, W.M.
1997-11-01
Sheared rotation dynamics are widely believed to have signficant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D.J. Grove and D.M. Meade, Nuclear Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry.
Rewoldt, G.; Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Tang, W.M.
1997-12-01
Sheared rotation dynamics are widely believed to have significant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry.
Polarization twist in perovskite ferrielectrics
Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro
2016-01-01
Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824
NASA Technical Reports Server (NTRS)
Title, A. M. (Inventor)
1978-01-01
A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.
Cylindrical rotating triboelectric nanogenerator.
Bai, Peng; Zhu, Guang; Liu, Ying; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Ma, Jusheng; Zhang, Gong; Wang, Zhong Lin
2013-07-23
We demonstrate a cylindrical rotating triboelectric nanogenerator (TENG) based on sliding electrification for harvesting mechanical energy from rotational motion. The rotating TENG is based on a core-shell structure that is made of distinctly different triboelectric materials with alternative strip structures on the surface. The charge transfer is strengthened with the formation of polymer nanoparticles on surfaces. During coaxial rotation, a contact-induced electrification and the relative sliding between the contact surfaces of the core and the shell result in an "in-plane" lateral polarization, which drives the flow of electrons in the external load. A power density of 36.9 W/m(2) (short-circuit current of 90 μA and open-circuit voltage of 410 V) has been achieved by a rotating TENG with 8 strip units at a linear rotational velocity of 1.33 m/s (a rotation rate of 1000 r/min). The output can be further enhanced by integrating more strip units and/or applying larger linear rotational velocity. This rotating TENG can be used as a direct power source to drive small electronics, such as LED bulbs. This study proves the possibility to harvest mechanical energy by TENGs from rotational motion, demonstrating its potential for harvesting the flow energy of air or water for applications such as self-powered environmental sensors and wildlife tracking devices.
Lin, Ja-Hon; Chen, Chien-Lin; Chan, Chen-Wei; Chang, Wei-Cheng; Chen, Yao-Hui
2016-11-15
We investigated the characteristics of noise-like pulses (NLPs) from a net normal dispersion Yb-doped fiber laser (YDFL) by using the grating pairs (GPs) inside the laser cavity as a dispersion compensation element. Without the insertion of the slit inside the laser cavity, the operation of the YDFL is at an NLP state with the double-scale intensity autocorrelation trace once the mode-locked pulses are generated. Through the dispersion delay line outside the laser cavity, the substantial temporal compression of the NLPs has been demonstrated. After inserting the slit between the GPs as a bandpass filter, the operation state of the YDFL can be switched between the NLPs and the dissipated solitons by means of a pump power. Besides, the NLPs can also transit to the bound solitons as the YDFL is operated within long and short wavelength regimes through the spatial shift of the slit.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2016-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Veeser, L.; Rodriguez, P.; Forman, P.; Deeter, M.
1994-05-01
We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.
Feng, Jiang-He; Xiang Xu; Mao, Jiang-Gao
2015-12-15
Large crystal of the nonlinear optical and polar oxide Cs{sub 2}TeW{sub 3}O{sub 12} with a size of 20×15×4 mm{sup 3} has been grown by the top-seeded solution growth (TSSG) method. This crystal can be thermally stable up to 808 °C and melts incongruently. It possesses a large transparent range of 0.415–5.250 μm. Thermal properties, including thermal expansion, specific heat, thermal diffusivity and thermal conductivity were investigated. The average linear thermal expansion coefficients were calculated based on the measurement in the temperature range of 30–390 °C. It exhibits strong anisotropic thermal expansion which was discussed according to the relationships between the structure and thermal properties. Furthermore, laser-induced damage threshold has been estimated to be 591.28 MW/cm{sup 2} with a laser wavelength of 1064 nm and pulse duration of 8 ns. - Graphical abstract: The crystallization region of Cs{sub 2}TeW{sub 3}O{sub 12} single-phase in the quasi-ternary Cs{sub 2}TeW{sub 3}O{sub 12}–TeO{sub 2}–Cs{sub 2}O system has been investigated. And Cs{sub 2}TeW{sub 3}O{sub 12} large crystal has been grown by the top-seeded solution growth method. - Highlights: • The crystallization region of Cs{sub 2}TeW{sub 3}O{sub 12} in Cs{sub 2}TeW{sub 3}O{sub 12}–TeO{sub 2}–Cs{sub 2}O system has been investigated. • Large Cs{sub 2}TeW{sub 3}O{sub 12} crystal has been grown. • Cs{sub 2}TeW{sub 3}O{sub 12} possesses a large transparent range of 0.415–5.250 μm. • Cs{sub 2}TeW{sub 3}O{sub 12} possesses large laser-induced damage threshold of 591.28 MW/cm{sup 2}. • Detialed thermal properties have been investigated.
Calibration Technique for Polarization-Sensitive Lidars
NASA Technical Reports Server (NTRS)
Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.
2006-01-01
Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).
Product rotational angular momentum polarization in the H+FCl(v=0-5, j=0, 3, 6, 9)→HF+Cl reaction.
Wu, Victor Wei-Keh
2011-05-28
The product alignment and orientation of the title reaction on the ground potential energy surface of 1 (2)A' have been studied using the quasi-classical trajectory method. The calculations were carried out for case (a) at collision energies of 0.5-20 kcal mol(-1) with the initially rovibrational state of the reagent FCl molecule being at the v = 0 and j = 0 level to especially reveal in detail the dependence of the product integral cross section on collision energy. Further calculations at the collision energy of 15 kcal mol(-1) for case (b) at v = 0-5, and j = 0, and (c) at v = 0, and j = 3, 6, 9 initial states were carried out to reveal the effect of initially vibrational and rotational excitations on stereodynamics, respectively. Possessing final relative velocity k' (defined as a vector in the xz-plane), product alignment perpendicular to the reagent relative velocity vector k (defined as z- or parallel to the z-axis), for case (a) is found to be weaker at all collision energies, for case (b) is found to be vibrationally enhanced by the reactant molecule FCl, but for case (c), rather insensitive to initially rotational excitation. The rotational vector of product molecular orientation pointing to either negative or positive direction of the y-axis in the center of mass frame, e.g. origin of the coordinate system, is enhanced by collision energies regarding to 0.5-20 kcal mol(-1), while it becomes weaker at higher vibrational (v = 0-5) or rotational (j = 0, 3, 6, 9) excitation levels. Effects of collision energies and of rotational excitation at these collision energies, with 15 kcal mol(-1) as an example on the calculated PDDCSs are also shown and discussed. Detailed plots P(φ(r)) in the range of 0 ≤φ(r)≤ 360(o), and P(θ(r), φ(r)) in the ranges of 0 ≤θ(r)≤ 180° and 0 ≤φ(r)≤ 360° at collision energies 0.5-20 kcal mol(-1) have been presented. Overall, results of PDDCSs of the product alignment and product orientation at these collision
Single-polarization noise-like pulse generation from a hybrid mode-locked thulium-doped fiber laser
NASA Astrophysics Data System (ADS)
Liu, Shuo; Yan, Feng-Ping; Feng, Ting; Zhang, Lu-Na; Bai, Zhuo-Ya; Zhou, Hong; Hou, Yafei; Zhang, Ning
2017-04-01
A hybrid mode-locked thulium-doped fiber laser incorporating a nonlinear optical loop mirror and a nonlinear polarization rotation effect is proposed in the 2 μm band for the first time. By adjusting two polarization controllers, a stable single-polarization noise-like (SPNL) pulse operation is obtained. The SPNL pulse could work steadily for at least 400 min. At a launched pump power of 3.52 W, the hybrid mode-locked SPNL pulse centers at 2007 nm with an optical full width at half maximum of 20 nm, a polarization extinction ratio of 26.3 dB, a coherence spike width of 258 fs and a pulse energy of 42.11 nJ, respectively.
Chughtai, Mohsan Niaz; Forzati, Marco; Mårtensson, Jonas; Rafique, Danish
2012-03-26
In this paper we numerically investigate nonlinear impairments in a WDM system with mixed PM (D)QPSK and OOK channels. First we analyze the dependence of XPM and XPolM on SOP and baud rate in absence of PMD. In this case we find that the nonlinear impairments are highly dependent on relative SOP between the PM (D)QPSK and neighbouring OOK channels. The dependence on relative SOP is more pronounced in differential detection than in coherent detection. However, with increasing values of PMD this dependence decreases, and non-linear tolerance improves.
Swartz, M.L.
1988-07-01
The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs.
Chao Wu, Victor Wei-Keh
2015-12-01
The rotational angular momentum polarizations of product molecules of the title reactions on the ground potential energy surface 1 (2)A' of DHTSN [Deskevic et al. J Chem Phys 2006, 124, 224303] have been studied using the quasi-classical trajectory method. Reaction dynamic results of the HF product channel comparing with another channel of HCl with 100,000 trajectories can be accurately resolved. We show the value of the polar p(ϑr) in the range of 0° ≤ ϑr ≤ 180(°), azimuthal p(φr) in the range of 0° ≤ φr ≤ 360(°), and dihedral p(ϑr, φr) in the ranges of 0(°) ≤ ϑr ≤ 180(°) and 0(°) ≤ φr ≤ 360(°); the angular distributions of the product molecules HF and HCl at relative Erel = 0.5, 1, 2, 5, 10, 15, and 20 kcal mol(-1); and four polarization-dependent differential cross sections (PDDCSs) of HF and HCl at Erel = 0.5, 1, 2, 5, 10, and 15 kcal mol(-1). p(φr) distributions at v = 0-5, and j = 0, 3, 6, 9 at every Erel are plotted cylindrically together. The stereo dynamic transformation reaction dependent upon the rovibrational states of the reactant molecule FCl and its relative translational energies around 0.5-5 kcal mol(-1) can be significantly differentiated. Translational and rovibrational enhancements of the title reactions on both early barrier potential energy surfaces have been shown in great detail and clarified. Reaction mechanisms of forward and backward scattering of the product molecules HF and HCl, respectively, have been obtained. Graphical Abstract H + FCl → either HF + Cl (left) or HCl + F (right) is moving along a trajectory on the respective PES.
Application of the Nonlinear Vector Product to Lorentz Transformations.
ERIC Educational Resources Information Center
Farach, Horacio A.; And Others
1979-01-01
Shows that the nonlinear vector product developed by the author in a previous paper to treat successive space rotations can be employed to treat the space time rotations of special relativity in which the angle of rotation is imaginary. (HM)
NASA Astrophysics Data System (ADS)
Lindblad, I. A. A.
1990-10-01
The feasibility of obtaining a converged numerical solution of the Euler equations in the total near field of a transonic propeller, amenable for use as a boundary condition for an outer acoustic problem is investigated. The numerical solution is evaluated on an imaginary glove, encompassing the propeller, used as the boundary for an outer acoustic problem. The accuracy of the numerical solution is then verified by investigating the variation of the result with grid resolution and the parameters of the numerical method. It is shown that with a properly tuned numerical calculation, the nonlinear effects of the Euler equations can be captured in the near field of a model transonic propeller. Thus, it is possible to obtain a pressure time history that depends only weakly on grid resolution and artificial damping even at some distance from the propeller blade surface.
First Polarized Proton Collisions at RHIC
NASA Astrophysics Data System (ADS)
Roser, T.; Ahrens, L.; Alessi, J.; Bai, M.; Beebe-Wang, J.; Brennan, J. M.; Brown, K. A.; Bunce, G.; Cameron, P.; Courant, E. D.; Drees, A.; Fischer, W.; Fliller, R.; Glenn, W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Makdisi, Y.; Montag, C.; Pilat, F.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; van Zeijts, J.; Zelenski, A.; Zeno, K.; Deshpande, A.; Kurita, K.; Krueger, K.; Spinka, H.; Underwood, D.; Syphers, M.; Alekseev, I.; Svirida, D.; Ranjbar, V.; Tojo, J.; Jinnouchi, O.; Okamura, M.; Saito, N.
2003-05-01
We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180° about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV.
[Review] Polarization and Polarimetry
NASA Astrophysics Data System (ADS)
Trippe, Sascha
2014-02-01
Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.
NASA Astrophysics Data System (ADS)
Sekkat, Zouheir; Knoll, Wolfgang
1995-10-01
It was shown recently that the application of a dc field across a polymer film containing polar azo dye chromophores at a temperature far below that of its glass transition leads to an appreciable polar order when the azo dyes undergo cis \\left-right-double-arrow trans isomerization. We present a detailed theoretical study of this phenomenon based on the enhanced mobility of the azo chromophores during the isomerization process. The equations representing this phenomenological theory are solved by recurrence relations of Legendre polynomials, and both the steady state and the dynamics are investigated. Analytical expressions are derived for the photoinduced polar order and its related anisotropy for both cis and trans molecular distributions.
Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.âº Asteroid and...
Forest, Cary B.
2016-11-10
This report covers the UW-Madison activities that took place within a larger DoE Center Administered and directed by Professor George Tynan at the University of California, San Diego. The work at Wisconsin will also be covered in the final reporting for the entire center, which will be submitted by UCSD. There were two main activities, one experimental and one that was theoretical in nature, as part of the Center activities at the University of Wisconsin, Madison. First, the Center supported an experimentally focused postdoc (Chris Cooper) to carry out fundamental studies of momentum transport in rotating and weakly magnetized plasma. His experimental work was done on the Plasma Couette Experiment, a cylindrical plasma confinement device, with a plasma flow created through electromagnetically stirring plasma at the plasma edge facilitated by arrays of permanent magnets. Cooper's work involved developing optical techniques to measure the ion temperature and plasma flow through Doppler-shifted line radiation from the plasma argon ions. This included passive emission measurements and development of a novel ring summing Fabry-Perot spectroscopy system, and the active system involved using a diode laser to induce fluorescence. On the theoretical side, CMTFO supported a postdoc (Johannes Pueschel) to carry out a gyrokinetic extension of residual zonal flow theory to the case with magnetic fluctuations, showing that magnetic stochasticity disrupts zonal flows. The work included a successful comparison with gyrokinetic simulations. This work and its connection to the broader CMTFO will be covered more thoroughly in the final CMTFO report from Professor Tynan.
Sailor, V.L.; Aichroth, R.W.
1962-12-01
The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)
NASA Astrophysics Data System (ADS)
Hamraoui, K.; Guasoni, M.; Picozzi, A.; Assémat, E.; Jauslin, H. R.; Sugny, D.
2016-05-01
The study of the spatiotemporal dynamics of two counterpropagating beams in optical fibers has recently been the subject of a growing renewed interest. This system has been shown to exhibit a phenomenon of polarization attraction which can be used to achieve a complete polarization of an initially unpolarized beam, almost without any loss of energy. In previous works, a theoretical description of this phenomenon has been developed in the particular case where the underlying stationary system exhibits the important property of integrability. Our aim here is to provide a generalization of the theoretical description to nonintegrable stationary systems. The analysis reveals that the spatiotemporal dynamics of the system relaxes towards a stationary trajectory whose geometric structure is revealed by the stable and unstable manifolds of some singular fixed points of the stationary system. We illustrate the theory by considering the representative and concrete example of a weakly birefringent optical fiber system.
Furman, J M
2016-01-01
The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.
An improved turbulence model for rotating shear flows*
NASA Astrophysics Data System (ADS)
Nagano, Yasutaka; Hattori, Hirofumi
2002-01-01
In the present study, we construct a turbulence model based on a low-Reynolds-number non-linear k e model for turbulent flows in a rotating channel. Two-equation models, in particular the non-linear k e model, are very effective for solving various flow problems encountered in technological applications. In channel flows with rotation, however, the explicit effects of rotation only appear in the Reynolds stress components. The exact equations for k and e do not have any explicit terms concerned with the rotation effects. Moreover, the Coriolis force vanishes in the momentum equation for a fully developed channel flow with spanwise rotation. Consequently, in order to predict rotating channel flows, after proper revision the Reynolds stress equation model or the non-linear eddy viscosity model should be used. In this study, we improve the non-linear k e model so as to predict rotating channel flows. In the modelling, the wall-limiting behaviour of turbulence is also considered. First, we evaluated the non-linear k e model using the direct numerical simulation (DNS) database for a fully developed rotating turbulent channel flow. Next, we assessed the non-linear k e model at various rotation numbers. Finally, on the basis of these assessments, we reconstruct the non-linear k e model to calculate rotating shear flows, and the proposed model is tested on various rotation number channel flows. The agreement with DNS and experiment data is quite satisfactory.
Wienands, Ulrich; Nosochkov, Yuri; Sullivan, Michael; Wittmer, Walter; Barber, Desmond; Biagini, Maria; Raimondi, Pantaleo; Koop, Ivan; Nikitin, Sergei; Sinyatkin, Sergey; /Novosibirsk, IYF
2012-06-21
SuperB, the 2nd-generation B-Factory with a luminosity of 10{sup 36}/cm{sup 2}/s proposed for LNF, is being designed from the start to be capable of providing a spin-polarized electron beam in the low-energy ring (LER) with longitudinal polarization at the interaction point. Due to the high luminosity at moderate beam current the beam lifetime is short (a few minutes), and a polarized injector will be used. Spin rotators have been designed and the equilibrium polarization evaluated. It will be shown that an average polarization of about 70% can be expected.
Fuzzy-polar control of wind-turbine generator
Idowu, P.
1995-12-31
This paper presents a wind-turbine blade pitch angle controller based on fuzzy polar technique. the technique takes advantage of fuzzy-linguistic modeling in expressing the natural non-linearity or imprecision of the wind-turbine system in determining pitch angles for speed and power regulation. The fuzzy-polar method presents wind-turbine state in the phase-plane in terms of its rotational speed deviation and acceleration. The state vectors thus derived serve as an indicator of the magnitude of departure from the nominal operating point. In order to shift operating state back to the phase plane origin, an acceleration or deceleration control is applied through the pitch-angle adjustment mechanism as defined by the fuzzy-linguistic control law. The performance of the pitch control design method is demonstrated on a simulated wind-turbine-driven synchronous generator.
POLARIZED PROTON COLLISIONS AT RHIC.
BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.
2005-05-16
The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.
Dynamic polarization vision in mantis shrimps
Daly, Ilse M.; How, Martin J.; Partridge, Julian C.; Temple, Shelby E.; Marshall, N. Justin; Cronin, Thomas W.; Roberts, Nicholas W.
2016-01-01
Gaze stabilization is an almost ubiquitous animal behaviour, one that is required to see the world clearly and without blur. Stomatopods, however, only fix their eyes on scenes or objects of interest occasionally. Almost uniquely among animals they explore their visual environment with a series pitch, yaw and torsional (roll) rotations of their eyes, where each eye may also move largely independently of the other. In this work, we demonstrate that the torsional rotations are used to actively enhance their ability to see the polarization of light. Both Gonodactylus smithii and Odontodactylus scyllarus rotate their eyes to align particular photoreceptors relative to the angle of polarization of a linearly polarized visual stimulus, thereby maximizing the polarization contrast between an object of interest and its background. This is the first documented example of any animal displaying dynamic polarization vision, in which the polarization information is actively maximized through rotational eye movements. PMID:27401817
Nonlinear diffusion and superconducting hysteresis
Mayergoyz, I.D.
1996-12-31
Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.
ERIC Educational Resources Information Center
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
Fan, Y.
2009-06-01
We present a three-dimensional simulation of the dynamic emergence of a twisted magnetic flux tube from the top layer of the solar convection zone into the solar atmosphere and corona. It is found that after a brief initial stage of flux emergence during which the two polarities of the bipolar region become separated and the tubes intersecting the photosphere become vertical, significant rotational motion sets in within each polarity. The rotational motions of the two polarities are found to twist up the inner field lines of the emerged fields such that they change their orientation into an inverse configuration (i.e., pointing from the negative polarity to the positive polarity over the neutral line). As a result, a flux rope with sigmoid-shaped, dipped core fields forms in the corona, and the center of the flux rope rises in the corona with increasing velocity as the twisting of the flux rope footpoints continues. The rotational motion in the two polarities is a result of propagation of nonlinear torsional Alfven waves along the flux tube, which transports significant twist from the tube's interior portion toward its expanded coronal portion. This is a basic process whereby twisted flux ropes are developed in the corona with increasing twist and magnetic energy, leading up to solar eruptions.
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
considered in the magnetometry model are shown in Fig. 4. The ground state is split by the Zeeman effect into three levels 1 , 2 , and 3 and the...wakefield polarization rotation and, ii) polarization changes in resonance fluorescence emission (Hanle effect ). The major challenges for these...the atmospheric oxygen transitions and the strength of the effective magnetic dipole interaction
Magnetic-field-induced nonlinear optical responses in inversion symmetric Dirac semimetals
NASA Astrophysics Data System (ADS)
Cortijo, Alberto
2016-12-01
We show that under the effect of an external magnetic field, a photogalvanic effect and the generation of a second harmonic wave can be induced in inversion symmetric and time-reversal invariant Dirac semimetals and it is linear with the magnetic field. The mechanisms responsible for these nonlinear optical responses are the magnetochiral effect and the chiral magnetic effect. What makes possible that these two effects give rise to the discussed nonlinear optical effects is the presence of band bending effects in the dispersion relation in real Dirac semimetals. Some observable consequences of this phenomenon are the appearance of a dc current on the surface of the system when it is irradiated with linearly polarized light or a rotation of the polarization plane of the reflected second harmonic wave.
Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.
Timofeeva, Maria; Bouravleuv, Alexei; Cirlin, George; Shtrom, Igor; Soshnikov, Ilya; Reig Escalé, Marc; Sergeyev, Anton; Grange, Rachel
2016-10-12
In this work, we report an optical method for characterizing crystal phases along single-semiconductor III-V nanowires based on the measurement of polarization-dependent second-harmonic generation. This powerful imaging method is based on a per-pixel analysis of the second-harmonic-generated signal on the incoming excitation polarization. The dependence of the second-harmonic generation responses on the nonlinear second-order susceptibility tensor allows the distinguishing of areas of pure wurtzite, zinc blende, and mixed and rotational twins crystal structures in individual nanowires. With a far-field nonlinear optical microscope, we recorded the second-harmonic generation in GaAs nanowires and precisely determined their various crystal structures by analyzing the polar response for each pixel of the images. The predicted crystal phases in GaAs nanowire are confirmed with scanning transmission electron and high-resolution transmission electron measurements. The developed method of analyzing the nonlinear polar response of each pixel can be used for an investigation of nanowire crystal structure that is quick, sensitive to structural transitions, nondestructive, and on-the-spot. It can be applied for the crystal phase characterization of nanowires built into optoelectronic devices in which electron microscopy cannot be performed (for example, in lab-on-a-chip devices). Moreover, this method is not limited to GaAs nanowires but can be used for other nonlinear optical nanostructures.
Polarized cells, polar actions.
Maddock, J R; Alley, M R; Shapiro, L
1993-11-01
The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.
NASA Astrophysics Data System (ADS)
Schou, Jesper; Beck, John G.
2001-01-01
Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.
Circular Polarization in AGNs: Polarity and Spectra
NASA Astrophysics Data System (ADS)
Aller, M. F.; Aller, H. D.; Plotkin, R. M.
2005-12-01
Circular polarization (Stokes V) observations potentially provide information on the nature and origin of the underlying magnetic fields in AGNs. We have been systematically monitoring a group of sources with detectable circular polarization (V>0.1 percent, a level set by the instrumental polarization of our system) in all 4 Stokes parameters at 8.0 and 4.8 GHz since 2000, and also at 14.5 GHz since November 2003, with the University of Michigan prime focus paraboloid antenna. These data are compared with historical observations obtained with the same instrument at 8.0 and 4.8 GHz extending back to 1978. Specific goals are to study the temporal spectral behavior of Stokes V and its relation to variability in total flux and linear polarization, and to investigate the question of polarity stability on decade-long time scales using data obtained with the same instrumentation and at the same frequencies. The data are consistent with linear-to-circular mode conversion in partially opaque regions of the source. We find examples of polarity changes with time at one or more frequencies associated with outbursts in total flux and linear polarization, and polarity differences within the 3 frequencies at a single epoch in one case, 3C 279. Such behavior argues against the notion that the sign of Stokes V is a simple tracer of the net flow of magnetic energy from the central engine to the jet or an indicator of the direction of rotation of the spinning central black hole/accretion disk via the winding up of the initial seed magnetic field. This work was supported in part by NSF grant AST-0307629 and by funds from the University of Michigan.
Uniformly Rotating Single Substance Bodies
NASA Astrophysics Data System (ADS)
Leonard, Charles Michael Leo
This dissertation explicitly and in detail solves the extended rotator problem in the uncharged relativistic classical cases of most physical interest. It shows that no plausible relativistic solutions exist in the literature of the extended rotator and that the point rotator solutions sometimes ballyhooed are not to be taken seriously. Explicit energy speedratio functions, angular momentum speedratio functions, Hamiltonian, Lagrangian, and other important characteristic functions of the state of uniform rotation of the extended body are detailed. This dissertation does not retreat to an 'analysis' of just the point rotator --which so many others have done and done incorrectly, or at best misleadingly, by hiding implausible assumptions in manifestly covariant formats. Assumptions in the model are not hidden but are brought out and analyzed as to their relevance for highlighting the core of the uniform rotation physics. Neither does the author hide any ignorance of the internal holding field for the rotator. Formulae for the characteristic Minimum Holding Field are explicitly given and their relativistic relevance is shown. The demonstration that such fields can be ignored in the energy and angular momentum expressions is completely detailed. The explicit Stress-Energy Tensor for the entire closed rotator system is given with all that entails as to the inescapability of the results from out of that mathematics. The generality of the finiteness of the extreme relativistic rotational limit is detailed and explained with its stark essential contrast to the infinite limit in the case of extreme relativistic translation of a body. The rotator is shown to possess a rich mathematical structure. Many elegant interconnection formulae are found as well as new Hamiltonian formulae --sometimes of considerable complexity. Exact rotator formulae as well as graphs, tables, and even interesting approximations are provided. New nonlinear differential equations are discovered and
Polarization singularity democracy:WYSIWYG
NASA Astrophysics Data System (ADS)
Freund, Isaac
2004-08-01
The canonical point singularity of elliptically polarized light is a C point, an isolated point of circular polarization surrounded by a field of polarization ellipses. The defining singular property of a C point is that the surrounding ellipses rotate about the point. It is shown that this rotation is seen only for a particular line of sight (LOS) and, conversely, that there exists a unique LOS for every ellipse along which the ellipse is seen as a singularity. It is also shown that changes in LOS can turn singularities into stationary points and vice versa. The democratic behavior of polarization singularities and stationary points is a consequence of the fundamental ''what you see is what you get'' property of ellipse fields. Simple experiments are proposed for observing this unusual property of elliptically polarized light.
ERIC Educational Resources Information Center
Lockett, Keith
1988-01-01
Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)
NASA Astrophysics Data System (ADS)
Dziembowski, W.
Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.
Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments.
Rostami, Shermineh; Chini, Michael; Lim, Khan; Palastro, John P; Durand, Magali; Diels, Jean-Claude; Arissian, Ladan; Baudelet, Matthieu; Richardson, Martin
2016-02-05
Broadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing - mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, respectively. The filament properties, including the supercontinuum generation, are therefore highly sensitive to the properties of both the laser source and the propagation medium. Here, we report the anomalous spectral broadening of the supercontinuum for filamentation in molecular gases, which is observed for specific elliptical polarization states of the input laser pulse. The resulting spectrum is accompanied by a modification of the supercontinuum polarization state and a lengthening of the filament plasma column. Our experimental results and accompanying simulations suggest that rotational dynamics of diatomic molecules play an essential role in filamentation-induced supercontinuum generation, which can be controlled with polarization ellipticity.
NASA Astrophysics Data System (ADS)
Mahmood, Tanvir
Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE
Problems in nonlinear resistive MHD
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Polarization measurement through combination polarizers
NASA Astrophysics Data System (ADS)
Bai, Yunfeng; Li, Linjun; He, Zhelong; Liu, Yanwei; Ma, Cheng; Shi, Guang; Liu, Lu
2014-02-01
Polarization measurement approaches only using polarizer and grating is present. The combination polarizers consists of two polarizers: one is γ degree with the X axis; the other is along the Y axis. Binary grating is covered by the combination polarizers, and based on Fraunhofer diffraction, the diffraction intensity formula is deduced. The polarization state of incident light can be gotten by fitting the diffraction pattern with the deduced formula. Compared with the traditional polarization measurement method, this measurement only uses polarizer and grating, therefore, it can be applied to measure a wide wavelength range without replacing device in theory.
Nonlinear optomechanical pressure
NASA Astrophysics Data System (ADS)
Conti, Claudio; Boyd, Robert
2014-03-01
A transparent material exhibits ultrafast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, such as optical manipulation, biophysics, cavity optomechanics, quantum optics, and optical tractors, and is relevant in fundamental problems such as the Abraham-Minkoswky dilemma or the Casimir effect. Here, we show that an ultrafast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order-of-magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.
A slowly rotating impeller in a rapidly rotating fluid
NASA Astrophysics Data System (ADS)
Machicoane, Nathanael; Moisy, Frederic; Cortet, Pierre-Philippe; Instability, waves; turbulence Team
2016-11-01
We characterize the two-dimensionalization process in the turbulent flow produced by an impeller rotating at a rate ω in a fluid rotating at a rate Ω around the same axis for Rossby number Ro = ω / Ω down to 0.01. The flow can be described as the superposition of a large-scale vertically invariant global rotation and small-scale shear layers detached from the impeller blades. As Ro decreases, the large-scale flow is subjected to azimuthal modulations. In this regime, the shear layers can be described in terms of wakes of inertial waves traveling with the blades, originating from the velocity difference between the non-axisymmetric large-scale flow and the blade rotation. The wakes are well defined and stable at low Rossby number, but they become disordered and interact nonlinearly at Ro of order of 1.
NASA Astrophysics Data System (ADS)
Moffeit, Kenneth C.
1989-05-01
The Stanford Linear Collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z0 mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Mo/ller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses.
Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.
Ren, Yukun; Liu, Weiyu; Liu, Jiangwei; Tao, Ye; Guo, Yongbo; Jiang, Hongyuan
2016-09-01
We describe a novel rotating trait of induced-charge electroosmotic slip above a planar metal surface, a phenomenon termed "Rotating induced-charge electro-osmosis" (ROT-ICEO), in the context of a new microfluidic technology for tunable particle rotation or rotational trap. ROT-ICEO has a dynamic flow stagnation line (FSL) that rotates synchronously with a background circularly polarized electric field. We reveal that the rotating FSL of ROT-ICEO gives rise to a net hydrodynamic torque that is responsible for rotating fluids or particles in the direction of the applied rotating electric field either synchronously or asynchronously, the magnitude of which is adjusted by a balance between rotation of FSL and amplitude of angular-direction flow component oscillating at twice the field frequency. Supported by experimental observation, our physical demonstration with ROT-ICEO proves invaluable for the design of flexible electrokinetic framework in modern microfluidic system.
A solar eruption driven by rapid sunspot rotation
Ruan, Guiping; Chen, Yao; Du, Guohui; Wang, Shuo; Jing, Ju; Wang, Haimin; Zhang, Hongqi; Su, Jiangtao; Xu, Haiqing; Li, Gang; Li, Xing
2014-04-01
We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at ∼10° hr{sup –1} during a period of 6 hr prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the Helioseismic and Magnetic Imager observation, for an area along the polarity inversion line underneath the filament, we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field (B{sub h} ) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the nonlinear force-free field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidence that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of B{sub h} may be used to discern the driving mechanism of eruptions.
Achromatic circular polarization generation for ultra-intense lasers.
Atherton, Briggs W.; Schollmeier, Marius; Bennett, Guy R.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.
2010-05-01
Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization.
Nonlinear and quantum optics near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman
We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study
EDITORIAL: Polarization Optics
NASA Astrophysics Data System (ADS)
Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.
2004-03-01
This special issue on Polarization Optics contains one review article and 23 research papers, many of which are based on presentations at the International Commission for Optics Topical Meeting on Polarization Optics, held in Polvijärvi, Finland, between 30 June and 3 July 2003. While this issue should not in any sense be considered as a `proceedings' of this meeting, the possibility of submitting papers to it was widely advertised during the meeting, which was attended by a large fraction of prominent scientists in the field of polarization optics. Thus the quality of papers in this special issue is high. In announcing both the meeting and this special issue, we emphasized that the concept of `polarization optics' should be understood in a wide sense. In fact, all contributions dealing with the vectorial nature of light were welcome. As a result, the papers included here cover a wide range of different aspects of linear and nonlinear polarization optics. Both theoretical and experimental features are discussed. We are pleased to see that the conference and this special issue both reflect the wide diversity of important and novel polarization phenomena in optics. The papers in this special issue, and other recently published works, demonstrate that even though polarization is a fundamental property of electromagnetic fields, interest in it is rapidly increasing. The fundamental relations between partial coherence and partial polarization are currently under vigorous research in electromagnetic coherence theory. In diffractive optics it has been found that the exploitation of the vectorial nature of light can be of great benefit. Fabrication of sophisticated, spatially variable polarization-control elements is becoming possible with the aid of nanolithography. Polarization singularities and the interplay of bulk properties and topology in nanoscale systems have created much enthusiasm. In nonlinear optics, the second harmonic waves generated on reflection and
NASA Astrophysics Data System (ADS)
Yu, Changyuan
Chromatic dispersion, polarization mode dispersion (PMD) and nonlinear effects are important issues on the physical layer of high-speed reconfigurable WDM optical fiber communication systems. For beyond 10 Gbit/s optical fiber transmission system, it is essential that chromatic dispersion and PMD be well managed by dispersion monitoring and compensation. One the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and has applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersive and nonlinear effects in high-speed optical communication systems. We have demonstrated: (i) A novel technique for optically compensating the PMD-induced RF power fading that occurs in single-sideband (SSB) subcarrier-multiplexed systems. By aligning the polarization states of the optical carrier and the SSB, RF power fading due to all orders of PMD can be completely compensated. (ii) Chromatic-dispersion-insensitive PMD monitoring by using a narrowband FBG notch filter to recover the RF clock power for 10Gb/s NRZ data, and apply it as a control signal for PMD compensation. (iii) Chirp-free high-speed optical pulse generation with a repetition rate of 160 GHz (which is four times of the frequency of the electrical clock) using a phase modulator and polarization maintaining (PM) fiber. (iv) Polarization-insensitive all-optical wavelength conversion based on four-wave mixing in dispersion-shifted fiber (DSF) with a fiber Bragg grating and a Faraday rotator mirror. (v) Width-tunable optical RZ pulse train generation based on four-wave mixing in highly-nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulse-width of a generated pulse train is continuously tuned. (vi) A high-speed all
NASA Astrophysics Data System (ADS)
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-02-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Laser-polarization-dependent photoelectron angular distributions from polar molecules.
Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan
2011-11-21
Photoelectron angular distributions (PADs) of oriented polar molecules in response to different polarized lasers are systematically investigated. It is found that the PADs of polar CO molecules show three distinct styles excited by linearly, elliptically and circularly polarized lasers respectively. In the case of elliptical polarization, a deep suppression is observed along the major axis and the distribution concentrates approximately along the minor axis. Additionally, it is also found that the concentrated distributions rotate clockwise as the ellipticity increases. Our investigation presents a method to manipulate the motion and angular distribution of photoelectrons by varying the polarization of the exciting pulses, and also implies the possibility to control the processes in laser-molecule interactions in future work.
Continuous control of the nonlinearity phase for harmonic generations.
Li, Guixin; Chen, Shumei; Pholchai, Nitipat; Reineke, Bernhard; Wong, Polis Wing Han; Pun, Edwin Yue Bun; Cheah, Kok Wai; Zentgraf, Thomas; Zhang, Shuang
2015-06-01
The capability of locally engineering the nonlinear optical properties of media is crucial in nonlinear optics. Although poling is the most widely employed technique for achieving locally controlled nonlinearity, it leads only to a binary nonlinear state, which is equivalent to a discrete phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin-rotation coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability with continuously controllable phase. The continuous phase control over the local nonlinearity is demonstrated for second and third harmonic generation by using nonlinear metasurfaces consisting of nanoantennas of C3 and C4 rotational symmetries, respectively. The continuous phase engineering of the effective nonlinear polarizability enables complete control over the propagation of harmonic generation signals. Therefore, this method seamlessly combines the generation and manipulation of harmonic waves, paving the way for highly compact nonlinear nanophotonic devices.
All-optical D and T flip-flops based on polarization switch of SOA
NASA Astrophysics Data System (ADS)
Wang, Lina; Wang, Yongjun; Wu, Chen
2016-11-01
The semiconductor optical amplifier (SOA) plays an important role in the development of the all-optical signal processing because of the advantages of simple structure, easy integration and strong non-linearity. Especially the nonlinear polarization rotation effect of SOA is receiving considerable interest by many researchers nowadays. The all-optical flip-flop using the properties of SOA also obtains widespread attention by researchers, as all-optical flip-flop is an important part in the field of all-optical signal processing. In this paper, a new all-optical flip-flop structure using polarization switch (PSW) based on polarization rotation effect of SOA is presented. The main work of the paper is the simulation of all-optical logic gates and optical SR latch. The logic gate setup only uses one SOA, but it can get two different logic gates through a simulation. The extinction ratio of the logic gate is about 30dB. The structure of optical SR latch utilizes the two coupled polarization rotation switch of SOA. The structure of the flip-flop is based on these two parts. To demonstrate the feasibility of the structure, we analyze two types of flip-flops, including all-optical D and T flip-flops, whose clock pulse repetition rate is 1GHz with the pulse width of 0.3ns. The quality of all-optical flip-flop in this paper is measured by the falling and rising edge time. In the simulation, the falling edge time is about 50ps, while the rising edge time is higher than the falling edge time, because the gain increases slowly to the recovery time after the decrease of the gain of SOA. The results are useful for the development of all-optical flip-flop based on SOA.
Climate-Rotation Feedback on Mars
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1999-01-01
A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation [1-5], and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years [6-9]. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history?
Climate-Rotation Feedback on Mars
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1999-01-01
A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.
Relationship Between Sunspot Rotation and a Major Solar Eruption on 12 July 2012
NASA Astrophysics Data System (ADS)
Wang, Rui; Liu, Ying D.; Wiegelmann, Thomas; Cheng, Xin; Hu, Huidong; Yang, Zhongwei
2016-04-01
We present an analysis of Solar Dynamics Observatory (SDO) observations of an X1.4 class flare on 12 July 2012 (SOL2012-07-12T15:37L082C105), which was associated with a pronounced sunspot rotation in the associated active region. Based on the magnetograms taken with the Helioseismic and Magnetic Imager (HMI) on the SDO, we measured the rotational speed of the sunspot. We also used a technique, called the differential affine velocity estimator for vector magnetograms (DAVE4VM), to determine the horizontal velocities and the magnetic helicity flux transport. The helicity flux rate due to shearing motion changed sign after the onset of the eruption. A high correlation between the sunspot rotation speed and the change in the total accumulated helicity was found. We also calculated the net fluxes of the respective magnetic polarities and the net vertical currents. The net current in the region of interest showed a synchronous change with the sunspot rotation rate. The magnetic configurations of the sigmoid filament in the active region and the associated possible interaction between different structures were further investigated by means of a nonlinear force-free field extrapolation. We identified a possible magnetic reconnection region from the three-dimensional magnetic fields and its association with EUV structures. These results suggest that the major eruption of this active region was connected with the sunspot rotation.
Nonlinear Neural Network Oscillator.
A nonlinear oscillator (10) includes a neural network (12) having at least one output (12a) for outputting a one dimensional vector. The neural ... neural network and the input of the input layer for modifying a magnitude and/or a polarity of the one dimensional output vector prior to the sample of...first or a second direction. Connection weights of the neural network are trained on a deterministic sequence of data from a chaotic source or may be a
Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun
NASA Technical Reports Server (NTRS)
Antonucci, E.
1974-01-01
A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.
Differential rotation in rapidly rotating F-stars
NASA Astrophysics Data System (ADS)
Reiners, A.; Schmitt, J. H. M. M.
2003-12-01
We obtained high quality spectra of 135 stars of spectral types F and later and derived ``overall'' broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity v \\sini were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects of differential rotation. The broadening profiles of 70 stars rotating faster than v \\sini = 45 km s-1 show no indications of multiplicity nor of spottedness. In those profiles we used the ratio of the first two zeros of the Fourier transform q_2/q_1 to search for deviations from rigid rotation. In the vast majority the profiles were found to be consistent with rigid rotation. Five stars were found to have flat profiles probably due to cool polar caps, in three stars cuspy profiles were found. Two out of those three cases may be due to extremely rapid rotation seen pole on, only in one case (v \\sini = 52 km s-1) is solar-like differential rotation the most plausible explanation for the observed profile. These results indicate that the strength of differential rotation diminishes in stars rotating as rapidly as v \\sini >~ 50 km s-1. Table A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813 Based on observations collected at the European Southern Observatory, La Silla, 69.D-0015(B).
NASA Astrophysics Data System (ADS)
Ahmad, Harith; Hassan, Nor Ahya; Aidit, Siti Nabila; Tiu, Zian Cheak
2016-07-01
The applications of graphene thin film as a nonlinear medium and stabilizer to generate a stable multi-wavelength is proposed and demonstrated. A 50 m long highly nonlinear photonic crystal fiber (PCF) is incorporated into the cavity to achieve unstable multi-wavelength based on nonlinear polarization rotation (NPR) effect. By introducing the graphene thin film into the cavity, a stable multi-wavelength oscillation is obtained. The laser generates more than 7 lasings with constant spacing of 0.47 nm. The output is highly stable with power fluctuation of less than 3 dB within a period of 30 min. The multi-wavelength EDFL exhibits a tunability from the center wavelength of 1550 nm to 1560 nm.
Decker, Derek E.; Toeppen, John S.
1994-01-01
Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.