Science.gov

Sample records for nonlinear polarization rotation

  1. Nonlinear polarization rotation of two types of vector beams through isotropic Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Gu, Bing; Wen, Bo; Rui, Guanghao; Cui, Yiping

    2017-06-01

    We report a theoretical investigation of the spatial self-phase modulation (SSPM) effect and nonlinear ellipse rotation of both hybridly polarized vector beams and elliptically polarized vector beams through isotropic Kerr nonlinearities. It is demonstrated that the SSPM intensity pattern, the distribution of state of polarization, and the spin angular momentum (SAM) flux of a hybridly polarized vector beam could be manipulated by tuning the magnitude of the isotropic optical nonlinearity. Interestingly, we observed the radial-variant nonlinear ellipse rotation of elliptically polarized vector beams through isotropic Kerr nonlinearities. Our results may find interesting applications in nonlinear mechanism analysis, nonlinear characterization technique, and SAM manipulation.

  2. Polarization dynamics in dissipative soliton fiber lasers mode-locked by nonlinear polarization rotation.

    PubMed

    Kong, Lingjie; Xiao, Xiaosheng; Yang, Changxi

    2011-09-12

    We numerically studied the polarization dynamics in dissipative soliton lasers mode-locked by nonlinear polarization rotation (NPR). It was found that the polarization states of the intracavity dissipative soliton vary with time across the pulse. Depending on output coupling ratios, the polarization states of the pulse peak before the polarizer can be either nearly circular or nearly linear polarizations. The polarization dependent component in NPR is found to play a role of spectral filter under high and medium output coupling. However, NPR may work as a weak optical limiter under low output coupling, when additional spectral filtering is necessary to maintain steady mode-locking state.

  3. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-02-28

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.

  4. Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror.

    PubMed

    Tian, Jiajun; Yao, Yong; Sun, Yunxu; Yu, Xuelian; Chen, Deying

    2009-08-17

    A new multiwavelength Erbium-doped fiber laser is proposed and demonstrated. The intensity-dependent loss induced by nonlinear polarization rotation in a power-symmetric nonlinear optical loop mirror (NOLM) suppresses the mode competition of an Erbium-doped fiber and ensures stable multiwavelength operation at room temperature. The polarization state and its evolution conditions for stable multiwavelength operation in the ring laser cavity are discussed. The number and spectra region of output wavelength can be controlled by adjusting the work states of NOLM. (c) 2009 Optical Society of America

  5. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation.

    PubMed

    Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong

    2009-09-14

    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.

  6. Quasiequilibrium nonlinearities in Faraday and Kerr rotation from spin-polarized carriers in GaAs

    SciTech Connect

    Joshua, Arjun; Venkataraman, V.

    2010-01-04

    Semiconductor Bloch equations (SBEs), which microscopically describe optical properties in terms of the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. Recently, Nemec et al. reported circularly polarized pump-probe absorption spectra in the quasiequilibrium regime for carrier spin-polarized bulk GaAs at room temperature, which lacked a suitable microscopic theoretical understanding. We have very recently explained their results by solving the spin-SBEs in the quasiequilibrium regime (spin-Bethe-Salpeter equation), and accounted for spin-dependent mechanisms of optical nonlinearity. Here, we extend our theory to the microscopic calculation of Kerr and Faraday rotation in the quasiequilibrium regime, for which there are no experimental or theoretical results available.

  7. Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.

    1996-01-01

    Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.

  8. In situ measurement of light polarization with ellipticity-induced nonlinear magneto-optical rotation

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, Derek F.; Dudley, Jordan; Li, Yan; Patel, Dilan

    2017-09-01

    A precise, accurate, and relatively straightforward in situ method to measure and control the ellipticity of light resonantly interacting with an atomic vapor is described. The technique can be used to minimize vector light shifts. The method involves measurement of ellipticity-induced resonances in the magnetic-field dependence of nonlinear magneto-optical rotation of frequency-modulated light. The light propagation direction is orthogonal to the applied magnetic field B and the major axis of the light polarization ellipse is along B . When the light modulation frequency matches the Larmor frequency, elliptically polarized light produces a precessing atomic spin orientation transverse to B via synchronous optical pumping. The precessing spin orientation causes optical rotation oscillating at the Larmor frequency by modulating the atomic vapor's circular birefringence. Based on this technique's precision, in situ nature (which avoids systematic errors arising from optical interfaces) and independent control of the most important systematic errors, it is shown that the accuracy of light ellipticity measurements achievable with this technique can exceed that of existing methods by orders of magnitude.

  9. Switchable multiwavelength fiber laser using erbium-doped twin-core fiber and nonlinear polarization rotation

    NASA Astrophysics Data System (ADS)

    Lian, Yudong; Ren, Guobin; Zhu, Bofeng; Gao, Yixiao; Jian, Wei; Ren, Wenhua; Jian, Shuisheng

    2017-05-01

    We propose and demonstrate a switchable multiwavelength fiber laser using erbium-doped twin-core fiber (ED-TCF) and nonlinear polarization rotation (NPR). The number switchability of lasing wavelengths being switched from 1 to 4 and wavelength location switchability could be achieved simultaneously in the proposed configuration with a wavelength spacing of 1.1 nm and an optical signal to noise ratio (OSNR) larger than 43 dB. The output laser powers at different wavelengths are nearly the same with a fluctuation less than 2 dB. The proposed fiber laser shows good stability with wavelength shift within 0.01 nm and peak power fluctuation less than 5 dB. The proposed fiber laser has the advantages of simple structure and stable operation.

  10. Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Vegas Olmos, J. J.; Tafur Monroy, I.; Liu, Y.; Garcia Larrode, M.; Turkiewicz, J.; Dorren, H. J. S.; Koonen, A. M. J.

    2004-09-01

    We demonstrate an all-optical label and payload separator based on nonlinear polarization rotation in a semiconductor optical amplifier (SOA). The proposed scheme uses a packet format composed of a label and payload information signal combined with a control signal by using polarization division multiplexing. The control signal is employed to separate the label from the payload signal by exploiting nonlinear polarization rotation in a SOA. Experimental results show a label from payload suppression factor of 22 dB. This scheme operates asynchronously and does not need external control signal. Clean and wide open eye diagrams are obtained for both the payload and the label signal operating at bit-rates of 10 Gbit/s and 625 Mbit/s, respectively.

  11. Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier.

    PubMed

    Vegas Olmos, J; Monroy, I; Liu, Y; Garcia Larrode, M; Turkiewicz, J; Dorren, H; Koonen, A

    2004-09-06

    We demonstrate an all-optical label and payload separator based on nonlinear polarization rotation in a semiconductor optical amplifier (SOA). The proposed scheme uses a packet format composed of a label and payload information signal combined with a control signal by using polarization division multiplexing. The control signal is employed to separate the label from the payload signal by exploiting nonlinear polarization rotation in a SOA. Experimental results show a label from payload suppression factor of 22 dB. This scheme operates asynchronously and does not need external control signal. Clean and wide open eye diagrams are obtained for both the payload and the label signal operating at bit-rates of 10 Gbit/s and 625 Mbit/s, respectively.

  12. A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber.

    PubMed

    Chow, K K; Yamashita, S; Song, Y W

    2009-04-27

    We demonstrate widely tunable wavelength conversion based on cross-phase modulation induced nonlinear polarization rotation in a carbon nanotubes (CNTs) deposited D-shaped fiber. A 5-centimeter-long CNT-deposited D-shaped fiber is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero signal. Wavelength tunable converted signal over 40 nm is obtained with around 2.5-dB power penalty in the bit-error-rate measurements.

  13. Generation of FCC-compliant and background-free millimeter-wave ultrawideband signal based on nonlinear polarization rotation in a highly nonlinear fiber.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Liu, Jian Guo; Zhu, Ning Hua

    2014-05-05

    We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).

  14. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  15. Passively harmonic mode-locked pulses in thulium-doped fiber laser based on nonlinear polarization rotation

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Ma, Wanzhuo; Liu, Peng; Zhang, Peng; Bo, Baoxue; Zhang, Yan

    2016-10-01

    A simple approach to generate passively harmonic mode-locked pulse trains in thulium-doped fiber laser based on nonlinear polarization rotation is proposed and demonstrated. Three different ways of mode-locked techniques have been employed in our structure to generate passively high-order harmonic mode-locked pulse trains; 128th-order passively harmonic mode-locked pulse train is achieved in the experiment and the repetition rate is 406.8 MHz. With the increase of the pump power, multiwavelength output can be tuned. A segment of dispersion compensation fiber is used to compensate the dispersion in the cavity; thus, the single pulse width is compressed from 617 to 48 ps.

  16. Soliton mode locking by nonlinear Faraday rotation

    SciTech Connect

    Wabnitz, S.; Westin, E.; Frey, R.; Flytzanis, C.

    1996-11-01

    We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation. {copyright} {ital 1996 Optical Society of America.}

  17. An all-reflective polarization rotator

    NASA Astrophysics Data System (ADS)

    Bohus, J.; Budai, Judit; Kalashnikov, M.; Osvay, K.

    2017-05-01

    The conceptual design and proof of principle experimental results of a polarization rotator based on mirrors are presented. The device is suitable for any-angle, online rotation of the plane of polarization of high peak intensity ultrashort laser pulses. Controllable rotation of the polarization vector of short laser pulses with a broad bandwidth requires achromatic retarding plates which have a limited scalability and the substantial plate thickness can lead to pulse broadening and inaccurate polarization rotation. Polarization rotators based on reflective optical elements are preferable alternatives to wave plates especially when used in high average power or high peak intensity ultra-short laser systems. The control of the polarization state is desirable in many laser-matter interaction experiments e.g., high harmonic and attosecond pulse generation, electron, proton and ion acceleration, electron-positron pair creating, vacuum nonlinear polarization effect. The device can also serve as a beam attenuator, in combination with a linear polarizer.

  18. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    PubMed

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  19. Study on the nonlinear polarization rotation law in a bulk semiconductor optical amplifier in a pump-probe scheme

    NASA Astrophysics Data System (ADS)

    Feng, Xianghua; Ji, Jiarong; Dou, Wenhua; Zhang, Guomin

    2012-10-01

    The physical mechanisms for the polarization rotation of the light in a bulk semiconductor optical amplifier (SOA) originate from the significant nonuniform distributions of carrier density across the active region. Due to this carrier density's nonuniformity, the effective refractive indexes experienced by transverse-electric (TE) and transverse-magnetic (TM) modes of the probe are different. This results in a phase shift between TE and TM modes of the light upon leaving the SOA. The bulk SOA polarization rotation's law can be analyzed theoretically and experimentally based on the method of measuring output power in a pump-probe scheme. The experiment employs polarizer driving by walking electromotor and power meter, the light power of every orientation is measured. The transformation law of output polarization is find for obvious polarization rotation in other perpendicular axes based on connection of ellipse in difference axes.

  20. New time-space-time optical packet switching node based on nonlinear polarization rotation of a semiconductor optical amplifier.

    PubMed

    Yongjun, Wang; Qinghua, Tian; Zhi, Wang; Xiaoqing, Zhu; Chen, Wu; Chao, Shang; Xin, Xiangjun

    2016-03-10

    In this paper, we establish a simple model to analyze the semiconductor optical amplifier's (SOA) nonlinear polarization rotation (NPR) and acquire the variable curves of phase difference between TE and TM modes with bias current, pump power, probe power, and linewidth enhancement factor (LEF). The results indicate that the optical switch based on the SOA's NPR can be realized by changing the pump's optical power and the main operating parameters, such as bias current and hold beam power, and then the pump power can be determined. On this basis, a time-space-time (T-S-T) optical packet switching node is proposed, in which the SOA's NPR switch is the basic element. Then, the T-S and S-T experimental systems are set up, and the experimental results demonstrate that the proposed switch scheme can implement the optical switching function in accordance with the routing requirement. The signal-to-noise ratio (SNR) exceeds 20 dB, and the extinction ratio (ER) is more than 10 dB after being delayed and switched in the node.

  1. Passively Q-switched mode-locking Erbium-doped fiber laser with net-normal dispersion using nonlinear polarization rotation technique

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Xu, W. C.; Luo, Z. C.; Cao, W. J.; Luo, A. P.; Dong, J. L.; Wang, H. Y.

    2011-10-01

    We experimentally demonstrate a passively Q-switched mode-locking (QML) operation in an Erbium-doped fiber ring laser with net normal dispersion by using nonlinear polarization rotation technique. A 2 m long section of dispersion compensating fiber (DCF) with extra large positive dispersion was inserted into the cavity to ensure the fiber laser working in the region of net positive dispersion. By carefully adjusting the polarization controller, both uniform dissipative mode-locking pulses with fundamental repetition rate and QML pulse trains with tunable repetition rate from 71.58 to 98.83 kHz are achieved. It is found that the QML operation is caused by the interaction between the polarization state of the pulse and the intracavity polarizer.

  2. Polarization and fiber nonlinearities

    NASA Astrophysics Data System (ADS)

    Lin, Qiang

    This thesis is devoted to a thorough investigation of various nonlinear phenomena in optical fibers over a variety of length, time, and power scales. It presents a unified theoretical description of fiber nonlinearities, their applications, existing problems, and possible solutions, particularly focusing on the polarization dependence of nonlinearities. The thesis begins with an investigation of quantum-correlated photon pair generation in the extremely low-power regime, and fundamental quantum noise properties of dual-pump parametric amplfiers in the very high gain regime. It then focuses on two experimental demonstrations of applications based on four-wave mixing: an ultrafast all-optical switching scheme with the capability of multi-band wavelength casting, and a subpicosecond parametric oscillator with broadband tunability. The thesis next deals with the theoretical and experimental investigation of a novel phenomenon of vector soliton fission during supercontinuum generation in a tapered fiber in the femtosecond regime. The vectorial nature of Raman scattering is discussed next. In particular, I propose a vector form of the Raman response function to descibe accurately the Raman-related phenomena during ultrashort pulse propagation inside optical fibers. The thesis also presents a unified theory to describe nonlinearities in long fibers with random birefringence and polarization-mode dispersion. It focuses on the statistical nature of the interactions between random polarization-mode disperion and various nonlinear effects like stimulated Raman scattering, cross-phase modulation, four-wave mixing, and self-phase modulation. In particular, I quantify their impacts on various nonlinear photonic functionalities such as Raman amplification, nonlinear optical switching, parametric amplfication, wavelength conversion, soliton stability, etc.

  3. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  4. Supercontinuum generation based on all-normal-dispersion Yb-doped fiber laser mode-locked by nonlinear polarization rotation: Influence of seed's output port

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaosheng; Hua, Yi

    2016-10-01

    All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.

  5. Nonlinear polarization evolution of hybridly polarized beams by isotropic Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Gu, Bing; Wen, Bo; Rui, Guanghao; Cui, Yiping

    2016-11-01

    Theoretically, we propose an investigation of the vectorial light field interacting with the isotropic Kerr medium. We obtain the analytical expression of the focal field of the hybrid polarized beam based on the vectorial Rayleigh-Sommerfeld formulas under the paraxial condition. Then we numerically simulate the far-field vectorial self-diffraction behavior and nonlinear ellipse rotation of a hybrid polarized beam by isotropic Kerr nonlinearity. Experimentally, we observe the vectorial self-diffraction behavior of the femtosecond-pulsed hybridly polarized beam in carbon disulfide at 800 nm, which is in agreement with the theoretical predictions. Our results demonstrate that the self-diffraction intensity pattern and the distribution of state of polarization (SoP) of a hybridly polarized beam could be manipulated by tuning the magnitude of the isotropic optical nonlinearity, which may find interesting applications in nonlinear mechanism analysis, nonlinear characterization technique, and spin angular momentum (SAM) manipulation.

  6. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    SciTech Connect

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-07-15

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized {pi}electrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized {pi} electrons along an extended group of atoms in such molecules.

  7. Polarization Rotator For LCTV Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard; Soutar, Colin

    1995-01-01

    Polarization varies electronically to select complex-amplitude operating curve. Curve best suited to specific optical-correlator task selected rapidly and repeatedly by use of simple electronic command. Operating curves adjusted only with difficulty, by mechanical rotation of polarizer. Contains electronically-variable polarization-rotating device in place of fixed polarizer, and possibly additional device in place of fixed analyzer.

  8. Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator.

    PubMed

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2015-07-27

    We report polarization independent Bragg grating wavelength filter with high diffraction efficiency. A rib waveguide polarization rotator and antisymmetric grating structure for fundamental to first order diffraction are used to generate the polarization rotation Bragg diffraction. The diffraction efficiencies and peak wavelengths become the same for two orthogonal input polarizations. Strong diffraction is attained easily. The concept was verified by simulation and experiment. Polarization independent band-pass filter consisting of polarization beam splitter and polarization rotation Bragg diffraction was experimentally demonstrated.

  9. Dual-band wavelength tunable nonlinear polarization rotation mode-locked Erbium-doped fiber lasers induced by birefringence variation and gain curvature alteration.

    PubMed

    Lin, Sheng-Fong; Lin, Gong-Ru

    2014-09-08

    With the combining effects of the fiber birefringence induced round-trip phase variation and the gain profile reshaping induced spectral filtering in the Erbium-doped fiber laser (EDFL) cavity, the mechanism corresponding to the central wavelength tunability of the EDFL passively mode-locked by nonlinear polarization rotation is explored. Bending the intracavity fiber induces the refractive index difference between orthogonal axes, which enables the dual-band central wavelength shift of 2.9 nm at 1570 nm region and up to 10.2 nm at 1600 nm region. The difference between the wavelength shifts at two bands is attributed to the gain dispersion decided by the gain spectral curvature of the EDFA, and the spacing between two switchable bands is provided by the birefringence induced variation on phase delay which causes transmittance variation. In addition, the central wavelength shift can also be controlled by varying the pumping geometry. At 1570 nm regime, an offset of up to 5.9 nm between the central wavelengths obtained under solely forward or backward pumping condition is observed, whereas the bidirectional pumping scheme effectively compensates the gain spectral reshaping effects to minimize the central wavelength shift. In contrast, the wavelength offset shrinks to only 1.1 nm when mode-locking at 1600 nm under single-sided pumping, as the gain profile strongly depends on the spatial distribution of the excited erbium ions under different pumping schemes. Except the birefringence variation and the gain spectral filtering phenomena, the gain-saturation mechanism induced refractive index change and its influence to the dual-band central wavelength tunability are also observed and analyzed.

  10. Nonlinear electrodynamics and CMB polarization

    SciTech Connect

    Cuesta, Herman J. Mosquera; Lambiase, G. E-mail: lambiase@sa.infn.it

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  11. Experimental realization of coherent perfect polarization rotation.

    PubMed

    Zhou, Chuanhong; Andrews, James H; Crescimanno, Michael

    2016-05-15

    Coherent perfect processes enable high optical efficiencies in optical conversion phenomena such as coherent perfect absorption or coherent perfect polarization rotation. A linear optical coherent perfect process based on Faraday rotation has been evaluated experimentally, achieving contrast limited by other optical components of the system and demonstrating like-parity resonance doublets above threshold.

  12. Transmission intensity disturbance in a rotating polarizer

    NASA Astrophysics Data System (ADS)

    Fan, J. Y.; Li, H. X.; Wu, F. Q.

    2008-01-01

    Random disturbance was observed in transmission intensity in various rotating prism polarizers when they were used in optical systems. As a result, the transmitted intensity exhibited cyclic significant deviation from the Malus cosine-squared law with rotation of prisms. The disturbance spoils the light quality transmitted through the polarizer thus dramatically depresses the accuracies of measurements when the prim polarizers were used in light path. A rigorous model is presented based on the solid basis of multi-beams interference, and theoretical results show good agreement with measured values and also indicate effective method for reducing the disturbance.

  13. Reducing parametric backscattering by polarization rotation

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less

  14. Reducing parametric backscattering by polarization rotation

    SciTech Connect

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  15. Reducing parametric backscattering by polarization rotation

    SciTech Connect

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  16. Polarization rotation, reference frames, and Mach's principle

    NASA Astrophysics Data System (ADS)

    Brodutch, Aharon; Terno, Daniel R.

    2011-12-01

    Polarization of light rotates in a gravitational field. The accrued phase is operationally meaningful only with respect to a local polarization basis. In stationary space-times, we construct local reference frames that allow us to isolate the Machian gravimagnetic effect from the geodetic (mass) contribution to the rotation. The Machian effect is supplemented by the geometric term that arises from the choice of standard polarizations. The phase accrued along a close trajectory is gauge-independent and is zero in the Schwarzschild space-time. The geometric term may give a dominant contribution to the phase. We calculate polarization rotation for several trajectories and find it to be more significant than is usually believed, pointing to its possible role as a future gravity probe.

  17. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Although the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  18. Electrically rotating suspended films of polar liquids

    NASA Astrophysics Data System (ADS)

    Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.

    2011-02-01

    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.

  19. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  20. Polarization Properties of Rotation Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding Alice K.

    2009-01-01

    Polarization measurements of rotation-powered pulsars and their nebulae have unique diagnostic potential. The polarization position angle of the pulsar wind nebula, as is know for the Crab pulsar, can tell us the orientation of the spin axis. Phase-resolved polarimetry of pulsars has had enormous diagnostic capability at radio and optical wavelengths and could also be a powerful diagnostic in the X-ray range. Measurement of the polarization properties as a function of pulse phase can therefore provide a multidimensional mapping of the pulsar emission. In the 'rotating vector' model, radiation originating near a magnetic pole is expected to show a characteristic S-shaped swing of the position angle vs. pulse phase. In this case it is possible to determine the magnetic inclination and viewing angles. Radiation originating further from the poles or further above the neutron star surface will have a more complex polarization signature, as a result of relativistic effects of aberration and time-of-flight delays and may also cause depolarization of the signal. I will discuss predicted polarization properties of pulsed emission in polar cap models, where radiation originates near the neutron star surface at the magnetic poles, and in slot gap and outer gap models, where radiation originates over a range of altitudes out to the speed-of-light cylinder.

  1. Rotating black string with nonlinear source

    SciTech Connect

    Hendi, S. H.

    2010-09-15

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  2. Wave Modes Trapped in Rotating Nonlinear Potentials

    NASA Astrophysics Data System (ADS)

    Li, Yongyao; Pang, Wei; Malomed, Boris A.

    We study modes trapped in a rotating ring with the local strength of the nonlinearity modulated as \\cos (2θ ) , where θ is the azimuthal angle. This modulation pattern may be of three different types: self-focusing (SF), self-defocusing (SDF), and alternating SF-SDF. The model, based on the nonlinear Schrödinger (NLS) equation with periodic boundary conditions, applies to the light propagation in a twisted pipe waveguide, and to a Bose-Einstein condensate (BEC) loaded into a toroidal trap, under the action of the rotating nonlinear pseudopotential induced by means of the Feshbach resonance in an inhomogeneous external field. This is the difference from the recently considered similar setting with the rotating linear potential. In the SF, SDF, and alternating regimes, four, three, and five different types of stable trapped modes are identified, respectively: even, odd, second-harmonic (2H), symmetry-breaking, and 2H-breaking ones. The shapes and stability of these modes, together with transitions between them, are investigated in the first rotational Brillouin zone. Ground-state modes are identified in each regime. Boundaries between symmetric and asymmetric modes are also found in an analytical form, by means of a two-mode approximation.

  3. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based, analytical estimation for the reflectivity reduction agrees with simulations. This work was supported by NNSA Grant No. DE- NA0002948, AFOSR Grant No. FA9550-15-1-0391, and DOE Contract No. DE-AC02-09CH11466.

  4. Polarization Shaping for Control of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M.; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W.

    2016-12-01

    We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization—radially symmetric vector beams and Poincaré beams with lemon and star topologies—in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  5. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  6. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  7. Nonlinear chiral plasma transport in rotating coordinates

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Kilinçarslan, Eda

    2017-08-01

    The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.

  8. Nonlinear magneto-optical rotation with frequency-modulated light

    NASA Astrophysics Data System (ADS)

    Kimball, Derek Forrest

    We demonstrate a magnetometric technique suitable for precision measurements of fields ranging from the sub-microgauss level to above the Earth field. It is based on resonant nonlinear magneto-optical rotation (NMOR) caused by alkali atoms contained in a vapor cell with anti-relaxation (paraffin) wall coating. The physical mechanisms causing NMOR are discussed in detail, with particular attention paid to the role of optically induced atomic polarization---responsible for the ultra-narrow (˜1 Hz) NMOR resonances we employ for magnetometric measurements. Linearly polarized, frequency-modulated laser light is used for optical pumping and probing. If the time-dependent optical rotation is measured at the first harmonic of the modulation frequency Om, ultra-narrow resonances are observed at near-zero magnetic fields, and at fields where the Larmor frequency OL is an integer multiple of the light modulation frequency. We demonstrate a sensitivity of 5 x 10-10G/ Hz and show that the projected magnetometric sensitivity of the technique can exceed 10-11G/ Hz . The technique of nonlinear magneto-optical rotation with frequency-modulated light (FM NMOR) allows selective generation and study of atomic polarization moments of up to the highest rank kappa = 2F possible for a quantum state with total angular momentum F. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We study the FM NMOR signals from various optically induced polarization moments of Rb atoms. We also report on the use of an atomic magnetometer based on FM NMOR to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample, prepared remotely to the detection apparatus, is measured with an atomic sensor. An average magnetic field of ˜10 nG induced by the xenon sample on the atomic sensor is detected with signal

  9. Multiwavelength Polarization of Rotation-powered Pulsars

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Kalapotharakos, Constantinos

    2017-05-01

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and γ-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ-ray spectral components would indicate that CR is the γ-ray emission mechanism.

  10. Submicron omega-shaped plasmonic polarization rotator

    NASA Astrophysics Data System (ADS)

    Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.

    2014-10-01

    In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.

  11. All-optical pulse regeneration in an ultrafast nonlinear interferometer with Faraday mirror polarization stabilization

    NASA Astrophysics Data System (ADS)

    Savage, Shelby J.; Robinson, Bryan S.; Hamilton, Scott A.; Ippen, Erich P.

    2003-01-01

    We demonstrate the folded ultrafast nonlinear interferometer (FUNI) as a 3R all-optical regenerator. Faraday rotation provides inherent polarization stabilization, and the optical fiber nonlinear medium provides ultrafast operation and switching window tunability. We demonstrate 3R regeneration of 10-Gbit/s data with 5-pJ pulse switching energy and 4-ps timing-jitter tolerance.

  12. All-optical pulse regeneration in an ultrafast nonlinear interferometer with Faraday mirror polarization stabilization.

    PubMed

    Savage, Shelby J; Robinson, Bryan S; Hamilton, Scott A; Ippen, Erich P

    2003-01-01

    We demonstrate the folded ultrafast nonlinear interferometer (FUNI) as a 3R all-optical regenerator. Faraday rotation provides inherent polarization stabilization, and the optical fiber nonlinear medium provides ultrafast operation and switching window tunability. We demonstrate 3R regeneration of 10-Gbit/s data with 5-pJ pulse switching energy and 4-ps timing-jitter tolerance.

  13. Extremely compact slanted waveguide hybrid plasmonic polarization rotator

    NASA Astrophysics Data System (ADS)

    Nikoufard, Mahmoud; Hatami, Mohsen

    2017-01-01

    In this study, we proposed a novel slanted waveguide hybrid plasmonic polarization splitter based on mode evolution at 1.55 μm wavelength on silicon-on-insulator technology. The TM polarization is rotated to the TE polarization with a conversion length of 370 nm, polarization conversion efficiency of 85% and polarization extinction ratio larger than 18 dB.

  14. Ultra-thin, single-layer polarization rotator

    SciTech Connect

    Son, T. V.; Truong, V. V.; Do, P. A.; Haché, A.

    2016-08-15

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  15. Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.; Lambiase, Gaetano; Pereira, Jonas P.

    2017-01-01

    Huge electromagnetic fields are known to be present during the late stages of the dynamics of supernovae. Thus, when dealing with electrodynamics in this context, the possibility may arise to probe nonlinear theories (generalizations of the Maxwellian electromagnetism). We firstly solve Einstein field equations minimally coupled to an arbitrary (current-free) nonlinear Lagrangian of electrodynamics (NLED) in the slow rotation regime a ≪M (black hole's mass), up to first order in a /M . We then make use of the robust and self-contained Born-Infeld Lagrangian in order to compare and contrast the physical properties of such NLED spacetime with its Maxwellian counterpart (a slowly rotating Kerr-Newman spacetime), especially focusing on the astrophysics of both neutrino flavor oscillations (νe→νμ , ντ ) and spin-flip (νl→νr, "l " stands for "left" and "r " stands for "right", change of neutrino handedness) mass level crossings, the equivalent to gyroscopic precessions. Such analysis proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), intrinsically associated with the assumption the electromagnetism is nonlinear, the neutrino dynamics in core-collapse supernovae could be significantly changed. In such an astrophysical environment, a positive enhancement (reduction of the electron fraction Ye<0.5 ) of the r-process may take place. Consequently, it might result in hyperluminous supernova explosions due to enlargement, in atomic number and amount, of the decaying nuclides. Finally, we envisage some physical scenarios that may lead to short-lived charged black holes with high charge-to-mass ratios (associated with unstable highly magnetized neutron stars) and ways to possibly disentangle theories of the electromagnetism from other black hole observables (by means of light polarization measurements).

  16. Nonlinearity in thermally active and rotating plasmas

    NASA Astrophysics Data System (ADS)

    Chin, Robert

    The wide reaching nature of plasma physics will be studied here, with the applications of both the large scale, of solar plasma physics and then decreasing by many orders of magnitude to the laboratory plasma, of magnetically confined fusion experiments. Part I The nonlinear evolution of magnetoacoustic waves in a nonadiabatic plasma are investigated analytically. The effect of plasma activity due to linear and quadratic heating and radiative cooling on propagating magnetoacoustic waves in a uniform plasma are considered. A non-linear evolution equation is derived and stationary solutions are looked for the various combination of signs of the linear and quadratic heating-cooling terms, which determine the thermal activity of the plasma. It is shown that self-organizing magnetoacoustic waves (autowaves) exist in an active plasma. These wave have amplitudes that are independent from the initial conditions and function of plasma properties only. Their potential diagnostic purposes are discussed. Furthermore, magnetoacoustic auto-solitary waves are shown to exist. They have been modelled using a novel perturbative technique which allows to determine their propagation speed and shape. Part II Equilibria of MAST-like plasmas with transonic toroidal flows are calculated numerically in the framework of two-fluid theory [Thyagaraja and McClements, 2006] using a fixedboundary equilibrium solver, GRASS.In the non-dissipative limit, with momentum sources neglected, two-fluid analysis leads to interdependence between the rotation, temperature and density profiles, and the possibility of a departure from rigid-body rotation of flux surfaces. The effects of toroidal flows on the position of the magnetic axis, the plasma safety factor profile and the density profile are determined for a range of scenarios, including rigid body rotation. The electron temperature and ion temperature are assumed to be flux functions, with profiles that are broadly consistent with measurements from

  17. Tunable Polarization Conversion and Rotation based on a Reconfigurable Metasurface.

    PubMed

    Zhang, M; Zhang, W; Liu, A Q; Li, F C; Lan, C F

    2017-09-21

    Polarization is an important property of electromagnetic (EM) wave and different polarization manipulations are required for varied optical applications. Here we report a reconfigurable metasurface which achieves both the polarization conversion and the polarization rotation in THz regime. The metasurface is reconfigured through the micro-electro-mechanical-systems (MEMS) actuation. The cross polarization transmittance from a linear polarized incidence is experimentally tuned from 0 to 28% at 2.66 THz. In addition, the polarization rotation angle is effectively changed from -12.8° to 13.1° at 1.78 THz. The tunable bi-functional metasurface for polarization conversion and the polarization rotation can be flexibly applied in various applications such as imaging, polarization microscopy and material analysis, etc.

  18. Collision Dynamics of Polarized Solitons in Linearly Coupled Nonlinear Schroedinger Equations

    SciTech Connect

    Todorov, Michail D.; Christov, Christo I.

    2011-04-07

    The system of linearly coupled nonlinear Schroedinger equations is solved by a conservative difference scheme in complex arithmetic. The initial condition represents a superposition of two one-soliton solutions of linear polarizations. The head-on and takeover interaction of the solitons and their quasi-particle (QP) behavior is examined in conditions of rotational polarization and gain. We found that the polarization angle of a quasi-particle can change independently of the collision.

  19. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  20. Edge localized mode rotation and the nonlinear dynamics of filaments

    SciTech Connect

    Morales, J. A.; Bécoulet, M.; Garbet, X.; Dif-Pradalier, G.; Huijsmans, G. T. A.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.; Orain, F.; Hoelzl, M.; Pamela, S.; Cahyna, P.

    2016-04-15

    Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.

  1. Edge localized mode rotation and the nonlinear dynamics of filaments

    NASA Astrophysics Data System (ADS)

    Morales, J. A.; Bécoulet, M.; Garbet, X.; Orain, F.; Dif-Pradalier, G.; Hoelzl, M.; Pamela, S.; Huijsmans, G. T. A.; Cahyna, P.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.

    2016-04-01

    Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.

  2. Note: Fast, small, accurate 90° rotator for a polarizer.

    PubMed

    Shelton, David P; O'Donnell, William M; Norton, James L

    2011-03-01

    A permanent magnet stepper motor is modified to hold a dichroic polarizer inside the motor. Rotation of the polarizer by 90° ± 0.04° is accomplished within 80 ms. This device is used for measurements of the intensity ratio for two orthogonal linear polarized components of a light beam. The two selected polarizations can be rapidly alternated to allow for signal drift compensation, and the two selected polarizations are accurately orthogonal.

  3. Optimization of a rubidium magnetometer based on nonlinear optical rotation

    NASA Astrophysics Data System (ADS)

    Chan, Lok Fai; Jacome, L. R.; Guttikonda, Srikanth; Bahr, Eric; Kimball, Derek

    2009-11-01

    Atomic spin polarization of alkali atoms in the ground state can survive thousands of collisions with paraffin-coated cell walls. The resulting long spin-relaxation times achieved in evacuated, paraffin-coated cells enable precise measurement of atomic spin precession and energy shifts of ground-state Zeeman sublevels. In the present work, nonlinear magneto-optical rotation with frequency-modulated light (FM NMOR) is used to measure magnetic-field-induced spin precession for rubidium atoms contained in a paraffin-coated cell. We discuss optimization of the shot-noise-projected magnetometer sensitivity and practical implementation of the Rb magnetometer. The magnetometer will be applied to searches for anomalous spin-dependent interactions of the proton.

  4. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids.

    PubMed

    Tao, J J; He, X T; Ye, W H; Busse, F H

    2013-01-01

    It is demonstrated theoretically that the nonlinear stage of the Rayleigh-Taylor instability can be retarded at arbitrary Atwood numbers in a rotating system with the axis of rotation normal to the acceleration of the interface between two uniform inviscid fluids. The Coriolis force provides an effective restoring force on the perturbed interface, and the uniform rotation will always decrease the nonlinear saturation amplitude of the interface at any disturbance wavelength.

  5. Polarization of a probe laser beam due to nonlinear QED effects

    NASA Astrophysics Data System (ADS)

    Shakeri, Soroush; Kalantari, Seyed Zafarollah; Xue, She-Sheng

    2017-01-01

    Nonlinear QED interactions induce different polarization properties on a given probe beam. We consider the polarization effects caused by the photon-photon interaction in laser experiments, when a laser beam propagates through a constant magnetic field or collides with another laser beam. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian for both time-dependent and constant background field to explore the time evolution of the Stokes parameters Q, U, and V describing polarization. Assuming an initially linearly polarized probe laser beam, we also calculate the induced ellipticity and rotation of the polarization plane.

  6. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  7. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Jacobitz, F. G.; Schneider, K.; Cambon, C.

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  8. Apodised aperture using rotation of plane of polarization

    DOEpatents

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-09-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)

  9. Rotation of polarization by a moving gravitational lens

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2017-06-01

    We present a simple prescription for the rotation of polarization produced by a relativistically moving gravitational lens, applicable to arbitrary deflection angle and arbitrary velocity of the lens. When geometric optics is applicable, two independent components contribute to the total rotation of polarization: (i) in the frame of the lens the polarization vector experiences minimal rotation defined by the deflection angle (as measured by a set of remote observers, or no rotation if defined in terms of a parallel-propagated tetrad); (ii) the effect of the motion of the lens on the polarization can be taken into account exactly using special-relativistic Lorentz transformation of polarization. The effects of the gravitational lensing are thus parametrized by the deflection angle of the null geodesics (not necessarily small) and the motion of the lens (not necessarily with velocities much smaller than that of light).

  10. Measurement of Small Optical Polarization Rotations

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…

  11. Measurement of Small Optical Polarization Rotations

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…

  12. Polarization rotation under two-photon Raman resonance for magnetometry

    SciTech Connect

    Pradhan, S.; Behera, R.; Das, A. K.

    2012-04-23

    The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.

  13. Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation

    NASA Astrophysics Data System (ADS)

    Faccio, Daniele; Wright, Ewan M.

    2017-03-01

    The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than forty years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-P T symmetry induced by the medium rotation.

  14. Polarization due to rotational distortion in the bright star Regulus

    NASA Astrophysics Data System (ADS)

    Cotton, Daniel V.; Bailey, Jeremy; Howarth, Ian D.; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Lucas, P. W.; Hough, J. H.

    2017-09-01

    Polarization in stars was first predicted by Chandrasekhar1, who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry was broken, for example, by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins2 modelled another way of breaking the symmetry and producing net polarization—the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 ppm at a wavelength of 741 nm to -22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars, we find that Regulus is rotating at 96.5-0.8+0.6% of its critical angular velocity for break-up, and has an inclination greater than 76.5°. The rotation axis of the star is at a position angle of 79.5 ± 0.7°. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus3. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments4 and the course of their evolution5.

  15. Quantitative nonlinear dielectric microscopy of periodically polarized ferroelectric domains

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Duewer, Fred; Lu, Yalin; Xiang, X.-D.

    1998-08-01

    A nonlinear dielectric scanning tip microwave near-field microscope capable of submicron quantitative imaging of nonlinear dielectric constant was developed. This nondestructive technique was used to image the nonlinear dielectric constant profiles of an yttrium-doped LiNbO3 single crystal with periodically polarized ferroelectric domains.

  16. Nonlinear ellipse rotation modified Z-scan measurements of third-order nonlinear susceptibility tensor.

    PubMed

    Liu, Zhi-Bo; Yan, Xiao-Qing; Tian, Jian-Guo; Zhou, Wen-Yuan; Zang, Wei-Ping

    2007-10-01

    We present a method that combines the Z-scan technique with nonlinear ellipse rotation (NER) to measure third-order nonlinear susceptibility components. The experimental details are demonstrated, and a comprehensive theoretical analysis is given. The validity of this method is verified by the measurements of the nonlinear susceptibility tensor of a well-characterized liquid, CS2.

  17. Prediction of Earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.

    1981-01-01

    Based on the analysis of the polar motion behavior, the possibility of predicting polar motion up to one year in advance was found. Comparing these predicted polar coordinates with the observed ones (smoothed), the root mean square (rms) of the differences is about 0.02 seconds. The differences of the relative polar motion are much smaller. For any time interval of 20 to 30 days throughout the whole year, the rms of the relative polar motion differences is about 0.01 second. Compared with the best available VLBI results (from 1977 to 1980), the rms of pred. to obs. is 0.013 seconds, and the relative rms (for time intervals less than two months) is 0.008 seconds (here the observed data is unsmoothed). It appears that 80 to 90% of the polar motion is composed of the stable, predictable Chandler and annual terms. The UT1-UTC has more complicated changes than polar motion making it difficult to find a satisfactory method of long term prediction. So far the rms prediction error is 0.0023 s for up to 30 days.

  18. Hamiltonian chaos in nonlinear optical polarization dynamics

    NASA Astrophysics Data System (ADS)

    David, D.; Holm, D. D.; Tratnik, M. V.

    1990-03-01

    This paper applies Hamiltonian methods to the Stokes representation of the one-beam and two-beam problems of polarized optical pulses propagating as travelling waves in nonlinear media. We treat these two dynamical systems as follows. First, we use the reduction method of Marsden and Weinstein to map each of the systems to the two-dimensional sphere, S 2. The resulting reduced systems are then analyzed from the viewpoints of their stability properties and of bifurcations with symmetry; in particular, several degenerate bifurcations are found and described. We also establish the presence of chaotic dynamics in these systems by demonstrating the existence of Smale horseshoe maps in the three- and four-dimensional cases, as well as Arnold diffusion in the higher-dimensional cases. The method we use to establish such complex dynamics is the Mel'nikov technique, as extended by Holmes and Marsden, and Wiggins for the higher-dimensional cases. These results apply to perturbations of homoclinic and heteroclinic orbits of the reduced integrable problems for static, as well as travelling-wave, solutions describing either a single opt ical beam, or two such beams counterpropagating. Thus, we show that these optics problems exhibit complex dynamics and predict the experimental consequences of this dynamics.

  19. Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave

    SciTech Connect

    Sharma, R. P. Sharma, Swati Gaur, Nidhi

    2014-07-15

    The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.

  20. Integrated polymer polarization rotator based on tilted laser ablation

    NASA Astrophysics Data System (ADS)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide

  1. Solar polar rotation and its effect on heliospheric neutral fluxes

    NASA Astrophysics Data System (ADS)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  2. High-resolution nonlinear ellipse rotation measurements for 3D microscopy

    NASA Astrophysics Data System (ADS)

    Miguez, M. L.; Barbano, E. C.; Coura, J. A.; Zilio, S. C.; Misoguti, L.

    2015-03-01

    Nonlinear optical effects have been widely explored for microscopy due to the possibility of three-dimension (3D) image acquisition. Harmonic generation and nonlinear absorption, for instance, were used for this purpose. Each nonlinear effect has its own characteristic, complexity, type of contrast, advantage and disadvantage, etc. Recently, we developed a new simple and sensitive method for measuring nonlinear ellipse rotation (NER) using a dual-phase lock-in amplifier, which could be successfully applied for measuring local nonlinearity distribution on a sample and, consequently, the image acquisition. The NER is a particular refractive nonlinear effect which appears when strong elliptical polarized laser beam propagates along one nonlinear material. It is type of refractive Kerr nonlinearity similar to self-focalization responsible for the signal in the Z-scan technique. The self-focalization is one of the most important refractive effects, but it cannot be used for image acquisition. On the other hand, NER does. Furthermore, such refractive nonlinearities signal can be very strong and serves as a new contrast for nonlinear microscopy.

  3. Nonlinear polarization rotation in a dispersion-flattened photonic-crystal fiber for ultrawideband (>100 nm) all-optical wavelength conversion of 10 Gbit/s nonreturn-to-zero signals.

    PubMed

    Kwok, C H; Chow, C W; Tsang, H K; Lin, Chinlon; Bjarklev, A

    2006-06-15

    We study the conversion bandwidth of the cross-polarization-modulation (XPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show that the conversion bandwidth can be extended to cover a very wide band, including S-, C-, and L-bands for 10 Gbit/s NRZ signals (a total bandwidth of 120 nm is experimentally demonstrated). We also study the theoretical bandwidth limit for 40 Gbit/s NRZ signals. A significant extension of the conversion bandwidth using the XPoIM approach compared with the four-wave mixing approach previously reported is demonstrated.

  4. Polar rotation angle identifies elliptic islands in unsteady dynamical systems

    NASA Astrophysics Data System (ADS)

    Farazmand, Mohammad; Haller, George

    2016-02-01

    We propose rotation inferred from the polar decomposition of the flow gradient as a diagnostic for elliptic (or vortex-type) invariant regions in non-autonomous dynamical systems. We consider here two- and three-dimensional systems, in which polar rotation can be characterized by a single angle. For this polar rotation angle (PRA), we derive explicit formulas using the singular values and vectors of the flow gradient. We find that closed level sets of the PRA reveal elliptic islands in great detail, and singular level sets of the PRA uncover centers of such islands. Both features turn out to be objective (frame-invariant) for two-dimensional systems. We illustrate the diagnostic power of PRA for elliptic structures on several examples.

  5. Nonlinear flap-lag axial equations of a rotating beam

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  6. Nonlinear flap-lag axial equations of a rotating beam

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  7. Polarization due to rotational distortion in the bright star Regulus

    NASA Astrophysics Data System (ADS)

    Cotton, Daniel V.; Bailey, Jeremy; Howarth, Ian D.; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Lucas, P. W.; Hough, J. H.

    2017-10-01

    Polarization in stars was first predicted by Chandrasekhar1, who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry was broken, for example, by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins2 modelled another way of breaking the symmetry and producing net polarization—the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 ppm at a wavelength of 741 nm to -22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars, we find that Regulus is rotating at 96 .5-0.8+0.6% of its critical angular velocity for break-up, and has an inclination greater than 76.5°. The rotation axis of the star is at a position angle of 79.5 ± 0.7°. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus3. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments4 and the course of their evolution5.

  8. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  9. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    PubMed Central

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-01-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427

  10. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    NASA Astrophysics Data System (ADS)

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  11. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton.

    PubMed

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-06

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  12. Scattering of circularly polarized light by a rotating black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Shoom, Andrey A.

    2012-07-01

    We study scattering of polarized light by a rotating (Kerr) black hole of mass M and angular momentum J. In order to keep trace of the polarization dependence of photon trajectories one can use the following dimensionless parameter: ɛ=±(ωM)-1, where ω is the photon frequency and the sign + (-) corresponds to the right (left) circular polarization. We assume that |ɛ|≪1 and use the modified geometric optics approximation developed in [Phys. Rev. D 84, 044026 (2011)]; that is, we include the first order in ɛ polarization-dependent terms into the eikonal equation. These corrections modify late-time behavior of photons. We demonstrate that the photon moves along a null curve, which in the limit ɛ=0 becomes a null geodesic. We focus on the scattering problem for polarized light. Namely, we consider the following problems: (i) How does the photon’s bending angle depend on its polarization? (ii) How does the position of the image of a pointlike source depend on its polarization? (iii) How does the arrival time of photons depend on their polarization? We perform the numerical calculations that illustrate these effects for an extremely rotating black hole and discuss their possible applications.

  13. Wigner rotations and Iwasawa decompositions in polarization optics.

    PubMed

    Han, D; Kim, Y S; Noz, M E

    1999-07-01

    Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of massive and massless particles, respectively. It is shown to be possible to produce combinations of optical filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized light waves. The symmetry transformations in special relativity lead to a set of experiments which can be performed in optics laboratories.

  14. Zeno inhibition of polarization rotation in an optically active medium

    NASA Astrophysics Data System (ADS)

    Gonzalo, Isabel; Porras, Miguel A.; Luis, Alfredo

    2015-07-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers.

  15. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  16. Coriolis effects on nonlinear oscillations of rotating cylinders and rings

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1976-01-01

    The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.

  17. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Denisova, I. P.; Pimenov, A. B.; Sokolov, V. A.

    2016-11-01

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.

  18. Polarization-induced phase noise in fiber optic Michelson interferometer with Faraday rotator mirrors

    NASA Astrophysics Data System (ADS)

    Wu, Yuefeng; Li, Fang; Zhang, Wentao; Xiao, Hao; Liu, Yuliang

    2008-11-01

    Polarization-induced phase noise in Michelson interferometer with imperfect Faraday rotator mirrors was investigated. This kind of noise generates from the rotation angle errors of Faraday rotator mirrors and external polarization perturbation. The conversion factor κ, representing the magnitude conversion ability from polarization-noise to polarization induced phase-noise, have been theoretically evaluated and experimentally investigated.

  19. Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization.

    PubMed

    Mosley, C D W; Failla, M; Prabhakaran, D; Lloyd-Hughes, J

    2017-09-26

    We introduce a polarization-resolved terahertz time-domain spectrometer with a broadband (0.3-2.5 THz), rotatable THz polarization state, and which exhibits minimal change in the electric field amplitude and polarization state upon rotation. This was achieved by rotating an interdigitated photoconductive emitter, and by detecting the orthogonal components of the generated THz pulse via electro-optic sampling. The high precision (<0.1°) and accuracy (<1.0°) of this approach is beneficial for the study of anisotropic materials without rotating the sample, which can be impractical, for instance for samples held in a cryostat. The versatility of this method was demonstrated by studying the anisotropic THz optical properties of uniaxial and biaxial oxide crystals. For uniaxial ZnO and LaAlO3, which have minimal THz absorption across the measurement bandwidth, the orientations of the eigenmodes of propagation were conveniently identified as the orientation angles that produced a transmitted THz pulse with zero ellipticity, and the birefringence was quantified. In CuO, a multiferroic with improper ferroelectricity, the anisotropic THz absorption created by an electromagnon was investigated, mapping its selection rule precisely. For this biaxial crystal, which has phonon and electromagnon absorption, the polarization eigenvectors exhibited chromatic dispersion, as a result of the monoclinic crystal structure and the frequency-dependent complex refractive index.

  20. Nonlinear r-modes in rapidly rotating relativistic stars.

    PubMed

    Stergioulas, N; Font, J A

    2001-02-12

    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications, provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3D general-relativistic hydrodynamical evolutions. We find that (1) on dynamical time scales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one-the maximum r-mode amplitude is of order unity. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes. (3) The kinematical drift associated with r-modes appears to be present in our simulations, but confirmation requires more precise initial data.

  1. Macroscopic rotation of photon polarization induced by a single spin

    PubMed Central

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10−3 degrees due to poor spin–photon coupling. Here we report the enhancement by three orders of magnitude of the spin–photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ±6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  2. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-02-17

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network.

  3. Rotational polarities of sudden impulses in the magnetotail lobe

    NASA Technical Reports Server (NTRS)

    Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.

    1992-01-01

    A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.

  4. Excitation and propagation of nonlinear waves in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1993-09-01

    A numerical study of the nonlinear waves excited in an axisymmetric rotating flow through a circular tube is described. The waves are excited by either an undulation of the tube wall or an obstacle on the axis of the tube. The results are compared with the weakly nonlinear theory (forced KdV equation). The computations are done when the upstream swirling velocity is that of Burgers' vortex type. The flow behaves like the solution of the forced KdV equation, and the upstream advancing of the waves appear even when the flow is critical or slightly supercritical to the fastest inertial wave mode.

  5. Nonlinear vortex dynamo in a rotating stratified moist atmosphere

    NASA Astrophysics Data System (ADS)

    Kopp, M. I.; Tur, A. V.; Yanovsky, V. V.

    2017-06-01

    We have found a new type of large-scale instability in a rotating stratified moist atmosphere with small-scale turbulence. The turbulence is excited by an external small-scale force with a low Reynolds number. We have constructed the theory based on the method of multiscale asymptotic expansions. The nonlinear equations for large-scale motion have been derived in the third order of the perturbation theory. We have investigated the linear instability and stationary nonlinear regimes. Solutions in the form of localized vortex structures or kinks of a new type have been obtained.

  6. Spectrally tunable linear polarization rotation using stacked metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Romain, Xavier; Baida, Fadi I.; Boyer, Philippe

    2017-08-01

    We make a theoretical study of the transmission properties of a stack of metallic metamaterials and show that is able to achieve a perfect transmission selectively exhibiting broadband (Q < 10) or extremely narrowband (Q > {10}5) polarization rotation. We especially highlight how the arrangement of the stacked structure, as well as the metamaterial unit cell geometry, has a large influence on transmission in the spectral domain. For this purpose, we use an extended analytical Jones formalism that allows us to obtain a rigorous and analytical expression of the transmission. Such versatile structures could find potential applications in polarimetry or in the control of light polarization for THz waves.

  7. Polarization rotation of light propagating through a medium with efficient four-wave mixing and cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushree S.; Bhowmick, Arup; Mohapatra, Ashok K.

    2017-03-01

    We have studied the rotation of an elliptically polarized light propagating through thermal rubidium vapor with efficient four-wave mixing (FWM) and cross-phase modulation (XPM). These nonlinear processes are enhanced by Zeeman coherence within the degenerate sub-levels of the two-level atomic system. The elliptically polarized light with small ellipticity is considered as the superposition of a strong-linearly-polarized pump beam and a weak-orthogonal-polarized probe beam. The interference of the probe and the newly generated light field due to degenerate FWM and their gain in the medium due to a large XPM induced by the pump beam leads to the rotation of the elliptical polarized light. A theoretical analysis of the probe propagation through the nonlinear medium was used to explain the experimental observation and the fitting of the experimental data gives the estimates of the third-order non-linear susceptibilities associated with FWM and XPM. Our study can provide useful parameters for the generation of efficient squeezed vacuum states and squeezed polarization states of light. Furthermore our study finds application in controlling the diffraction of a linearly-polarized light beam traversing the medium.

  8. Applications of ultrafast wavefront rotation in highly nonlinear optics

    NASA Astrophysics Data System (ADS)

    Quéré, F.; Vincenti, H.; Borot, A.; Monchocé, S.; Hammond, T. J.; Taec Kim, Kyung; Wheeler, J. A.; Zhang, Chunmei; Ruchon, T.; Auguste, T.; Hergott, J. F.; Villeneuve, D. M.; Corkum, P. B.; Lopez-Martens, R.

    2014-06-01

    This paper provides an overview of ultrafast wavefront rotation of femtosecond laser pulses and its various applications in highly nonlinear optics, focusing on processes that lead to the generation of high-order harmonics and attosecond pulses. In this context, wavefront rotation can be exploited in different ways, to obtain new light sources for time-resolved studies, called ‘attosecond lighthouses’, to perform time-resolved measurements of nonlinear optical processes, using ‘photonic streaking’, or to track changes in the carrier-envelope relative phase of femtosecond laser pulses. The basic principles are explained qualitatively from different points of view, the experimental evidence obtained so far is summarized, and the perspectives opened by these effects are discussed.

  9. Rotation-induced nonlinear wavepackets in internal waves

    NASA Astrophysics Data System (ADS)

    Whitfield, A. J.; Johnson, E. R.

    2014-05-01

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  10. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  11. Rotating Au nanorod and nanowire driven by circularly polarized light.

    PubMed

    Liaw, Jiunn-Woei; Chen, Ying-Syuan; Kuo, Mao-Kuen

    2014-10-20

    The wavelength-dependent optical torques provided by a circularly polarized (CP) plane wave driving Au nanorod (NR) and nanowire (NW) to rotate constantly were studied theoretically. Using the multiple multipole method, the resultant torque in terms of Maxwell's stress tensor was analyzed. Numerical results show that the optical torque spectrum is in accordance with the absorption spectrum of Au NR/NW. Under the same fluence, the maximum optical torque occurs at the longitudinal surface plasmon resonance (LSPR) of Au NR/NW, accompanied by a severe plasmonic heating. The rotation direction of the light-driven NR/NW depends on the handedness of CP light. In contrast, the optical torque exerted on Au NR/NW illuminated by a linearly polarized light is null at LSPR. Due to the plasmonic effect, the optical torque on Au NR/NW by CP light is two orders of magnitude larger than that on a dielectric NR/NW of the same size. The steady-state rotation of NR/NW in water, resulting from the balance of optical torque and viscous torque, was also discussed. Our finding shed some light on manipulating a CP light-driven Au NR/NW as a rotating nanomotor for a variety of applications in optofluidics and biophysics.

  12. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  13. Automated control of optical polarization for nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Stys, Peter K.

    2012-03-01

    Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.

  14. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide

    PubMed Central

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-01

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313

  15. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide.

    PubMed

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-05

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm(2) and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.

  16. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide

    NASA Astrophysics Data System (ADS)

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-01

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.

  17. A spin rotator for spin-polarized scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Kohashi, Teruo; Konoto, Makoto; Koike, Kazuyuki

    2004-06-01

    A Wien filter, which is a common energy analyzer, was modified as a spin rotator for use in a spin-polarized scanning electron microscope. By switching the spin rotator on and off, magnetic domain images of all three magnetization vectors can be produced in one scan. The electrodes and the magnetic pole pieces were specially designed by using a three-dimensional computer simulation for electric and magnetic fields, electron trajectories, and spin rotation; the broad beam of the secondary electrons passes through to the spin detector with a 90° rotation. The structure is simple with only two electrodes that have hyperbolically curved surfaces to create a stigmatic focusing effect, while the surfaces of the magnetic pole pieces are flat to enable a uniform rotation of all electron spins. The performance was tested and confirmed to be effective by observing the magnetic domain structures of Fe(001) with in-surface-plane magnetization and a TbFeCo magneto-optical medium with surface normal magnetization.

  18. Adjustable Nonlinear Mechanism System for Wideband Energy Harvesting in Rotational Circumstances

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Nakano, K.; Zheng, R.; Cartmell, M. P.

    2016-09-01

    Nonlinear energy harvesters have already been exhibited to draw energy from ambient vibration owing to their particular dynamic characteristics, and are feasible to desirable responses for broadband excitations of bistable and monostable systems. This study proposes an energy harvester for rotational applications, in which a cantilever beam pasted piezoelectric film and magnets with the same polarity are comprised as a nonlinear vibrating system. As the rotationally angular velocity gradually increases, the tensile stress to the cantilever beam is also self-adjusted with the increscent centrifugal force, causing the potential barriers of bistable type become shallow, so that the cantilever beam has the ability to maintain the high energy orbit motion from bistable hardening type to monostable hardening behavior. From the implemented results, the valid bandwidth of angular frequency can be improved from 26 rad/s - 132 rad/s to 15 rad/s - 215 rad/s, under the case of the effect of centrifugal force on nonlinear vibrating behavior. It demonstrates that the centrifugal force can significantly promote the performance of nonlinear energy harvesters.

  19. Rotation of plasma membrane proteins measured by polarized fluorescence depletion

    NASA Astrophysics Data System (ADS)

    Barisas, B. George; Rahman, Noorul A.; Yoshida, Thomas M.; Roess, Deborah A.

    1990-05-01

    We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.

  20. Polarizers, optical bridges, and Sagnac interferometers for nanoradian polarization rotation measurements

    NASA Astrophysics Data System (ADS)

    Rowe, A. C. H.; Zhaksylykova, I.; Dilasser, G.; Lassailly, Y.; Peretti, J.

    2017-04-01

    The ability to measure nanoradian polarization rotations, θF, in the photon shot noise limit is investigated for partially crossed polarizers (PCP), a static Sagnac interferometer, and an optical bridge, each of which can in principle be used in this limit with near equivalent figures-of-merit (FOM). In practice a bridge to PCP/Sagnac source noise rejection ratio of 1 /4 θF2 enables the bridge to operate in the photon shot noise limit even at high light intensities. The superior performance of the bridge is illustrated via the measurement of a 3 nrad rotation arising from an axial magnetic field of 0.9 nT applied to a terbium gallium garnet. While the Sagnac is functionally equivalent to the PCP in terms of the FOM, unlike the PCP it is able to discriminate between rotations with different time (T) and parity (P) symmetries. The Sagnac geometry implemented here is similar to that used elsewhere to detect non-reciprocal (T ¯ P ) rotations like those due to the Faraday effect. Using a Jones' matrix approach, novel Sagnac geometries uniquely sensitive to non-reciprocal T P ¯ (e.g. magneto-electric or magneto-chiral) rotations, as well as to reciprocal rotations (e.g. due to linear birefringence, TP, or to chirality, T P ¯ ) are proposed.

  1. The role of rotation and polar-cap currents on pulsar radio emission and polarization

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2013-06-01

    Perturbations such as rotation and polar-cap current (PC-current) have been believed to greatly affect the pulsar radio emission and polarization. The two effects have not been considered simultaneously in the literature; each one of these has been considered separately, and a picture has been deduced by simply superposing them, but such an approach can lead to spurious results. Hence, by considering pulsar rotation and PC-current perturbations together instead of one at a time, we have developed a single particle curvature radiation model, which is expected to be much more realistic. By simulating a set of typical pulse profiles, we have made an attempt to explain most of the observational results of pulsar radio emission and polarization. The model predicts that due to the perturbations the leading side component can become either stronger or weaker than the corresponding trailing one in any given cone, depending on the passage of the sight line and modulation (nonuniform source distribution). Further, we find that the phase delay of the polarization angle inflection point with respect to the core component greatly depends on the viewing geometry. The correlation between the sign reversal of circular polarization and the polarization angle swing in the case of core-dominated pulsars becomes obscure once the perturbations and modulation become significant. However, the correlation between the negative circular polarization and the increasing polarization angle and vice versa is very clear in the case of conal-double pulsars. The 'kinky'-type distortions in polarization angle swing could be due to the incoherent superposition of modulated emission in the presence of strong perturbations.

  2. Switchable polarization rotation of visible light using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Earl, Stuart K.; James, Timothy D.; Gómez, Daniel E.; Marvel, Robert E.; Haglund, Richard F.; Roberts, Ann

    2017-01-01

    A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface) occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  3. Chaotic behavior in nonlinear polarization dynamics

    SciTech Connect

    David, D.; Holm, D.D.; Tratnik, M.V. )

    1989-01-01

    We analyze the problem of two counterpropagating optical laser beams in a slightly nonlinear medium from the point of view of Hamiltonian systems; the one-beam subproblem is also investigated as a special case. We are interested in these systems as integrable dynamical systems which undergo chaotic behavior under various types of perturbations. The phase space for the two-beam problem is C{sup 2} {times} C{sup 2} when we restricted the the regime of travelling-wave solutions. We use the method of reduction for Hamiltonian systems invariant under one-parameter symmetry groups to demonstrate that the phase space reduces to the two-sphere S{sup 2} and is therefore completely integrable. The phase portraits of the system are classified and we also determine the bifurcations that modify these portraits; some new degenerate bifurcations are presented in this context. Finally, we introduce various physically relevant perturbations and use the Melnikov method to prove that horseshoe chaos and Arnold diffusion occur as consequences of these perturbations. 10 refs., 7 figs., 1 tab.

  4. Nonlinear Fishbone Dynamics in Spherical Tokamaks with Toroidal Rotation

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Fu, G. Y.

    2015-11-01

    Fishbone is ubiquitous in tokamak plasmas with fast ions. A numerical study of nonlinear dynamics of fishbone has been carried out in this work. Realistic parameters of NSTX are used to understand instability and nonlinear frequency chirping in tokamak plasmas. First, the effects of shear toroidal rotation are considered for fishbone instability. It's shown that with low qmin, it has small effects on the mode; while with high qmin, a new unstable region with a strong ballooning feature in mode structure appears. Second, a detailed study of nonlinear frequency chirping and energetic particles' dynamics is carried out. Linearly, the mode is driven by both trapped and passing particles, with dresonance condition ωd ~= ω for trapped particles and ωϕ +ωθ ~= ω for passing particles. As the mode grows, resonance particles oscillate and move outward in Pϕ space, which reduces particles' frequency. We believe that this is the main reason for the mode frequency chirping down. Finally, as the mode frequency chirping down, particles with lower orbit frequencies, which are non-resonant linearly, can turn into resonant particles in the nonlinear regime. This effect can sustain a quasi-steady state mode amplitude.

  5. Bounded Nonlinear Control of a Rotating Pendulum System

    NASA Astrophysics Data System (ADS)

    Luyckx, L.; Loccufier, M.; Noldus, E.

    2004-08-01

    We are interested in the output feedback control of mechanical systems governed by the Euler-Lagrange formalism. The systems are collocated actuator-sensor controlled and underactuated. We present a design method by means of a specific example : the set point control of a rotating pendulum. We use constrained output feedback, whereby the control inputs satisfy a priori imposed upper bounds. The closed loop stability analysis relies on the direct method of Liapunov. This results in a frequency criterion on the controller's linear dynamic component and some restrictions on its nonlinearities. The control parameters are tuned for maximizing closed loop damping.

  6. Rotation Matrix Method for Analyzing Noisy Nonlinear Data

    NASA Astrophysics Data System (ADS)

    Chu, P. C.; Ivanov, L. M.; Margolina, T. M.

    2005-12-01

    Analysis on noisy nonlinear data is to solve a set of algebraic equations. Three factors affect the accuracy of reconstruction: (a) large condition number of the coefficient matrix, (b) high noise-to-signal ratio in the source term, and (c) no a-priori knowledge of noise statistics. To improve the reconstruction accuracy, the set of linear algebraic equations is transformed into a new one with minimum condition number and noise-to-signal ratio using the rotation matrix. The procedure does not require any knowledge of low-order statistics of noises. Several examples including highly distorted Lorenz attractor, Black Sea circulations illustrate the benefit of using this procedure.

  7. Propagation of ultrashort polarized light pulses in a nonlinear medium

    SciTech Connect

    Maimistov, A.I.

    1995-03-01

    Propagation of ultrashort optical pulses in a medium with degenerate resonance levels with respect to the angular momentum projections is considered. Under the assumption that the Rabi frequency is much smaller than the transition frequency and without using the slowly varying envelope approximation, a new nonlinear equation is obtained for describing this pulse dynamics. In the particular case when the pulse polarization is not changed, this is the modified Korteweg-de Vries equation. In the approximation of slowly varying envelopes, the reduced wave equation transforms into the vector nonlinear Schroedinger equation. 13 refs.

  8. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  9. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  10. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  11. Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation.

    PubMed

    Kleijn, Emil; Williams, Peter J; Whitbread, Neil D; Wale, Michael J; Smit, Meint K; Leijtens, Xaveer J M

    2012-09-24

    Earlier it was observed that polarization rotation in an AWG built from birefringent waveguides can result in sidelobes in its response. This effect was measured in a polarization sensitive AWG with an orthogonal layout. Now we investigate through detailed simulation whether this effect also exists in polarization desensitised AWGs. It is shown that a dispersion compensated AWG does not suffer from a polarization sidelobe. Alternatively, the AWG can be designed to minimize polarization rotation to suppress the sidelobe.

  12. Global bifurcations of a rotating pendulum with irrational nonlinearity

    NASA Astrophysics Data System (ADS)

    Han, Ning; Cao, Qingjie

    2016-07-01

    In this paper, the authors consider a rotating pendulum under nonlinear perturbation which allows us to study various kinds of bifurcations and limit cycles. This system exhibits smooth or discontinuous dynamics depending on the value of a mechanical parameter. It is shown that the perturbed smooth system undergoes a pitchfork bifurcation, a homo-heteroclinic orbits transition, a single Hopf bifurcation, a double Hopf bifurcation, a pair of homoclinic bifurcations, a Hopf-homoclinic bifurcation and two saddle-node bifurcation of periodic orbits. The number, position and stability of all the oscillating and rotational limit cycles are given as the parameters vary. We find five limit cycles in the smooth case due to two saddle-node bifurcation of periodic orbits existing. Unlike the smooth case, the perturbed discontinuous system has a homoclinic-like bifurcation and without any saddle-node bifurcation of periodic orbits. Additionally, some results obtained herein bear significant similarities to the codimension-two bifurcation of duffing oscillator and SD oscillator, which may be helpful to explore the codimension bifurcation of the cylindrical pendulum system with irrational nonlinearity.

  13. Polarization Rotation and the Third Stokes Parameter: The Effects of Spacecraft Attitude and Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2006-01-01

    The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.

  14. Strong rotation of an erupting quiescent polar crown prominence

    NASA Astrophysics Data System (ADS)

    Thompson, William

    On 5-6 June 2007, a large quiescent polar crown prominence was observed to erupt by the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This eruption was particularly visible in the 304A channel of the Extreme Ultraviolet Imager (EUVI) telescopes. A detailed analysis of the fine structures in the images allows the three-dimensional structure of the erupt-ing prominence to be derived. The prominence is seen to undergo substantial rotation of at least 90 degrees along the radial axis as it rises, with indications that additional rotation oc-curred before the prominence rose into the STEREO fields of view. Two temporary structures ("spurs") are seen to form at an angle to the main spine of the prominence, and are interpreted as signs of reconnection. These reconnection events contribute to the overall rotation of the prominence. A significant fraction of the prominence material is drained through new field lines caused by one of the reconnection events, resulting in only a weak coronal mass ejection event observed by the STEREO and SOHO coronagraphs. The eruption is interpreted as be-ing initiated by the helical kink instability, with subsequent modification by the reconnection events.

  15. Strong Rotation of an Erupting Quiescent Polar Crown Prominence

    NASA Technical Reports Server (NTRS)

    2010-01-01

    On 5-6 June 2007, a large quiescent polar crown prominence was observed to erupt by the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This eruption was particularly visible in the 304 A channel of the Extreme Ultraviolet Imager (EUVI) telescopes. A detailed analysis of the fine structures in the images allows the three-dimensional structure of the erupting prominence to be derived. The prominence is seen to undergo substantial rotation of at least 90 along the radial axis as it rises, with indications that additional rotation occurred before the prominence rose into the STEREO fields of view. Two temporary structures ("spurs") are seen to form at an angle to the main spine of the prominence, and are interpreted as signs of reconnection. These reconnection events contribute to the overall rotation of the prominence. A significant fraction of the prominence material is drained through new field lines caused by one of the reconnection events, resulting in only a weak coronal mass ejection event observed by the STEREO and SOHO coronagraphs. The eruption is interpreted as being initiated by the helical kink instability, with subsequent modification by the reconnection events.

  16. Continuum estimates of rotational dielectric friction and polar solvation

    SciTech Connect

    Maroncelli, M.

    1997-01-01

    Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}

  17. Nonlinear Compton scattering in a strong rotating electric field

    NASA Astrophysics Data System (ADS)

    Raicher, Erez; Eliezer, Shalom; Zigler, Arie

    2016-12-01

    The nonlinear Compton scattering rate in a rotating electric field is explicitly calculated. For this purpose, an approximate solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for implementation in kinetic codes. The spectrum is numerically calculated for present-day optical and x-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Substantial deviations between the two models, in both the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonic spectrum for electrons with low asymptotic momentum compared to the field amplitude. This discrete structure is a clear imprint of the electric field frequency, as opposed to the Volkov-Ritus rate, which reduces to the constant crossed field rate for the physical conditions under consideration. Our model predictions can be tested with present-day laser facilities.

  18. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  19. Cavity-based high-efficiency and wideband 90° polarization rotator

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Shen, Zhongxiang; Wu, Wen

    2016-10-01

    We present a high-efficiency wideband 90° polarization rotator based on 2D array of substrate integrated waveguide cavities etched with three twisted slots, which can rotate a horizontally polarized incident wave into an outgoing vertically polarized wave. The twisted slots etched on the surface of the cavity are utilized to couple the wave into and out of the cavity with the polarization direction rotated. As a proof-of-concept, a prototype of the proposed rotator is fabricated and measured in the microwave regime. The proposed 90° polarization rotator features a low insertion loss of about 0.5 dB in the pass band with a factional bandwidth of 28.6%, as well as high polarization rotation efficiency of over 90%.

  20. Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion

    SciTech Connect

    Budker, D.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V.

    2000-03-10

    Nonlinear magneto-optical rotation (NMOR) is investigated at highlight powers where the rotation is significantly modified by AC Stark shifts. These shifts are shown to change the overall sign of rotation for closed F-->F+1 transitions as light power is increased. The effect is demonstrated by measurements in rubidium and density matrix calculations. The results are important for applications of nonlinear optical rotation such as sensitive magnetometry.

  1. Symmetrical polarization splitter/rotator design and application in a polarization insensitive WDM receiver.

    PubMed

    Ma, Yangjin; Liu, Yang; Guan, Hang; Gazman, Alexander; Li, Qi; Ding, Ran; Li, Yunchu; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael

    2015-06-15

    In integrated photonics, the design goal of a polarization splitter/rotator (PSR) has been separating the TE0 and TM0 modes in a waveguide. This is a natural choice. But in theory, a PSR only needs to project the incoming State Of Polarization (SOP) orthogonally to its output ports, using any orthogonal mode basis set in the fiber. In this article, we introduce a novel PSR design that alternatively takes the linear combination of TE0 and TM0 (TE0 +/- TM0) as orthogonal bases. By contrast, existing approaches exclusively use TE0 and TM0 as their basis set. The design is based on two symmetric and robust structures: a bi-layer taper and a Y-junction, and involves no bends. To prove the concept, we incorporated it into a four-channel polarization insensitive wavelength division multiplexing (PI-WDM) receiver fabricated in a standard CMOS Si photonics process. 40 Gb/s data rate and 0.7 +/- 0.2 dB polarization dependent loss (PDL) is demonstrated on each channel. Lastly, we propose an improved PSR design with 12 μm device length, < 0.1 dB PDL, < 0.4 dB insertion loss and < 0.05 dB wavelength dependence across C-band for both polarizations. Overall, our PSR design concept is simple, easy to realize and presents a new perspective for future PSR designs.

  2. Rotational disturbance in the intermediate polar BG Canis Minoris.

    NASA Astrophysics Data System (ADS)

    Garlick, M. A.

    1996-04-01

    The author reports on the independent discovery of a feature in the intermediate polar BG Canis Minoris which resembles a rotational disturbance. A similar effect has already been reported by de Martino et al., but in the He II λ4686 line only, whereas the data presented in the present article show the effect in the Balmer lines only. Another difference is that the new disturbance occurs at phase 0.75 - this is 0.25 orbital cycles prior to that reported previously. There is, however, indication of a change in the V/R ratio at phase zero as well, in phase with that reported previously, and in phase with an apparent eclipse of the He II λ4686 line flux. These results corroborate the suggestion of de Martino et al. that BG CMi is at a relatively high inclination, and moreover imply that some intriguing and previously unseen transient behaviour is at work in this system.

  3. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  4. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  5. Surface plasmon induced polarization rotation and optical vorticity in a single mode waveguide.

    PubMed

    Davids, P S; Block, B A; Reshotko, M R; Cadien, K C

    2007-07-23

    The control and manipulation of the mode polarization state in a single mode dielectric waveguide is of considerable significance for optical information processing utilizing the polarization state to store digital information and integrated photonic devices used for high speed signaling. Here we report on an integrated on-chip mode polarization rotation based on short metal Cu electrodes placed in close proximity to the dielectric waveguide core. Polarization mode rotation with specific rotation of 10(4) degrees/mm is observed for offset metallic electrodes placed diagonally along a single mode dielectric waveguide. The mechanism for the polarization rotation is shown to be directional coupling into guided surface plasmon modes at the metal corners and coupling between the guided plasmon modes. This inter-plasmon coupling gives rise to giant polarization rotation and optical vorticity (helical power flow) in the waveguide.

  6. Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2016-07-01

    We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2] rotation parameters in n-dimensional spacetime where [ x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, { dM}={ TdS}+{{{sum _{i=1}k}}}Ω id{J}i+{ Ud}{Q}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.

  7. Nonlinear Accelerator with Transverse Motion Integrable in Normalized Polar Coordinates

    SciTech Connect

    Nagaitsev, S.; Kharkov, Y.; Morozov, I.A.; Zolkin, T.V.; /Chicago U.

    2012-05-01

    Several families of nonlinear accelerator lattices with integrable transverse motion were suggested recently. One of the requirements for the existence of two analytic invariants is a special longitudinal coordinate dependence of fields. This paper presents the particle motion analysis when a problem becomes integrable in the normalized polar coordinates. This case is distinguished from the others: it yields an exact analytical solution and has a uniform longitudinal coordinate dependence of the fields (since the corresponding nonlinear potential is invariant under the transformation from the Cartesian to the normalized coordinates). A number of interesting features are revealed: while the frequency of radial oscillations is independent of the amplitude, the spread of angular frequencies in a beam is absolute. A corresponding spread of frequencies of oscillations in the Cartesian coordinates is evaluated via the simulation of transverse Schottky noise.

  8. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    SciTech Connect

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  9. The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

    NASA Astrophysics Data System (ADS)

    Fischle, Andreas; Neff, Patrizio; Raabe, Dierk

    2017-08-01

    The rotation {{polar}}(F) \\in {{SO}}(3) arises as the unique orthogonal factor of the right polar decomposition F = {{polar}}(F) U of a given invertible matrix F \\in {{GL}}^+(3). In the context of nonlinear elasticity Grioli (Boll Un Math Ital 2:252-255, 1940) discovered a geometric variational characterization of {{polar}}(F) as a unique energy-minimizing rotation. In preceding works, we have analyzed a generalization of Grioli's variational approach with weights (material parameters) μ > 0 and μ _c ≥ 0 (Grioli: μ = μ _c). The energy subject to minimization coincides with the Cosserat shear-stretch contribution arising in any geometrically nonlinear, isotropic and quadratic Cosserat continuum model formulated in the deformation gradient field F :=\

  10. Polarization control strategy of a laser communication terminal with a periscopic scanner using dual rotating waveplates.

    PubMed

    Jiang, Lun; Li, Na; Zhang, Li-Zhong; Wang, Chao; An, Yan; Hu, Yuan

    2016-11-20

    We assessed the problem of low mixing efficiency caused by unstable signal polarization because of a moving reflector in a laser communication terminal with a periscopic scanner. A real-time polarization compensation method based on rotating waveplates is presented, which keeps the receiving signal light polarization at 45° linear polarized and improves system mixing efficiency. A geometric model of the laser communication terminal was first established, its polarization transmission characteristics were analyzed by three-dimensional polarization tracks, and a system polarization transmission matrix was calculated. The relationship between scan angle and polarization of the output signal was simulated. The connections between a polarization-compensating λ/4 waveplate and the λ/2 waveplate rotation angle and scan angle were established. These findings will pave the way for real-time polarization control technology for coherent free-space laser communications.

  11. Rotational Inerfia of Continents: A Proposed Link between Polar Wandering and Plate Tectonics.

    PubMed

    Kane, M F

    1972-03-24

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  12. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    USGS Publications Warehouse

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  13. Liquid crystal chiroptical polarization rotators for the near-UV region: theory, materials, and device applications

    NASA Astrophysics Data System (ADS)

    Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.

    2013-09-01

    The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (<30°/μm) in the near UV for a long-pitch (13.8-μm) CLC mixture composed of the low-birefringence nematic host ZLI-1646 doped with a low concentration (e.g., 1 wt%) of the chiral dopant CB 15. This experimental finding is verified theoretically using a mathematical model developed by Belyakov, which improves on de Vries' original model for optical rotation far from the selective reflection peak by taking into account the nonlinearity of optical rotatory power as a function of liquid crystal (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.

  14. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  15. Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation

    NASA Astrophysics Data System (ADS)

    Xu, Shoujun; Rochester, Simon M.; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Budker, Dmitry

    2006-08-01

    We report on the design, characterization, and applications of a sensitive atomic magnetic gradiometer. The device is based on nonlinear magneto-optical rotation in alkali-metal (Rb87) vapor and uses frequency-modulated laser light. The magnetic field produced by a sample is detected by measuring the frequency of a resonance in optical rotation that arises when the modulation frequency equals twice the Larmor precession frequency of the Rb atoms. The gradiometer consists of two atomic magnetometers. The rotation of light polarization in each magnetometer is detected with a balanced polarimeter. The sensitivity of the gradiometer is 0.8nG/Hz1/2 for near-dc (0.1Hz) magnetic fields, with a base line of 2.5cm. For applications in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), a long solenoid that pierces the magnetic shields provides an ˜0.5G leading field for the nuclear spins in the sample. Our apparatus is particularly suited for remote detection of NMR and MRI. We demonstrate a point-by-point free induction decay measurement and a spin echo reconstructed with a pulse sequence similar to the Carr-Purcell-Meiboom-Gill pulse. Additional applications and future improvements are also discussed.

  16. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial

    NASA Astrophysics Data System (ADS)

    Zhao, Jingcheng; Cheng, Yongzhi

    2016-10-01

    In this paper, a high-efficiency and broadband reflective linear polarization rotator based on anisotropic metamaterial is proposed, which is verified by simulation and experiment. Simulated results indicate that our design can achieve 90° polarization rotation from 5.7 to 10.3 GHz with the relative bandwidth of 57.5 %, which is agreement well with experiment. The further simulated results indicate that our design can achieve linear polarization conversion or rotation by 90° under oblique incident angles with large range for both transverse electric and transverse magnetic waves. Finally, the amplitude and phase of reflective coefficients with different polarization, and surface current distribution of the unit cell structure are simulated to explain the physics mechanism of the high-efficiency and broadband polarization rotation. Our design will provide an important reference for the practical applications of the metamaterial in polarization manipulation.

  17. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    SciTech Connect

    Morgen, Michael Mark

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  18. The reflection-type configuration in the pump-probe scheme of nonlinear polarization spectroscopy

    SciTech Connect

    Gancherenok, I.I.; Lavrinenko, A.V.

    1995-06-01

    An expression allowing one to optimize the polarization and geometric conditions used to observe signals in the reflection-type configuration of the method of nonlinear polarization spectroscopy is derived. 7 refs., 1 fig.

  19. Polarization rotation locking of vector solitons in a fiber ring laser.

    PubMed

    Zhao, L M; Tang, D Y; Zhang, H; Wu, X

    2008-07-07

    Polarization rotation of vector solitons in a fiber ring laser was experimentally studied. It was observed that the period of vector soliton polarization rotation could be locked to the cavity roundtrip time or multiple of it. We further show that multiple vector solitons can be formed in a fiber laser, and all the vector solitons have the same group velocity in cavity, however, their instantaneous polarization ellipse orientations could be orthogonal.

  20. Polarization rotation vector solitons in a graphene mode-locked fiber laser.

    PubMed

    Song, Yu Feng; Zhang, Han; Tang, Ding Yuan; Shen, De Yuan

    2012-11-19

    Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.

  1. Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe2.

    PubMed

    Song, Xinlin; Xie, Saien; Kang, Kibum; Park, Jiwoong; Sih, Vanessa

    2016-08-10

    Time-resolved Kerr rotation and photoluminescence measurements are performed on MOCVD-grown monolayer tungsten diselenide (WSe2). We observe a surprisingly long-lived Kerr rotation signal (∼80 ns) at 10 K, which is attributed to spin/valley polarization of the resident holes. This polarization is robust to transverse magnetic field (up to 0.3 T). Wavelength-dependent measurements reveal that only excitation near the free exciton energy generates this long-lived spin/valley polarization.

  2. Ab initio calculations of nonlinear optical rotation by several small chiral molecules and by uridine stereoisomers

    NASA Astrophysics Data System (ADS)

    Qu, Weixing; Tabisz, George C.

    2006-05-01

    Expressions for nonlinear optical rotation are presented based on the quantum theory of optical birefringence of Atkins and Barron [Proc. R. Soc. London, Ser. A 304, 303 (1968); 306, 119 (1968)]. As concrete examples, the ordinary and nonlinear optical rotations are calculated with density functional theory (DFT) methodology for some simple single-ring molecules, namely, oxaziridine, diaziridine, and their derivatives, and for two, somewhat more complicated, conformations of uridine. For the single-ring molecules, (1) the angles of the ordinary optical rotation are mostly positive and (2) the contributions of the nonlinear effect to the total optical rotation depend both on the nature of the substituted species and of the host atom located on the ring. For the two conformations of uridine, (1) the signs of nonlinear optical rotation differ even though their ordinary optical rotations have the same sign and (2) whether the molecular structures are geometrically optimized with Hartree-Fock or DFT methodologies has no significant effect on the calculated nonlinear optical rotation when gauge-including atomic orbitals were used, even though the basis sets are small. These studies are expected to be helpful for interpretation of experimental results on nonlinear optical rotation by molecules underway in our research group.

  3. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters.

    PubMed

    Sun, Minghao; He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Peng, Cheng; He, Yonghong; Ma, Hui

    2014-05-10

    Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.

  4. Ellipticity-tunable attosecond XUV pulse generation with a rotating bichromatic circularly polarized laser field.

    PubMed

    Zhang, Xiaofan; Zhu, Xiaosong; Liu, Xi; Wang, Dian; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2017-03-15

    We propose and theoretically demonstrate a method to generate attosecond XUV pulses with tunable ellipticity from aligned molecules irradiated by a bichromatic counterrotating circularly polarized (BCCP) driving laser field. By rotating the BCCP field, the attoseond XUV pulse varies from being left elliptically polarized to right elliptically polarized. The rotation of the BCCP field can be easily achieved by adjusting the relative phases between the two circularly polarized components. This scheme will benefit a broad range of applications, including the exploration of chiral-sensitive properties of the light-matter interaction and time-resolved imaging of magnetic structures.

  5. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  6. Differential rotation of the unstable nonlinear r-mode

    NASA Astrophysics Data System (ADS)

    Friedman, John; Lindblom, Lee; Lockitch, Keith

    2014-03-01

    To second order in perturbation theory, the r-modes of uniformly rotating stars include an axisymmetric part that can be identified with a growing differential rotation of the background star. If one does not include radiation-reaction, the differential rotation is constant in time and has been computed by Sá. It has a gauge dependence associated with a choice of equilibrium configuration: Adding to the time-independent second-order solution arbitrary differential rotation that is stratified on cylinders: δΩ = δΩ (ϖ) . For the radiation-reaction driven r-mode, however, the differential rotation includes an exponentially growing part that is unique, gauge-independent, and vorticity-conserving. We compute this differential rotation for slowly rotating Newtonian models, acted on by the radiation-reaction force of the unstable mode. Work supported in part by NSF grants PHY 1001515 and DMS1065438 and by a grant from the Sherman Fairchild Foundation.

  7. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Josh; Broering, Mark; Korsch, Wolfgang

    2016-03-01

    Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  8. Silicon waveguide polarization rotation Bragg grating with resonator cavity section

    NASA Astrophysics Data System (ADS)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2017-04-01

    Bragg grating with resonator cavity that converts the input polarization to orthogonal polarization is reported. The device works similar to a Fabry–Pérot or ring resonators and very narrow polarization independent wavelength peak can be generated. The transfer matrix methods are used to examine the device characteristics. A 0.2-nm-wide polarization independent transmission wavelength peak was obtained by experiment. We also show theoretically using finite-difference-time-domain method that a flat-top response can be obtained by a two cavity structure.

  9. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  10. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    NASA Astrophysics Data System (ADS)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  11. Differential rotation of the unstable nonlinear r -modes

    NASA Astrophysics Data System (ADS)

    Friedman, John L.; Lindblom, Lee; Lockitch, Keith H.

    2016-01-01

    At second order in perturbation theory, the r -modes of uniformly rotating stars include an axisymmetric part that can be identified with differential rotation of the background star. If one does not include radiation reaction, the differential rotation is constant in time and has been computed by Sá. It has a gauge dependence associated with the family of time-independent perturbations that add differential rotation to the unperturbed equilibrium star: For stars with a barotropic equation of state, one can add to the time-independent second-order solution arbitrary differential rotation that is stratified on cylinders (that is a function of distance ϖ to the axis of rotation). We show here that the gravitational radiation-reaction force that drives the r -mode instability removes this gauge freedom; the exponentially growing differential rotation of the unstable second-order r -mode is unique. We derive a general expression for this rotation law for Newtonian models and evaluate it explicitly for slowly rotating models with polytropic equations of state.

  12. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection

    PubMed Central

    Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui

    2016-01-01

    Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325

  13. Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission

    NASA Astrophysics Data System (ADS)

    Li, M. L.; Zhang, Q.; Qin, F. F.; Liu, Z. Z.; Piao, Y. P.; Wang, Y.; Xiao, J. J.

    2017-07-01

    We propose and study a kind of bilayered chiral metasurface (BCM) composed of complementary L-shaped resonators with a lossless dielectric spacer that can realize linear polarization rotation with ultrahigh conversion efficiency. We present a theoretical analysis of the BCM with specific chiral geometry that enables asymmetric transmission for linear polarization only. Numerical results show that the proposed metasurface has dual-band asymmetric transmission with nearly 100% cross-polarization conversion efficiency when the loss is ignored. More importantly, depending on the incident direction, only one of the cross-polarization transmissions can approach unity while all the remaining transmissions are close to zero. As a result, nearly perfect linear polarization rotation is achieved for a particular polarization direction. We further show that the working frequency and the bandwidth of the proposed BCM can be tuned by adjusting the geometric size and spatial arrangement of the unit cell.

  14. The effect of nonlinear traveling waves on rotating machinery

    NASA Astrophysics Data System (ADS)

    Jauregui-Correa, Juan Carlos

    2013-08-01

    The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.

  15. Capillary compressor of femtosecond laser pulses with nonlinear rotation of polarisation ellipse

    SciTech Connect

    Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2012-03-31

    The process of nonlinear rotation of the polarisation ellipse of laser radiation, occurring simultaneously with the broadening of the pulse spectrum due to nonlinear self-phase modulation in a gas-filled capillary, is studied. It is shown that the maximal rotation of the polarisation ellipse is experienced by the spectral components, shifted towards the short-wavelength side with respect to the central wavelength of the initial laser pulse. Using the effect of polarisation ellipse rotation, an eightfold increase in the energy contrast ratio of a 28-fs light pulse, obtained by compression of the radiation pulse from an ytterbium laser with the duration 290 fs, is implemented.

  16. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap.

    PubMed

    Yang, Y; Brimicombe, P D; Roberts, N W; Dickinson, M R; Osipov, M; Gleeson, H F

    2008-05-12

    The transfer of optical angular momentum to birefringent particles via circularly polarized light is common. We report here on the unexpected, continuous rotation of chiral nematic liquid crystal droplets in a linearly polarized optical trap. The rotation is non-uniform, occurs over a timescale of seconds, and is observed only for very specific droplet sizes. Synchronized vertical motion of the droplet occurs during the rotation. The motion is the result of photo-induced molecular reorganization, providing a micron sized opto-mechanical transducer that twists and translates.

  17. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase

    NASA Astrophysics Data System (ADS)

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y.; Ofori-Okai, Benjamin K.; Fleischer, Sharly; Nelson, Keith A.

    2016-10-01

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  18. Continuous rotation of a cholesteric liquid crystalline droplet by a circularly polarized optical tweezers

    NASA Astrophysics Data System (ADS)

    Tamura, Yuta; Kimura, Yasuyuki

    2017-04-01

    We studied the opto-mechanical response of droplets composed of cholesteric liquid crystal (ChLC) to a circularly polarized optical tweezers. Although the alignment of LC molecular within a droplet depends on the relative ratio of the droplet diameter d to the helical pitch p, the optically induced rotation was found to be asymmetric to the direction of circularly polarized light irrespective to the inner molecular alignment. We studied the rotation of the droplets with various sizes, helical pitch (strength of chirality) and different chirality. In the case of d/p 1, the direction of the rotation was simply determined by chirality of ChLC and the rotation was also observed for linearly polarized light, which has already been reported by Yang et al.

  19. RoboPol: first season rotations of optical polarization plane in blazars

    SciTech Connect

    Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Panopoulou, G.; Liodakis, I.; King, O. G.; Angelakis, E.; Baloković, M.; Das, H.; Feiler, R.; Fuhrmann, L.; Hovatta, T.; Khodade, P.; Kus, A.; Kylafis, N.; Mahabal, A.; Myserlis, I.; Modi, D.; Pazderska, B.; Pazderski, E.; Papamastorakis, I.; Pearson, T. J.; Rajarshi, C.; Ramaprakash, A.; Reig, P.; Readhead, A. C. S.; Tassis, K.; Zensus, J. A.

    2015-08-26

    Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periods have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10-2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10-5) that none of our rotations is physically connected with an increase in gamma-ray activity.

  20. RoboPol: first season rotations of optical polarization plane in blazars

    DOE PAGES

    Blinov, D.; Pavlidou, V.; Papadakis, I.; ...

    2015-08-26

    Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periodsmore » have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10-2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10-5) that none of our rotations is physically connected with an increase in gamma-ray activity.« less

  1. ELECTRIC VECTOR ROTATIONS OF {pi}/2 IN POLARIZED CIRCUMSTELLAR SiO MASER EMISSION

    SciTech Connect

    Kemball, A. J.; Xue, R.; Diamond, P. J.; Gonidakis, I.; Richter, L.

    2011-12-10

    This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately {pi}/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes (I, Q, U, V) properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle {theta} between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile m{sub l} ({theta}) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile m{sub c} ({theta}).

  2. Electric Vector Rotations of π/2 in Polarized Circumstellar SiO Maser Emission

    NASA Astrophysics Data System (ADS)

    Kemball, A. J.; Diamond, P. J.; Richter, L.; Gonidakis, I.; Xue, R.

    2011-12-01

    This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately π/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes {I, Q, U, V} properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle θ between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile ml (θ) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile mc (θ).

  3. Generalized rotational Hamiltonians from nonlinear angular momentum algebras

    SciTech Connect

    Ballesteros, A.; Herranz, F. J.; Civitarese, O.; Reboiro, M.

    2007-04-15

    Higgs algebras are used to construct rotational Hamiltonians. The correspondence between the spectrum of a triaxial rotor and the spectrum of a cubic Higgs algebra is demonstrated. It is shown that a suitable choice of the parameters of the polynomial algebra allows for a precise identification of rotational properties. The harmonic limit is obtained by a contraction of the algebra, leading to a linear symmetry.

  4. Nonlinear bending-torsional vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1986-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  5. Nonlinear vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1987-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  6. Self-Calibration of BICEP1 Three-Year Data and Constraints on Astrophysical Polarization Rotation

    NASA Technical Reports Server (NTRS)

    Kaufman, J. P.; Miller, N. J.; Shimon, M.; Barkats, D.; Bischoff, C.; Buder, I.; Keating, B. G.; Kovac, J. M.; Ade, P. A. R.; Aikin, R.; hide

    2014-01-01

    Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB's temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that BICEP1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of alpha = -2.77deg +/- 0.86deg (statistical) +/- 1.3deg (systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the BICEP1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy's magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this "self-calibration" process, we find that the upper limit on the tensor-to-scalar ratio decreases

  7. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light.

  8. Interplay of polarization geometry and rotational dynamics in high-order harmonic generation from coherently rotating linear molecules.

    PubMed

    Faisal, F H M; Abdurrouf, A

    2008-03-28

    Recent reports on intense-field pump-probe experiments for high-order harmonic generation (HHG) from coherently rotating linear molecules have revealed remarkable characteristic effects of the simultaneous variation of the polarization geometry and the time delay on the high-order harmonic signals. We analyze the effects and give a unified theoretical account of the experimental observations. Furthermore, characteristic behavior at critical polarization angles are found that can help to identify the molecular orbital symmetry in connection with the problem of molecular imaging from the HHG data.

  9. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    PubMed

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  10. Polarization of Directly Imaged Young Giant Planets as a Probe of Mass, Rotation, and Clouds

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Sengupta, Sujan

    2012-01-01

    Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.

  11. Effect of laser-radiation polarization on the nonlinear scattering of light in nanodiamond suspensions

    NASA Astrophysics Data System (ADS)

    Mikheev, G. M.; Vanyukov, V. V.; Mogileva, T. N.; Puzyr', A. P.; Bondar', V. S.; Svirko, Yu. P.

    2014-07-01

    The effect of laser radiation polarization on the nonlinear scattering of light in aqueous suspensions of detonation nanodiamonds (DNDs) in a regime of optical power limiting (OPL) has been studied. It is established that the nonlinear transmission coefficient of DND suspension in the OPL regime in a field of nanosecond laser pulses with a wavelength of 532 nm is independent of the polarization of incident radiation. The nonlinear scattering of light observed at an angle of 90° in the plane perpendicular to the plane of polarization of the incident radiation depends on the polarization angle in accordance with a trigonometric law. It is shown that the ratio of the signals of scattered radiation for the vertical and horizontal polarizations exhibits nonmonotonic dependence on the laser-beam power density. The results are explained by the Rayleigh-Mie scattering and a change in the size of scattering centers as a result of the effect of a laser upon the DND suspension.

  12. Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current

    PubMed Central

    2014-01-01

    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490

  13. Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current.

    PubMed

    Guslienko, Konstantin Y; Sukhostavets, Oksana V; Berkov, Dmitry V

    2014-01-01

    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.

  14. Dissipative effects on nonlinear waves in rotating fluids.

    NASA Technical Reports Server (NTRS)

    Leibovich, S.; Randall, J. D.

    1971-01-01

    Modifications to the existing inviscid theory of long-wave propagation in rotating fluids are studied. A modification to the Korteweg-deVries equation is found to describe weak dissipation in long waves in a swirling fluid. General features of solutions are discussed, and a solution for the damping of solitary waves is presented.

  15. Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events.

    PubMed

    Krummrich, Peter M; Ronnenberg, David; Schairer, Wolfgang; Wienold, Daniel; Jenau, Frank; Herrmann, Maximilian

    2016-05-30

    Lightning events can cause fast polarization rotations and phase changes in optical transmission fibers due to strong electrical currents and magnetic fields. Whereas these are unlikely to affect legacy transmission systems with direct detection, different mechanisms have to be considered in systems with local oscillator based coherent receivers and digital signal processing. A theoretical analysis reveals that lightning events can result in polarization rotations with speeds as fast as a few hundred kRad/s. We discuss possible mechanisms how such lightning events can affect coherent receivers with digital signal processing. In experimental investigations with a high current pulse generator and transponder prototypes, we observed post FEC errors after polarization rotation events which can be expected from lightning strikes.

  16. Rotatable high-resolution ARPES system for tunable linear-polarization geometry

    PubMed Central

    Iwasawa, H.; Schwier, E. F.; Zheng, M.; Kojima, Y.; Hayashi, H.; Jiang, J.; Higashiguchi, M.; Aiura, Y.; Namatame, H.; Taniguchi, M.

    2017-01-01

    A rotatable high-resolution angle-resolved photoemission spectroscopy (ARPES) system has been developed to utilize tunable linear-polarization geometries on the linear undulator beamline (BL-1) at Hiroshima Synchrotron Radiation Center. By rotating the whole ARPES measurement system, the photoelectron detection plane can be continuously changed from parallel to normal against the electric field vector of linearly polarized undulator radiation. This polarization tunability enables us to identify the symmetry of the initial electronic states with respect to the mirror planes, and to selectively observe the electronic states based on the dipole selection rule in the photoemission process. Specifications of the rotatable high-resolution ARPES system are described, as well as its capabilities with some representative experimental results. PMID:28664891

  17. Nonlinear TE-polarized surface polaritons on graphene

    NASA Astrophysics Data System (ADS)

    Bludov, Yuliy V.; Smirnova, Daria A.; Kivshar, Yuri S.; Peres, N. M. R.; Vasilevskiy, Mikhail I.

    2014-01-01

    We analyze the propagation of electromagnetic waves along the surface of a nonlinear dielectric medium covered by a graphene layer. We reveal that this system can support and stabilize nonlinear transverse electric (TE) plasmon polaritons. We demonstrate that these nonlinear TE modes have a subwavelength localization in the direction perpendicular to the surface, with the intensity much higher than that of an incident wave which excites the polariton.

  18. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  19. Nonlinear modes and symmetry breaking in rotating double-well potentials

    NASA Astrophysics Data System (ADS)

    Li, Yongyao; Pang, Wei; Malomed, Boris A.

    2012-08-01

    We study modes trapped in a rotating ring carrying the self-focusing (SF) or self-defocusing (SDF) cubic nonlinearity and double-well potential cos2θ, where θ is the angular coordinate. The model, based on the nonlinear Schrödinger (NLS) equation in the rotating reference frame, describes the light propagation in a twisted pipe waveguide, as well as in other optical settings, and also a Bose-Einstein condensate (BEC) trapped in a torus and dragged by the rotating potential. In the SF and SDF regimes, five and four trapped modes of different symmetries are found, respectively. The shapes and stability of the modes and the transitions between them are studied in the first rotational Brillouin zone. In the SF regime, two symmetry-breaking transitions are found, of subcritical and supercritical types. In the SDF regime, an antisymmetry-breaking transition occurs. Ground states are identified in both the SF and SDF systems.

  20. Nonlinear Dynamic Analysis of Functionally Graded Timoshenko Beam fixed to a Rotating Hub

    NASA Astrophysics Data System (ADS)

    Panigrahi, B.; Pohit, G.

    2016-08-01

    The present work accounts centrifugal stiffening effect on the nonlinear vibration response of an FGM Timoshenko beam. Analysis is carried out for a cantilever beam fixed with a rotating hub. Material is assumed to have a gradation relation along the depth of the beam. Centrifugal force and axial displacement raised due to the rotating hub is incorporated in the strain energy equations. Subsequent to this, an iterative technique is employed to obtain amplitude dependent vibration response of a rotating Timoshenko beam while material follows a gradation relation along the beam depth. Main objective of the work is to obtain the effects of rotational speeds, hub radius, and different gradation relations on the linear as well as nonlinear frequencies and mode shapes.

  1. Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows.

    PubMed

    Herbert, Corentin

    2014-03-01

    Equilibrium statistical mechanics tools have been developed to obtain indications about the natural tendencies of nonlinear energy transfers in two-dimensional and quasi-two-dimensional flows like rotating and stratified flows in geostrophic balance. In this article we consider a simple model of such flows with a nontrivial vertical structure, namely, two-layer quasigeostrophic flows, which remain amenable to analytical study. We obtain the statistical equilibria of the system in the case of a linear vorticity-stream function relation, build the corresponding phase diagram, and discuss the most probable outcome of nonlinear energy transfers, both on the horizontal and on the vertical, in the presence of stratification and rotation.

  2. Limits imposed by nonlinear coupling on rotation sensitivity of a semiconductor ring laser gyroscope.

    PubMed

    Khandelwal, Arpit; Syed, Azeemuddin; Nayak, Jagannath

    2016-07-01

    The sensitivity of a monolithically integrated semiconductor ring laser gyro is severely limited by the high value of the lock-in threshold. In this work, we calculate the lock-in threshold using perturbation theory and coupled mode theory analysis. It is shown that gyro sensitivity is limited to an input rotation rate of 108  deg / h due to nonlinear coupling between the countertraveling modes. This coupling arises due to the backreflection of modes from moving index gratings, induced by rotation. Lock-in threshold is directly proportional to the strength of nonlinear coupling and spatial overlap of the modes' energy densities with periodic index perturbations.

  3. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2015-01-01

    We present a polarization rotation and coupling scheme that rotates a TE0 mode in a silicon waveguide and simultaneously couples the rotated mode to a hybrid plasmonic (HP0) waveguide mode. Such a polarization rotation can be realized with a partially etched asymmetric hybrid plasmonic waveguide consisting of a silicon strip waveguide, a thin oxide spacer, and a metal cap made from copper, gold, silver or aluminum. Two implementations, one with and one without the tapering of the metal cap are presented, and different taper shapes (linear and exponential) are also analyzed. The devices have large 3 dB conversion bandwidths (over 200 nm at near infrared) and short length (< 5 μm), and achieve a maximum coupling factor of ∼ 78% with a linearly tapered silver metal cap. PMID:25969038

  4. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    NASA Astrophysics Data System (ADS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles.

  5. Real-time image difference detection using a polarization rotation spacial light modulator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1990-01-01

    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization rotation spacial light modulator display such as a multi-pixel liquid crystal display or a magneto optical rotation type. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.

  6. Real-time image difference detection using a polarization rotation spacial light modulator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization-rotation spatial light modulator display such as a multi-pixel liquid crystal display or a magnetooptical rotation type display. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.

  7. Square-wave self-modulation in diode lasers with polarization-rotated optical feedback.

    PubMed

    Gavrielides, Athanasios; Erneux, Thomas; Sukow, David W; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2006-07-01

    The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied in detail. Specifically, the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. Square-wave self-modulated polarization intensities oscillating in antiphase are observed experimentally. We find numerically that these oscillations naturally appear for a broad range of values of parameters, provided that the feedback is sufficiently strong and the differential losses in the normally unsupported polarization mode are small. We then investigate the laser equations analytically and find that the square-wave oscillations are the result of a bifurcation phenomenon.

  8. Square-wave self-modulation in diode lasers with polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, Athanasios; Erneux, Thomas; Sukow, David W.; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2006-07-01

    The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied in detail. Specifically, the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. Square-wave self-modulated polarization intensities oscillating in antiphase are observed experimentally. We find numerically that these oscillations naturally appear for a broad range of values of parameters, provided that the feedback is sufficiently strong and the differential losses in the normally unsupported polarization mode are small. We then investigate the laser equations analytically and find that the square-wave oscillations are the result of a bifurcation phenomenon.

  9. Pulse train induced rotational excitation and orientation of a polar molecule.

    PubMed

    Tyagi, Ashish; Arya, Urvashi; Vidhani, Bhavna; Prasad, Vinod

    2014-08-14

    We investigate theoretically the rotational excitation and field free molecular orientation of polar HBr molecule, interacting with train of ultrashort laser pulses. By adjusting the number of pulses, pulse period and the intensity of the pulse, one can suppress a population while simultaneously enhancing the desired population in particular rotational state. We have used train of laser pulses of different shaped pulse envelopes. The dynamics and orientation of molecules in the presence of pulse train of different shapes is studied and explained.

  10. Spectral characteristics of rotated fused polarization maintaining fiber Bragg gratings subjected to transverse loading

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Chai, Quan; Tian, Ye; Zhao, YanShuang; Liu, Yanlei; Wang, Song; Zhang, JianZhong; Yang, Jun; Yuan, LiBo

    2017-04-01

    Fiber Bragg grating(FBG) written in rotated fused polarization maintaining(RF-PM) fiber is proposed. The fiber structure constructs two Fabry-Perot interferometers. The spectral characteristics is analyzed and simulated. The Bragg reflection spectrum of fiber subjected to different loading angles are measured as the rotated fused angle is 22.5°. The experimental results show that the asymmetrical fiber structure can measure transverse stress and discriminate its direction.

  11. Status of the Polarized Nonlinear Inverse Compton Scattering Experiment at UCLA

    SciTech Connect

    Williams, O.; Doyuran, A.; England, R. J.; Rosenzweig, J. B.; Travish, G.; Joshi, C.; Tochitsky, S.

    2006-11-27

    An Inverse Compton Scattering (ICS) experiment investigating the polarized harmonic production in the nonlinear regime has begun which will utilize the existing terawatt CO2 laser system and 15 MeV photoinjector in the Neptune Laboratory at UCLA. A major motivation for a source of high brightness polarized x-rays is the production of polarized positrons for use in future linear collider experiments. We report on the experimental set-up and status.

  12. Nonlinear Dynamic Polarization Force on a Relativistic Test Particle in a Nonequilibrium Beam-Plasma System.

    DTIC Science & Technology

    1983-09-01

    Waves During Resonant Plasma Heating , Fiz. Pld my 6 (1980), 1105 (Sov. J. Plasma Phys., 6 (1980). 6081. 14 -%. .-:.-..v...of Clectromagnetic aves Wuring Resonant Plasma Heating , Fiz. Plazmy 6 (1980), 1105 (Soy. J. Plasma Phys., 6 (1980), 608). 16 %. ..... 4. THE NONLINEAR...DYNAMIC POLARIZATION FORCE + The dynamic polarization force Fdp on a test particle is given by the Lorentz force acting on the polarization charge

  13. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    SciTech Connect

    Parniak, Michał Leszczyński, Adam; Wasilewski, Wojciech

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  14. Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases

    SciTech Connect

    Ruseckas, Julius; Juzeliunas, Gediminas; Oehberg, Patrik; Barnett, Stephen M.

    2007-11-15

    We consider the propagation of slow light with an orbital angular momentum (OAM) in a moving atomic medium. We have derived a general equation of motion and applied it in analyzing propagation of slow light with an OAM in a rotating medium, such as a vortex lattice. We have shown that the OAM of slow light manifests itself in a rotation of the polarization plane of linearly polarized light. To extract a pure rotational phase shift, we suggest to measure a difference in the angle of the polarization plane rotation by two consecutive light beams with opposite OAM. The differential angle {delta}{alpha}{sub l} is proportional to the rotation frequency of the medium {omega}{sub rot} and the winding number l of light, and is inversely proportional to the group velocity of light. For slow light the angle {delta}{alpha}{sub l} should be large enough to be detectable. The effect can be used as a tool for measuring the rotation frequency {omega}{sub rot} of the medium.

  15. Fast passage dynamic nuclear polarization on rotating solids

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva

    2012-11-01

    Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of 1H and 13C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental 1H and 13C MAS-DNP enhancements of proline and SH3.

  16. Gravitational rotation of polarization: Clarifying the gauge dependence and prediction for a double pulsar

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Wang, Xin; Yang, I.-Sheng

    2017-02-01

    From the basic concepts of general relativity, we investigate the rotation of the polarization angle by a moving gravitational lens. In particular, we clarify the existing confusion in the literature by showing and explaining why such rotation must explicitly depend on the relative motion between the observer and the lens. We update the prediction of such effect on the double pulsar PSR J0737-3039 and estimate a rotation angle of ˜10-7rad . Despite its tiny signal, this is 10 orders of magnitude larger than the previous prediction by Ruggiero and Tartaglia [1], which apparently was misguided by the confusion in the literature.

  17. Fully nonlinear three-dimensional convection in a rapidly rotating layer

    SciTech Connect

    Julien, K.; Knobloch, E.

    1999-06-01

    Fully nonlinear three-dimensional convection in a rotating layer is studied for large Taylor numbers. In this regime, the leading order nonlinearity arises from the distortion of the horizontally averaged temperature profile. As a result, steady rolls, squares, hexagons, triangles, and a pattern called patchwork quilt all have identical Nusselt numbers. A similar degeneracy is present in overstable convection with six patterns having identical time-averaged Nusselt numbers and oscillation frequencies. These results are obtained via an asymptotic expansion in the Taylor number that determines, for each Rayleigh number, the time-averaged Nusselt number and oscillation frequency from the solution of a nonlinear eigenvalue problem for the vertical temperature profile. A number of other patterns are determined by a weakly nonlinear analysis that cannot be extended into the fully nonlinear regime by the present methods, but these patterns are necessarily unstable. {copyright} {ital 1999 American Institute of Physics.}

  18. Discriminating thermal effect in nonlinear-ellipse-rotation-modified Z-scan measurements.

    PubMed

    Liu, Zhi-Bo; Shi, Shuo; Yan, Xiao-Qing; Zhou, Wen-Yuan; Tian, Jian-Guo

    2011-06-01

    We report that a modified Z-scan method by nonlinear ellipse rotation (NER) can be used to discriminate true nonlinear refraction from thermal effect in the transient regime and steady state. The combination of Z-scan and NER allows us to measure the third-order nonlinear susceptibility component without the influence of thermal-optical nonlinearity. The experimental results of pure CS(2) and CS(2) solutions of nigrosine verify that the transient thermal effect can be successfully eliminated from the NER-modified Z-scan measurements. This method is also extended to the case in which thermal-optical nonlinearities depend on a high repetition rate of femtosecond laser pulses for the N,N-dimethylmethanamide solutions of graphene oxide. © 2011 Optical Society of America

  19. Semiclassical model for the distribution of final polar angles and m‧ states in rotationally inelastic collisions

    NASA Astrophysics Data System (ADS)

    Price, T. J.; Towne, A. C.; Talbi, D.; Hickman, A. P.

    2016-02-01

    Using the venerable vector model, we develop an expression for the change in the polar angle of the angular momentum of a rotator caused by collisions in a cell-type experiment. For an initial j precessing with polar angle θ, and a given distribution of 'tipping angles', we derive the distribution of final polar angles θ‧. Final m‧ levels are also determined. The results agree well with exact quantum calculations for thermal collisions of He or Ar with NaK. We also identify a special case where the distribution of θ‧ has a simple Lorentzian form.

  20. Emission-angle and polarization-rotation effects in the lensed CMB

    NASA Astrophysics Data System (ADS)

    Lewis, Antony; Hall, Alex; Challinor, Anthony

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  1. Nonlinear resonance of the rotating circular plate under static loads in magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Yuda; Wang, Tong

    2015-11-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  2. Electron-beam-deposited distributed polarization rotator for high-power laser applications.

    PubMed

    Oliver, J B; Kessler, T J; Smith, C; Taylor, B; Gruschow, V; Hettrick, J; Charles, B

    2014-10-06

    Electron-beam deposition of silica and alumina is used to fabricate distributed polarization rotators suitable for smoothing the intensity of large-aperture, high-peak-power lasers. Low-modulation, low-loss transmittance with a high 351-nm laser-damage threshold is achieved.

  3. Quantitative scheme for full-field polarization rotating fluorescence microscopy using a liquid crystal variable retarder

    NASA Astrophysics Data System (ADS)

    Lesoine, John F.; Youn Lee, Ji; Krogmeier, Jeffrey R.; Kang, Hyeonggon; Clarke, Matthew L.; Chang, Robert; Sackett, Dan L.; Nossal, Ralph; Hwang, Jeeseong

    2012-05-01

    We present a quantitative scheme for full-field polarization rotating fluorescence microscopy. A quarter-wave plate, in combination with a liquid crystal variable retarder, provides a tunable method to rotate polarization states of light prior to its being coupled into a fluorescence microscope. A calibration of the polarization properties of the incident light is performed in order to correct for elliptical polarization states. This calibration allows the response of the sample to linear polarization states of light to be recovered. Three known polarization states of light can be used to determine the average fluorescent dipole orientations in the presence of a spatially varying dc offset or background polarization-invariant fluorescence signal. To demonstrate the capabilities of this device, we measured a series of full-field fluorescence polarization images from fluorescent analogs incorporated in the lipid membrane of Burkitts lymphoma CA46 cells. The fluorescent lipid-like analogs used in this study are molecules that are labeled by either a DiI (1,1'-Dioctadecyl 3,3,3',3'-Tetramethylindocarbocyanine) fluorophore in its head group or a Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) molecule in its acyl chain. A spatially varying contrast in the normalized amplitude was observed on the cell surface, where the orientation of the DiI molecules is tangential to the cell membrane. The internally labeled cellular structures showed zero response to changes in linear polarization, and the net linear polarization amplitude for these regions was zero. This instrument provides a low cost calibrated method that may be coupled to existing fluorescence microscopes to perform investigations of cellular processes that involve a change in molecular orientations.

  4. Development of Calibration-Free Imaging Ellipsometry Using Dual-Rotation of Polarizer and Analyzer

    NASA Astrophysics Data System (ADS)

    Cheon, Hyuknyeong; Bak, Heung-Jin; Oh, Hyekeun; Lee, Eun-Kyu; An, Ilsin

    2007-08-01

    Imaging ellipsometry is developed in the dual-rotation mode of a polarizer and an analyzer. In this system, the polarizer and analyzer are rotated by a stepping motor at 1:1 ratio and the offset between the azimuths of both elements is kept constant. For data reduction, a two-dimensional array detector collects multiple intensity images during rotation and waveform analysis is performed for each pixel. This system generates second and fourth harmonics in intensity waveform and \\{Δ, \\Psi\\} images are deduced from the amplitudes of these harmonics without considering their phases, which leads to calibration-free imaging ellipsometry. This system works well with an offset between two elements but it becomes less susceptible to an offset-setting error with a smaller offset. Besides the ease of operation, this system is simple to construct as no complicated control mechanism is required for each component.

  5. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    PubMed Central

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688

  6. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  7. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    NASA Astrophysics Data System (ADS)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  8. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  9. Spin Rotation Schemes at the ILC for Two Interaction Regions and Positron Polarization with both Helicities

    SciTech Connect

    Moffeit, K.

    2005-02-17

    This note describes a spin rotation scheme for the ILC that allows the polarization spin vector of the electron and positron beams to be tuned independently for two Interaction Regions (IR). The correct spin direction for a particular IR can be selected by directing the beam into one of two parallel spin rotation beam lines located between the damping ring and the linac. With suitable fast kicker magnets, it is possible to rapidly switch between these parallel beam lines, so that polarized beams can be delivered to two IRs on a pulse train by pulse train basis. A similar scheme can be employed in the insertion beam line to the positron damping ring, to allow rapid helicity switching for polarized positrons.

  10. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    PubMed

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-02

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  11. Nonlinear flap-lag-extensional vibrations of rotating, pretwisted, preconed beams including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.

  12. High-frequency dynamic nuclear polarization in the nuclear rotating frame.

    PubMed

    Farrar, C T; Hall, D A; Gerfen, G J; Rosay, M; Ardenkjaer-Larsen, J H; Griffin, R G

    2000-05-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (epsilon) close to thermal equilibrium, epsilon = 0.89, has been obtained at high field (B(0) = 5 T, nu(epr) = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin-lattice relaxation time (T(1rho)), which is four orders of magnitude shorter than the nuclear spin-lattice relaxation time (T(1n)). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T(1rho) and is not limited by the much slower lab frame nuclear spin-lattice relaxation rate (1/T(1n)). The increased repetition rate allowed in the nuclear rotating frame provides an effective enhancement per unit time(1/2) of epsilon(t) = 197. The nuclear rotating frame-DNP experiment does not require high microwave power; significant signal enhancements were obtained with a low-power (20 mW) Gunn diode microwave source and no microwave resonant structure. The symmetric trityl radical used as the polarization source is water-soluble and has a narrow EPR linewidth of 10 G at 139.5 GHz making it an ideal polarization source for high-field DNP/NMR studies of biological systems. Copyright 2000 Academic Press.

  13. Spectral and polarization characteristics of the nonspherically decaying radiation generated by polarization currents with superluminally rotating distribution patterns.

    PubMed

    Ardavan, Houshang; Ardavan, Arzhang; Singleton, John

    2004-05-01

    We present a theoretical study of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency Omega) at the same time and that comprises both poloidal and toroidal components. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. We find that the superluminal motion of the distribution pattern of the emitting current generates localized electromagnetic waves that do not decay spherically, i.e., that do not have an intensity diminishing as RP(-2) with the distance RP from their source. The nonspherical decay of the focused wave packets that are emitted by the polarization currents does not contravene conservation of energy: The constructive interference of the constituent waves of such propagating caustics takes place within different solid angles on spheres of different radii (RP) centered on the source. For a polarization current whose longitudinal distribution (over an azimuthal interval of length 2pi) consists of m cycles of a sinusoidal wave train, the nonspherically decaying part of the emitted radiation contains the frequencies Omega +/- momega; i.e., it contains only the frequencies involved in the creation and implementation of the source. This is in contrast to recent studies of the spherically decaying emission, which was shown to contain much higher frequencies. The polarization of the emitted radiation is found to be linear for most configurations of the source.

  14. Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Ahmedov, Bobomurat

    2017-04-01

    We construct regular rotating black hole and no-horizon spacetimes based on the recently introduced spherically symmetric generic regular black hole spacetimes related to electric or magnetic charge under nonlinear electrodynamics coupled to general relativity that for special values of the spacetime parameters reduce to the Bardeen and Hayward spacetimes. We show that the weak and strong energy conditions are violated inside the Cauchy horizons of these generic rotating black holes. We give the boundary between the rotating black hole and no-horizon spacetimes and determine the black hole horizons and the boundary of the ergosphere. We introduce the separated Carter equations for the geodesic motion in these rotating spacetimes. For the most interesting new class of the regular spacetimes, corresponding for magnetic charges to the Maxwell field in the weak field limit of the nonlinear electrodynamics, we determine the structure of the circular geodesics and discuss their properties. We study the epicyclic motion of a neutral particle moving along the stable circular orbits around the "Maxwellian" rotating regular black holes. We show that epicyclic frequencies measured by the distant observers and related to the oscillatory motion of the neutral test particle along the stable circular orbits around the rotating singular and regular Maxwellian black holes are always smaller than ones in the Kerr spacetime.

  15. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-01-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  16. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    NASA Astrophysics Data System (ADS)

    Solookinejad, G.

    2016-09-01

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  17. Linear and nonlinear dynamic instability of rotating polytropes

    NASA Astrophysics Data System (ADS)

    Williams, Harold A.; Tohline, Joel E.

    1987-04-01

    A three-dimensional hydrodynamic computer program is used to study the growth of nonaxisymmetric structures in rapidly rotating, self-gravitating polytropes. Models with polytropic index n = 0.8, 1.0, 1.3, 1.5, and 1.8 are studied. The initially axisymmetric equilibria are constructed by the Ostriker-Mark self-consistent-field method. The nonaxisymmetric pattern that develops out of low-amplitude random noise is a two-armed spiral with a well-defined pattern speed and growth rate which closely match properties of the toroidal mode predicted from the linear, second-order tensor-virial equation. A Fourier analysis of each polytrope's azimuthal density distribution shows that, even in the linear amplitude regime, higher-order angular patterns also develop exponentially in time. The higher-order patterns ultimately move in synchronization with the broad two-armed spiral, creating a narrow two-armed spiral. As the polytropic index is decreased, a more open and centrally more barlike pattern develops.

  18. Crack identification for rotating machines based on a nonlinear approach

    NASA Astrophysics Data System (ADS)

    Cavalini, A. A., Jr.; Sanches, L.; Bachschmid, N.; Steffen, V., Jr.

    2016-10-01

    In a previous contribution, a crack identification methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic forces at certain frequencies attaining combinational resonances, together with a pseudo-random optimization code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral responses of the flexible rotor. The conditions under which combinational resonances appear were determined by using the method of multiple scales. In real conditions, the breathing phenomenon arises from the stress and strain distribution on the cross-sectional area of the crack. This mechanism behavior follows the static and dynamic loads acting on the rotor. Therefore, the breathing crack can be simulated according to the Mayes' model, in which the crack transition from fully opened to fully closed is described by a cosine function. However, many contributions try to represent the crack behavior by machining a small notch on the shaft instead of the fatigue process. In this paper, the open and breathing crack models are compared regarding their dynamic behavior and the efficiency of the proposed identification technique. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory (LFM). The open crack model is based on LFM and the breathing crack model corresponds to the Mayes' model, which combines LFM with a given breathing mechanism. For illustration purposes, a rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning ball bearings is used to compose a finite element model of the system. Then, numerical simulation is performed to determine the dynamic behavior of the rotor. Finally, the results of the inverse problem conveyed show that the methodology is a reliable tool that is able to estimate satisfactorily the location and depth of the crack.

  19. A Rotating Source Polarization Measurement Technique Using Two Circularly Polarized Antennas

    DTIC Science & Technology

    2016-07-15

    level opposite polarization signal. However, the DFT resolution can be artificially increased by appending to the measured data, precisely M-1 copies... appending to the original data M − 1 copies of the measurements. The expanded data set es21 contains MN samples, that is es21(n+Nm) = s21(n), n = 1, 2

  20. Evaluation of polarization rotation in the scattering responses from individual semiconducting oxide nanorods

    SciTech Connect

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Monahan, Brian; Hahm, Jong-in

    2016-04-15

    We investigate the interaction of visible light with the solid matters of semiconducting oxide nanorods (NRs) of zinc oxide (ZnO), indium tin oxide (ITO), and zinc tin oxide (ZTO) at the single nanomaterial level. We subsequently identify an intriguing, material-dependent phenomenon of optical rotation in the electric field oscillation direction of the scattered light by systematically controlling the wavelength and polarization direction of the incident light, the NR tilt angle, and the analyzer angle. This polarization rotation effect in the scattered light is repeatedly observed from the chemically pure and highly crystalline ZnO NRs, but absent on the chemically doped NR variants of ITO and ZTO under all measurement circumstances. We further elucidate that the phenomenon of polarization rotation detected from single ZnO NRs is affected by the NR tilt angle, while the phenomenon itself occurs irrespective of the wavelength and incident polarization direction of the visible light. Combined with the widespread optical and optoelectronic use of the semiconducting oxide nanomaterials, these efforts may provide much warranted fundamental bases to tailor material-specific, single nanomaterial-driven, optically modulating functionalities which, in turn, can be beneficial for the realization of high-performance integrated photonic circuits and miniaturized bio-optical sensing devices.

  1. Non-linear vacuum polarization in strong fields

    SciTech Connect

    Gyulassy, M.

    1981-07-01

    The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.

  2. Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2016-10-01

    Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—< {{\\tilde{v}}r}\\tilde{n}{{\\tilde{v}}θ}> is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux < {{\\tilde{v}}r}\\tilde{n}{{\\tilde{v}}θ}> in strong electrostatic turbulence is calculated using the Hasegawa-Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.

  3. Semi-Classical theory of Nonlinear interaction of circularly polarized optical vortex beam with plasma channel

    NASA Astrophysics Data System (ADS)

    Sharma, B. S.; Dhabhai, R. C.; Sharma, A.; Jaiman, N. K.

    2017-05-01

    A semiclassical approach of nonlinear interaction of intense circularly polarized optical vortex Laguerre-Gaussian (LG) beam modes with a plasma channel is analyzed theoretically and numerically. We study an exchange of angular momentum between the vortex beam and plasma channel. The transfer of angular momentum and the generated magnetic field are calculated. We have observed that both the generated magnetic field and angular momentum transfer depend on beam mode, intensity, and the polarization state of beam mode.

  4. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  5. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements.

    PubMed

    Ferreira, L A; Santos, J L; Farahi, F

    1995-10-01

    Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.

  6. Variable Polarization from Co-Rotating Interaction Regions in Massive Star Winds

    NASA Astrophysics Data System (ADS)

    Ignace, Richard; St. Louis, Nicole; Tremblay, Patrick; Proulx-Giraldeau, Felix

    2017-01-01

    Co-rotating Interaction Regions (CIRs) are a well-known phenomenon in the solar wind, and is a favored culprit for certain cyclical behavior observed in the spectra of some massive stars. A prime example are the discrete absorption components (DACs) seen in the UV wind lines of many O stars. Here we report on modeling for the variable continuum polarization that could arise from the presence of CIR structures. Considerations are limited to optically thin scattering. Using a core-halo approach for winds that are thick to electron scattering, an application to observed variable polarization of WR6 (EZ CMa; HD 50896) is presented.

  7. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Santos, J. L.; Farahi, F.

    1995-10-01

    Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.

  8. Nonlinear polarization interaction in bacteriorhodopsin films with anisotropically saturating absorption

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Druzhko, Anna B.; Dyukova, Tatyana V.

    1996-06-01

    The effect of protein and matrix modifications on the photoanisotropic properties is studied for developing the concept of impact upon the main optical properties of the dynamic optical material based on bacteriorhodopsin (BR) both interaction of transmembrane protein--chromophore complex BR with matrix and interaction of protein opsin with chromophore retinal. Also possibility of the application of BR-films for the light polarization modulator is proposed.

  9. Transverse spin diffusion and spin rotation in very dilute, spin-polarized 3-4He mixtures

    NASA Astrophysics Data System (ADS)

    Candela, D.; McAllaster, D. R.; Wei, L.-J.

    1991-10-01

    We report measurements of the transverse-spin-diffusion coefficient D⊥ and the spin-rotation parameter Ωτ⊥ for two very dilute 3-4He mixtures (x3=1.82×10-3 and 6.26×10-4) spin polarized by an 8-T magnetic field. Brute-force spin polarization up to 40% was achieved at the lowest temperature, 6 mK. We find that Ωτ⊥ increases monotonically as the temperature is reduced through the Fermi temperature TF, in disagreement with the only previous experiment but in good agreement with recent theory. Unlike the earlier experiment, which measured spin echoes, the present experiments employed a spin-wave technique that avoids nonlinear excitation of the spin field. We compare our results with the recent calculations of Jeon and Mullin for spin transport in dilute gases with arbitrary polarization and degeneracy. The best fit to the data is obtained by scaling the quasiparticle interaction V(q) proposed by Ebner by a modest factor, 1.07. The corresponding s-wave scattering length is a=-1.21 Å. Good agreement is found for Ωτ⊥(T) at both concentrations and all temperatures, and for D⊥/Ωτ⊥(T) apart from the lower concentration at T<20 mK. The discrepancy in D⊥/Ωτ⊥ at the lowest temperatures and x3 could be explained by an unanticipated polarization dependence or by modification of the spin-wave boundary condition by processes occurring at the interface between the mixture and the silica cavity wall.

  10. Evolution of polarization of a nonlinear pulse in birefringent fiber with quintic effects

    NASA Astrophysics Data System (ADS)

    Senthilnathan, K.; Porsezian, K.

    2002-09-01

    We investigate the evolution of polarization of a soliton pulse with quintic self and cross phase modulation effects in birefringent nonlinear fiber. To characterize the state of polarization of a soliton pulse, we derive a system of integro-differential equations. The solitary wave solutions are obtained to discuss the different state of polarization. Moreover, after constructing suitable conserved densities, we derive the undamped Duffing oscillator equation from the evolution of the Stokes parameters. The stability analysis is carried out by both analytical and numerical methods.

  11. Circularly polarized few-cycle optical rogue waves: Rotating reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Xu, Shuwei; Porsezian, K.; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  12. Modified elliptically polarized light Z-scan method for studying third-order nonlinear susceptibility components.

    PubMed

    Yan, Xiao-Qing; Liu, Zhi-Bo; Zhang, Xiao-Liang; Zang, Wei-Ping; Tian, Jian-Guo

    2010-05-10

    The normal elliptically polarized light Z-scan method is modified by adding a quarter-wave plate and an analyzer before the detector. The normalized transmittance formulas of modified elliptically polarized light Z-scan are obtained for media with negligible nonlinear absorption. Compared with normal linearly and elliptically polarized light Z-scan methods, an increase of sensitivity by a factor of larger than 4 is achieved for the real part of third-order susceptibility component's measurements using this modified elliptically polarized light Z-scan method. The analytical results are verified by studying the real part of independent susceptibility components of CS(2) liquid. Moreover, the potential application for cross-polarized wave generation is discussed. (c) 2010 Optical Society of America.

  13. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.

    PubMed

    Olson, David J; Oh, Denise; Houston, Douglas W

    2015-05-15

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation

    PubMed Central

    Olson, David J.; Oh, Denise

    2015-01-01

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. PMID:25753733

  15. NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND

    SciTech Connect

    Shoda, M.; Yokoyama, T.

    2016-04-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.

  16. An imaging technique using rotational polarization microscopy for the microstructure analysis of carbon/carbon composites.

    PubMed

    Miaoling, Li; Lehua, Qi; Hejun, Li

    2012-01-01

    A novel image analysis technique was proposed for microstructure investigation of carbon/carbon (C/C) composites. The rotational polarization microscopy was developed to meet the special imaging requirements. The samples of C/C composites were observed in reflection polarized light microscope, where the analyzer was rotated instead of the stage, and the polarizer was taken out. The bireflectance of like-graphite negative uniaxial crystal was analyzed. It was the theoretic foundation of image collection and data processing. The analyzer was rotated through 36 × 10° intervals without any movement of the specimen. The polished cross-section of C/C composites took micrographs at each analyzer orientation. All image data collected from the same field of view were processed by image registration and image fusion. The synthesized images were obtained by calculating the maximum and minimum gray values and their differences at each point of the million pixels at 18 orientations of the analyzer. They are unique and quite reliable to be applied to analyze the microstructure of C/C composites. Subsequently, image segmentation was performed, and the feature parameters of each component were calculated. Good agreement was found between the results from image analysis and experimental data.

  17. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  18. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    PubMed

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  19. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K. V.; Rödel, Jürgen; Xing, Xianran

    2017-07-01

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic MA structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic MB , rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  20. Static configurations and nonlinear waves in rotating nonuniform self-gravitating fluids.

    PubMed

    Nekrasov, A K

    2006-02-01

    The equilibrium states and low-frequency waves in rotating nonuniform self-gravitating fluids are studied. The effect of a central object is included. Two-dimensional static configurations accounting for self-gravity, external gravity, and nonuniform rotation are considered for three models connecting the pressure with the mass density: thermodynamic equilibrium, polytropic pressure, and constant mass density. Explicit analytical solutions for equilibrium have been found in some cases. The low-frequency waves arising due to the vertical and horizontal fluid inhomogeneities are considered in the linear and nonlinear regimes. The relationship between the background pressure and mass density is supposed to be arbitrary in the wave analysis. It is shown that the waves considered can be unstable in the cases of polytropic pressure and constant mass density. The additional nonlinear term proportional to the product of the pressure and mass density perturbations, which is usually omitted, is kept in our nonlinear equations. There have been found conditions for this term to be important. Stationary nonlinear wave equations having solutions in the form of coherent vortex structures are obtained in a general form. The importance of involving real static configurations in the consideration of wave perturbations is emphasized.

  1. Generation of spatial structures by nonlinear mass-exchange processes in a multicomponent rotating disk

    NASA Astrophysics Data System (ADS)

    Korchagin, V. I.; Ryabtsev, A. D.

    1994-10-01

    We consider hydrodynamic motions in a multicomponent rotating disk taking into account interchange processes between its three components (cold clouds, warm gas, and massive stars). The analysis of the system's linear stability demonstrates the existence of two branches of oscillations: the 'chemical mode' (C-mode) and the hydrodynamic mode (H-mode). The C-mode as well as the H-mode could be unstable in a rigidly rotating disk without self-gravity. The frequencies and the growth rates of unstable modes depend on parameters of mass-exchange processes and are of the order of a few times the life of massive stars. The nonlinear analysis has been performed under the condition of C-mode instability. The result of the evolution depends on the angular velocity of the disk rotation. Two regimes have been found to exist: the formation of regular grand design spiral waves and the development of spatial chaos. Thus, the nonlinear exchange processes in a rotating multicomponent disk could be a mechanism of generation of different kinds of spatial structures in disk galaxies.

  2. Renormalized vacuum polarization on rotating warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Louko, Jorma

    2015-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  3. Polarization rotator of arbitrary angle based on simple slot-array

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Cao, Xiaohang; Yu, Junsheng; Chen, Xiaodong; Yao, Yuan; Qi, Limei; Chen, Zhijiao; Zhou, Jun

    2015-12-01

    A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS). Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW) array. Moreover, low insertion loss can be achieved based on metallic material.

  4. Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas.

    PubMed

    Castro-Lopez, Marta; Brinks, Daan; Sapienza, Riccardo; van Hulst, Niek F

    2011-11-09

    Resonant optical antennas are ideal for nanoscale nonlinear optical interactions due to their inherent strong local field enhancement. Indeed second- and third-order nonlinear response of gold nanoparticles has been reported. Here we compare the on- and off-resonance properties of aluminum, silver, and gold nanoantennas, by measuring two-photon photoluminescence. Remarkably, aluminum shows 2 orders of magnitude higher luminescence efficiency than silver or gold. Moreover, in striking contrast to gold, the aluminum emission largely preserves the linear incident polarization. Finally, we show the systematic resonance control of two-photon excitation and luminescence polarization by tuning the antenna width and length independently. Our findings point to aluminum as a promising metal for nonlinear plasmonics.

  5. VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor.

    PubMed

    Guo, Tuan; Liu, Fu; Du, Fa; Zhang, Zhaochuan; Li, Chunjie; Guan, Bai-Ou; Albert, Jacques

    2013-08-12

    A compact fiber-optic vector rotation sensor in which a short section of polarization-maintaining (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single mode fiber without any lateral offset is proposed and experimentally demonstrated. Due to the intrinsic birefringence of the PM fiber, two well-defined resonances (i.e. orthogonally polarized FBG core modes) with wavelength separation of 0.5 nm have been achieved in reflection, and they exhibit a high sensitivity to fiber rotation. Both the orientation and the angle of rotation can be determined unambiguously via simple power detection of the relative amplitudes of the orthogonal core reflections. Meanwhile, instead of using a broadband source (BBS), the sensor is powered by a commercial vertical cavity surface emitting laser (VCSEL) with the laser wavelength matched to the PM-FBG core modes, which enables the sensor to work at much higher power levels (~15 dB better than BBS). This improves the signal-to-noise ratio considerably (~50 dB), and makes a demodulation filter unnecessary. Vector rotation measurement with a sensitivity of 0.09 dB/deg has been achieved via cost-effective single detector real time power measurement, and the unwanted power fluctuations and temperature perturbations can be effectively referenced out.

  6. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    NASA Technical Reports Server (NTRS)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; hide

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  7. Effect of control-beam polarization and power on optical time-domain demultiplexing in a new nonlinear optical loop mirror design

    NASA Astrophysics Data System (ADS)

    Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef

    2009-05-01

    A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.

  8. Rotatable spin-polarized electron source for inverse-photoemission experiments

    SciTech Connect

    Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.

  9. Imaging of polarization rotation in transmission resonances of periodic plasmonic structures

    NASA Astrophysics Data System (ADS)

    Arora, Pankaj; Krishnan, Ananth

    2014-05-01

    We imaged polarization rotation of transmitted light in 1D Periodic Plasmonic Structures (PPS) fabricated on thin metal coated dielectric substrate. Several PPS of 50% duty cycle and extremely low aspect ratio (height to width ratio) of 0.1 were designed using rigorous coupled wave analysis to exhibit transmission plasmonic resonances at optical wavelengths (400 nm to 700 nm). PPS were fabricated using electron beam lithography, evaporation and lift-off process on glass substrates coated with thin metal. The PPS were characterized using normally incident broadband visible light and crossaxis Polarizer Analyzer setup, with the transmitted light imaged in direct and momentum space using a camera. When the cross axis Polarizer Analyzer were positioned at +45° & -45° respectively w.r.t. plane of incidence, bright emissions of Green, Yellow or Red colors corresponding to transmission plasmonic resonances of the PPS with different periods, were observed in both direct and Fourier planes, instead of completely dark images. From the measured emission momentum in Fourier plane images and spectra of collected light, the emissions were attributed to the excitations of surface plasmons and the reason for surface plasmon excitation in this arrangement is strong coupling of hybrid modes with each other caused by the anisotropy introduced by grating which strongly enhances the efficiency of Polarization rotation. The presented structures behave as frequency selective half wave plates in transmission configuration and could also be used to eliminate the effect of direct beam while imaging the coupling to surface plasmons in periodic structures.

  10. Numerical calculation of the operation wavelength range of a polarization controller based on rotatable wave plates

    NASA Astrophysics Data System (ADS)

    Park, Hee Su; Sharma, Aditya

    2016-12-01

    We calculate the operation wavelength range of polarization controllers based on rotating wave plates such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbitrary birefringence compensation are numerically estimated. The results present the acceptable phase retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-quarter-wave plate combination, and thereby determines the operation wavelength range of a given design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary birefringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show that the two configurations have the identical range of acceptable phase retardance within the uncertainty of our numerical method.

  11. Alpha models for rotating Navier-Stokes equations in geophysics with nonlinear dispersive regularization

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik

    Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.

  12. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    NASA Astrophysics Data System (ADS)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  13. Nonlinear optical responses to circularly polarized lights of the surface state of a topological insulator

    NASA Astrophysics Data System (ADS)

    Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi

    2012-02-01

    Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).

  14. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  15. ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS

    SciTech Connect

    Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.

    2011-04-10

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  16. Faraday rotation and polarization-modulated intense femtosecond laser pulses in a field-ionizing gaseous medium

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Liu, J.

    2014-10-01

    In this paper we investigate the propagation of an intense linearly polarized laser through an ionizing gaseous medium in the presence of an axial strong magnetic field, addressing the modulation of laser polarization. Our simulation indicates that the laser polarization can be dramatically modulated and shows complicated temporal patterns (Lissajous curves). This striking phenomenon can be attributed to the collective movement of ionized electrons, in contrast to the traditional Faraday rotation in which the rotation angle of the laser polarization derived from the linear response of the medium is time independent. We take the weighted average of the rotation angle over the whole pulse duration and find that it explicitly relies on strong magnetic strength as well as the incident laser intensity. Our finding has implications in strong magnetic diagnosis, laser intensity calibration, and the generation of polarization-modulated light sources.

  17. Integrated optical modulator manipulating the polarization and rotation handedness of Orbital Angular Momentum states.

    PubMed

    Mousavi, S Faezeh; Nouroozi, Rahman; Vallone, Giuseppe; Villoresi, Paolo

    2017-06-19

    Recent studies demonstrated that the optical channels encoded by Orbital Angular Momentum (OAM) are capable candidates for improving the next generation of communication systems. OAM states can enhance the capacity and security of high-dimensional communication channels in both classical and quantum regimes based on optical fibre and free space. Hence, fast and precise control of the beams encoded by OAM can provide their commercial applications in the compatible communication networks. Integrated optical devices are good miniaturized options to perform this issue. This paper proposes a numerically verified integrated high-frequency electro-optical modulator for manipulation of the guided modes encoded in both OAM and polarization states. The proposed modulator is designed as an electro-optically active Lithium Niobate (LN) core photonic wire with silica as its cladding in a LN on Insulator (LNOI) configuration. It consists of two successive parts; a phase shifter to reverse the rotation handedness of the input OAM state and a polarization converter to change the horizontally polarized OAM state to the vertically polarized one. It is shown that all four possible output polarization-OAM encoded states can be achieved with only 6 V and 7 V applied voltages to the electrodes in the two parts of the modulator.

  18. Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.

    2004-11-01

    Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).

  19. On the nonlinear interfacial instability of rotating core-annular flow

    NASA Technical Reports Server (NTRS)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  20. Analysis of galactic rotation from masers based on a nonlinear oort model

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2014-12-01

    Based on data on Galactic masers with measured trigonometric parallaxes, we have tested a nonlinear model of Galactic rotation using generalized Oort formulas. This model is shown to yield pretty good results up to heliocentric distances of 3-4 kpc. The main feature of the method is the possibility of estimating the solar Galactocentric distance R 0. This distance has been found by analyzing ≈60 masers to be R 0 = 8.3 ± 0.4 kpc. Our study of the three-dimensional kinematics of more than 100 masers based on the Ogorodnikov-Milne model has shown that significant nonlinearities are present only in the xy plane (rotation around the Galactic z axis) due to the peculiarities of the Galactic rotation curve. No significant linear dependences have been found in the xz and yz planes. We show the presence of a wave in the velocities w as a function of coordinate x or distance R with a wavelength of ˜3 kpc and an amplitude of ˜10 km s-1. The wave is particularly prominent in the Local and Perseus arms.

  1. Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2017-02-01

    Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born-Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.

  2. Rotational Diffusion of a New Large Non Polar Dye Molecule in Alkanes.

    PubMed

    Goudar, Radha; Gupta, Ritu; Kulkarni, Giridhar U; Inamdar, Sanjeev R

    2015-11-01

    Rotational reorientation times of a newly synthesized 2,5-bis(phenylethynyl)1,4-bis(dodecyloxy) benzene (DDPE) are experimentally determined in series of n-alkanes by employing steady state and time resolved fluorescence depolarization technique with a view to understand rotational dynamics of large non-polar solute molecule in non-polar solvents and few general solvents of different sizes and varying viscosity. It is observed that rotational reorientation times vary linearly as function of viscosity. The hydrodynamic stick condition describes the experimental results at low viscosities while the results tend to deviate significantly from it at higher viscosities. This is attributed to the possibility of long chains in solvents hosting a variety of chain defects (end-gauche, double-gauche, all-trans, kink, etc.) thereby reducing the effective length of the molecule, leading to a slightly reduced friction. The experimental results are compared with the predictions of Stokes-Einstein-Debye (SED) hydrodynamic theory as well as the quasi-hydrodynamic theories of Gierer-Wirtz (GW) and Dote-Kivelson-Shwartz (DKS). The predictions from these theories underestimate τr in the solvents employed in the study.

  3. General relativistic x ray (UV) polarization rotations as a quantitative test for black holes

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    It is now 11 years since a potentially easily observable and quantitative test for black holes using general relativistic polarization rotations was proposed (Stark and Connors 1977, and Connors and Stark 1977). General relativistic rotations of the x ray polarization plane of 10 to 100 degrees with x ray energy (between 1 and 100 keV) are predicted for black hole x ray binaries. (Classically, by symmetry, there is no rotation.) Unfortunately, x ray polarimetry has not been taken sufficiently seriously during this period, and this test has not yet been performed. A similar (though probably less clean) effect is expected in the UV for supermassive black holes in some quasars active galactic nuclei. Summarizing: (1) a quantitative test (proposed in 1977) for black holes exists; (2) x ray polarimetry of galactic x ray binaries sensitive to at least 1/2 percent between 1 keV and 100 keV is needed (polarimetry in the UV of quasars and AGN will also be of interest); and (3) proportional counters using timerise discrimination were shown in laboratory experiments able to perform x ray polarimetry and this and other methods need to be developed.

  4. Triaxial Earth's rotation: Chandler wobble, free core nutation and diurnal polar motion (Abstract)

    NASA Astrophysics Data System (ADS)

    Sun, R.; Shen, W.-B.

    2015-08-01

    In this study, we formulate two-layered triaxial Earth rotation theory, focusing on the influence of the triaxiality on the Chandler wobble (CW), free core nutation (FCN) and diurnal polar motion. We estimate the frequencies of the normal modes CW and FCN, and results show that though the influence of two-layer triaxiality on the CW and FCN frequencies are very small, there appear some new natures. The response of the Earth's polar motion to the excitation consists of two parts. One is in response to the same frequency excitation and the other is in response to the opposite frequency excitation. For an Earth model with triaxial mantle and core, both of these two parts have four resonant frequencies rather than two that are suggested by rotational symmetric Earth model. However, due to the small strength of these new resonances, the effects of these resonances are only significant when the excitation frequencies are very near to these resonance frequencies. In addition, compared to the biaxial case, the influences of the triaxiality on the prograde and retrograde diurnal polar motions excited by ocean tide component K1 are estimated as - 1.4 μas and - 0.9 μas respectively, which should be taken into account in theory. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41128003, 41021061).

  5. Generation of four-photon polarization entangled states with cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli

    2015-05-01

    We show how to prepare three different types of four-photon polarization entangled states among four modes. The scheme only use cross-Kerr medium, polarization beam splitters and X homodyne measurements on coherent light fields, which can be efficiently implemented in quantum optical laboratories. GHZ states and symmetric Dick states can be generated in deterministic way based on the scheme. With the possible availability of suitable strong Kerr nonlinearity, another type of entangled state called genuine four-photon entangled state can be realized as well.

  6. Nonlinear theory of intense laser-plasma interactions modified by vacuum polarization effects

    SciTech Connect

    Chen, Wenbo; Bu, Zhigang; Li, Hehe; Luo, Yuee; Ji, Peiyong

    2013-07-15

    The classical nonlinear theory of laser-plasma interactions is corrected by taking account of the vacuum polarization effects. A set of wave equations are obtained by using the Heisenberg-Euler Lagrangian density and the derivative correction with the first-order quantum electrodynamic effects. A model more suitable to formulate the interactions of ultra-strong lasers and high-energy-density plasmas is developed. In the result, some environments in which the effects of vacuum polarization will be enhanced are discussed.

  7. Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform.

    PubMed

    Sacher, Wesley D; Huang, Ying; Ding, Liang; Barwicz, Tymon; Mikkelsen, Jared C; Taylor, Benjamin J F; Lo, Guo-Qiang; Poon, Joyce K S

    2014-05-05

    We demonstrate novel polarization management devices in a custom-designed silicon nitride (Si(3)N(4)) on silicon-on-insulator (SOI) integrated photonics platform. In the platform, Si(3)N(4) waveguides are defined atop silicon waveguides. A broadband polarization rotator-splitter using a TM0-TE1 mode converter in a composite Si(3)N(4)-silicon waveguide is demonstrated. The polarization crosstalk, insertion loss, and polarization dependent loss are less than -19 dB, 1.5 dB, and 1.0 dB, respectively, over a bandwidth of 80 nm. A polarization controller composed of polarization rotator-splitters, multimode interference couplers, and thin film heaters is also demonstrated.

  8. Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2014-05-01

    Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.

  9. Nonlinear filter for pattern recognition invariant to illumination and to out-of-plane rotations.

    PubMed

    Lefebvre, Daniel; Arsenault, Henri H; Roy, Sébastien

    2003-08-10

    Automatic target recognition in uncontrolled conditions is a difficult task because many parametersare involved. This study deals with the recognition of targets under limited out-of-plane rotations while maintaining invariance to ambient light illumination. Contrast invariance is achieved by using the recently developed locally adaptive contrast-invariant filter, a method that yields correlation peaks whose values are invariant under any linear transformation of intensity. To reduce the sensitivity to the orientation of the object we replace the reference in the nonlinear filter by a synthetic discriminant filter. The range used for out-of-plane rotations was 40 degrees with a depression angle of 20 degrees. We present results for unsegmented targets on complex backgrounds with the presence of false targets.

  10. Energy harvester for rotating environments using offset pendulum and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Roundy, Shad; Tola, Jeffry

    2014-10-01

    We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph.

  11. Relaxation of rotational angular momentum of polar diatomic molecules in simple liquids

    SciTech Connect

    Padilla, A.; Perez, J.

    2007-03-15

    The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocorrelation function of the angular momentum. This non-Markovian theory was previously applied to the study of the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation components involved in the angular momentum correlation function. In these equations, the time-dependent angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evolution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed. The theory is applied to the study of the angular momentum relaxation processes of HCl diluted in liquid SF{sub 6}, a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed in the scope of the same theory.

  12. New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion

    NASA Astrophysics Data System (ADS)

    Salstein, D. A.; Stamatakos, N.

    2014-12-01

    We are reviewing the state of the art in available datasets for both atmospheric angular momentum (AAM) and oceanic angular momentum (OAM) for the purposes of analysis and prediction of both polar motion and length of day series. Both analyses and forecasts of these quantities have been used separately and in combination to aid in short and medium range predictions of Earth rotation parameters. The AAM and OAM combination, with the possible addition of hydrospheric angular momentum can form a proxy index for the Earth rotation parameters themselves due to the conservation of angular momentum in the Earth system. Such a combination of angular momentum of the geophysical fluids has helped in forecasts within periods up to about 10 days, due to the dynamic models, and together with extended statistical predictions of Earth rotation parameters out even as far as 90 days, according to Dill et al. (2013). We assess other dataset combinations that can be used in such analysis and prediction efforts for the Earth rotation parameters, and demonstrate the corresponding skill levels in doing so.

  13. Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran

    2016-05-01

    A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.

  14. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.

    2004-06-04

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers.

  15. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, Dmitry; Hollberg. Leo; Kimball, Derek F.; Kitching J.; Pustelny Szymon; Yashchuk, Valeriy V.

    2004-08-12

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  16. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, D.; Hollberg, L.; Kitching, J.; Kimball, D.F.; Pustelny, S.; Yashchuk, V.V.

    2005-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane antirelaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a 40-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  17. Evaluation of diseased coronary arterial branches by polar representations of thallium-201 rotational myocardial imaging

    SciTech Connect

    Iino, T.; Toyosaki, N.; Katsuki, T.; Noda, T.; Natsume, T.; Yaginuma, T.; Hosoda, S.; Furuse, M.

    1987-09-01

    The perfusion territories in polar representations of stress Tl-201 rotational myocardial imaging in patients with angina pectoris who had one diseased coronary segment were analyzed. The lesions proximal or distal to the first major septal perforator in left anterior descending arteries were detected by the presence or absence of defects at the base of the anterior septum. Right coronary artery lesions were detected by the presence of defects at the basal posterior septum, in contrast to the preservation of myocardial uptake at this portion in lesions of the left circumflex artery. The specific defect patterns were detected in cases with lesions at the first diagonal, obtuse marginal, and posterolateral branches. Recognition of these defects in the polar maps allows detailed detection of diseased coronary arterial branches.

  18. Photonic crystal fiber polarization rotator based on the topological Zeeman effect.

    PubMed

    Chen, Lei; Zhang, Wei-Gang; Yan, Tie-Yi; Wang, Li; Sieg, Jonathan; Wang, Biao; Zhou, Quan; Zhang, Li-Yu

    2015-08-01

    A photonic crystal fiber polarization rotator (PR) is proposed based on the topological Zeeman effect. The proposed PR is achieved by permanently twisting a segment of sixfold symmetric photonic crystal fiber with a matched length, and under the optimized parameters, the PR can offer an almost 100% polarization conversion ratio in the wavelength of 1.55-μm band (∼200  nm bandwidth) and a compact length of about 157 μm based on the numerical simulation result of the full-vector finite-element method. The proposed in-line PCF PR can be easily fabricated based on state-of-art PCF manufacturing, and it is a potential inexpensive candidate in the application of modern communication systems.

  19. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules

    NASA Astrophysics Data System (ADS)

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

  20. Square-wave oscillations in edge-emitting diode lasers with polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, A.; Erneux, T.; Sukow, D. W.; Burner, G.; McLachlan, T.; Miller, J.; Amonette, J.

    2006-04-01

    The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied experimentally and theoretically. Square-wave self-modulated polarization intensities of a period close to twice the delay τ of the feedback gradually appear through a sequence of bifurcations starting with a Hopf bifurcation (Gavrielides et al, Proc. SPIE 6115, to appear, 2006). In Gavrielides et al (submitted, 2006), squarewave solutions were determined analytically from the laser equations in the limit of large τ. A condition on the laser parameters was derived explaining why square-wave oscillations are preferentially observed for suffciently large feedback strength. In this paper, we concentrate on the relaxation oscillations that always appear at each intensity jump between the plateaus of the square-wave. We show analytically that if the feedback strength is progressively decreased, a bifurcation to sustained relaxation oscillations is possible for one of the two plateaus.

  1. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave.

    PubMed

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-05

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell's law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  2. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  3. Detection of degree-scale B-mode polarization and studying cosmic polarization rotation with the BICEP1 and BICEP2 telescopes

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan Philip

    The BICEP1 and BICEP2 telescopes studied the temperature and polarization of the Cosmic Microwave Background (CMB) from 2006 -- 2008 and 2010 -- 2012, respectively, producing the deepest maps of polarization created to date. From BICEP2 three-year data, we detect B-mode polarization at the degree-scale above the expectation from lensed-ΛCDM to greater than 5sigma significance, consistent with that expected from gravitational waves created during Inflation. Instrumental systematic effects have been characterized and ruled out, and galactic foreground contamination is disfavored by the data. Additionally, correlations between temperature and B-mode polarization and between E-mode and B-mode polarization show evidence of polarization rotation of --1° to 5sigma significance; however, adding systematic uncertainty reduces this significance to ˜ 2sigma. These measurements, combined with other CMB and astrophysical measurements, point to possible parity violating physics like cosmic birefringence, but more precise calibration techniques are required to break the degeneracy between cosmic polarization rotation and systematic effects. Improved calibration is possible with current generation technology and may be achieved within the next few years. In this work, I present experimental and analysis techniques employed for BICEP1 and BICEP2 to measure B-mode polarization and temperature and polarization correlations, as well as the scientific motivation, results, and a path forward for future measurements.

  4. Magnetic Dilaton Rotating Strings in the Presence of Exponential Nonlinear Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Mahmoudi, Z.

    2016-09-01

    In this paper, we construct a new class of four-dimensional spinning magnetic dilaton string solutions which produces a longitudinal nonlinear electromagnetic field. The Lagrangian of the matter field has the exponential form. We study the physical properties of the solution in ample details. Geometrical, causal and geodisical structures of the solutions are investigated, separately. We confirm that the spacetime is both null and geodesically complete. We find that these solutions have no curvature singularity and no horizon, but have a conic geometry. We investigate the effects of variation of charge and the intensity of the dilaton field, on the deficit angle. Due to the presence of the dilaton field, the asymptotic behavior of the solutions are neither flat nor (anti-) de Sitter [(A)dS]. Furthermore, we extend our study to the higher dimensions and obtain the ( n+1)-dimensional magnetic rotating dilaton strings with k≤[ n/2] rotation parameters and calculate conserved quantities of the solutions. Although these solutions are not asymptotically (A)dS, we use counterterm method to calculate conserved quantities. We also calculate electric charge and show that the net electric charge of the spinning string is proportional to the rotating parameter and the electric field only exists when the rotation parameter does not vanish.

  5. The polar solar wind: An additional acceleration due to the rotation of the magnetic sun

    NASA Technical Reports Server (NTRS)

    Pisanko, Y. V.

    1997-01-01

    The influence of the solar rotation of the polar solar wind acceleration was analyzed theoretically. Data from the Solar and Heliospheric Observatory (SOHO) ultraviolet instruments were used to test the theoretical predictions. These predictions are: the double electric layer at the heliocentric distance of 2.6 solar radii, and the system of field-aligned electric currents above 2.6 solar radii. The model provides a 3D analytical discontinuous stationary solution of the magnetohydrodynamic equations in the non-inertial frame of reference.

  6. Rotative polarization system of millimetric wave for detecting fiber orientation in CFRP

    SciTech Connect

    Urabe, K. )

    1992-02-01

    A new system for nondestructive and contact-free detection of fiber orientation in fiber reinforced composites such as CFRP was devised using 35 GHz millimetric wave. In this system, by rotating the polarization of the wave and compensating it after passing through the sample, changes of anisotropy caused by changes in fiber orientation of unidirectional CFRP or carbon fiber prepreg can be easily and efficiently checked. Scanning detection of fiber direction and of fiber misorientation are also possible with high sensitivity. Results of measurements with successful sensitivity are shown for several kinds of unidirectional samples with artificial fiber misorientations. 5 refs.

  7. High frequency optical pulse generation by frequency doubling using polarization rotation

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2016-05-01

    In this work, we propose and experimentally characterize a stable 40 GHz optical pulse generation by frequency doubling using polarization rotation in a phase modulator (PM). Only half the electrical driving frequency is required (i.e. 20 GHz); hence the deployment cost can be reduced. Besides, precise control of the bias of the PM is not required. The generated optical pulses have a high center-mode-suppression-ratio (CMSR) of  >  28 dB. The single sideband (SSB) noise spectrum is also measured, and the time-domain waveforms under different CMSRs are also analyzed and discussed.

  8. Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate

    NASA Astrophysics Data System (ADS)

    Pradhan, S.

    2016-03-01

    The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.

  9. Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions

    NASA Astrophysics Data System (ADS)

    You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen

    2017-04-01

    Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.

  10. Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions.

    PubMed

    You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen

    2017-04-04

    Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.

  11. ROTATION MEASURE SYNTHESIS OF GALACTIC POLARIZED EMISSION WITH THE DRAO 26-m TELESCOPE

    SciTech Connect

    Wolleben, M.; Landecker, T. L.; Hovey, G. J.; Messing, R.; Davison, O. S.; House, N. L.; Somaratne, K. H. M. S.; Tashev, I.

    2010-04-15

    Radio polarimetry at decimeter wavelengths is the principal source of information on the Galactic magnetic field. The diffuse polarized emission is strongly influenced by Faraday rotation in the magneto-ionic medium and rotation measure (RM) is the prime quantity of interest, implying that all Stokes parameters must be measured over wide frequency bands with many frequency channels. The Dominion Radio Astrophysical Observatory (DRAO) 26 m Telescope has been equipped with a wide-band feed, a polarization transducer to deliver both hands of circular polarization, and a receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between 40 and 30 arcmin. A digital Field-Programmable Gate Array spectrometer, based on commercially available components, produces all Stokes parameters in 2048 frequency channels over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier Transform is applied to each data stream. Stokes parameters are then generated in each frequency channel. This instrument is in use at DRAO for a Northern sky polarization survey. Observations consist of scans up and down the Meridian at a drive rate of {approx}0.{sup 0}9 per minute to give complete coverage of the sky between declinations -30 deg. and 90 deg. This paper presents a complete description of the receiver and data acquisition system. Only a small fraction of the frequency band of operation is allocated for radio astronomy, and about 20% of the data are lost to interference. The first 8% of data from the survey are used for a proof-of-concept study, which has led to the first application of RM-Synthesis to the diffuse Galactic emission obtained with a single-antenna telescope. We find RM values for the diffuse emission as high as {approx}{+-}100 rad m{sup -2}, much higher than recorded in earlier work.

  12. Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds

    NASA Astrophysics Data System (ADS)

    Handel, P. H.

    2007-05-01

    When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud

  13. Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns.

    PubMed

    Camley, Brian A; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan

    2014-10-14

    Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell's internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell's methods for coordinating collective cell motility.

  14. Attosecond nonlinear polarization and light-matter energy transfer in solids.

    PubMed

    Sommer, A; Bothschafter, E M; Sato, S A; Jakubeit, C; Latka, T; Razskazovskaya, O; Fattahi, H; Jobst, M; Schweinberger, W; Shirvanyan, V; Yakovlev, V S; Kienberger, R; Yabana, K; Karpowicz, N; Schultze, M; Krausz, F

    2016-06-02

    Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.

  15. Attosecond nonlinear polarization and light-matter energy transfer in solids

    NASA Astrophysics Data System (ADS)

    Sommer, A.; Bothschafter, E. M.; Sato, S. A.; Jakubeit, C.; Latka, T.; Razskazovskaya, O.; Fattahi, H.; Jobst, M.; Schweinberger, W.; Shirvanyan, V.; Yakovlev, V. S.; Kienberger, R.; Yabana, K.; Karpowicz, N.; Schultze, M.; Krausz, F.

    2016-06-01

    Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.

  16. Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation.

    PubMed

    Jiang, Min; Wang, Guanghui; Jiao, Wenxiang; Ying, Zhoufeng; Zou, Ningmu; Ho, Ho-Pui; Sun, Tianyu; Zhang, Xuping

    2017-01-15

    We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.

  17. Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Huang, Xuanqi; Fu, Houqiang; Lu, Zhijian; Zhang, Xiaodong; Montes, Jossue A.; Zhao, Yuji

    2017-05-01

    We report the basic nonlinear optical properties, namely, two-photon absorption coefficient ( β ), three-photon absorption coefficient ( γ ), and Kerr nonlinear refractive index ( n kerr), of GaN crystals in polar c-plane, nonpolar m-plane, and semipolar ( 20 21 ¯ ) plane orientations. A typical Z-scan technique was used for the measurement with a femtosecond Ti:S laser from wavelengths of 724 nm to 840 nm. For the two-photon absorption coefficient ( β ), similar values were obtained for polar, nonpolar, and semipolar samples, which are characterized to be ˜0.90 cm/GW at 724 nm and ˜0.65 cm/GW at 730 nm for all the three samples. For the Kerr nonlinear refractive index ( n kerr), self-focusing features were observed in this work, which is different from previous reports where self-defocusing features were observed on GaN in the visible and near-UV spectral regions. At 724 nm, n kerr was measured to be ˜2.5 0 × 10 - 14 cm 2 / W for all three samples. Three-photon absorption coefficients ( γ ) were also determined, which were found to be consistent with previous reports. This study provides valuable information on the basic nonlinear optical properties of III-nitride semiconductors, which are vital for a wide range of applications such as integrated photonics and quantum photonics.

  18. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.

    PubMed

    Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro

    2017-07-10

    Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.

  19. Rotating machinery dynamics simulation. I. Rigid systems with ball bearing nonlinearities and outer ring ovality under rotating unbalance excitation

    PubMed

    el-Saeidy

    2000-02-01

    The radial clearance in rolling bearing systems, required to compensate for dimensional changes associated with thermal expansion of the various parts during operation, may cause dimensional attrition and comprise bearing life, if unloaded operation occurs and balls skid [D. Childs and D. Moyer, ASME J. Eng. Gas Turb. Power 107, 152-159 (1985)]. Also, it can cause jumps in the response to unbalance excitation. These undesirable effects may be eliminated by introducing two or more loops into one of the bearing races so that at least two points of the ring circumference provide a positive zero clearance [D. Childs, Handbook of Rotordynamics, edited by F. Ehrich (McGraw-Hill, NY, 1992)]. The deviation of the outer ring with two loops, known as ovality, is one of the bearing distributed defects. Although this class of imperfections has received much work, none of the available studies has simulated the effect of the outer ring ovality on the dynamic behavior of rotating machinery under rotating unbalance with consideration of ball bearing nonlinearities, shaft elasticity, and speed of rotation. To fill this gap, the equations of motion of a rotor-ball bearing system are formulated using finite-elements (FE) discretization and Lagrange's equations. The analyses are specialized to a rigid-rotor system, by retaining the rigid body modes only in the FE solution. Samples of the results are presented in both time domain and frequency domain for a system with and without outer ring ovality. It is found that with ideal bearings (no ovality), the vibration spectrum is qualitatively and quantitatively the same in both the horizontal and vertical directions. When the ring ovality is introduced, however, the spectrum in both orthogonal planes is no longer similar. And magnitude of the bearing load has increased in the form of repeated random impacts, between balls and rings, in the horizontal direction (direction of maximum clearance) compared to a continuous contact along the

  20. A model for the generation of strongly nonlinear, weakly nonhydrostatic interfacial waves in a rotating ocean

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Gerkema, Theo

    2015-04-01

    We derive a new two-fluid layer model consisting of a set of forced rotation-modified Boussinesq equations for studying the generation and evolution of strongly nonlinear weakly nonhydrostatic dispersive interfacial waves in a rotating ocean. The forcing for internal tide generation is due to tide-topography interaction (an oscillating non-flat bottom mimicking a barotropic tidal flow over topography). The resulting model forms a generalization of the Miyata-Choi-Camassa (MCC) equations, to which we add topography, tidal forcing and Coriolis dispersion due to Earth's rotation. Solitons are generated by disintegration of the first-mode of the internal tide. Because of strong non-linearity, they can attain a table-shaped form. Our moving (accelerating) topography is not an inertial frame and, hence, the transformation to a frame at rest is not simply a Galilean transformation. The effect of this transformation is discussed and is shown to be slight for the parameters under consideration. The set of equations is solved numerically using finite-difference methods. Numerical experiments using these equations are a useful tool for exploring and interpreting the conditions under which full nonlinearity becomes important for soliton generation. In particular, this is the case for table-top solitons when approaching the theoretical maximum amplitude and the appearance of nonlinearities when the two-layer system consists of two layers of equal thickness. At the early stage of the strongly nonlinear disintegration of an internal tide into table-top solitons, we observe that the low mode internal tide splits up into two different groups of rank-ordered solitons: a train of depressions on the leading edge and a train of elevations, after the former packet, with initially smaller amplitudes. Evolving in time, the largest elevations reach the smaller depressions in the train ahead, and three leading solitons at the front attain almost equal amplitudes. The table-top soliton

  1. Generation of four-photon polarization entangled decoherence-free states with cross-Kerr nonlinearity

    PubMed Central

    Wang, Meiyu; Yan, Fengli; Gao, Ting

    2016-01-01

    We propose a theoretical protocol for preparing four-photon polarization entangled decoherence-free states, which are immune to the collective noise. With the assistance of the cross-Kerr nonlinearities, a two-photon spatial entanglement gate, two controlled-NOT gates, a four-photon polarization entanglement gate are inserted into the circuit, where X homodyne measurements are aptly applied. Combined with some swap gates and simple linear optical elements, four-photon polarization entangled decoherence-free states which can be utilized to represent two logical qubits, |0〉L and |1〉L are achieved at the output ports of the circuit. This generation scheme may be implemented with current experimental techniques. PMID:27901116

  2. Subnanosecond polarized fluorescence photobleaching: rotational diffusion of acetylcholine receptors on developing muscle cells.

    PubMed Central

    Yuan, Y; Axelrod, D

    1995-01-01

    Polarized fluorescence recovery after photobleaching (PFRAP) is a technique for measuring the rate of rotational motion of biomolecules on living, nondeoxygenated cells with characteristic times previously ranging from milliseconds to many seconds. Although very broad, that time range excludes the possibility of quantitatively observing freely rotating membrane protein monomers that typically should have a characteristic decay time of only several microseconds. This report describes an extension of the PFRAP technique to a much shorter time scale. With this new system, PFRAP experiments can be conducted with sample time as short as 0.4 microseconds and detection of possible characteristic times of less than 2 microseconds. The system is tested on rhodamine-alpha-bungarotoxin-labeled acetylcholine receptors (AChRs) on myotubes grown in primary cultures of embryonic rat muscle, in both endogenously clustered and nonclustered regions of AChR distribution. It is found that approximately 40% of the AChRs in nonclustered regions undergoes rotational diffusion fast enough to possibly arise from unrestricted monomer Brownian motion. The AChRs in clusters, on the other hand, are almost immobile. The effects of rat embryonic brain extract (which contains AChR aggregating factors) on the myotube AChR were also examined by the fast PFRAP system. Brain extract is known to abolish the presence of endogenous clusters and to induce the formation of new clusters. It is found here that rotational diffusion of AChR in the extract-induced clusters is as slow as that in endogenous clusters on untreated cells but that rotational diffusion in the nonclustered regions of extract-treated myotubes remains rapid. Images FIGURE 3 PMID:8527682

  3. A review on prognostic techniques for non-stationary and non-linear rotating systems

    NASA Astrophysics Data System (ADS)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  4. Linear and nonlinear stability of a thermally stratified magnetically driven rotating flow in a cylinder.

    PubMed

    Grants, Ilmars; Gerbeth, Gunter

    2010-07-01

    The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.

  5. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Kim, Sangsik; Qi, Minghao

    2015-12-01

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.

  6. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2015-12-18

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.

  7. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2015-01-01

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300–1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below −40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands. PMID:26680655

  8. Rotational instability of the electric polarization and divergence of the shear elastic compliance

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Langhammer, H. T.; Müller, T.; Buscaglia, V.; Nanni, P.

    2016-02-01

    The rotational instability of the electric polarization P during phase transformations between ferroelectric phases is of great practical interest, since it may be accompanied by extremely large values of the piezoelectric coefficient, and a divergence of the coupled shear compliance contributes to such enhancements. In the literature, this has been explicitly calculated in the framework of the Landau theory and discussed with specific numerical simulations involving tetragonal, orthorhombic, and rhombohedral ferroelectric phases. When monoclinic phases are involved, such an approach is practically impossible, and an approximated treatment has been proposed, based on the observation that in those cases there are shear strains almost linearly coupled to the transverse component of P , implying a divergence of the Curie-Weiss type in the associated compliances. Here the argument is extended to the general case of transitions whose major effect is a rotation of the polarization, and the limits of its validity are discussed. As experimental verification, the elastic response of BaTiO3 is measured and analyzed, together with those of other ferroelectric perovskites available in the literature, such as KNN.

  9. Potentially Missing Physics of the Early Universe: Nonlinear Vacuum Polarization in Intense Blackbody Radiation

    SciTech Connect

    Wu, S Q; Hartemann, F V

    2010-04-13

    The standard Big Bang universe model is mainly based on linear interactions, except during exotic periods such as inflation. The purpose of the present proposal is to explore the effects, if any, of vacuum polarization in the very high energy density environment of the early universe. These conditions can be found today in astrophysical settings and may also be emulated in the laboratory using high intensity advanced lasers. Shortly after the Big Bang, there once existed a time when the energy density of the universe corresponded to a temperature in the range 10{sup 8} - 10{sup 9} K, sufficient to cause vacuum polarization effects. During this period, the nonlinear vacuum polarization may have had significant modifications on the propagation of radiation. Thus the thermal spectrum of the early universe may have been starkly non-Planckian. Measurements of the cosmic microwave background today show a spectrum relatively close to an ideal blackbody. Could the early universe have shown spectral deviations due to nonlinear vacuum effects? If so, is it possible to detect traces of those relic photons in the universe today? Found in galactic environments, compact objects such as blazars and magnetars can possess astronomically large energy densities that far exceed anything that can be created in the laboratory. Their field strengths are known to reach energy levels comparable to or surpassing the energy corresponding to the Schwinger critical field E {approx} 10{sup 18} V/m. Nonlinear vacuum effects become prominent under these conditions and have garnered much interest from the astronomical and theoretical physics communities. The effects of a nonlinear vacuum may be of crucial importance for our understanding of these objects. At energies of the order of the electron rest mass, the most important interactions are described by quantum electrodynamics (QED). It is predicted that nonlinear photon-photon interactions will occur at energies approaching the Schwinger

  10. A passive technique for detecting copy-move forgery with rotation based on polar complex exponential transform

    NASA Astrophysics Data System (ADS)

    Emam, Mahmoud; Han, Qi; Yu, Liyang; Zhang, Ye; Niu, Xiamu

    2015-07-01

    Copy-move is one of the most common methods for image manipulation. Several methods have been proposed to detect and locate the tampered regions, while many methods failed when the copied regions are rotated before being pasted. A rotational invariant detecting method using Polar Complex Exponential Transform (PCET) is proposed in this paper. Firstly, the original image is divided into overlapping circular blocks, and PCET is employed to each block to extract the rotation-invariant robust features. Secondly, the Approximate Nearest Neighbors (ANN) of each feature vector are collected by Locality Sensitive Hashing (LSH). Experimental results show that the proposed technique is robust to rotation.

  11. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  12. Rotational excitation of simple polar molecules by H2 and electrons in diffuse clouds

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.

    2012-02-01

    Context. Emission from strongly-polar molecules could be a probe of physical conditions in diffuse molecular gas. Aims: We wish to provide basic information needed to interpret emission from molecules having higher dipole moments than CO, originating in diffuse clouds where the density is relatively low and the temperature and electron fraction are relatively high compared to dark clouds. Methods: Parameter studies in LVG models are used to show how the low-lying rotational transitions of common polar molecules HCO+, HCN and CS vary with number density, column density and electron fraction; with molecular properties such as the charge state and permanent dipole moment; and with observational details such as the transition that is observed. Physically-based models are used to check the parameter studies and provide a basis for relating the few extant observations. Results: Parameter studies of LVG radiative transfer models show that lines of polar molecules are uniformly brighter for ions, for lower J-values and for higher dipole moments. Excitation by electrons is more important for J = 1-0 lines and contributes rather less to the brightness of CS J = 2-1 lines. If abundances are like those seen in absorption, the HCO+J = 1-0 line will be the brightest line after CO, followed by HCN (1-0) and CS (2-1). Because of the very weak rotational excitation in diffuse clouds, emission brightnesses and molecular column densities retain a nearly-linear proportionality under fixed physical conditions, even when transitions are quite optically thick; this implies that changes in relative intensities among different species can be used to infer changes in their relative abundances.

  13. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  14. Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid

    NASA Astrophysics Data System (ADS)

    Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan

    2017-03-01

    Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.

  15. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  16. The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Birmingham, T. J.

    1992-01-01

    Spatial variations of density and temperature along a magnetic field line are evaluated for a plasma undergoing adiabatic motion in a rotating magnetosphere. The effects of centrifugal and gravitational forces are accounted for, as is anisotropy in the pitch angle distribution functions of individual species. A polarization electric field is invoked to eliminate the net electric charge density resulting from the aforementioned mass dependent forces and different anisotropies. The position of maximum density in a two-component, electron-ion plasma is determined both in the absence and in the presence of the polarization effect and compared. A scale height, generalized to include anisotropies, is derived for the density fall-off. The polarization electric field is also included in the parallel guiding center equation; equilibrium points are determined and compared in both individual and average senses with the position of density maximum. Finally a transverse (to magnetic field lines) electric component is deduced as a consequence of dissimilar charge neutralization on adjacent field lines. The E x B velocity resultant from such a 'fringing' electric field is calculated and compared with the magnitude of other drifts.

  17. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    NASA Astrophysics Data System (ADS)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  18. Designing Ferroelectric Field-Effect Transistors Based on the Polarization-Rotation Effect for Low Operating Voltage and Fast Switching

    NASA Astrophysics Data System (ADS)

    Qi, Yubo; Rappe, Andrew M.

    2015-10-01

    The effect of polarization rotation on the performance of metal-oxide-semiconductor field-effect transistors is investigated with a Landau-Ginzburg-Devonshire theory-based model. In this analytical model, the depolarization field, polarization rotations, and electrostatic properties of the doped silicon substrate are considered to illustrate the size effect of ferroelectric oxides and the stability of polarization in each direction. Based on this model, we provide guidance in designing electronic logic devices with low operating voltages and low active-energy consumption: First, we demonstrate that MOSFET operation could be achieved by polarization reorientation with a low operating voltage, if the thickness of the ferroelectric oxide is properly selected. Polarization reorientation can boost the surface potential of the silicon substrate, leading to a subthreshold swing S lower than 60 mV /decade . We also demonstrate that, compared with polarization inversion, polarization rotation offers significant advantages, including a lower energy barrier and a wider range of transferability in nanoelectronic devices.

  19. Effects of rotation on the nonlinear friction of a damped dimer sliding on a periodic substrate.

    PubMed

    Neide, I G; Kenkre, V M; Gonçalves, S

    2010-10-01

    Rotational effects on the nonlinear sliding friction of a damped dimer moving over a substrate are studied within a largely one-dimensional model. The model consists of two masses connected rigidly, internally damped, and sliding over a sinusoidal (substrate) potential while being free to rotate in the plane containing the masses and the direction of sliding. Numerical simulations of the dynamics performed by throwing the dimer with an initial center of mass velocity along the substrate direction show a richness of phenomena including the appearance of three separate regimes of motion. The orientation of the dimer performs tiny oscillations around values that are essentially constant in each regime. The constant orientations form an intricate pattern determined by the ratio of the dimer length to the substrate wavelength as well as by the initial orientations chosen. Corresponding evolution of the center of mass velocity consists, respectively, of regular oscillations in the first and the third regimes, but a power law decay in the second regime; the center of mass motion is effectively damped in this regime because of the coupling to the rotation. Depending on the initial orientation of the dimer, there is considerable variation in the overall behavior. For small initial angles to the vertical, an interesting formal connection can be established to earlier results known in the literature for a vibrating, rather than rotating, dimer. But for large angles, on which we focus in the present paper, quite different evolution occurs. Some of the numerical observations are explained successfully on the basis of approximate analytical arguments but others pose puzzling problems.

  20. Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO3 thin films

    DOE PAGES

    Chen, Frank; Goodfellow, John; Liu, Shi; ...

    2015-09-21

    In this article, terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO3 while monitoring the time-dependent ferroelectric polarization through its nonlinear optical response. Modulations in the intensity of the second harmonic light generated by the film correspond to on–off ratios of 220 × gateable on femtosecond timescales. Polarization modulations comparable to the built-in static polarization are observed.

  1. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    NASA Astrophysics Data System (ADS)

    Volkova, E. A.; Popov, A. M.; Tikhonova, O. V.

    2013-03-01

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schrödinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  2. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    SciTech Connect

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu E-mail: tschu008@163.com

    2014-02-21

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom.

  3. Rotating waveplates as polarization modulators for Stokes polarimetry of the sun - Evaluation of seeing-induced crosstalk errors

    NASA Astrophysics Data System (ADS)

    Lites, Bruce W.

    1987-09-01

    A formalism for estimating the crosstalk error among Stokes I,Q,U,V introduced by seeing-induced image motion is presented. This formalism is applied to several modulation schemes for polarization involving rotating waveplates, and it is evaluated using an observed power spectrum of image motion obtained from the Vacuum Tower Telescope at the National Solar Observatory/Sunspot. It is shown that rotating waveplates offer an acceptable alternative for measurements of absorption line polarization of features observed on the solar disk, provided the detection can be carried out at video frame rates or faster.

  4. Enhanced Piezoelectric Response due to Polarization Rotation in Cobalt-Substituted BiFeO3 Epitaxial Thin Films.

    PubMed

    Shimizu, Keisuke; Hojo, Hajime; Ikuhara, Yuichi; Azuma, Masaki

    2016-10-01

    Polarization rotation induced by an external electric field in piezoelectric materials such as PbZr1-x Tix O3 is generally regarded as the origin of their large piezoelectric responses. Here, the piezoelectric responses of high-quality cobalt-substituted BiFeO3 epitaxial thin films with monoclinic distortions are systematically examined. It is demonstrated that polarization rotation plays a crucial role in improving the piezoelectric responses in this material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Lewandowski, Przemyslaw; Lafont, Ombline; Baudin, Emmanuel; Chan, Chris K. P.; Leung, P. T.; Luk, Samuel M. H.; Galopin, Elisabeth; Lemaître, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N. H.; Binder, Rolf; Schumacher, Stefan

    2016-07-01

    The pseudospin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing, for example, allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  6. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  7. Electric Polarization Rotation in a Hexaferrite with Long-Wavelength Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Lawes, G.; Ramirez, A. P.

    2005-04-01

    We report on the control of electric polarization (P) by using magnetic fields (B) in a hexaferrite having magnetic order above room temperature (RT). The material investigated is hexagonal Ba0.5Sr1.5Zn2Fe12O22, which is a nonferroelectric helimagnetic insulator in the zero-field ground state. By applying B, the system undergoes successive metamagnetic transitions, and shows concomitant ferroelectric order in some of the B-induced phases with long-wavelength magnetic structures. The magnetoelectrically induced P can be rotated 360° by external B. This opens up the potential for not only RT magnetoelectric devices but also devices based on the magnetically controlled electro-optical response.

  8. Effects of polar ice on the earth's rotation and gravitational potential

    NASA Technical Reports Server (NTRS)

    Trupin, Andrew S.

    1993-01-01

    The contributions of the Antarctic and the Greenland ice sheets to the earth's gravity, displacement, and rotation are estimated using gridded values of the net surface accumulation rates in the ice sheets of these two regions. It is found that the contributions to the low-order zonal harmonic coefficients of the earth's gravitational potential from Antarctica are between 2 and 10 times larger than the uncertainties of the zonal harmonics derived from satellite solutions; for Greenland, the coefficients are within an order of magnitude of the uncertainties of the satellite solutions. Polar contributions to the displacement of the center of mass of the solid earth, as seen in the frame of reference of satellites tracked from the earth surface, range from less than 1 mm to 1.5 cm over a 60-yr period.

  9. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the ;knee; structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  10. All-reflective, highly accurate polarization rotator for high-power short-pulse laser systems.

    PubMed

    Keppler, S; Hornung, M; Bödefeld, R; Kahle, M; Hein, J; Kaluza, M C

    2012-08-27

    We present the setup of a polarization rotating device and its adaption for high-power short-pulse laser systems. Compared to conventional halfwave plates, the all-reflective principle using three zero-phase shift mirrors provides a higher accuracy and a higher damage threshold. Since plan-parallel plates, e.g. these halfwave plates, generate postpulses, which could lead to the generation of prepulses during the subsequent laser chain, the presented device avoids parasitic pulses and is therefore the preferable alternative for high-contrast applications. Moreover the device is easily scalable for large beam diameters and its spectral reflectivity can be adjusted by an appropriate mirror coating to be well suited for ultra-short laser pulses.

  11. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures.

    PubMed

    Kimura, T; Lawes, G; Ramirez, A P

    2005-04-08

    We report on the control of electric polarization (P) by using magnetic fields (B) in a hexaferrite having magnetic order above room temperature (RT). The material investigated is hexagonal Ba0.5Sr1.5Zn2Fe12O22, which is a nonferroelectric helimagnetic insulator in the zero-field ground state. By applying B, the system undergoes successive metamagnetic transitions, and shows concomitant ferroelectric order in some of the B-induced phases with long-wavelength magnetic structures. The magnetoelectrically induced P can be rotated 360 degrees by external B. This opens up the potential for not only RT magnetoelectric devices but also devices based on the magnetically controlled electro-optical response.

  12. A nonlinear circular ring model with rotating effects for tire vibrations

    NASA Astrophysics Data System (ADS)

    Vu, Trong Dai; Duhamel, Denis; Abbadi, Zouhir; Yin, Hai-Ping; Gaudin, Arnaud

    2017-02-01

    Rolling noise contributes significantly to the noise inside cars. This noise comes from the tire/road contact and for low frequencies (0-400 Hz), it is mainly transmitted into the cabin through structural vibrations. Thus estimating this noise requires modelling the tire vibrations by taking into account the rotating effects and the contact with rough surfaces. Concerning the model of rolling tire, a formulation of a deformable solid is constructed by using an Arbitrary Lagrangian Eulerian approach. This formulation is applied on a new simplified tire model which is a circular ring including shear stresses and nonlinear effects due to the vehicle load. This model is successfully validated by comparison with FEM results.

  13. Regular rotating electrically charged structures in nonlinear electrodynamics minimally coupled to gravity

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina; Galaktionov, Evgeny

    2016-03-01

    In nonlinear electrodynamics minimally coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have obligatory de Sitter center. By the Gürses-Gürsey algorithm they are transformed to regular axially symmetric solutions asymptotically Kerr-Newman for a distant observer. Rotation transforms de Sitter center into de Sitter equatorial disk embedded as a bridge into a de Sitter vacuum surface. The de Sitter surfaces satisfy p = -ρ and have properties of a perfect conductor and ideal diamagnetic. The Kerr ring singularity is replaced with the superconducting current which serves as a non-dissipative electromagnetic source of the asymptotically Kerr-Newman geometry. Violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media.

  14. Homogeneous-heterogeneous reactions in nonlinear radiative flow of Jeffrey fluid between two stretchable rotating disks

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    This article addresses MHD Jeffrey fluid flow between two stretchable rotating disks. Momentum equation with magnetic field is presented. Energy equation is constructed in presence of heat source/sink and nonlinear radiation. Thermal stratification and homogeneous-heterogeneous reactions are accounted. The related systems have been solved for convergent solutions. Velocity, temperature, concentration, skin friction coefficient and Nusselt number are analyzed. The velocities (radial, axial, tangential) are increasing functions of Deborah number. Decline in axial velocity is noticed at lower disk for larger ratio of relaxation to retardation times constant. Thermal field is enhanced for temperature ratio parameter. Concentration has opposite behavior for larger homogeneous parameter and Schmidt number. Surface drag force decays for larger ratio of relaxation to retardation times at both disks. Heat transfer rate enhances for temperature ratio parameter.

  15. Non-linear rotation-free shell finite-element models for aortic heart valves.

    PubMed

    Gilmanov, Anvar; Stolarski, Henryk; Sotiropoulos, Fotis

    2017-01-04

    Hyperelastic material models have been incorporated in the rotation-free, large deformation, shell finite element (FE) formulation of (Stolarski et al., 2013) and applied to dynamic simulations of aortic heart valve. Two models used in the past in analysis of such problem i.e. the Saint-Venant and May-Newmann-Yin (MNY) material models have been considered and compared. Uniaxial tests for those constitutive equations were performed to verify the formulation and implementation of the models. The issue of leaflets interactions during the closing of the heart valve at the end of systole is considered. The critical role of using non-linear anisotropic model for proper dynamic response of the heart valve especially during the closing phase is demonstrated quantitatively. This work contributes an efficient FE framework for simulating biological tissues and paves the way for high-fidelity flow structure interaction simulations of native and bioprosthetic aortic heart valves.

  16. Right-hand polarized 4fce auroral roar emissions: 2. Nonlinear generation theory

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; LaBelle, J.; Weatherwax, A. T.

    2016-08-01

    Auroral roar emissions are commonly interpreted as Z (or upper hybrid) mode naturally excited by precipitating auroral electrons. Subsequent conversion to escaping radiation makes it possible for these emissions to be detected on the ground. Most emissions are detected as having left-hand (L) circular (or ordinary O) polarization, but the companion paper presents a systematic experimental study on the rare occurrence of the right-hand polarized, or equivalently, extraordinary (X) mode 4fce emission. A similar observation was reported earlier by Sato et al. (2015). The suggested emission mechanism is the nonlinear coalescence of two upper hybrid roars at 2fce. The present paper formulates a detailed theory for such an emission mechanism.

  17. Light-induced valley polarization in interacting and nonlinear Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Bertrand, Simon; Garate, Ion; Côté, René

    2017-08-01

    It has been recently predicted that the interplay between Coulomb interactions and Berry curvature can produce interesting optical phenomena in topologically nontrivial two-dimensional insulators. Here, we present a theory of the interband optical absorption for three-dimensional, doped Weyl semimetals. We find that the Berry curvature, Coulomb interactions, and the nonlinearity in the single-particle energy spectrum can together enable a light-induced valley polarization. We support and supplement our numerical results with an analytical toy model calculation, which unveils topologically nontrivial Mahan excitons with nonzero vorticity.

  18. Faraday rotation from magnesium II absorbers toward polarized background radio sources

    SciTech Connect

    Farnes, J. S.; O'Sullivan, S. P.; Corrigan, M. E.; Gaensler, B. M.

    2014-11-01

    Strong singly ionized magnesium (Mg II) absorption lines in quasar spectra typically serve as a proxy for intervening galaxies along the line of sight. Previous studies have found a correlation between the number of these Mg II absorbers and the Faraday rotation measure (RM) at ≈5 GHz. We cross-match a sample of 35,752 optically identified non-intrinsic Mg II absorption systems with 25,649 polarized background radio sources for which we have measurements of both the spectral index and RM at 1.4 GHz. We use the spectral index to split the resulting sample of 599 sources into flat-spectrum and steep-spectrum subsamples. We find that our flat-spectrum sample shows significant (∼3.5σ) evidence for a correlation between Mg II absorption and RM at 1.4 GHz, while our steep-spectrum sample shows no such correlation. We argue that such an effect cannot be explained by either luminosity or other observational effects, by evolution in another confounding variable, by wavelength-dependent polarization structure in an active galactic nucleus, by the Galactic foreground, by cosmological expansion, or by partial coverage models. We conclude that our data are most consistent with intervenors directly contributing to the Faraday rotation along the line of sight, and that the intervening systems must therefore have coherent magnetic fields of substantial strength ( B-bar =1.8±0.4 μG). Nevertheless, the weak nature of the correlation will require future high-resolution and broadband radio observations in order to place it on a much firmer statistical footing.

  19. Influence of collision energy and reagent rotation on the cross sections and product polarizations of the reaction F+ HCl

    NASA Astrophysics Data System (ADS)

    Duan, Zhi Xin; Li, Wen Liang; Qiu, Ming Hui

    2012-04-01

    Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 12A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ⩽ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.

  20. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback

    SciTech Connect

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-15

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achieved is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  1. Quasiequilibrium optical nonlinearities from spin-polarized carriers in GaAs

    NASA Astrophysics Data System (ADS)

    Joshua, Arjun; Venkataraman, V.

    2008-02-01

    Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.

  2. Non-linear dynamics and instability of a rotating shaft-disk system

    NASA Astrophysics Data System (ADS)

    Chang, C. O.; Cheng, J. W.

    1993-01-01

    The instability and non-linear dynamics of a slender rotating shaft with a rigid disk at the mid-span are analyzed. The shaft is simply supported at both ends and is made of a viscoelastic material. The stability criteria are determined from the linear equations of motion based on the small strain assumption. The bifurcation of the double zero eigenvalue point on the stability boundaries in the parametric space is analyzed by using center manifold theory on the non-linear equations of motion, for which a large transverse displacement of the shaft is assumed. Analytical expressions for the radius of synchronous whirling and the radius and precession rate of non-synchronous whirling near the double zero eigenvalue point are obtained explicitly. The behaviors of the parametric points away from the stability boundaries are analyzed numerically. The general effects on the precession rate for these points are somewhat different from those for the parametric points in the vicinity of the double zero eigenvalue.

  3. Nonlinear dynamics and synchronisation of pendula attached to a rotating hub

    NASA Astrophysics Data System (ADS)

    Warminski, J.; Szmit, Z.; Latalski, J.

    2014-04-01

    A model of a nonlinear system composed of a hub with attached two pendula rotating in a horizontal plane is studied in the paper. Each single pendulum, treated as a stiff and massless rod with a lumped mass, is connected to the hub by a flapping hinge. Nonlinear stiffness and viscous damping of the hinge is taken into consideration. The system is excited by an external torque generated by a DC motor which is considered as an ideal system with torque given by a harmonic function. For small oscillations the problem is linearised and then solved analytically. An influence of the structural parameters like mass of the hub and pendula length on natural end excited vibrations is presented. Large oscillations are studied by a continuation technique, directly from the original Ordinary Differential Equations of motion (ODE). The complete synchronisation, phase synchronisation, bifurcations and transition through resonances are analysed considering the influence of the mass of the hub. The existence of chaotic oscillations of the system and paths leading to chaos are demonstrated as well.

  4. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media.

    PubMed

    Gu, Bing; Wen, Bo; Rui, Guanghao; Xue, Yuxiong; Zhan, Qiwen; Cui, Yiping

    2016-04-01

    Light fields with structured polarization distribution interacting with structured media will result in many novel optical effects in both the linear and nonlinear regimes. In this work, we report a theoretical investigation of both vectorial self-diffraction behaviors and polarization evolution characteristics of a radially polarized beam induced by anisotropic Kerr nonlinearity. By taking the polarization-orientation dependence of the third-order refractive nonlinearity, we study the far-field vectorial self-diffraction patterns of the radially polarized beam using the vectorial Rayleigh-Sommerfeld formulas. Numerical results reveal that the self-diffraction patterns with a four-fold rotational symmetry exhibit hybrid states of polarization. Moreover, the interaction of radially polarized beams with the anisotropic nonlinear Kerr media leads to the redistribution of the spin angular momentum (SAM) flux in the far-field plane. The presented work opens up new avenues for varying polarization and SAM through anisotropic optical nonlinearity.

  5. Generation of polarized shear Alfven waves by a rotating magnetic field source

    SciTech Connect

    Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Sharma, A. Surjalal; Papadopoulos, D.

    2009-09-15

    Experiments are performed in the Large Plasma Device at the University of California, Los Angeles to study the propagation of field-aligned, polarized kinetic shear Alfven waves radiated from a rotating magnetic field source created via a novel phased orthogonal loop antenna. Both right and left hand circular polarizations are generated at a wide range of frequencies from 0.21{<=}{omega}/{omega}{sub ci}<0.93. Propagation parallel to the background magnetic field near the Alfven velocity is observed along with a small parallel wave magnetic field component implying a shear mode. The peak-to-peak magnitude of the wave magnetic field, 33 cm away from the antenna, is on the order of 0.8% of the background field and drops off in the far field. The full width at half maximum of the wave energy changes little over a distance of 2.5 parallel wavelengths while the exponential decrease in wave energy as a function of distance can be attributed to collisional damping. Evidence of electron heating and ionization is observed during the pulse.

  6. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  7. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation

    PubMed Central

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-01-01

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434

  8. The tidal-rotational shape of the Moon and evidence for polar wander.

    PubMed

    Garrick-Bethell, Ian; Perera, Viranga; Nimmo, Francis; Zuber, Maria T

    2014-08-14

    The origin of the Moon's large-scale topography is important for understanding lunar geology, lunar orbital evolution and the Moon's orientation in the sky. Previous hypotheses for its origin have included late accretion events, large impacts, tidal effects and convection processes. However, testing these hypotheses and quantifying the Moon's topography is complicated by the large basins that have formed since the crust crystallized. Here we estimate the large-scale lunar topography and gravity spherical harmonics outside these basins and show that the bulk of the spherical harmonic degree-2 topography is consistent with a crust-building process controlled by early tidal heating throughout the Moon. The remainder of the degree-2 topography is consistent with a frozen tidal-rotational bulge that formed later, at a semi-major axis of about 32 Earth radii. The probability of the degree-2 shape having both tidal-heating and frozen shape characteristics by chance is less than 1%. We also infer that internal density contrasts eventually reoriented the Moon's polar axis by 36 ± 4°, to the configuration we observe today. Together, these results link the geology of the near and far sides, and resolve long-standing questions about the Moon's large-scale shape, gravity and history of polar wander.

  9. Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation

    DOE PAGES

    Carretero-González, R.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-03-01

    In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show howmore » these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.« less

  10. Detection of fatigue crack on a rotating steel shaft using air-coupled nonlinear ultrasonic modulation

    NASA Astrophysics Data System (ADS)

    Song, Byeongju; Park, Byeongjin; Sohn, Hoon; Lim, Cheol-Woo; Park, Jae-Roung

    2015-04-01

    Rotating shafts in drop lifts of manufacturing facilities are susceptible to fatigue cracks as they are under repetitive heavy loading and high speed spins. However, it is challenging to use conventional contact transducers to monitor these shafts as they are continuously spinning with a high speed. In this study, a noncontact crack detection technique for a rotating shaft is proposed using air-coupled transducers (ACTs). (1) Low frequency (LF) and high frequency (HF) sinusoidal inputs are simultaneously applied to a shaft using two ACTs, respectively. A fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands at the modulation frequencies, which are the sum and difference of the two input frequencies Then LF and HF inputs are independently applied to the shaft using each ACT. These three ultrasonic responses are measured using another ACT. (2) The damage index (DI) is defined as the energy of the first sideband components, which corresponding to the frequency sum and difference between HF and LF inputs. (3) Steps 1 and 2 are repeated with various combinations of HF and LF inputs. Crack existence is detected through an outlier analysis of the DIs. The effectiveness of the proposed technique is investigated using a steel shaft with a real fatigue crack.

  11. Nonlinear and detuning effects of the nutation angle in precessionally forced rotating cylinder flow

    NASA Astrophysics Data System (ADS)

    Lopez, Juan M.; Marques, Francisco

    2016-06-01

    The flow in a rapidly rotating cylinder forced to precess through a nutation angle α is investigated numerically, keeping all parameters constant except α , and tuned to a triadic resonance at α =1∘ . When increasing α , the flow undergoes a sequence of well-characterized bifurcations associated with triadic resonance, involving heteroclinic and homoclinic cycles, for α up to about 4∘. For larger α , we identify two chaotic regimes. In the first regime, with α between about 4∘ and 27∘, the bulk flow retains remnants of the helical structures associated with the triadic resonance, but there are strong nonlinear interactions between the various azimuthal Fourier components of the flow. For the larger α regime, large detuning effects lead to the triadic resonance dynamics being completely swamped by boundary layer eruptions. The azimuthal mean flow at large angles results in a large mean deviation from solid-body rotation and the flow is characterized by strong shear at the boundary layers with temporally chaotic eruptions.

  12. Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation

    SciTech Connect

    Carretero-González, R.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-03-01

    In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show how these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.

  13. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Samat, Alim; Waske, Björn; Liu, Sicong; Li, Zhenhong

    2015-07-01

    Fully Polarimetric Synthetic Aperture Radar (PolSAR) has the advantages of all-weather, day and night observation and high resolution capabilities. The collected data are usually sorted in Sinclair matrix, coherence or covariance matrices which are directly related to physical properties of natural media and backscattering mechanism. Additional information related to the nature of scattering medium can be exploited through polarimetric decomposition theorems. Accordingly, PolSAR image classification gains increasing attentions from remote sensing communities in recent years. However, the above polarimetric measurements or parameters cannot provide sufficient information for accurate PolSAR image classification in some scenarios, e.g. in complex urban areas where different scattering mediums may exhibit similar PolSAR response due to couples of unavoidable reasons. Inspired by the complementarity between spectral and spatial features bringing remarkable improvements in optical image classification, the complementary information between polarimetric and spatial features may also contribute to PolSAR image classification. Therefore, the roles of textural features such as contrast, dissimilarity, homogeneity and local range, morphological profiles (MPs) in PolSAR image classification are investigated using two advanced ensemble learning (EL) classifiers: Random Forest and Rotation Forest. Supervised Wishart classifier and support vector machines (SVMs) are used as benchmark classifiers for the evaluation and comparison purposes. Experimental results with three Radarsat-2 images in quad polarization mode indicate that classification accuracies could be significantly increased by integrating spatial and polarimetric features using ensemble learning strategies. Rotation Forest can get better accuracy than SVM and Random Forest, in the meantime, Random Forest is much faster than Rotation Forest.

  14. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    SciTech Connect

    Su, Yingna; Van Ballegooijen, Adriaan

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.

  15. Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback.

    PubMed

    Gavrielides, Athanasios; Sukow, David W; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2010-05-01

    Numerical and experimental results are presented for an edge-emitting diode laser with delayed optical feedback, where the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. We examine the bifurcation structure and dynamics that give rise to a class of periodic, polarization-modulated solutions, the simplest of which is a square wave solution with a period related to but longer than twice the external cavity roundtrip time. Such solutions typically emerge when the feedback is strong and the differential losses in the normally unsupported polarization mode are small. We also observe more complex waveforms that maintain the same periodicity.

  16. Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, Athanasios; Sukow, David W.; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2010-05-01

    Numerical and experimental results are presented for an edge-emitting diode laser with delayed optical feedback, where the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. We examine the bifurcation structure and dynamics that give rise to a class of periodic, polarization-modulated solutions, the simplest of which is a square wave solution with a period related to but longer than twice the external cavity roundtrip time. Such solutions typically emerge when the feedback is strong and the differential losses in the normally unsupported polarization mode are small. We also observe more complex waveforms that maintain the same periodicity.

  17. Construction and applications of an atomic magnetic gradiometerbased on nonlinear magneto-optical rotation

    SciTech Connect

    Xu, Shoujun; Rochester, Simon M.; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Budker, Dmitry

    2006-06-28

    We report on the design, characterization, and applicationsof a sensitive atomic magnetic gradiometer. The device is based onnonlinear magneto-optical rotation in alkali-metal (87Rb) vapor, and usesfrequency-modulated laser light. The magnetic field produced by a sampleis detected by measuring the frequency of a resonance in optical rotationthat arises when the modulation frequency equals twice the Larmorprecession frequency of the Rb atoms. The gradiometer consists of twoatomic magnetometers. The rotation of light polarization in eachmagnetometer is detected with a balanced polarimeter. The sensitivity ofthe gradiometer is 0.8 nG/Hz1/2 for near-DC (0.1 Hz) magnetic fields,with a baseline of 2.5 cm. For applications in nuclear magnetic resonance(NMR) and magnetic resonance imaging (MRI), a long solenoid that piercesthe magnetic shields provides a ~;0.5 G leading field for the nuclearspins in the sample. Our apparatus is particularly suited for remotedetection of NMR and MRI. We demonstrate a point-by-point free inductiondecay measurement and a spin echo reconstructed with a pulse sequencesimilar to the Carr-Purcell-Meiboom-Gill (CPMG) pulse. Additionalapplications and future improvements are also discussed.

  18. Nonlinear polarization responses of ZrO2-based thin films fabricated by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Yoneda, Shingo; Hosokura, Tadasu; Kimura, Masahiko; Ando, Akira; Shiratsuyu, Kosuke

    2017-10-01

    The nonlinear polarization responses of ZrO2-based thin films were investigated. Y, Ce, Ti, and Sn were used as substitutes in ZrO2 thin films by chemical solution deposition. A pure ZrO2 film and the ZrO2 film with 1% Y substitution showed constricted polarization–electric field (P–E) curves. In contrast, the ZrO2 film with 5% Y substitution showed a linear P–E curve. The dielectric constants of the pure ZrO2 film and the ZrO2 film with 1% Y substitution increased by 7 and 11%, respectively, under an applied electric field of 2.5 MV/cm. The nonlinearity of the polarization responses was decreased by Ce substitution and Ti substitution. The ZrO2 films with Sn substitution showed narrow P–E curves. The dielectric constant of the ZrO2 film with 10% Sn substitution increased by 13% under an applied electric field of 3 MV/cm. These dielectric constant increases originate from electric-field-induced phase transitions of ZrO2-based thin films.

  19. SMMR data set development for GARP. [impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures

    NASA Technical Reports Server (NTRS)

    Kogut, J.

    1981-01-01

    The NIMBUS 7 Scanning Multichannel Microwave Radiometer (SMMR) data are analyzed. The impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures is evaluated. The algorithms used to retrieve the geophysical parameters are tested, refined, and compared with values derived by other techniques. The technical approach taken is described and the results presented.

  20. Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer.

    PubMed

    Chen, L Y; Feng, X W; Su, Y; Ma, H Z; Qian, Y H

    1994-03-01

    We have designed and constructed a new type of spectroscopic ellipsometer to study the optical properties of materials in the 3500-8000-Å wavelength range. In the system, the analyzer and polarizer are driven 10(4) steps/revolution by two stepping motors that have hollow shafts and rotate synchronously with a speed ratio of 2:1, i.e., A = 2P. Both the polarizer and analyzer are mounted directly on the shafts to avoid mechanical transmission and vibration problems entirely and make the system simple and reliable. An additional source polarizer was placed in the optical path to reduce the slight polarization effects of the light source. The light intensity finally received by the detector contained five components, one dc and four ac, with frequencies of ω(0), 2ω(0), 3ω(0), and 4ω(0), respectively. One can independently obtain the ellipsometric parameters of ψ and Δ as well as the optical constants by calculating any one of the two sets of ac signals, with a raw data self-consistency of better than 0.5%. The incident angle, aligned precisely by a laser beam, was continuously variable through a mechanical system with a computercontrolled resolution of 0.001° or a visual resolution of 0.005°. The system operations, including data acquisition and reduction, high-voltage control of the photomultiplier, incident angle, as well as wavelength setting and scanning, were fully and automatically controlled by a 386-based microcomputer. We self-calibrated the system by adjusting and setting precisely the initial azimuthal angles of the prisms. The results from the measured spectra of the complex refractive index for a gold-film sample are presented, and we show that the data obtained at three different incident angles of 65°, 70°, and 75° are remarkably consistent with one another. A comparison of the two results from the ellipsometry and reflectance measurements is given. The experimental skills and system error reduction are discussed in detail.

  1. A non-linear induced polarization effect on transient electromagnetic soundings

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel

    2016-10-01

    In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.

  2. Classification of normal and precancerous cervical tissues using nonlinear maximum representation and discrimination features (NMRDF) on polarized reflectance data

    NASA Astrophysics Data System (ADS)

    Devi, Seema; Agarwal, Asha; Pandey, Kiran; Pradhan, Asima

    2015-03-01

    Reflectance spectroscopy contains information of scatterers and absorbers present inside biological tissues and has been successfully used to diagnose disease. Success of any diagnostic tool depends upon the potential of statistical algorithm to extract appropriate diagnostic features from the measured optical data. In our recent study, we have used the potential of the classification algorithm, Nonlinear Maximum Representation and Discrimination Features (NMRDF) to extract important diagnostic features from reflectance spectra of normal and dysplastic human cervical tissue. This NMRDF algorithm uses the higher order correlation information in the input data, which helps to represent the asymmetrically distributed data and provides the closed form solution of the nonlinear transform for maximum discrimination. We have recorded unpolarized, co and cross-polarized reflectance spectra from 350nm to 650nm, illuminating the human cervical tissue epithelium with white light source. A total of 139 samples were divided into training and validation data sets. The input parameters were optimized using training data sets to extract the appropriate nonlinear features from the input reflectance spectra. These extracted nonlinear features are used as input for nearest mean classifier to calculate the sensitivity and specificity for both training as well as validation data sets. We have observed that co-polarized components provide maximum sensitivity and specificity compared to cross-polarized components and unpolarized data. This is expected since co-polarized light provides subsurface information while cross-polarized and unpolarized data mask the vital epithelial information through high diffuse scattering.

  3. Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ(2) nonlinear photonic crystal.

    PubMed

    Gong, Y-X; Xu, P; Shi, J; Chen, L; Yu, X Q; Xue, P; Zhu, S N

    2012-11-01

    We propose a scheme for generating polarization-entangled photon pairs using a χ((2)) nonlinear photonic crystal, which is designed for enabling two concurrent quasi-phase-matched spontaneous parametric downconversion processes. Beamlike photon pairs produced from each process are collinear but noncollinear with the pump. Moreover, the source we design works in a postselection-free way and applies to both degenerate and nondegenerate cases. Combining possible waveguide technologies, our scheme may provide an integrated polarization entanglement source.

  4. Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; St.peters, R. L.; Lapp, M.

    1973-01-01

    An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.

  5. Polarizing beam-splitter rotation in Martin-Puplett interferometers for spectroscopic measurements at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Giuseppe; de Bernardis, Paolo; di Tano, Silvio; Masi, Silvia; Mele, Lorenzo

    2017-09-01

    The spectroscopic measurement of the Cosmic Microwave Background at mm and sub-mm wavelengths received significant attention recently, aimed at measuring tiny spectral distortions of the Cosmic Microwave Background (CMB) relevant for cosmology. Several experiments, including OLIMPO (Masi et al. 2003), PRISM (André et al., 2014), MILLIMETRON (Smirnov and Baryshev, 2012), PIXIE (Kogut and Fixsen, 2011) are based on a Martin-Puplett Fourier-transform spectrometer. Its differential capabilities are the key to success in these difficult measurements. The polarizing beam splitter is the optical core of a Martin-Puplett interferometer. In this paper we analyze, analytically and experimentally, the systematic effects induced by a beam splitter orientation different from the canonical 45 ° . These effects are potenitally important for the delicate measurements of CMB spectral distortions. We find an analytical formula describing the effect, and verify experimentally, in the range 150-600 GHz, that our formula correctly describes the results (with a C.L. of 88 %). We also demonstrate that the rotation of the beam splitter does not induce distortions in the measured spectra.

  6. Influence of third-degree geometric nonlinearities on the vibration and stability of pretwisted, preconed, rotating blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1986-01-01

    The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.

  7. Influence of third-degree geometric nonlinearities on the vibration and stability of pretwisted, preconed, rotating blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1987-01-01

    The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree goemetric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of Pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.

  8. Nonlinear effects related to circularly polarized dispersive Alfvén waves

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Gaur, Nidhi; Sharma, R. P.

    2016-09-01

    In situ measurements of solar wind have strongly implicated its turbulent behavior. The observed power spectra report a breakpoint around length scales of the order of ion scales. As one of the responsible mechanisms for the observed steepening in power spectrum, our approach includes a right circularly polarized dispersive Alfvén wave (DAW) with finite frequency correction which, when subjected to transverse collapse/filamentation instability, may possibly result in steepening of spectrum and progressive transfer of energy from larger scales to smaller scales. We have studied the nonlinear effects associated with coupling of DAW with kinetic Alfvén wave in solar wind at 1 A.U. The formation of localized structures provides a clue about the emergence of turbulence. Numerical simulation is performed to study localization and power spectral density of the field and density fluctuations. The results show steeper spectrum indicating transfer of large scale turbulent energy down to small scales.

  9. Gravitational waves from nonlinear couplings of radial and polar nonradial modes in relativistic stars

    SciTech Connect

    Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro

    2007-04-15

    The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors.

  10. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    PubMed Central

    Xu, Yin; Xiao, Jinbiao

    2016-01-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112

  11. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    NASA Astrophysics Data System (ADS)

    Xu, Yin; Xiao, Jinbiao

    2016-06-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of ‑31.41/‑22.43 dB and ‑34.74/‑33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence.

  12. Suppression of noise of soliton pulses using a polarization-imbalanced nonlinear loop mirror

    NASA Astrophysics Data System (ADS)

    Armas-Rivera, I.; Bracamontes-Rodriguez, Y. E.; Beltrán-Pérez, G.; Muñoz-Aguirre, S.; Pottiez, O.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Carrascosa, A.; Andrés, M.; Kuzin, E. A.

    2017-02-01

    The generation of clean solitons is important for a number of applications such as optical analog-to-digital conversion (ADC) based on soliton self-frequency shift. In real sources the quality of the pulses is deteriorated by dispersive waves, continuous wave (CW), amplified spontaneous emission (ASE). The dispersive waves appear in the spectral profile as side-lobe components that would limit the resolution of ADC. Spectral compression techniques cause the appearance of a pedestal on the spectrum. All of these imperfections of pulses have to be eliminated to improve the performance of alloptical systems. The nonlinear optical loop mirror (NOLM) is a good candidate for these tasks. In the present work we report the implementation of a polarization-imbalanced NOLM for soliton cleaning. The NOLM consists of a nearly symmetrical coupler with a 51/49 coupling ratio, 100 m of twisted OFS Truewave fiber whose dispersion value is 9 ps/nm/km at 1550 nm, and a tunable in-line fiber polarization controller (PC) asymmetrically inserted inside the loop. The use of the nearly symmetrical coupler allows very low transmission for low power components of radiation. At the same time adjustment of the PC allows the adjustment of the nonlinear characteristic to have a maximum transmission for solitons with different durations. We used two sources of pulses, SESAM based and a ring fiber laser. At the appropriate adjustment of PC, we obtained a rejection of ASE by 220 times, rejection of the dispersion waves and the pedestal by more than 200 times. The maximum transmission reached 70%.

  13. Collectively Rotating Formation and Containment Deployment of Multiagent Systems: A Polar Coordinate-Based Finite Time Approach.

    PubMed

    Wang, Yujuan; Song, Yongduan; Krstic, Miroslav

    2016-12-14

    This paper investigates the problem of achieving rotating formation and containment simultaneously via finite time control schemes for multiagent systems. It is nontrivial to maintain rotating formation where the desired formation structure is time-varying and only neighboring information is available. The underlying problem becomes even more complicated if containment is imposed yet finite time convergence is required at the same time. To tackle this problem, a polar coordinate-based approach is exploited in this paper. Finite time control protocols are established for leader agents and follower agents, respectively, such that three goals are achieved in finite time concurrently: 1) all the agents maintain a stable rotating motion around a common circular center with a common (possibly time-varying) angular velocity; 2) the leader agents form and maintain a prespecified rotating formation structure; and 3) the follower agents converge to the shifting convex hull shaped by the dynamically moving (circling) leaders. It is the polar coordinate expression that simplifies the formulation of the rotating formation-containment problem and facilitates the finite time control design process. The effectiveness of the proposed control scheme is illustrated via both formative mathematical analysis and numerical simulation.

  14. Rotating and standing waves in a diffractive nonlinear optical system with delayed feedback under O(2) Hopf bifurcation

    NASA Astrophysics Data System (ADS)

    Budzinskiy, S. S.; Razgulin, A. V.

    2017-08-01

    In this paper we study one-dimensional rotating and standing waves in a model of an O(2)-symmetric nonlinear optical system with diffraction and delay in the feedback loop whose dynamics is governed by a system of coupled delayed parabolic equation and linear Schrodinger-type equation. We elaborate a two-step approach: transition to a rotating coordinate system to obtain the profiles of the waves as small parameter expansions and the normal form technique to study their qualitative dynamic behavior and stability. Theoretical results stand in a good agreement with direct computer simulations presented.

  15. Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization

    NASA Astrophysics Data System (ADS)

    Geil, Paul M.; Gaensler, B. M.; Wyithe, J. Stuart B.

    2011-11-01

    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionization history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio observations. This leakage leads to a portion of the complex linear polarization signal finding its way into Stokes I, and inhibits the detection of the non-polarized cosmological signal from the epoch of reionization. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionization in the presence of contamination by polarized foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarization leakage and redshifted 21-cm emission by neutral hydrogen from the epoch of reionization. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarization leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionization in its late stages (z≈ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionized cavities in the intergalactic medium.

  16. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  17. Theoretical and experimental comparisons of nearfield electrogalvanic fields due to nonlinear polarization layers

    NASA Astrophysics Data System (ADS)

    Kasper, R. G.

    1985-02-01

    Based on completed experimental electric-field scans and the corresponding finite-element field predictions, it appears that the finite-element numerical technique presents a strong analytical tool in calculating the nearfield (within 650 micrometers electric-field distributions about active microcells. This was analytically achieved with the new double membrane finite-element configuration representing nonlinear polarization and by using a local tangent slope (impedance) definition dependent on the local potential difference. The experimental determination of the normal current was realized with a newly developed scanning vibrating electrode technique. The finite-element model utilizes a priori measured uncoupled polarization curves for pure iron and pure copper. The current densities and the electric field intensity was calculated for all the grid points within the electrolyte and on its boundaries. Results appear to indicate that first order anodic mass loss can be predicted using finite-element predicted current density distributions on the anodic surface and the imposition of Faraday's law. The electric-field correlation established for the normal current-density vector provides the confidence to proceed in the evaluation of electric fields associated with pitting and crevice corrosion.

  18. Branch switching at Hopf bifurcation analysis via asymptotic numerical method: Application to nonlinear free vibrations of rotating beams

    NASA Astrophysics Data System (ADS)

    Bekhoucha, Ferhat; Rechak, Said; Duigou, Laëtitia; Cadou, Jean-Marc

    2015-05-01

    This paper deals with the computation of backbone curves bifurcated from a Hopf bifurcation point in the framework of nonlinear free vibrations of a rotating flexible beams. The intrinsic and geometrical equations of motion for anisotropic beams subjected to large displacements are used and transformed with Galerkin and harmonic balance methods to one quadratic algebraic equation involving one parameter, the pulsation. The latter is treated with the asymptotic numerical method using Padé approximants. An algorithm, equivalent to the Lyapunov-Schmidt reduction is proposed, to compute the bifurcated branches accurately from a Hopf bifurcation point, with singularity of co-rank 2, related to a conservative and gyroscopic dynamical system steady state, toward a nonlinear periodic state. Numerical tests dealing with clamped, isotropic and composite, rotating beams show the reliability of the proposed method reinforced by accurate results.

  19. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  20. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation

    PubMed Central

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690

  1. Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim

    2016-05-01

    It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.

  2. Temperature coefficient of sideband frequency produced by polarized guided acoustic-wave Brillouin scattering in highly nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Hayashi, Neisei; Suzuki, Kohei; Set, Sze Yun; Yamashita, Shinji

    2017-09-01

    We measured the temperature dependence of the polarized guided acoustic-wave Brillouin scattering (GAWBS) spectrum using a highly nonlinear fiber. The temperature coefficient is 168 kHz/K, which is 1.7 times larger than that of small-core photonic crystal fibers. This result indicates that highly temperature-sensitive GAWBS-based sensing is feasible.

  3. Field and imaging properties of two orthogonally polarized Gaussian optical beams with a nonlinear parabolic graded-index rod lens

    NASA Astrophysics Data System (ADS)

    Li, Yucui

    1996-04-01

    The field and imaging formulas of two orthogonally polarized Gaussian light beams through a nonlinear parabolic graded-index rod lens are derived by use of a variational approach and the ABCD law of Gaussian beam propagation. The effects of power and position of one optical beam on the field and propagation and imaging properties of the other optical beam are analyzed.

  4. A Testing Ground for Polarized Maser Transport: Multi-Epoch Analysis of a π/2 Electric Vector Rotation

    NASA Astrophysics Data System (ADS)

    Tobin, Taylor; Kemball, Athol J.

    2017-01-01

    The near circumstellar environment (NCSE) around Asymptotic Giant Branch (AGB) stars is chaotic, exhibiting shocks, turbulence, velocity gradients, and a potentially dynamically significant magnetic field (Vlemmings et al. 2005). Very Long Baseline Interferometry (VLBI) of masers emanating from these environments can provide sub-milliarcsecond angular resolution of the NCSE (Kemball 2002). Solidifying the origin of the polarization in these masers may be the key to understanding the magnitude and behavior of these stars' magnetic fields (eg. Goldreich et al. 1973; Elitzur 1996). However, other theories of polarized maser transport do not rely heavily on the magnetic field; some are more dependent on anisotropic pumping (Elitzur 1996; Watson 2009) or anisotropic resonant scattering (Asensio Ramos et al. 2005; Houde 2014). One optimal test of these theories is their ability to account for a π/2 rotation of the Electric Vector Position Angle (EVPA) observed in some maser features. The profile of linear polarization across such a feature varies with the generating mechanism. In this study, we utilize multi-epoch observations of ν=1, J=1-0 SiO maser emission around TX Cam (Diamond & Kemball 2003; Kemball et al. 2009; Gonidakis et al. 2010) to analyze a single feature with a π/2 rotation that persisted for five epochs and compare it to the behavior expected according to various theories of maser polarization. In addition, we analyze the low levels of circular polarization - now achievable due to recent improvements in millimeter-wavelength circular polarization reduction (Kemball & Richter 2011) - and compare their correlation with other parameters to further test these polarization generation theories.

  5. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    NASA Astrophysics Data System (ADS)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying

  6. Instabilities of Tropical Cyclones and their Nonlinear Saturation in Moist-Convective Rotating Shallow Water Model

    NASA Astrophysics Data System (ADS)

    Lahaye, N.; Zeitlin, V.

    2015-12-01

    Studies of stability of tropical cyclones (TC) are mostly performed either in over-simplified (2D Euler, e.g. [1]), or in over-complexified "all-inclusive", e.g. [2], models. TC have very high Rossby numbers, so Lighthill radiation is operational and instabilities are radiative. Yet, the quantitative results for radiative instabilities of vortices are available only for simplified vortex profiles, e.g. [3]. TC evolve in the essentially moist and precipitating atmosphere, yet studies of precise dynamical role of moisture in developing instability are scarce [4]. We use the moist-convective Rotating Shallow Water model of [5], the simplest possible one which includes inertia-gravity gravity waves (IGW) and the effects of moisture and precipitation. Unstable modes are investigated by means of a linear stability analysis, then the nonlinear saturation is simulated in cases with precipitation off (dry), precipitation on but evaporation off (moist-precipitating), and precipitation and evaporation on (moist-precipitating-evaporating). Our main results are: Linear stability: Main instability: ageostrophic barotropic instability Unstable modes: mixed Rossby - inertia gravity waves. Dry saturation: Axisymmetrization of the TC Intensification of winds inside the radius of maximum wind Bursts in the IGW emission Moist-precipitating saturation: Amplification of the IGW emission with respect to the dry case Amplification of the wind intensification mechanism Moist-precipitating-evaporating saturation: Appearance of convectively-coupled IGWs Net intensification of wind (even at the radius of maximum wind) References: J.P. Kossin and W.H. Schubert, J. Atmos. Sci., 58, 2196, 2001. Y.C. Kwon and W.M. Frank, J. Atmos. Sci., 65, 106, 2008. S. Le Dizes and P. Billant, Phys. Fluids, 21, 1, 2009. D.A. Schecter and M.T. Montgomery, J. Atmos. Sci., 64, 314, 2007. F. Bouchut, J. Lambaerts, G. Lapeyre, and V. Zeitlin, Phys. Fluids, 21, 126601, 2009. Figure: Nondimensional vorticity (colors

  7. Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization.

    PubMed

    Sharples, Thomas R; Luxford, Thomas F M; Townsend, Dave; McKendrick, Kenneth G; Costen, Matthew L

    2015-11-28

    We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.

  8. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator

    PubMed Central

    Sutter, John P.; Boada, Roberto; Bowron, Daniel T.; Stepanov, Sergey A.; Díaz-Moreno, Sofía

    2016-01-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the ‘glitches’ produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample’s quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample’s quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches. PMID:27504076

  9. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator

    SciTech Connect

    Sutter, John P.; Boada, Roberto; Bowron, Daniel T.; Stepanov, Sergey A.; Díaz-Moreno, Sofía

    2016-07-06

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the `glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni Kedge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  10. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.

    PubMed

    Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía

    2016-08-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  11. Rotations

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  12. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides.

    PubMed

    Xu, Yin; Xiao, Jinbiao

    2016-01-20

    A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20  dB. In addition, fabrication tolerances and field evolution are also presented.

  13. Single-angle-of-incidence single-element rotating-polarizer (Single SERP) ellipsometer for film-substrate systems

    NASA Astrophysics Data System (ADS)

    Zaghloul, A. R. M.

    2013-09-01

    The single-element rotating-polarizer ellipsometer is where a rotating polarizer is inserted into the incident beam and the reflected-signal intensity is detected using a photodetector. The polarizer is either rotated mechanically or electromagnetically. The angle of incidence of the beam is adjusted to detect the angles where the detector signal is dc. The ellipsometric function of the film-substrate system under measurement is of a unity magnitude at those detected angle(s). The number of required measurements (such angles of incidence) is related (directly proportional) to the number of system parameters to be determined: film thickness is one parameter, film optical constant is two parameters, and substrate optical constant is two parameters. The more parameters to be determined, the more the number of measurements required. This creates film-thickness bands, which number and width depend on the system physical properties and the wavelength used for measurement, and where a continuum exists above a certain film-thickness value. Accordingly, full characterization of film-substrate systems is limited to systems with large film thicknesses for the required multiple angles of incidence to exist. In this paper, we use only one detected angle of incidence to fully characterize the film-substrate system. This allows for film-substrate systems with much smaller film thicknesses to be fully characterized. A fast genetic algorithm is used to heuristically obtain all the system parameters: film thickness and optical constants of the film and the substrate, or any subset thereof.

  14. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    SciTech Connect

    SNYDER,P.B; WILSON,H.R; XU,X.Q; WEBSTER,A.J

    2004-06-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.

  15. Management of dispersion, nonlinearity and polarization-dependent effects in high-speed reconfigurable WDM fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Luo, Ting

    As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical

  16. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Increase in rotation frequency of the polarization ellipse in a resonator and in a He-Ne laser with modulated anisotropy directions

    NASA Astrophysics Data System (ADS)

    Voĭtovich, A. P.; Kul'minskiĭ, A. M.; Severikov, V. N.

    1993-09-01

    We investigate theoretically the laser dynamics of a He-Ne rod laser (λ= 1.15 μm) and the modes of a resonator with simultaneous rotation and harmonic modulation of the resonator anisotropy directions. We find that in both the resonator and the laser natural oscillation modes are possible for which the polarization ellipse rotates at a rate that exceeds the rotation rate of the directions of anisotropy of the modulator. We obtain parameters of the anisotropy and modulation for which this increased frequency of rotation of the polarization ellipse can be observed.

  17. Helicity reversion in high-order-harmonic generation driven by bichromatic counter-rotating circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofan; Li, Liang; Zhu, Xiaosong; Liu, Xi; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2016-11-01

    We investigate the polarization properties of high harmonics generated with the bichromatic counter-rotating circularly polarized (BCCP) laser fields by numerically solving the time-dependent Schrödinger equation (TDSE). It is found that the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity reversions and the classical trajectories of continuum electrons is established. It is shown that the electrons ionized at one lobe of laser field can be divided into different groups based on the different lobes they recombine at, and the harmonics generated by adjacent groups have opposite helicities. Our study performs a detailed analysis of high harmonics in terms of electron trajectories and depicts a clear and intuitive physical picture of the HHG process in BCCP laser fields.

  18. Frequency spectrum of focused broadband pulses of electromagnetic radiation generated by polarization currents with superluminally rotating distribution patterns.

    PubMed

    Ardavan, Houshang; Ardavan, Arzhang; Singleton, John

    2003-11-01

    We investigate the spectral features of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency omega > omega differing from an integral multiple of omega) at the same time. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. Although all of the processes involved are linear, we find that the broadband emission contains frequencies that are higher than omega by a factor of the order of (omega/omega)2. This generation of frequencies not required for the creation of the source stems from mathematically rigorous consequences of the familiar classical expression for the retarded potential. The results suggest practical applications for superluminal polarization currents as broadband radio-frequency and infrared sources.

  19. Interlocked chiral/polar domain walls and large optical rotation in Ni{sub 3}TeO{sub 6}

    SciTech Connect

    Wang, Xueyun; Huang, Fei-Ting; Yang, Junjie; Oh, Yoon Seok; Cheong, Sang-Wook

    2015-07-01

    Chirality, i.e., handedness, pervades much of modern science from elementary particles, DNA-based biology to molecular chemistry; however, most of the chirality-relevant materials have been based on complex molecules. Here, we report inorganic single-crystalline Ni{sub 3}TeO{sub 6}, forming in a corundum-related R3 structure with both chirality and polarity. These chiral Ni{sub 3}TeO{sub 6} single crystals exhibit a large optical specific rotation (α)—1355° dm{sup −1} cm{sup 3} g{sup −1}. We demonstrate, for the first time, that in Ni{sub 3}TeO{sub 6}, chiral and polar domains form an intriguing domain pattern, resembling a radiation warning sign, which stems from interlocked chiral and polar domain walls through lowering of the wall energy.

  20. On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Tang, Qinglin; Zhang, Yong

    2016-11-01

    In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation [31]. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method [4] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian coordinates transform [14], we first reformulate the FSE into a new equation without rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new FSE. In parallel to the numerical schemes, we also prove some existence and nonexistence results for the ground states. Dynamical laws of some standard quantities, including the mass, energy, angular momentum and the center of mass, are stated. The ground states properties with respect to the fractional order and/or rotating frequencies, dynamics involving decoherence and turbulence together with some interesting phenomena are reported.

  1. A dead-zone free ⁴He atomic magnetometer with intensity-modulated linearly polarized light and a liquid crystal polarization rotator.

    PubMed

    Wu, T; Peng, X; Lin, Z; Guo, H

    2015-10-01

    We demonstrate an all-optical (4)He atomic magnetometer experimental scheme based on an original Bell-Bloom configuration. A single intensity-modulated linearly polarized laser beam is used both for generating spin polarization within a single (4)He vapor and probing the spin precessing under a static magnetic field. The transmitted light signal from the vapor is then phase-sensitively detected at the modulation frequency and its harmonics, which lead to the atomic magnetic resonance signals. Based on this structure, a liquid crystal is added in our magnetometer system and constitutes a polarization rotator. By controlling the voltage applied on the liquid crystal, the light linear polarization vector can be kept perpendicular with the ambient magnetic field direction, which in turn provides the maximum resonance signal amplitude. Moreover, the system exhibits a magnetic-field noise floor of about 2pT/√Hz, which is not degraded due to the presence of the liquid crystal and varying magnetic field direction. The experiment results prove that our method can eliminate the dead-zone effect, improve the system spatial isotropy, and thus be suitable in mobile applications.

  2. Engineering new properties in PbTiO3 based superlattices: compositionally broken inversion symmetry and polarization rotation

    NASA Astrophysics Data System (ADS)

    Dawber, Matthew

    2013-03-01

    In this talk I will present results on two superlattice systems which contain ultra fine layers of PbTiO3 and another perovskite material. In recent years, much work has been done on the PbTiO3/SrTiO3 system, with a focus on improper ferroelectricity and the arrangement of ferroelectric domains. Here, we consider two different partner materials for PbTiO3, each of which introduces markedly different behavior in the resulting superlattice. PbTiO3/SrRuO3 superlattices with ultra-thin SrRuO3 layers were studied both experimentally and using density functional theory. Due to the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the thickness of the PbTiO3 layers, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The compositional inversion symmetry breaking is seen in this bi-color superlattice due to the combined variation of A and B site ions within the superlattice. We have also achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO3/CaTiO3 superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. These results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. Work supported by NSF DMR1055413

  3. Broadband Rotational Energy Harvesting with Non-linear Oscillator and Piezoelectric Transduction

    NASA Astrophysics Data System (ADS)

    Fu, H.; Yeatman, E. M.

    2016-11-01

    Rotational energy is widely distributed in many industrial and domestic applications, such as ventilation systems, moving vehicles and miniature turbines. This paper reports the design and implementation of a bi-stable rotational energy harvester with wide bandwidth and low operating frequency. The rotational energy is converted into electricity by magnetic plucking of a piezoelectric cantilever using a driving magnet mounted on a rotating host. The bistable condition is achieved by introducing a fixed magnet above the tip magnet at the cantilever's free end. The repulsive magnetic force between the magnets creates two equilibrium positions for the piezoelectric beam. The harvester is designed to operate in the high energy orbit (interwell vibration mode) to extract more energy from the rotational energy source. Harvesters with and without bistability are compared experimentally, showing the difference of power extraction on both the output power and bandwidth. The method proposed in this paper provides a simple and efficient way to extract rotational energy from the ambient environment.

  4. Compact polarization rotator based on directional coupler of two waveguides with different width and height

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Yang, Junbo; Gao, Shaobo; Liang, Linmei

    2016-10-01

    The polarization control(PC), as one of the important issues in photonic information technologies, has attracted great attention. In this paper, we proposed an efficient and compact polarization converter on silicon-on-insulator (SOI) platform based on asymmetrical direction couplers (ADCs). The ADCs consists of two parallel fully etched straight waveguides with different sizes in both width and height. This polarization converter can realize direct conversion between the TE0 mode and the TM0 mode with high conversion efficiency. Numerical simulations show that the present PC has a good fabrication tolerance for the variation of the waveguide width and height with high polarization conversion efficiency up to 82%.

  5. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  6. Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir V.; Gerasimov, Vladislav V.; Pravdin, Vladimir L.; Pavlinskiy, Aleksei V.; Nakhtigalova, Daria P.

    2017-01-01

    Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval accuracy and number of calibration coefficients depend on the selected function. The commonly used calibration function (linear in reciprocal temperature 1/T with two calibration coefficients) ignores all types of broadening of individual PRR lines of atmospheric N2 and O2 molecules. However, the collisional (pressure) broadening dominates over other types of broadening of PRR lines in the troposphere and can differently affect the accuracy of tropospheric temperature measurements depending on the PRR lidar system. We recently derived the calibration function in the general analytical form that takes into account the collisional broadening of all N2 and O2 PRR lines (Gerasimov and Zuev, 2016). This general calibration function represents an infinite series and, therefore, cannot be directly used in the temperature retrieval algorithm. For this reason, its four simplest special cases (calibration functions nonlinear in 1/T with three calibration coefficients), two of which have not been suggested before, were considered and analyzed. All the special cases take the collisional PRR lines broadening into account in varying degrees and the best function among them was determined via simulation. In this paper, we use the special cases to retrieve tropospheric temperature from real PRR lidar data. The calibration function best suited for tropospheric temperature retrievals is determined from the comparative analysis of temperature uncertainties yielded by using these functions. The absolute and relative statistical uncertainties of temperature retrieval are given in an analytical form assuming Poisson statistics of photon counting. The vertical tropospheric temperature

  7. Observations of Polarization and Brightness Variations with the Rotation for Asteroids 9 Metis, 52 Europa, and 1036 Ganymed

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiroyuki; Fujii, Yasumasa; Ishiguro, Masateru; Nakamura, Ryosuke; Yokogawa, Sozo; Yoshida, Fumi; Mukai, Tadashi

    2000-07-01

    We present the results of photo-polarimetric observations for asteroids 9 Metis (S-type, main belt asteroid (MBA)), 52 Europa (C-type, MBA), and 1036 Ganymed (S-type, near-Earth asteroid), obtained at six wavelength bands. It is found, combining our new data with previous observations, that (1) larger maximum value of negative polarization Pmin=-1.37% and higher polarization slope h=0.27% deg -1 occur in 52 Europa, while smaller Pmin and lower h appear, i.e., -0.84%, 0.11% deg -1 for 9 Metis and -0.57%, 0.095% deg -1 for 1036 Ganymed. These results confirm the general trend of polarization-phase angle curves found previously between C- and S-type asteroids (see B. Goidet-Devel et al. 1995, Planet Space Sci.43, 779-786). (2) An increase of polarization with wavelength from 0.42 to 0.76 μm is found from the data with their root-mean-square errors in 9 Metis and 1036 Ganymed, in contrast with vice versa dependence in 52 Europa. (3) A relation of Pmin and geometric albedo A, presented in D. F. Lupishko and R. A. Mohamed (1996, Planet Space Sci.46, 47-74), leads to the resulting values of A for 0.15, 0.082, and 0.24 for 9 Metis, 52 Europa, and 1036 Ganymed, respectively. (4) The polarization observed for 9 Metis shows a significant time variation modified with the rotation of asteroid, but no clear relation between lightcurve and polarization curve appears. For 52 Europa and 1036 Ganymed, the observed time variation of polarization is weak. (5) A comparison of model simulation to the observations of lightcurve and geometric albedo A variation for 9 Metis suggests the existence of inhomogeneous albedo features on its surface, where the albedo was derived from the relation of Pmin and A.

  8. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution.

    PubMed

    Yan, Zhiyu; Li, Xiaohui; Tang, Yulong; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-02-23

    We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.

  9. Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems.

    PubMed

    Mateo, Eduardo F; Zhou, Xiang; Li, Guifang

    2011-01-17

    An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.

  10. Enhancement of third-order nonlinear optical susceptibility of Alq3 in polar aprotic solvents.

    PubMed

    Derkowska-Zielinska, Beata

    2017-02-01

    The influence of solvent polarity on nonlinear optical properties of tris-(8-hydroxyquinoline)-aluminum (Alq3) was investigated by the degenerate four-wave mixing method at the 532 nm. It was obtained that the effective values of the third-order nonlinear optical susceptibility (χeff⟨3⟩) and the second-order hyperpolarizability (γeff) of Alq3 depend on the solvent polarity. Additionally, it was found that Alq3 dissolved in dimethyl sulfoxide has the highest values of χeff⟨3⟩ and γeff. Furthermore, two Stegeman's figures of merit were also calculated. The obtained results suggest that Alq3 is also promising material for application in all-optical signal processing devices.

  11. Preparation of four-photon polarization-entangled decoherence-free states employing weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Xiu, Xiao-Ming; Li, Qing-Yang; Lin, Yan-Fang; Dong, Hai-Kuan; Dong, Li; Gao, Ya-Jun

    2016-10-01

    With the assistance of weak cross-Kerr nonlinearities, we present a preparation scheme of four-photon polarization-entangled decoherence-free states, which can be used to construct the minimal optical decoherence-free subspaces where a logical qubit is fully protected against collective decoherence. To complete the preparation task, one spatial entanglement process, two polarization entanglement processes, and one detecting process are applied. The fulfillments of the above processes are contributed by a cross-Kerr nonlinear interaction between the signal photons and a coherent state via Kerr media. Exploiting the available single-photon resource and simple linear optics elements, this scheme is feasible and desirable to be extended to the construction of multiphoton decoherence-free states against the collective decoherence.

  12. Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations.

    PubMed

    Kumar, Rakesh; Sood, Shilpa; Sheikholeslami, Mohsen; Shehzad, Sabir Ali

    2017-11-01

    Combined effects of nonlinear thermal radiation and cubic autocatalysis chemical reaction on the three dimensional flow of stretched nanofluid along a rotating sheet have been investigated in this paper. The flow field is assumed to be suspended with magnetic iron oxide nanoparticles (IONPs). Hamilton-Crosser model is applied to measure effective thermal conductivity of nanofluid. Rosseland approximation is employed to obtain the nonlinear radiative heat flux. For novelty and practical point of view, influence of fluctuating surface velocity and periodic surface temperature constraints are incorporated into the governing equations which in turn are made dimension free by employing suitable transformations. For numerical solutions, an explicit finite difference scheme has been proposed under the restrictions of derived stability conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    NASA Astrophysics Data System (ADS)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  14. Existence and Non-linear Stability of Rotating Star Solutions of the Compressible Euler-Poisson Equations

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Smoller, Joel

    2009-03-01

    We prove the existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler-Poisson (Euler-Poisson) equations in three spatial dimensions with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions considered in the classical Auchmuty-Beals paper. We prove the non-linear dynamical stability of these solutions with perturbations having the same total mass and symmetry as the rotating star solution. We also prove finite time stability of W^{1, infty}(mathbb {R}3) solutions where the perturbations are entropy-weak solutions of the Euler-Poisson equations. Finally, we give a uniform (in time) a priori estimate for entropy-weak solutions of the Euler-Poisson equations.

  15. Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale and rotation invariant target recognition.

    PubMed

    Monjur, Mehjabin Sultana; Tseng, Shih; Tripathi, Renu; Shahriar, M S

    2014-06-01

    In this paper, we show that our proposed hybrid optoelectronic correlator (HOC), which correlates images using spatial light modulators (SLMs), detectors, and field-programmable gate arrays (FPGAs), is capable of detecting objects in a scale and rotation invariant manner, along with the shift invariance feature, by incorporating polar Mellin transform (PMT). For realistic images, we cut out a small circle at the center of the Fourier transform domain, as required for PMT, and illustrate how this process corresponds to correlating images with real and imaginary parts. Furthermore, we show how to carry out shift, rotation, and scale invariant detection of multiple matching objects simultaneously, a process previously thought to be incompatible with PMT-based correlators. We present results of numerical simulations to validate the concepts.

  16. Orientation and Rotational Motions of Single Molecules by Polarized Total Internal Reflection Fluorescence Microscopy (polTIRFM)

    PubMed Central

    Beausang, John F.; Sun, Yujie; Quinlan, Margot E.; Forkey, Joseph N.; Goldman, Yale E.

    2013-01-01

    In this article, we describe methods to detect the spatial orientation and rotational dynamics of single molecules using polarized total internal reflection fluorescence microscopy (polTIRFM). polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. We discuss single-molecule versus ensemble measurements, as well as single-molecule techniques for orientation and rotation, and fluorescent probes for orientation studies. Using calmodulin (CaM) as an example of a target protein, we describe a method for labeling CaM with bifunctional rhodamine (BR). We also describe the physical principles and experimental setup of polTIRFM. We conclude with a brief introduction to assays using polTIRFM to assess the interaction of actin and myosin. PMID:22550303

  17. EFFECTS OF ROTATION ON STOCHASTICITY OF GRAVITATIONAL WAVES IN THE NONLINEAR PHASE OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Kotake, Kei; Iwakami-Nakano, Wakana; Ohnishi, Naofumi

    2011-08-01

    By performing three-dimensional (3D) simulations that demonstrate the neutrino-driven core-collapse supernovae aided by the standing accretion shock instability (SASI), we study how the spiral modes of the SASI can impact the properties of the gravitational-wave (GW) emission. To see the effects of rotation in the nonlinear postbounce phase, we give a uniform rotation on the flow advecting from the outer boundary of the iron core, the specific angular momentum of which is assumed to agree with recent stellar evolution models. We compute fifteen 3D models in which the initial angular momentum and the input neutrino luminosities from the protoneutron star are changed in a systematic manner. By performing a ray-tracing analysis, we accurately estimate the GW amplitudes generated by anisotropic neutrino emission. Our results show that the gravitational waveforms from neutrinos in models that include rotation exhibit a common feature; otherwise, they vary much more stochastically in the absence of rotation. The breaking of the stochasticity stems from the excess of the neutrino emission parallel to the spin axis. This is because the compression of matter is more enhanced in the vicinity of the equatorial plane due to the growth of the spiral SASI modes, leading to the formation of the spiral flows circulating around the spin axis with higher temperatures. We point out that recently proposed future space interferometers like Fabry-Perot-type DECIGO would permit the detection of these signals for a Galactic supernova.

  18. Spontaneous Rotation of Nonlinear Pattern Formed by Aqueous Colloidal Suspension between ITO Electrodes during Electrolysis Perpendicular to Gravity.

    PubMed

    Sasaki, Kazuya; Sato, Shuichi; Shindo, Takahiro; Sakawa, Takeo; Sasaki, Hiromu; Sano, Masahito

    2017-06-15

    A colloidal fluid is found to rotate spontaneously during electrolysis when gravity acts perpendicular to the direction of an applied electric field. An aqueous dispersion containing charged colloidal particles is placed inside an O-ring sandwiched between two parallel ITO electrodes. A clip is used to hold the assembly together to prevent the liquid from leaking out. The assembly is positioned such that the electrodes stand vertically, i.e., the electric field during electrolysis points perpendicular to gravity. When a direct-current voltage is applied to initiate the electrolysis of water, a nonlinear colloidal pattern is formed by electroconvective flow. Moreover, the entire fluid rotates spontaneously about the O-ring center with a constant angular velocity. The rotational dynamics are governed by how strong and where the assembly is clipped relative to the gravitational direction. A new phenomenological relationship between the angular velocity, compression vector, and gravity is derived. Coupling of an electrochemical reduction reaction of the ITO film with electroconvection during electrolysis is proposed as a mechanism for the rotational motion.

  19. Nonlinear magnetohydrodynamic waves in a steady zonal circulation for a shallow fluid shell on the surface of a rotating sphere

    NASA Technical Reports Server (NTRS)

    Lou, Y. Q.

    1987-01-01

    This paper considers two-dimensional nonlinear MHD waves of large horizontal spatial scales for a thin magnetofluid layer on the surface of a rotating sphere. The 'shallow fluid' hydrodynamic equations are generalized to include the effects of magnetic fields, and it is shown that the resulting MHD equations can be reduced to a single scalar equation for a stream function involving several free functions. For special choices of these free functions, two kinds of finite-amplitude MHD waves are obtained, propagating in the azimuthal direction relative to the uniformly rotating background atmosphere in the presence of a background zonal magnetic field and a steady differential zonal flow. These two kinds of MHD waves are fundamentally due to the joint effects of the uniform rotation of the background atmosphere and background magnetic field; the first is an inertial wave of the Rossby (1939) and Haurwitz (1940) type, modified by the presence of the background zonal magnetic field, while the second is a magnetic Alfven-like wave which is modified by the uniform rotation of the background atmosphere.

  20. Polarization rotation associated critical phenomena in epitaxial PbTiO3 thin films near room temperature

    NASA Astrophysics Data System (ADS)

    Ma, Wenhui

    2016-04-01

    Strain-driven and temperature-driven monoclinic-orthorhombic phase transition in epitaxial PbTiO3 exhibit similar behavior under electric field, i.e., polarization discontinuity is reduced at the first-order ferroelectric-ferroelectric transition whose latent heat vanishes at a critical point. Due to critical phenomena the energy barrier for polarization rotation significantly diminishes, and hence thermodynamic response functions tend to diverge in the induced monoclinic states. Phenomenological calculations show that dielectric and piezoelectric properties are highly tunable by in-plane strain and electric field, and large electromechanical response may occur in epitaxial PbTiO3 thin films at room temperature. Phenomenological calculations show that large electrocaloric responsivity can also be expected at room temperature by manipulating the phase transition.

  1. Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Zhong, Kesong; Ma, Hongfeng; Li, Yun; Sui, Chenghua; Wang, Juanzhuan; Shi, Yi

    2017-01-01

    A planar chiral metamaterial (PCMM) comprizing double-layer sandwich structure utilizing metal-silicides in the shape of windmill is proposed in the infrared region (IR). Giant circular dichroism (CD) and polarization rotation are observed simultaneously. Furthermore, the effect of Drude model parameters (ωp,ωτ) of metal-silicides on CD and optical activity are also investigated. The results show that CD and optical activity reach maximum if ωp and ωτ are in the distribution of narrow trumpet shape.

  2. Generation of radially polarized beams using an image-rotating resonator.

    SciTech Connect

    Armstrong, Darrell Jewell; Phillips, Mark Christopher; Smith, Arlee Virgil

    2003-01-01

    We generate optical vortex beams in a nanosecond optical parametric oscillator based on an image-rotating resonator. This efficient new method of vortex generation should be adaptable to pulsed or continuous lasers.

  3. Inelastic Scattering of NO by Kr: Rotational Polarization over a Rainbow.

    PubMed

    Chadwick, Helen; Nichols, Bethan; Gordon, Sean D S; Hornung, Balazs; Squires, Eleanor; Brouard, Mark; Kłos, Jacek; Alexander, Millard H; Aoiz, F Javier; Stolte, Steven

    2014-10-02

    We use molecular beams and ion imaging to determine quantum state resolved angular distributions of NO radicals after inelastic collision with Kr. We also determine both the sense and the plane of rotation (the rotational orientation and alignment, respectively) of the scattered NO. By full selection and then detection of the quantum parity of the NO molecule, our experiment is uniquely sensitive to quantum interference. For forward-scattered NO, we report hitherto unseen changes in the plane and sense of rotation with scattering angle and show, remarkably, that the rotation of the NO molecule after collision can be near-maximally oriented for certain transitions and scattering angles. These effects are enhanced by the full parity selection in the experiment and result from the interplay between attractive and repulsive forces.

  4. Joint mitigation of laser phase noise and fiber nonlinearity for polarization-multiplexed QPSK and 16-QAM coherent transmission systems.

    PubMed

    Morsy-Osman, Mohamed; Zhuge, Qunbi; Chen, Lawrence R; Plant, David V

    2011-12-12

    We propose the use of pilot-aided (PA) transmission, enabled by single-sideband-subcarrier modulation of both quadratures in the DSP-domain, in single-carrier systems to mitigate jointly laser phase noise and fiber nonlinearity. In addition to tolerance against laser phase noise, we show that the proposed scheme also improves the nonlinear tolerance of both polarization-division-multiplexed (PDM) QPSK and 16-QAM coherent transmission systems by increasing the maximum allowable launch power by 1 dB and 1.5 dB, respectively. The improved nonlinear performance of both systems also manifests itself as an increase in the maximum reach by 720 km and 480 km, respectively. Finally, when digital-to-analog converters (DACs) with lower bit resolutions are used at the transmitter, PA transmission is shown to preserve the same performance improvement over the non-PA case.

  5. Polarity reversal of the optical rotation signals with change in direction of impulse conduction along the lobster nerve.

    PubMed Central

    Watanabe, A

    1993-01-01

    1. The optical rotation signal of nerve associated with excitation was recorded from peripheral nerve taken from a walking leg of a spiny lobster and its properties were analysed. 2. The polarity of the optical rotation signal was reversed when the site of stimulation was changed with reference to the site of optical recording, so that the direction of impulse conduction was reversed, in most of the preparations. 3. Apart from the main response, which is associated with the conducted impulse, a pre-response was found to exist, which manifested itself on anodic stimulation, in a tetrodotoxin-treated nerve, or during the refractory period of the nerve, when the site of stimulation was close to the site of optical recording. The polarity of the pre-response was also reversed when the site of stimulation was changed with reference to the site of optical recording. 4. When the nerve was inclined from the horizontal level, so that the angle of incidence of light to the nerve was changed, the main response changed its amplitude and sometimes its polarity, whereas the pre-response remained practically unchanged. Thus the dependence on the angle of incidence was different between the pre-response and the main response. 5. It is suggested that the dependence of amplitude and polarity of the main response on the angle of incidence of light cannot be explained by the change in molecular axes of the membrane macromolecules, but can only be explained by their conformational change; and therefore the main response can be used as a monitor for the molecular conformation. PMID:8410706

  6. Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution.

    PubMed

    Wang, Yunzheng; Zhang, Liqiang; Zhuo, Zhuang; Guo, Songzhen

    2016-07-20

    We propose a cross-splicing method, for the first time to our knowledge, to compensate the effect of fiber birefringence in a polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution. This method has been investigated numerically and experimentally. The results indicate that stable mode-locking pulses can be obtained in the cavity with this method; otherwise, no mode-locking states are achieved. The design processes of the laser cavity are presented. Pulses with single pulse energy of 2.1 nJ are generated at pump power of 460 mW. The spectral bandwidth and pulse duration are 17.5 nm and 11.7 ps, respectively. The tunability of the laser is also studied. The central wavelength can be tuned from 1023.2 to 1045.9 nm.

  7. Non-180° polarization rotation of ferroelectric (Bi0.5Na0.5)TiO3 single crystals under electric field

    NASA Astrophysics Data System (ADS)

    Kitanaka, Yuuki; Yanai, Ken; Noguchi, Yuji; Miyayama, Masaru; Kagawa, Yutaka; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2014-03-01

    The behavior of the polarization switching by applying electric fields (E) along the <100> and <111> directions has been investigated for the single crystals of ferroelectric (Bi0.5Na0.5)TiO3 (BNT) using high-energy synchrotron radiation x-ray diffraction (SR-XRD) and density functional theory (DFT) calculations. Single-crystal SR-XRD analyses reveal that the E-induced switching of spontaneous polarization (Ps) occurs via the non-180° (71° and/or 109°) Ps rotation. The DFT calculations show that the energy barrier for the 71° Ps rotation is much lower than those for the 109° Ps rotation and for the direct 180° Ps reversal. These experimental and DFT calculation results lead to the conclusion that the 71° Ps rotation is the dominant pathway for the E-induced polarization switching in the BNT crystals.

  8. Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K.

    2004-02-01

    We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal networks which are set in motion by active processes at work in cells.

  9. A search for evidence of the evolution of rotational discontinuities in the solar wind from nonlinear Alfven waves

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Buti, B.

    1990-01-01

    Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.

  10. Long-term rotational stability of terrestrial planets with viscoelastic lithospheres: Theory and application to Martian True Polar Wander (TPW)

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly; Chan, Ngai-Ham; Daradich, Amy; Mitrovica, Jerry

    2017-04-01

    The long-term rotational stability of terrestrial planets is a classic problem in geophysics and planetary science. Modern theoretical treatments date to Gold (1955) and Goldreich & Toomre (1969), who argued that the rotation axis orientation of terrestrial planets is inherently unstable since any stabilization due to the rotational bulge is transient. Willemann (1984) and Matsuyama et al. (2006) extended this work, showing that an elastic lithosphere acts to resist TPW through stresses induced in the lithosphere by reorientation. Thus the presence of an elastic lithosphere can strongly dampen the magnitude of load-induced TPW. The above studies were based on equilibrium stability theories that describe only the final state of the rotation axis. Other studies (e.g., Ricard et al., 1993; Tsai & Stevenson, 2007; Harada, 2012; Chan et al., 2014) have developed methods for modeling the time dependence of TPW. We build on this earlier work to derive a new theory for time-dependent TPW on terrestrial planets with viscoelastic lithospheres. In this case, on short timescales, polar motion is resisted by a strong lithosphere (the Willemann and Matsuyama case); but on long time scales, the lithosphere relaxes and the rotation axis becomes unstable (the Gold case). We highlight our theory by applying it to load-induced TPW on Mars. First, we demonstrate, in contrast to previous arguments, that an equilibrium theory is inaccurate when considering load-induced TPW on Mars. Indeed, for sufficiently high, but plausible values of lithospheric viscosity, surface loading can induce TPW that persists for billions of years. Second, we consider the possible range of TPW driven by the development of the massive Tharsis volcanic province that does not violate constraints imposed by the present day figure of Mars. We show, once again in contrast to some previous arguments, that this range permits the large angle (> 50 degrees) TPW inferred in previous studies on the basis of Martian

  11. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    SciTech Connect

    Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  12. Imaging the Stereodynamics of Cl + CH4(ν3 = 1): Polarization Dependence on the Rotational Branch and the Hyperfine Depolarization.

    PubMed

    Pan, Huilin; Yang, Jiayue; Wang, Fengyan; Liu, Kopin

    2014-11-06

    The transition state in the Cl + CH4 reaction is of Cl-H-C collinear geometry, which serves as the bottleneck to reaction. When the reactant CH4 is antisymmetrically stretch-excited to ν3 = 1 by absorbing a linearly polarized photon, all four C-H bonds are collectively excited, and any one of the H atoms could be attacked by the Cl atom. At first sight, it is not obvious how an excited spherical-top molecule like CH4 is aligned and what consequences will be on chemical reactivity by polarizing the CH4 reagents. As shown here, an enormous steric effect on reactivity is observed, which depends sensitively on the selected rotational states. By exploiting various rotational branches in optical excitation, we quantify the degree of stereospecificity for a few lowest rovibrational states of the aligned CH4(ν3 = 1) reagents, as well as account for the hyperfine depolarization factor. This information lays the foundation for a full stereorequirement study of the Cl + CH4(ν3 = 1) reaction.

  13. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  14. Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method

    SciTech Connect

    Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo

    2005-12-15

    The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880 eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the s-polarization configuration was 2.6% at an incidence angle of around 45 deg. As the result of the analysis based on the rotating-analyzer method, the polarizance of the polarizer and the degree of linear polarization of the incident light at 880 eV were found to be 0.997{+-}0.002 and 0.993{+-}0.004, respectively.

  15. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

  16. Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae

    SciTech Connect

    Sorcia, Marco; Benítez, Erika; Cabrera, José I.; Hiriart, David; López, José M.; Mújica, Raúl

    2014-10-10

    An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP = 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.

  17. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  18. Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation.

    PubMed

    Valle, A; Sciamanna, M; Panajotov, K

    2007-10-01

    In this paper we report on a theoretical investigation of the nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers (VCSELs) under current modulation. Special attention is given to the comparison with a previously studied case of single-transverse mode VCSEL emitting in two orthogonal polarizations. The consideration of spatial effects in VCSEL modifies the polarization dynamics that accompanies the period doubling route to chaos for large modulation amplitudes. Depending on the modulation parameters, the excitation of a higher order transverse mode may either induce chaotic pulsing in an otherwise regularly pulsating VCSEL, or induce a time-periodic pulsing dynamics in an otherwise chaotic VCSEL. Bifurcation diagrams obtained for different modulation frequencies, several values of the dichroism, and different transverse mode characteristics allow us to identify the different scenarios of polarization dynamics in a directly modulated VCSEL. Temporal analysis of carrier number radial profile reveals considerable changes for the multitransverse mode case only constituting the physical origin of the reported changes in the temporal and polarization dynamics.

  19. Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity.

    PubMed

    Kochetkova, M S; Martyanov, M A; Poteomkin, A K; Khazanov, E A

    2010-06-07

    A system of differential equations describing, neglecting diffraction, the propagation of laser radiation in a medium with birefringence and cubic nonlinearity is derived. It is shown that the efficiency of depolarization compensation by means of a 90 degrees polarization rotator or a Faraday mirror decreases with increasing B-integral (nonlinear phase incursion). Comparison of the effectiveness of the considered method in the case of incident linear and circular polarization showed that for the circular polarization the optimal angle of polarization rotator is different from 90 degrees and the degree of polarization is less than for the linear one.

  20. Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories

    NASA Astrophysics Data System (ADS)

    Tagantsev, Alexander K.; Stolichnov, Igor; Setter, Nava; Cross, Jeffrey S.

    2004-12-01

    The phenomenon of polarization imprint consisting of the development of a preferential polarization state in ferroelectric films is known as one of the major issues impacting the development of high density ferroelectric memories. According to the commonly accepted scenario, the imprint is related to the charge injection and charge accumulation in the nearby-electrode passive layer of the ferroelectric film. Recent studies demonstrated that the coercive voltage shift induced by the imprint exhibits a nonlinear time dependence in a logarithmic scale. This result was interpreted as the presence of two different imprint mechanisms characterized by different activation energies. In the present work, an analytical theory of the injection scenario of imprint is developed. The charge accumulation at the interface is shown to provoke a voltage offset and polarization loss which are nonlinearly dependent on the time in logarithmic scale. This result is obtained for different charge injection mechanisms including Schottky, Pool-Frenkel, and tunneling scenarios. Thus, it is shown that a single imprint mechanism can be responsible for a nolinear (in logarithmic scale) time dependence of the voltage offset and polarization loss. Additionally, the temperature dependence of the logarithmic rate of imprint is shown to be nonexponential. The developed model ties together the time and temperature dependences of imprint. For the experimental verification of the model a study of imprint has been performed on (111) Pb(Zr ,Ti)O3 film capacitors with temperatures ranging from 25 to 150°C and exposure times up to 1000h. It has been found that the theory developed adequately describes the obtained experimental data. Based upon the theoretical and experimental results a test for ferroelectric memories is proposed, which enables the long-term prediction of polarization loss caused by imprint for a wide temperature range and for different operating voltages.

  1. Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment

    NASA Astrophysics Data System (ADS)

    Hill, Charles A.; Beckman, Shawn; Chinone, Yuji; Goeckner-Wald, Neil; Hazumi, Masashi; Keating, Brian; Kusaka, Akito; Lee, Adrian T.; Matsuda, Frederick; Plambeck, Richard; Suzuki, Aritoki; Takakura, Satoru

    2016-07-01

    We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.

  2. Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges.

    PubMed Central

    Bell, Marcus G; Dale, Robert E; van der Heide, Uulke A; Goldman, Yale E

    2002-01-01

    The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters, and , of the probe angular distribution (beta) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale. PMID:12124286

  3. Modelling and observations of oceanic nonlinear internal wave packets affected by the Earth's rotation

    NASA Astrophysics Data System (ADS)

    Grimshaw, Roger; da Silva, Jose C. B.; Magalhaes, Jorge M.

    2017-08-01

    The large-amplitude internal solitary waves commonly observed in the coastal ocean can propagate for long distances for long times, so that it may be necessary to take account of the effects of the Earth's background rotation. In this case an appropriate model wave evolution equation is the Ostrovsky equation, whose typical solutions indicate that internal solitary waves will evolve into envelope wave packets. Unlike the more usual Korteweg-de Vries solutions which are typically rank-ordered wave packets, these are centred with the largest waves in the middle. This qualitative feature, together with certain key quantitative parameters such as the envelope carrier wavenumber and speed, can be sought in oceanic observations. Hence we have examined many SAR images of internal solitary waves with the general aim of finding features indicating that rotational effects have become significant. From these we report in detail on six typical cases of which four give indications of rotational effects. In addition we use a two-layer fluid model to estimate how the rotational parameters depend on the background stratification and topography.

  4. Rotation induced nonlinear dispersive dust drift waves can be the progenitors of spokes

    NASA Astrophysics Data System (ADS)

    Masood, W.; Rizvi, H.; Hasnain, H.; Haque, Q.

    2012-03-01

    Rotation induced dispersive dust drift waves are suggested as the possible cause of the formation of spokes in the Saturn's B ring. Using the plasma parameters found in the Saturn's B ring, it has been shown that the theoretically predicted spatio-temporal scalelengths agree well with the satellites and Hubble Space telescope observations of the spokes.

  5. Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO3 thin films

    SciTech Connect

    Chen, Frank; Goodfellow, John; Liu, Shi; Grinberg, Ilya; Hoffman, Matthias; Damodaran, Anoop R.; Zhu, Yi; Zhang, Xiaohang; Takeuchi, Ichiro; Rappe, Andrew; Martin, Lane W.; Wen, Haidan; Lindenberg, Aaron M.

    2015-09-21

    In this article, terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO3 while monitoring the time-dependent ferroelectric polarization through its nonlinear optical response. Modulations in the intensity of the second harmonic light generated by the film correspond to on–off ratios of 220 × gateable on femtosecond timescales. Polarization modulations comparable to the built-in static polarization are observed.

  6. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    SciTech Connect

    Gao, Q. D.; Budny, R. V.

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  7. Polarization instability of Raman solitons ejected during supercontinuum generation.

    PubMed

    Chao, Qing; Wagner, Kelvin H

    2015-12-28

    We numerically investigate polarization instability of soliton fission and the polarization dynamics of Raman solitons ejected during supercontinuum generation in a photonics crystal fiber using the coupled vector generalized nonlinear Schrödinger equations for both linear and circular birefringent fibers. The evolution of the state of polarizations of the ejected Raman soliton as representated on the Poincaré sphere is affected by both nonlinear and linear polarization rotations on the Poincaré sphere. The polarization dynamics reveal the presence of a polarization separatrix and the emergence of stable slow and unstable fast eigen-polarizations for the Raman solitons ejected in the supercontinuum generation process. Circularly birefringent fiber is investigated and found to simplify the nonlinear polarization dynamics.

  8. Anisotropic Optical Response of Dense Quark Matter under Rotation: Compact Stars as Cosmic Polarizers

    NASA Astrophysics Data System (ADS)

    Hirono, Yuji; Nitta, Muneto

    2012-08-01

    Quantum vortices in the color-flavor locked phase of QCD have bosonic degrees of freedom, called the orientational zero modes, localized on them. We show that the orientational zero modes are electromagnetically charged. As a result, a vortex in the color-flavor locked phase nontrivially interacts with photons. We show that a lattice of vortices acts as a polarizer of photons with wavelengths larger than some critical length.

  9. Measurement of the second-order nonlinear susceptibility of collagen using polarization modulation and phase-sensitive detection

    NASA Astrophysics Data System (ADS)

    Stoller, Patrick C.; Kim, Beop-Min; Rubenchik, Alexander M.; Reiser, Karen M.; Da Silva, Luiz B.

    2001-05-01

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in a rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter (gamma) related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  10. Measurement of the Second Order Non-linear Susceptibility of Collagen using Polarization Modulation and Phase-sensitive Detection

    SciTech Connect

    Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B

    2001-03-03

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  11. The collagen structure of equine articular cartilage characterized using polarization-sensitive optical coherence tomography and non-linear microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Ugryumova, Nadya; Knapp, Karen M.; Matcher, Stephen J.

    2006-09-01

    Equine articular cartilage has been imaged using both polarization-sensitive optical coherence tomography (PS-OCT) and non-linear microscopy. PS-OCT has been used to spatially map the birefringence in the cartilage and we have found that in the vicinity of the lesion the images display a characteristic disruption in the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. x2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We have also imaged the cartilage using non-linear microscopy and compare the scans taken with second harmonic generation (SHG) light and the two photon fluorescence (TPF) light. SHG images collected using 800 nm excitation reveals the spatial distribution of collagen fibers, whilst TPF images clearly shows the distribution of intracellular and pericellular fluorophores.

  12. Collisionless Damping of Circularly Polarized Nonlinear Alfvén Waves in Solar Wind Plasmas with and without Beam Protons

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2014-10-01

    The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.

  13. Generation of an arbitrary four-photon polarization-entangled decoherence-free state with cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli; Gao, Ting

    2017-08-01

    We present a new scheme to provide an arbitrary four-photon polarization-entangled state, which enables the encoding of single logical qubit information into a four-qubit decoherence-free subspace robustly against collective decoherence. With the assistance of the cross-Kerr nonlinearities, a spatial entanglement gate and a polarization entanglement gate are inserted into the circuit, where the X-quadrature homodyne measurement is properly performed. According to the outcomes of homodyne measurement in the spatial entanglement process, some swap gates are inserted into the corresponding paths of the photons to swap their spatial modes. Apart from Kerr media, some basic linear optical elements are necessary, which make it feasible with current experimental techniques.

  14. Nonlinear ion modes in a strongly coupled plasma in the presence of nonthermal ion fluids and polarization force

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Hossen, M. R.; Mamun, A. A.

    2016-04-01

    The nonlinear propagation of ion-acoustic (IA) waves in a strongly coupled plasma system containing Maxwellian electrons and nonthermal ions has been theoretically and numerically investigated. The well-known reductive perturbation technique is used to derive both the Burgers and Korteweg-de Vries (KdV) equations. Their shock and solitary wave solutions have also been numerically analyzed in understanding localized electrostatic disturbances. It has been observed that the basic features (viz. polarity, amplitude, width, etc.) of IA waves are significantly modified by the effect of polarization force and other plasma parameters (e.g., the electron-to-ion number density ratio and ion-to-electron temperature ratio). This is a unique finding among all theoretical investigations made before, whose probable implications are discussed in this investigation. The implications of the results obtained from this investigation may be useful in understanding the wave propagation in both space and laboratory plasmas.

  15. Nonlinear ion modes in a strongly coupled plasma in the presence of nonthermal ion fluids and polarization force

    SciTech Connect

    Ema, S. A.; Hossen, M. R.; Mamun, A. A.

    2016-04-15

    The nonlinear propagation of ion-acoustic (IA) waves in a strongly coupled plasma system containing Maxwellian electrons and nonthermal ions has been theoretically and numerically investigated. The well-known reductive perturbation technique is used to derive both the Burgers and Korteweg−de Vries (KdV) equations. Their shock and solitary wave solutions have also been numerically analyzed in understanding localized electrostatic disturbances. It has been observed that the basic features (viz. polarity, amplitude, width, etc.) of IA waves are significantly modified by the effect of polarization force and other plasma parameters (e.g., the electron-to-ion number density ratio and ion-to-electron temperature ratio). This is a unique finding among all theoretical investigations made before, whose probable implications are discussed in this investigation. The implications of the results obtained from this investigation may be useful in understanding the wave propagation in both space and laboratory plasmas.

  16. Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.

    2016-06-01

    We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.

  17. Nonlinear Modeling, Analysis, and Control of Instruments Using Rotating Unbalanced Mass Actuators

    DTIC Science & Technology

    1998-08-04

    problem involving the mechanical properties of the system . The RUM device consists of a mass on a lever arm rotating at a constant angular velocity. The... mechanisms . Using a robotics approach will allow for the mechanics of the problem by addressing how individual components of the system interact...mapping function) is a function of q. The next several sections discuss the calculations of the kinematics of a mechanical system . These kinematics

  18. Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Sukow, David W.; Gilfillan, Taylor; Pope, Brenton; Torre, Maria S.; Gavrielides, Athanasios; Masoller, Cristina

    2012-09-01

    We study experimentally the dynamics of vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated (PR) optical feedback, such that the natural lasing polarization of a VCSEL is rotated by 90 deg and then is reinjected into the laser. We observe noisy, square-wave-like polarization switchings with periodicity slightly longer than twice the delay time, which degrade to (or alternate with) bursts of irregular oscillations. We present results of simulations that are in good agreement with the observations. The simulations demonstrate that close to threshold the regular switching is very sensitive to noise, while well above threshold is less affected by the noise strength. The frequency splitting between the two polarizations plays a key role in the switching regularity, and we identify wide parameter regions where deterministic and robust switching can be observed.

  19. Nonlinear Equations for Bending of Rotating Beams with Application to Linear Flap-Lag Stability of Hingeless Rotors

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Ormiston, R. A.

    1973-01-01

    The nonlinear partial differential equations for the flapping and lead-lag degrees of freedom of a torisonally rigid, rotating cantilevered beam are derived. These equations are linearized about an equilibrium condition to study the flap-lag stability characteristics of hingeless helicopter rotor blades with zero twist and uniform mass and stiffness in the hovering flight condition. The results indicate that these configurations are stable because the effect of elastic coupling more than compensates for the destabilizing flap-lag Coriolis and aerodynamic coupling. The effect of higher bending modes on the lead-lag damping was found to be small and the common, centrally hinged, spring restrained, rigid blade approximation for elastic rotor blades was shown to be resonably satisfactory for determining flap-lag stability. The effect of pre-cone was generally stabilizing and the effects of rotary inertia were negligible.

  20. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  1. Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux

    NASA Astrophysics Data System (ADS)

    Peng, Yingping; Xiang, Zhaoyin

    2017-06-01

    In this paper, we investigate the 3D Keller-Segel-Stokes (K-S-S) system with nonlinear diffusion term Δ nm (m>0) and rotational flux posed in a bounded domain Ω with smooth boundary. Under the assumption that the Frobenius norm of the tensor-valued chemotactic sensitivity S( x, n, c) satisfies |S(x,n,c)|≤ CS(1+n)^{-α }, by seeking some new functionals and using the bootstrap arguments on the regularized system, we establish the existence and boundedness of global weak solutions to K-S-S system for arbitrarily large initial data under the assumption m+2α >2 and m>3/4, which includes both the degenerate (m>1) and the singular (m<1) case.

  2. Building a reduced model for nonlinear dynamics in Rayleigh-Bénard convection with counter-rotating disks.

    PubMed

    Navarro, M C; Witkowski, L Martin; Tuckerman, L S; Le Quéré, P

    2010-03-01

    A reduced model to decrease the number of degrees of freedom of the discretized Navier-Stokes equations to a small set that nevertheless captures the essential dynamics of the flow is proposed. The Rayleigh-Bénard convection problem in a cylinder of aspect ratio one where the lower and upper disks, maintained at hot and cold temperatures, respectively, rotate at equal and opposite angular velocities has been chosen to test the technique. The nonlinear dynamics is rich and complex when the temperature difference between disks and their angular velocity is varied. Representatives states--stationary, periodic near sinusoidal, and near heteroclinic--are presented. In each case, the reduced model is compared with temporal integration, and we show that 41 degrees of freedom are sufficient to reproduce the signal. We discuss the strengths and weaknesses of the algorithm by which we build our reduced model.

  3. An Improvement of Scanning Ellipsometer by Rotating a Polarizer and an Analyzer at a Speed Ratio of 1:3

    NASA Astrophysics Data System (ADS)

    El-Agez, Taher M.; Taya, Sofyan A.; El Tayyan, Ahmed A.

    2011-03-01

    We propose theoretically an improved spectroscopic ellipsometer to study the optical properties of solids. In this system, the polarizer and the analyzer are rotating synchronously in the same direction at a speed ratio 1:3. The light intensity received by the detector contains six Fourier coefficients, one dc and five ac. One can independently extract the ellipsometric parameters as well as the optical constants of a sample using any of six different sets of the Fourier coefficients. A comparison among these sets is presented to find the optimal set corresponding to the minimum percent error in the calculation of the real and imaginary parts of the dielectric function. The results from the simulated spectra of the complex refractive index of c-Si, ZnSe, and GaP are presented.

  4. Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method

    NASA Astrophysics Data System (ADS)

    Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo

    2005-12-01

    The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the 880eV were found to be 0.997±0.002 and 0.993±0.004, respectively.

  5. Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Yuexiang; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-03-01

    We consider the transverse electric (TE) surface plasmon polaritons (SPPs) supported by a graphene parallel plate waveguide bounded by Kerr-type nonlinear media in the mid-infrared and terahertz frequencies. Through theoretical analysis of the exact dispersion relations, we reveal the existence conditions of the even mode and odd mode of nonlinear TE SPPs in this system. To be specific, if the linear permittivity of the nonlinear cladding is larger than the permittivity of the core, it only supports the even mode and two branches of the dispersion curve exist. However, when the linear permittivity of the nonlinear cladding is smaller than the permittivity of the core, both even and odd modes can be supported. Moreover, it is found that the propagation constant of even and odd modes decreases with the increasing Fermi energy of graphene.

  6. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    NASA Astrophysics Data System (ADS)

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-04-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.

  7. Square waveforms in edge-emitting diode laser subject to polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, A.; Erneux, T.; Sukow, D. W.; Burner, G.; McLachlan, T.; Miller, J.; Amonette, J.

    2006-02-01

    The response of a diode laser resulting from an incoherent delayed optical feedback is considered from numerical and experimental perspectives. We concentrate on a class of solutions that appear as regular square waveforms. A two-field model is used and the bifurcation diagram of these square-wave regimes is studied. Conditions under which they typically appear are determined. The roles of various parameters are examined, particularly with regard to the gains and losses of the two polarization modes. Numerical results are in close agreement with experiments.

  8. An Analysis of the Stress induced in the Periodontal Ligament during Extrusion and Rotation Movements- Part II: A Comparison of Linear vs Nonlinear FEM Study.

    PubMed

    Hemanth, M; Raghuveer, H P; Rani, M S; Hegde, Chathura; Kabbur, Karthik J; Chaithra, D; Vedavathi, B

    2015-10-01

    Optimal orthodontic forces are those which stimulate tooth movement with minimal biological trauma to the tooth, periodontal ligament (PDL) during and alveolar bone. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. The mechanical behavior of the PDL is known to be nonlinear elastic and thus a nonlinear simulation of the PDL provides precision to the calculated stress values. Therefore in this study, the stress patterns in the PDL were evaluated with extrusion and rotational movements using the nonlinear finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modelling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with nonlinear material properties. It was observed that with the application of extrusive load, the tensile stresses were seen at the apex whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. For rotational and extrusion movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using nonlinear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement.

  9. The effects of suction on the nonlinear stability of the three-dimensional boundary layer above a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1991-01-01

    There exist two types of stationary instability of the flow over a rotating disc corresponding to the upper branch, inviscid mode and the lower branch mode, which has a triple deck structure, of the neutral stability curve. A theoretical study of the linear problem and an account of the weakly nonlinear properties of the lower branch modes have been undertaken by Hall and MacKerrell respectively. Motivated by recent reports of experimental sightings of the lower branch mode and an examination of the role of suction on the linear stability properties of the flow here, the effects are studied of suction on the nonlinear disturbance described by MacKerrell. The additional analysis required in order to incorporate suction is relatively straightforward and enables the derivation of an amplitude equation which describes the evolution of the mode. For each value of the suction, a threshold value of the disturbance amplitude is obtained; modes of size greater than this threshold grow without limit as they develop away from the point of neutral stability.

  10. Cycloid manipulation by electric field in BiFeO3 films: Coupling between polarization, octahedral rotation, and antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Popkov, A. F.; Kulagin, N. E.; Soloviov, S. V.; Sukmanova, K. S.; Gareeva, Z. V.; Zvezdin, A. K.

    2015-10-01

    The room temperature multiferroic BiFeO3, by far the most studied experimentally, exhibits outstanding ferroelectric properties with a cycloidal magnetic order in the bulk and many unexpected advantages for possible applications in spintronics, sensor techniques, and photovoltaics. To consider ferroelectric and magnetic phase transitions in multiferroic BiFeO3 under electric field, we suggest the Ginsburg-Landau-like approach based on the symmetry and P -ω -L coupling, where the order parameters are: P is the electric polarization, ω is the axial vector of antidistorsion (describing a rotation of the oxygen octahedrons), and L is the antiferromagnetic vector. The theoretical model is consistent with experiment and ab initio calculations data. We give the complete set of numerical coefficients of the model and explore the behavior of P and ω vectors in strong electric field. The proposed approach is particularly promising for the analysis of magnetoelectric phenomena whose length scale is significantly larger than the length of the cell used in ab initio calculations. The considered cycloid problem is the clear example of such a system. Electric field-induced transformations of cycloid are exemplified on an epitaxial BiFeO3 film grown on the (001)-oriented substrate. We show that the jump of vectors P and ω in the field E =6 MV/m is accompanied by a jump of a cycloid spin rotation plane. This effect is of particular interest for spintronics and nanoelectronics.

  11. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Levitt, Antoine; Tang, Qinglin

    2017-08-01

    We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

  12. Kerr/CFT correspondence in a 4D extremal rotating regular black hole with a non-linear magnetic monopole

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shingo

    2017-08-01

    We carry out the Kerr/CFT correspondence in a four-dimensional extremal rotating regular black hole with a non-linear magnetic monopole (NLMM). One problem in this study would be whether our geometry can be a solution or not. We search for the way making our rotating geometry into a solution based on the fact that the Schwarzschild regular geometry can be a solution. However, in the attempt to extend the Schwarzschild case that we can naturally consider, it turns out that it is impossible to construct a model in which our geometry can be a exact solution. We manage this problem by making use of the fact that our geometry can be a solution approximately in the whole space-time except for the black hole's core region. As a next problem, it turns out that the equation to obtain the horizon radii is given by a fifth-order equation due to the regularization effect. We overcome this problem by treating the regularization effect perturbatively. As a result, we can obtain the near-horizon extremal Kerr (NHEK) geometry with the correction of the regularization effect. Once obtaining the NHEK geometry, we can obtain the central charge and the Frolov-Thorne temperature in the dual CFT. Using these, we compute its entropy through the Cardy formula, which agrees with the one computed from the Bekenstein-Hawking entropy.

  13. Significance of rotating ground motions on nonlinear behavior of symmetric and asymmetric buildings in near fault sites

    USGS Publications Warehouse

    Kalkan, Erol; ,

    2012-01-01

    Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.

  14. Polarized Raman and Hyperpolarizability studies of Hydroxyethylammonium (L) tartrate monohydrate for quadratic nonlinear optics

    NASA Astrophysics Data System (ADS)

    Nagalakshmi, R.; Krishnakumar, V.; Hagemann, Hans; Muthunatesan, S.

    2010-08-01

    Hydroxyethylammonium (L) tartrate monohydrate was synthesized and crystals were grown using slow evaporation solution growth technique. Theoretical value of hyperpolarizability was calculated. Factor group analysis was carried out and is associated with the polarized Raman spectra.

  15. Nonlinear dust acoustic waves with polarization force effects in Kappa distribution plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Zhou, Suyun; Luo, Rongxiang; Liu, Sanqiu

    2017-01-01

    The propagation characteristics of dust acoustic solitary waves (DASWs) in dusty plasmas with the effects of polarization force and superthermal ions are studied. First, the polarization force induced by superthermal ions is obtained. It is shown that the superthermality of background ions affect the Debye screening of dust grains as well as the polarization force significantly. Then for small amplitude solitary waves, the KdV equation is obtained by applying the reductive perturbation technique. And for the arbitrary amplitude solitary waves, the Sagdeev potential method is employed and the Sagdeev potential is analyzed. In both case, the effects of the polarization force associated the ions’ superthermality on the characteristic of the DASWs are analyzed.

  16. Mechano-optic logic gate controlled by third-order nonlinear optical properties in a rotating ZnO:Au thin film

    NASA Astrophysics Data System (ADS)

    Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.

    2016-01-01

    Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.

  17. Baroclinic turbulence on the polar β-plane in the rotating tank: Down to submesoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Afanasyev, Y. D.

    2016-11-01

    The energy spectra of the baroclinic turbulence are examined in finely resolved laboratory flows. A wide range of wavenumbers and frequencies is accessible, including those dynamically similar to the oceanic meso- and submesoscales. Oceanographically relevant phenomena observed in the experiments include Rossby waves, alternating zonal jets, baroclinically unstable coastal currents as well as submesoscale filaments and eddies. Independent spectral decomposition methodologies (Fourier and Fourier-Bessel) applied in Cartesian and polar coordinates respectively provide a complementary framework for representing and interpreting the measured flows. Evolution of energy spectra in the wavenumber domain demonstrates that energy concentrates in zonal modes. The spectra in the frequency-wavenumber domain reveal a significant role of the linear dynamics in the form of the Rossby waves and baroclinic instability modes. The spectral analyses are extended to obtain energy fluxes between lengthscales and reveal an inverse cascade at larger (meso-) scales and a direct cascade at smaller (submeso-) scales.

  18. Impact of fourth-order dispersion in the spectra of polarization-modulational instability in highly nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Zambo Abou'ou, M. N.; Tchofo Dinda, P.; Ngabireng, C. M.; Pitois, S.; Kibler, B.

    2013-03-01

    We examine processes of polarization-modulational instability (PMI) in two categories of weakly birefringent optical fibers, namely, fibers whose nonlinearity is comparable to that of a standard telecom fiber, and high-index glass fibers whose nonlinearity is enhanced by several orders of magnitude as compared to that of a standard fiber. We show that the fourth-order dispersion (FOD) has a strong impact on PMI processes in both types of fibers, both at the qualitative and quantitative levels. At the qualitative level, the FOD enriches the phase diagram with nonconventional processes that generate two pairs of sidebands in certain parameter regions, while in other regions we obtain a single pair of sidebands whose frequency is independent of the pump power. The highly nonlinear birefringent fibers cause a pump depletion of a magnitude such that the frequency of the PMI sidebands becomes unstable and undergoes a continual drift. We demonstrate the existence of conditions in which the PMI process takes place in a manner similar to that of a process coupled with a photon reservoir, which feeds in situ the PMI process by continuously providing photons in compensation for those absorbed by the fiber.

  19. Surprisal analysis of rotational-translational energy transfer - Non-linear versus linear rotors

    NASA Technical Reports Server (NTRS)

    Green, S.

    1979-01-01

    Surprisal versus energy gap analyses of state-to-state cross sections are presented for a number of linear rigid rotors excited by collisions with atoms for H2-H, H2-He, HCl-He, HCl-Ar, CO-He, CS-H2 (j=0) OCS-H2 (j=0) and HN2(+)-He, where (j=0) indicates that the hydrogen molecule was constrained to remain in its lowest level. Different systems exhibit wide variations in the slope of the surprisal plot and in certain cases, enough to indicate that the energy gap may not be the static dynamical constraint. Similar analyses are presented for nonlinear rotors excited by atoms for H2CO-He and H2O-He. For these, the data show a great deal of scatter, indicating that the reduced energy gap is probably not the appropriate independent variable.

  20. Polar self-assembled thin films for non-linear optical materials

    DOEpatents

    Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan

    2000-01-01

    The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.