NASA Technical Reports Server (NTRS)
Fowlis, W. W. (Editor); Davis, M. H. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.
Advances in nonlinear optical materials and devices
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1987-01-01
The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.
A holistic approach to movement education in sport and fitness: a systems based model.
Polsgrove, Myles Jay
2012-01-01
The typical model used by movement professionals to enhance performance relies on the notion that a linear increase in load results in steady and progressive gains, whereby, the greater the effort, the greater the gains in performance. Traditional approaches to movement progression typically rely on the proper sequencing of extrinsically based activities to facilitate the individual in reaching performance objectives. However, physical rehabilitation or physical performance rarely progresses in such a linear fashion; instead they tend to evolve non-linearly and rather unpredictably. A dynamic system can be described as an entity that self-organizes into increasingly complex forms. Applying this view to the human body, practitioners could facilitate non-linear performance gains through a systems based programming approach. Utilizing a dynamic systems view, the Holistic Approach to Movement Education (HADME) is a model designed to optimize performance by accounting for non-linear and self-organizing traits associated with human movement. In this model, gains in performance occur through advancing individual perspectives and through optimizing sub-system performance. This inward shift of the focus of performance creates a sharper self-awareness and may lead to more optimal movements. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA/FAA general aviation crash dynamics program - An update
NASA Technical Reports Server (NTRS)
Hayduk, R. J.; Thomson, R. G.; Carden, H. D.
1979-01-01
Work in progress in the NASA/FAA General Aviation Crash Dynamics Program for the development of technology for increased crash-worthiness and occupant survivability of general aviation aircraft is presented. Full-scale crash testing facilities and procedures are outlined, and a chronological summary of full-scale tests conducted and planned is presented. The Plastic and Large Deflection Analysis of Nonlinear Structures and Modified Seat Occupant Model for Light Aircraft computer programs which form part of the effort to predict nonlinear geometric and material behavior of sheet-stringer aircraft structures subjected to large deformations are described, and excellent agreement between simulations and experiments is noted. The development of structural concepts to attenuate the load transmitted to the passenger through the seats and subfloor structure is discussed, and an apparatus built to test emergency locator transmitters in a realistic environment is presented.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
ERIC Educational Resources Information Center
Hovardas, Tasos
2016-01-01
Although ecological systems at varying scales involve non-linear interactions, learners insist thinking in a linear fashion when they deal with ecological phenomena. The overall objective of the present contribution was to propose a hypothetical learning progression for developing non-linear reasoning in prey-predator systems and to provide…
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
Comparison of some optimal control methods for the design of turbine blades
NASA Technical Reports Server (NTRS)
Desilva, B. M. E.; Grant, G. N. C.
1977-01-01
This paper attempts a comparative study of some numerical methods for the optimal control design of turbine blades whose vibration characteristics are approximated by Timoshenko beam idealizations with shear and incorporating simple boundary conditions. The blade was synthesized using the following methods: (1) conjugate gradient minimization of the system Hamiltonian in function space incorporating penalty function transformations, (2) projection operator methods in a function space which includes the frequencies of vibration and the control function, (3) epsilon-technique penalty function transformation resulting in a highly nonlinear programming problem, (4) finite difference discretization of the state equations again resulting in a nonlinear program, (5) second variation methods with complex state differential equations to include damping effects resulting in systems of inhomogeneous matrix Riccatti equations some of which are stiff, (6) quasi-linear methods based on iterative linearization of the state and adjoint equation. The paper includes a discussion of some substantial computational difficulties encountered in the implementation of these techniques together with a resume of work presently in progress using a differential dynamic programming approach.
NASA Technical Reports Server (NTRS)
Tanveer, S.; Foster, M. R.
2002-01-01
We report progress in three areas of investigation related to dendritic crystal growth. Those items include: 1. Selection of tip features dendritic crystal growth; 2) Investigation of nonlinear evolution for two-sided model; and 3) Rigorous mathematical justification.
Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming
2017-01-01
The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts. PMID:28773017
Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming
2017-06-16
The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Leake, R. J.; Sain, M. K.
1978-01-01
General goals of the research were classified into two categories. The first category involves the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a quiescent point. The second category involves the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. In the frequency domain category, works were published in the areas of low-interaction design, polynomial design, and multiple setpoint studies. A number of these ideas progressed to the point at which they are starting to attract practical interest. In the nonlinear category, advances were made both in engine modelling and in the details associated with software for determination of time optimal controls. Nonlinear models for a two spool turbofan engine were expanded and refined; and a promising new approach to automatic model generation was placed under study. A two time scale scheme was developed to do two-dimensional dynamic programming, and an outward spiral sweep technique has greatly speeded convergence times in time optimal calculations.
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
NASA Astrophysics Data System (ADS)
Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.
NASA Technical Reports Server (NTRS)
Mcdonald, B. Edward; Plante, Daniel R.
1989-01-01
The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.
A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis
NASA Astrophysics Data System (ADS)
Chillara, Vamshi Krishna
2017-11-01
We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
NASA Technical Reports Server (NTRS)
Kandil, O. A.
1981-01-01
Progress is reported in the development of reliable nonlinear vortex methods for predicting the steady and unsteady aerodynamic loads of highly sweptback wings at large angles of attack. Abstracts of the papers, talks, and theses produced through this research are included. The modified nonlinear discrete vortex method and the nonlinear hybrid vortex method are highlighted.
Optimal reconfiguration strategy for a degradable multimodule computing system
NASA Technical Reports Server (NTRS)
Lee, Yann-Hang; Shin, Kang G.
1987-01-01
The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.
NOLIN: A nonlinear laminate analysis program
NASA Technical Reports Server (NTRS)
Kibler, J. J.
1975-01-01
A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.
Nonlinear Real-Time Optical Signal Processing.
1981-06-30
bandwidth and space-bandwidth products. Real-time homonorphic and loga- rithmic filtering by halftone nonlinear processing has been achieved. A...Page ABSTRACT 1 1. RESEARCH OBJECTIVES AND PROGRESS 3 I-- 1.1 Introduction and Project overview 3 1.2 Halftone Processing 9 1.3 Direct Nonlinear...time homomorphic and logarithmic filtering by halftone nonlinear processing has been achieved. A detailed analysis of degradation due to the finite gamma
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program
NASA Astrophysics Data System (ADS)
Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.
2017-03-01
The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.
Evaluating Rebar Corrosion Using Nonlinear Ultrasound
NASA Astrophysics Data System (ADS)
Woodward, Clinton; Amin, Md. Nurul
2008-02-01
The early detection of rebar corrosion in reinforced concrete is difficult using current methods. This pilot study investigated the viability of using nonlinear ultrasound to detect the effects of rebar corrosion in its early stages. The study utilized three accelerated corrosion specimens and one control specimen. Results showed that when corrosion developed in the area isonified by a Rayleigh wave, nonlinear parameters increased. As corrosion progressed, these nonlinear parameters also increased.
Nonlinear laminate analysis for metal matrix fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1981-01-01
A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.
Studies in nonlinear problems of energy. Progress report, October 1, 1993--September 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matkowsky, B.J.
1994-09-01
The authors concentrate on modeling, analysis and large scale scientific computation of combustion and flame propagation phenomena, with emphasis on the transition from laminar to turbulent combustion. In the transition process a flame passed through a stages exhibiting increasingly complex spatial and temporal patterns which serve as signatures identifying each stage. Often the transitions arise via bifurcation. The authors investigate nonlinear dynamics, bifurcation and pattern formation in the successive stage of transition. They describe the stability of combustion waves, and transitions to combustion waves exhibiting progressively higher degrees of spatio-temporal complexity. One aspect of this research program is the systematicmore » derivation of appropriate, approximate models from the original models governing combustion. The approximate models are then analyzed. The authors are particularly interested in understanding the basic mechanisms affecting combustion, which is a prerequisite to effective control of the process. They are interested in determining the effects of varying various control parameters, such as Nusselt number, Lewis number, heat release, activation energy, Damkohler number, Reynolds number, Prandtl number, Peclet number, etc. The authors have also considered a number of problems in self-propagating high-temperature synthesis (SHS), in which combustion waves are employed to synthesize advanced materials. Efforts are directed toward understanding fundamental mechanisms. 167 refs.« less
Solving intuitionistic fuzzy multi-objective nonlinear programming problem
NASA Astrophysics Data System (ADS)
Anuradha, D.; Sobana, V. E.
2017-11-01
This paper presents intuitionistic fuzzy multi-objective nonlinear programming problem (IFMONLPP). All the coefficients of the multi-objective nonlinear programming problem (MONLPP) and the constraints are taken to be intuitionistic fuzzy numbers (IFN). The IFMONLPP has been transformed into crisp one and solved by using Kuhn-Tucker condition. Numerical example is provided to illustrate the approach.
Life extending control for rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.
1992-01-01
The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).
Nonlinear Pricing in Energy and Environmental Markets
NASA Astrophysics Data System (ADS)
Ito, Koichiro
This dissertation consists of three empirical studies on nonlinear pricing in energy and environmental markets. The first investigates how consumers respond to multi-tier nonlinear price schedules for residential electricity. Chapter 2 asks a similar research question for residential water pricing. Finally, I examine the effect of nonlinear financial rewards for energy conservation by applying a regression discontinuity design to a large-scale electricity rebate program that was implemented in California. Economic theory generally assumes that consumers respond to marginal prices when making economic decisions, but this assumption may not hold for complex price schedules. The chapter "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing" provides empirical evidence that consumers respond to average price rather than marginal price when faced with nonlinear electricity price schedules. Nonlinear price schedules, such as progressive income tax rates and multi-tier electricity prices, complicate economic decisions by creating multiple marginal prices for the same good. Evidence from laboratory experiments suggests that consumers facing such price schedules may respond to average price as a heuristic. I empirically test this prediction using field data by exploiting price variation across a spatial discontinuity in electric utility service areas. The territory border of two electric utilities lies within several city boundaries in southern California. As a result, nearly identical households experience substantially different nonlinear electricity price schedules. Using monthly household-level panel data from 1999 to 2008, I find strong evidence that consumers respond to average price rather than marginal or expected marginal price. I show that even though this sub-optimizing behavior has a minimal impact on individual welfare, it can critically alter the policy implications of nonlinear pricing. The second chapter " How Do Consumers Respond to Nonlinear Pricing? Evidence from Household Water Demand" provides similar empirical evidence in residential water markets. In this paper, I exploit variation in residential water pricing in Southern California to examine how consumers respond to nonlinear pricing. Contrary to the standard predictions for nonlinear budget sets, I find no bunching of consumers around the kink points of their nonlinear price schedule. I then explore whether consumers respond to marginal price, expected marginal price, or average price when faced with nonlinear water price schedules. The price schedule of one service area was changed from a linear price schedule to a nonlinear price schedule. This policy change lead to an increase in marginal price and expected marginal price but a decrease in average price for many consumers. Using household-level panel data, I find strong evidence that consumers respond to average price rather than marginal or expected marginal price. Estimates of the short-run price elasticity for the summer and winter months are -.127 and -.097, and estimates of the long-run price elasticity for the summer and winter months are -.203 and -.154. I conclude with "The Effect of Cash Rewards on Energy Conservation: Evidence from a Regression Discontinuity Design" to examine the effect of an alternative form of nonlinear pricing that was developed to provide an explicit financial incentive for conservation. In the summer of 2005, California residents received a 20% discount on their summer electricity bills if they could reduce their electricity consumption by 20% relative to 2004. Nearly all households automatically participated in the program, but the eligibility rule required households to have started their electricity service by a certain cutoff date in 2004. This rule generated an essentially random assignment of the program among households that started their service right before and after the cutoff date. Using household-level monthly billing records from the three largest California electric utilities, I find evidence that the rebate incentive reduced consumption by 5% to 10% in the areas where summer temperature is persistently high and income-level is relatively low, but the estimated treatment effects are nearly zero in other areas. To save 1 kWh of electricity, the program cost 2 cents in inland areas, 91 cents in coastal areas, and 14.8 cents for all service areas.
Nonlinear Real-Time Optical Signal Processing
1990-09-01
pattern recognition. Additional work concerns the relationship of parallel computation paradigms to optical computing and halftone screen techniques...paradigms to optical computing and halftone screen techniques for implementing general nonlinear functions. 3\\ 2 Research Progress This section...Vol. 23, No. 8, pp. 34-57, 1986. 2.4 Nonlinear Optical Processing with Halftones : Degradation and Compen- sation Models This paper is concerned with
User-defined Material Model for Thermo-mechanical Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.
Integrated nonlinear photonics. Emerging applications and ongoing challenges - A mini review
Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; ...
2014-11-26
In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.
IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David
The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less
IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program
Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...
2017-03-06
The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
Engineering high-order nonlinear dissipation for quantum superconducting circuits
NASA Astrophysics Data System (ADS)
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
High serum creatinine nonlinearity: a renal vital sign?
Palant, Carlos E; Chawla, Lakhmir S; Faselis, Charles; Li, Ping; Pallone, Thomas L; Kimmel, Paul L; Amdur, Richard L
2016-08-01
Patients with chronic kidney disease (CKD) may have nonlinear serum creatinine concentration (SC) trajectories, especially as CKD progresses. Variability in SC is associated with renal failure and death. However, present methods for measuring SC variability are unsatisfactory because they blend information about SC slope and variance. We propose an improved method for defining and calculating a patient's SC slope and variance so that they are mathematically distinct, and we test these methods in a large sample of US veterans, examining the correlation of SC slope and SC nonlinearity (SCNL) and the association of SCNL with time to stage 4 CKD (CKD4) and death. We found a strong correlation between SCNL and rate of CKD progression, time to CKD4, and time to death, even in patients with normal renal function. We therefore argue that SCNL may be a measure of renal autoregulatory dysfunction that provides an early warning sign for CKD progression. Copyright © 2016 the American Physiological Society.
Research on heating, instabilities, turbulence and RF emission from electric field dominated plasmas
NASA Astrophysics Data System (ADS)
Roth, J. R.; Alexeff, Igor
1989-07-01
This contract has supported four research programs: (1) a program of research on plasma turbulence; (2) a program of research on plasma heating by collisional magnetic pumping; (3) a research program on the Orbitron submillimeter maser; and (4) the initial phase of a program on plasma cloaking of military targets for protection against radar and directed microwave energy weapons. Progress in these areas is documented in the text of this final report and in the twenty archival publications included in the appendices to this report. In addition to the above four research areas, work was continued on plasma diagnostic development, and the development of new state-of-the-art data analysis and reduction methods, including software development for online reduction of Langmuir probe, capacitive probe, and other diagnostic information. Also being developed is the capability to analyze electrostatic potential fluctuations by the methods of nonlinear dynamics. An important part of the research program was the training of graduate and undergraduate research assistants in state-of-the-art methods in the fields of high temperature plasma physics, plasma diagnostics, communications, and related areas.
Method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Development of solution techniques for nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Vos, R. G.; Andrews, J. S.
1974-01-01
Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading.
Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges
NASA Technical Reports Server (NTRS)
Bartels, R. E.; Sayma, A. I.
2006-01-01
Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.
Nonlinear Curve-Fitting Program
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Badavi, Forooz F.
1989-01-01
Nonlinear optimization algorithm helps in finding best-fit curve. Nonlinear Curve Fitting Program, NLINEAR, interactive curve-fitting routine based on description of quadratic expansion of X(sup 2) statistic. Utilizes nonlinear optimization algorithm calculating best statistically weighted values of parameters of fitting function and X(sup 2) minimized. Provides user with such statistical information as goodness of fit and estimated values of parameters producing highest degree of correlation between experimental data and mathematical model. Written in FORTRAN 77.
Andrich, David; Marais, Ida; Humphry, Stephen Mark
2015-01-01
Recent research has shown how the statistical bias in Rasch model difficulty estimates induced by guessing in multiple-choice items can be eliminated. Using vertical scaling of a high-profile national reading test, it is shown that the dominant effect of removing such bias is a nonlinear change in the unit of scale across the continuum. The consequence is that the proficiencies of the more proficient students are increased relative to those of the less proficient. Not controlling the guessing bias underestimates the progress of students across 7 years of schooling with important educational implications. PMID:29795871
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
MSC products for the simulation of tire behavior
NASA Technical Reports Server (NTRS)
Muskivitch, John C.
1995-01-01
The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.
NASA Technical Reports Server (NTRS)
Mangalgiri, P. D.; Prabhakaran, R.
1986-01-01
An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.
ERIC Educational Resources Information Center
Marceau, Kristine; Ram, Nilam; Houts, Renate M.; Grimm, Kevin J.; Susman, Elizabeth J.
2011-01-01
Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear…
Nonlinear guiding of picosecond CO2 laser pulses in atmosphere(Conference Presentation)
NASA Astrophysics Data System (ADS)
Tochitsky, Sergei
2017-05-01
During the last 20 years much attention has been given to the study of propagation of short intense laser pulses for which the peak power exceeds the critical power of self-focusing, Pcr. For a laser power P < Pcr, a dynamic equilibrium between the Kerr self-focusing, diffraction and defocusing caused by laser-ionized plasma result in the production of a high intensity laser filament in air within which a variety of nonlinear optical phenomena are observed. However, research in the 0.8-1 μm range so far has shown a fundamental limitation of guided energy to a few mJ transported within an 100 μm single channel. A long-wavelength, 0 10 μm CO2 laser is a promising candidate for nonlinear guiding because expected high Pcr values according to the modeling should allow for the increase of energy (and therefore power) in a self-guided beam from mJ (GW) to few Joules (TW). During the last decade a significant progress has been achieved in amplification of picosecond pulses to terawatt and recently to <10 TW power level at UCLA and ATF BNL. Such powerful 10 μm lasers open possibility for nonlinear propagation studies in an atmospheric window with high transmission. As a natural first step in a our program on picosecond CO2 laser filamentation, we have made first measurements of Kerr coefficients of air and air constituents around 10 μm. We also undertook direct measurements of n2 of air by analyzing nonlinear self-focusing in air using a 3 ps, 600 GW pulses of the BNL CO2 laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Jennifer
2012-10-15
This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. Themore » goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.« less
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Technical Reports Server (NTRS)
Mei, Chuh
1993-01-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Astrophysics Data System (ADS)
Mei, Chuh
1993-06-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Graphical Man/Machine Communications
Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is
User document for computer programs for ring-stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.
Nonlinear Flying Qualities Criteria for Large-Amplitude Maneuvers
1984-12-01
theory which are pertinent to the formation of a nonlinear flying qualities methodology. This report surveys nonlinear system theory and describes...the development of an applied flying qualities methodology based on a canonical system theory and using research in relative controllability...The Nonlinear Flying Qualities (NFQ) for Large-Amplitude Maneuvers Program examined promising techniques from nonlinear analysis and nonlinear system
Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2001-01-01
This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
User's manual for GAMNAS: Geometric and Material Nonlinear Analysis of Structures
NASA Technical Reports Server (NTRS)
Whitcomb, J. D.; Dattaguru, B.
1984-01-01
GAMNAS (Geometric and Material Nonlinear Analysis of Structures) is a two dimensional finite-element stress analysis program. Options include linear, geometric nonlinear, material nonlinear, and combined geometric and material nonlinear analysis. The theory, organization, and use of GAMNAS are described. Required input data and results for several sample problems are included.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1994-01-01
NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.
Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.
2005-01-01
A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.
Nonlinear water waves: introduction and overview
NASA Astrophysics Data System (ADS)
Constantin, A.
2017-12-01
For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.
Nonlinear water waves: introduction and overview.
Constantin, A
2018-01-28
For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme 'Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Fuller, James A; Goldstick, Jason; Bartram, Jamie; Eisenberg, Joseph N S
2016-01-15
Global access to safe drinking water and sanitation has improved dramatically during the Millennium Development Goal (MDG) period. However, there is substantial heterogeneity in progress between countries and inequality within countries. We assessed countries' temporal patterns in access to drinking water and sanitation using publicly available data. We then classified countries using non-linear modeling techniques as having one of the following trajectories: 100% coverage, linear growth, linear decline, no change, saturation, acceleration, deceleration, negative acceleration, or negative deceleration. We further assessed the degree to which temporal profiles follow a sigmoidal pattern and how these patterns might vary within a given country between rural and urban settings. Among countries with more than 10 data points, between 15% and 38% showed a non-linear trajectory, depending on the indicator. Overall, countries' progress followed a sigmoidal trend, but some countries are making better progress and some worse progress than would be expected. We highlight several countries that are not on track to meet the MDG for water or sanitation, but whose access is accelerating, suggesting better performance during the coming years. Conversely, we also highlight several countries that have made sufficient progress to meet the MDG target, but in which access is decelerating. Patterns were heterogeneous and non-linearity was common. Characterization of these heterogeneous patterns will help policy makers allocate resources more effectively. For example, policy makers can identify countries that could make use of additional resources or might be in need of additional institutional capacity development to properly manage resources; this will be essential to meet the forthcoming Sustainable Development Goals. Copyright © 2015 Elsevier B.V. All rights reserved.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Lacaze, Guilhem; Oefelein, Joseph
2016-11-01
High-pressure flows are known to be challenging to simulate due to thermodynamic non-linearities occurring in the vicinity of the pseudo-boiling line. This study investigates the origin of this issue by analyzing the behavior of thermodynamic processes at elevated pressure and low temperature. We show that under transcritical conditions, non-linearities significantly amplify numerical errors associated with construction of fluxes. These errors affect the local density and energy balances, which in turn creates pressure oscillations. For that reason, solvers based on a conservative system of equations that transport density and total energy are subject to unphysical pressure variations in gradient regions. These perturbations hinder numerical stability and degrade the accuracy of predictions. To circumvent this problem, the governing system can be reformulated to a pressure-based treatment of energy. We present comparisons between the pressure-based and fully conservative formulations using a progressive set of canonical cases, including a cryogenic turbulent mixing layer at rocket engine conditions. Department of Energy, Office of Science, Basic Energy Sciences Program.
An, Honglin; Fleming, Simon
2005-05-02
The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.
Recent progress of the Laser-driven Ion-beam Trace Probe
NASA Astrophysics Data System (ADS)
Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta; Kvaternik, Raymond G.
1991-01-01
A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.
Spatial and temporal ultrafast imaging and control of terahertz wavepackets
NASA Astrophysics Data System (ADS)
Koehl, Richard Michael
Some polar optical phonons couple strongly to far- infrared electromagnetic radiation and move at light-like speeds through dielectric media. These phonon-polaritons retain both ionic and electromagnetic character. One of the fruitful implications of this mixing is that vibrational and electronic nonlinearities in ferroelectric and other highly anharmonic media interact with traveling electromagnetic waves spanning several frequency regimes, permitting nonlinear wave mixing at infrared and optical frequencies. Nonlinear optical mixing techniques are well-developed because optical light is easy to produce, but the lack of similar far- infrared sources has stymied similar efforts at terahertz frequencies. Nonlinear interactions in this frequency regime provide information about vibrational potential energy surfaces and are very strong when the lattice vibration is associated with a phase transition. In this thesis, I review methods based on a well known nonlinear optical technique, impulsive stimulated Raman scattering (ISRS), to monitor the progress of coherent phonon polaritons in a highly nonlinear ferroelectric, lithium tantalate. I also advance multiple-pulse ISRS optical techniques to attempt to elucidate information about the ferroelectric's vibrational potential energy surface, and I discuss significant recent progress that has been made in the development of ultrafast optical tools to generate far-infrared radiation through ISRS at specified times and spatial locations and control the interactions of coherent phonon-polariton wavepackets. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.
1988-01-01
An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
NASA Technical Reports Server (NTRS)
Walker, K. P.
1981-01-01
Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1978-01-01
A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1983-01-01
The results of a 10-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are presented. The implementation of the theory in the MARC nonlinear finite element code is discussed, and instructions for the computational application of the theory are provided.
Synthesis of multi-loop automatic control systems by the nonlinear programming method
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Emelyanova, T. A.
2017-01-01
The article deals with the problem of calculation of the multi-loop control systems optimal tuning parameters by numerical methods and nonlinear programming methods. For this purpose, in the paper the Optimization Toolbox of Matlab is used.
NASA Technical Reports Server (NTRS)
Pavarini, C.
1974-01-01
Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.
Simulation program of nonlinearities applied to telecommunication systems
NASA Technical Reports Server (NTRS)
Thomas, C.
1979-01-01
In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.
Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.
2014-03-01
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
NASA Technical Reports Server (NTRS)
Maskew, B.
1982-01-01
VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Elastic Nonlinear Response in Granular Media Under Resonance Conditions
NASA Astrophysics Data System (ADS)
Jia, X.; Johnson, P. A.
2004-12-01
We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. L. Bohn
2008-05-31
According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on thosemore » that can be regarded as specific to this project.« less
NASA Technical Reports Server (NTRS)
Ball, R. E.
1972-01-01
A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.
Analyses of Multishaft Rotor-Bearing Response
NASA Technical Reports Server (NTRS)
Nelson, H. D.; Meacham, W. L.
1985-01-01
Method works for linear and nonlinear systems. Finite-element-based computer program developed to analyze free and forced response of multishaft rotor-bearing systems. Acronym, ARDS, denotes Analysis of Rotor Dynamic Systems. Systems with nonlinear interconnection or support bearings or both analyzed by numerically integrating reduced set of coupledsystem equations. Linear systems analyzed in closed form for steady excitations and treated as equivalent to nonlinear systems for transient excitation. ARDS is FORTRAN program developed on an Amdahl 470 (similar to IBM 370).
Nonlinear Programming Models to Optimize Uneven-Aged Shortleaf Pine Management
Benedict J. Schulte; Joseph Buongiorno
2002-01-01
Nonlinear programming models of uneven-aged shortleaf pine (Pinus echinata Mill.) management were developed to identify sustainable management regimes that optimize soil expectation value (SEV) or annual sawtimber yields. The models recognize three species groups (shortleaf pine and other softwoods, soft hardwoods and hard hardwoods) and 13 2-inch...
Robust nonlinear control of vectored thrust aircraft
NASA Technical Reports Server (NTRS)
Doyle, John C.; Murray, Richard; Morris, John
1993-01-01
An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.
NASA Astrophysics Data System (ADS)
Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.
2017-10-01
Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
Reservoir Computing Beyond Memory-Nonlinearity Trade-off.
Inubushi, Masanobu; Yoshimura, Kazuyuki
2017-08-31
Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be expected to shed light on how information is stored and processed in nonlinear dynamical systems, potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir endowed with both linear and nonlinear dynamics and show that it improves the performance of information processing. Interestingly, for some tasks, significant improvements are observed by adding a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, the effect of the mixture reservoir is numerically verified for a simple function approximation task and for more complex tasks.
Nonlinear random response prediction using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.
1993-01-01
An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.
Plastic and Large-Deflection Analysis of Nonlinear Structures
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.
1982-01-01
Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.
Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.
Wise, Frank W
2012-01-01
Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.
Adaptation of a program for nonlinear finite element analysis to the CDC STAR 100 computer
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Ogilvie, P. L.
1978-01-01
The conversion of a nonlinear finite element program to the CDC STAR 100 pipeline computer is discussed. The program called DYCAST was developed for the crash simulation of structures. Initial results with the STAR 100 computer indicated that significant gains in computation time are possible for operations on gloval arrays. However, for element level computations that do not lend themselves easily to long vector processing, the STAR 100 was slower than comparable scalar computers. On this basis it is concluded that in order for pipeline computers to impact the economic feasibility of large nonlinear analyses it is absolutely essential that algorithms be devised to improve the efficiency of element level computations.
Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers
2006-07-27
Final report to the Office of Naval Research on the Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers ...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers 5b. GRANT NUMBER N000 14-1-0400 5c. PROGRAM ELEMENT...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers Principal Investigator K. Ravi-Chandar Organization The University
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1979-01-01
The research is classified in two categories: (1) the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a set-point, and (2) the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. Progress in the first category included the extension of CARDIAD (Complex Acceptability Region for Diagonal Dominance) methods developed with the help of the grant to the case of engine models with four inputs and four outputs. A suitable bounding procedure for the dominance function was determined. Progress in the second category had its principal focus on automatic nonlinear model generation. Simulations of models produced satisfactory results where compared with the NASA DYNGEN digital engine deck.
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.
1997-01-01
A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.
Microcomputer Simulation of Nonlinear Systems: From Oscillations to Chaos.
ERIC Educational Resources Information Center
Raw, Cecil J. G.; Stacey, Larry M.
1989-01-01
Presents two short microcomputer programs which illustrate features of nonlinear dynamics, including steady states, periodic oscillations, period doubling, and chaos. Logistic maps are explained, inclusion in undergraduate chemistry and physics courses to teach nonlinear equations is discussed, and applications in social and biological sciences…
Multimodal nonlinear nanophotonics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kivshar, Yuri S.
2017-05-01
Nonlinear nanophotonics is a rapidly developing field of research with many potential applications for the design of nonlinear nanoantennas, light sources, nanolasers, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for the subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. To engineer nonlinear scattering from resonant nanoscale elements, both modal and multipolar control of the nonlinear response are widely exploited for enhancing the near-field interaction and optimizing the radiation directionality. Motivated by the recent progress of all-dielectric nanophotonics, where the electric and magnetic multipolar contributions may become comparable, here we review the advances in the recently emerged field of multipolar nonlinear nanophotonics, starting from earlier relevant studies of metallic and metal-dielectric structures supporting localized plasmonic resonances to then discussing the latest results for all-dielectric nanostructures driven by Mie-type multipolar resonances and optically induced magnetic response. These recent developments suggest intriguing opportunities for a design of nonlinear subwavelength light sources with reconfigurable radiation characteristics and engineering large effective optical nonlinearities at the nanoscale, which could have important implications for novel nonlinear photonic devices operating beyond the diffraction limit.
Nonlinear Analysis and Post-Test Correlation for a Curved PRSEUS Panel
NASA Technical Reports Server (NTRS)
Gould, Kevin; Lovejoy, Andrew E.; Jegley, Dawn; Neal, Albert L.; Linton, Kim, A.; Bergan, Andrew C.; Bakuckas, John G., Jr.
2013-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.
Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)
NASA Technical Reports Server (NTRS)
Clark, Robert; Cottter, Paul; Michalopoulos, Constantine
2013-01-01
This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.
A FORTRAN program for calculating nonlinear seismic ground response
Joyner, William B.
1977-01-01
The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Trumper, David L.
1991-01-01
In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.
Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres
NASA Astrophysics Data System (ADS)
Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael
2018-06-01
Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.
Hueso, Miguel; Cruzado, Josep M; Torras, Joan; Navarro, Estanislao
2018-06-12
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus ( ANRIL ), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Studies in nonlinear problems of energy. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matkowsky, B.J.
1998-12-01
The author completed a successful research program on Nonlinear Problems of Energy, with emphasis on combustion and flame propagation. A total of 183 papers associated with the grant has appeared in the literature, and the efforts have twice been recognized by DOE`s Basic Science Division for Top Accomplishment. In the research program the author concentrated on modeling, analysis and computation of combustion phenomena, with particular emphasis on the transition from laminar to turbulent combustion. Thus he investigated the nonlinear dynamics and pattern formation in the successive stages of transition. He described the stability of combustion waves, and transitions to wavesmore » exhibiting progressively higher degrees of spatio-temporal complexity. Combustion waves are characterized by large activation energies, so that chemical reactions are significant only in thin layers, termed reaction zones. In the limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts, which must be found during the course of the analysis, so that the problems are moving free boundary problems. The analytical studies were carried out for the limiting case with fronts, while the numerical studies were carried out for the case of finite, though large, activation energy. Accurate resolution of the solution in the reaction zone(s) is essential, otherwise false predictions of dynamical behavior are possible. Since the reaction zones move, and their location is not known a-priori, the author has developed adaptive pseudo-spectral methods, which have proven to be very useful for the accurate, efficient computation of solutions of combustion, and other, problems. The approach is based on a combination of analytical and numerical methods. The numerical computations built on and extended the information obtained analytically. Furthermore, the solutions obtained analytically served as benchmarks for testing the accuracy of the solutions determined computationally. Finally, the computational results suggested new analysis to be considered. A cumulative list of publications citing the grant make up the contents of this report.« less
ERIC Educational Resources Information Center
Chenery, Gordon
1991-01-01
Uses chaos theory to investigate the nonlinear phenomenon of population growth fluctuation. Illustrates the use of computers and computer programs to make calculations in a nonlinear difference equation system. (MDH)
Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, J.E. Jr.; Tapia, R.A.
Goal of the research was to develop and test effective, robust algorithms for general nonlinear programming (NLP) problems, particularly large or otherwise expensive NLP problems. We discuss the research conducted over the 3-year period Jan. 1990-Dec. 1992. We also describe current and future directions of our research.
Nonlinear programming models to optimize uneven-aged loblolly pine management
Benedict J. Schulte; Joseph. Buongiorno; Kenneth Skog
1999-01-01
Nonlinear programming models of uneven-aged loblolly pine (Pinus taeda L.) management were developed to identify sustainable management regimes which optimize: 1) soil expectation value (SEV), 2) tree diversity, or 3) annual sawtimber yields. The models use the equations of SouthPro, a site- and density-dependent, multi-species matrix growth and yield model that...
NASA automatic system for computer program documentation, volume 2
NASA Technical Reports Server (NTRS)
Simmons, D. B.
1972-01-01
The DYNASOR 2 program is used for the dynamic nonlinear analysis of shells of revolution. The equations of motion of the shell are solved using Houbolt's numerical procedure. The displacements and stress resultants are determined for both symmetrical and asymmetrical loading conditions. Asymmetrical dynamic buckling can be investigated. Solutions can be obtained for highly nonlinear problems utilizing as many as five of the harmonics generated by SAMMSOR program. A restart capability allows the user to restart the program at a specified time. For Vol. 1, see N73-22129.
Nonlinear Growth Models in M"plus" and SAS
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam
2009-01-01
Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…
Annual Review of Research Under the Joint Service Electronics Program.
1979-10-01
Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.
In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1990-01-01
Techniques are discussed for the implementation and improvement of vectorization and concurrency in nonlinear explicit structural finite element codes. In explicit integration methods, the computation of the element internal force vector consumes the bulk of the computer time. The program can be efficiently vectorized by subdividing the elements into blocks and executing all computations in vector mode. The structuring of elements into blocks also provides a convenient way to implement concurrency by creating tasks which can be assigned to available processors for evaluation. The techniques were implemented in a 3-D nonlinear program with one-point quadrature shell elements. Concurrency and vectorization were first implemented in a single time step version of the program. Techniques were developed to minimize processor idle time and to select the optimal vector length. A comparison of run times between the program executed in scalar, serial mode and the fully vectorized code executed concurrently using eight processors shows speed-ups of over 25. Conjugate gradient methods for solving nonlinear algebraic equations are also readily adapted to a parallel environment. A new technique for improving convergence properties of conjugate gradients in nonlinear problems is developed in conjunction with other techniques such as diagonal scaling. A significant reduction in the number of iterations required for convergence is shown for a statically loaded rigid bar suspended by three equally spaced springs.
Research and education at the NASA Fisk University Center for Photonic Materials and Devices
NASA Astrophysics Data System (ADS)
Silberman, Enrique
1996-07-01
In 1992, NASA awarded Fisk University a 5 year grant to establish a center for research and education on photonic materials are synthesized, characterized and, in some cases, developed into devices with applications in the fields of radiation detectors and nonlinear optical crystals, glasses and nanomaterials. The educational components include participation in the research by 3 types of students majoring in Physics, Chemistry and Biology: 1) Fisk undergraduates participating during the academic year. 2) Fisk graduates performing their Maser Thesis research. 3) Fisk and other HBCU's and Minority Institutions' undergraduates attending a 10 week summer workshop with a very rigorous program of study, research and progress reporting. Funds are available for supporting participating students. Prerequisite, schedules of activities, evaluation procedures and typical examples of the outcome are presented.
Degeneracy in NLP and the development of results motivated by its presence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiacco, A.; Liu, J.
We study notions of nondegeneracy and several levels of increasing degeneracy from the perspective of the local behavior of a local solution of a nonlinear program when problem parameters are slightly perturbed. This overview may be viewed as a structured survey of sensitivity and stability results: the focus is on progressive levels of degeneracy. We note connections of nondegeneracy with the convergence of algorithms and observe the striking parallel between the effects of nondegeneracy and degeneracy on optimality conditions, stability analysis and algorithmic convergence behavior. Although our orientation here is primarily interpretive and noncritical, we conclude that more effort ismore » needed to unify optimality, stability and convergence theory and more results are needed in all three areas for radically degenerate problems.« less
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2001-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.
Light Water Reactor Sustainability Program Status Report on the Grizzly Code Enhancements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novascone, Stephen R.; Spencer, Benjamin W.; Hales, Jason D.
2013-09-01
This report summarizes work conducted during fiscal year 2013 to work toward developing a full capability to evaluate fracture contour J-integrals to the Grizzly code. This is a progress report on ongoing work. During the next fiscal year, this capability will be completed, and Grizzly will be capable of evaluating these contour integrals for 3D geometry, including the effects of thermal stress and large deformation. A usable, limited capability has been developed, which is capable of evaluating these integrals on 2D geometry, without considering the effects of material nonlinearity, thermal stress or large deformation. This report presents an overview ofmore » the approach used, along with a demonstration of the current capability in Grizzly, including a comparison with an analytical solution.« less
Damage assessment in reinforced concrete using nonlinear vibration techniques
NASA Astrophysics Data System (ADS)
Van Den Abeele, K.; De Visscher, J.
2000-07-01
Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.
Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy
Wise, Frank W.
2012-01-01
Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163
Nonlinear plasmonic imaging techniques and their biological applications
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
ERIC Educational Resources Information Center
Winthrop, Rebecca; McGivney, Eileen
2017-01-01
Today, examples of rapid, non-linear progress--sometimes called leapfrogging--are evident in a number of sectors. Often, these instances are most obvious in the developing world, where in telecommunications or banking, for example, whole phases of infrastructure and institution-building that other countries had to go through have been by-passed by…
NASA Technical Reports Server (NTRS)
Giles, G. L.; Wallas, M.
1981-01-01
User documentation is presented for a computer program which considers the nonlinear properties of the strain isolator pad (SIP) in the static stress analysis of the shuttle thermal protection system. This program is generalized to handle an arbitrary SIP footprint including cutouts for instrumentation and filler bar. Multiple SIP surfaces are defined to model tiles in unique locations such as leading edges, intersections, and penetrations. The nonlinearity of the SIP is characterized by experimental stress displacement data for both normal and shear behavior. Stresses in the SIP are calculated using a Newton iteration procedure to determine the six rigid body displacements of the tile which develop reaction forces in the SIP to equilibrate the externally applied loads. This user documentation gives an overview of the analysis capabilities, a detailed description of required input data and an example to illustrate use of the program.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
NASA Technical Reports Server (NTRS)
Morozov, S. K.; Krasitskiy, O. P.
1978-01-01
A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.
Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics
NASA Astrophysics Data System (ADS)
Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey
2018-02-01
We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.
Program for the solution of multipoint boundary value problems of quasilinear differential equations
NASA Technical Reports Server (NTRS)
1973-01-01
Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.
NASA Astrophysics Data System (ADS)
Wu, Dongmei; Wang, Zhongcheng
2006-03-01
According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an approximation to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an approximation to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as y˜(x)=∑n=1m acos[(2n-1)ωx]. How to calculate the coefficients of the Fourier series efficiently with a computer program is still an open problem. For HB method, by substituting approximation y˜(x) into force equation, expanding the resulting expression into a trigonometric series, then letting the coefficients of the resulting lowest-order harmonic be zero, one can obtain approximate coefficients of approximation y˜(x) [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations such as Duffing equation, it is very difficult to construct higher-order analytical approximations, because the HB method requires solving a set of algebraic equations for a large number of unknowns with very complex nonlinearities. To overcome the difficulty, forty years ago, Urabe derived a computational method for Duffing equation based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl. 14 (1966) 107-140]. Dooren obtained an approximate solution of the Duffing oscillator with a special set of parameters by using Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite difference method for numerical integration, J. Comput. Phys. 16 (1974) 186-192]. In this paper, in the frame of the general HB method, we present a new iteration algorithm to calculate the coefficients of the Fourier series. By using this new method, the iteration procedure starts with a(x)cos(ωx)+b(x)sin(ωx), and the accuracy may be improved gradually by determining new coefficients a,a,… will be produced automatically in an one-by-one manner. In all the stage of calculation, we need only to solve a cubic equation. Using this new algorithm, we develop a Mathematica program, which demonstrates following main advantages over the previous HB method: (1) it avoids solving a set of associate nonlinear equations; (2) it is easier to be implemented into a computer program, and produces a highly accurate solution with analytical expression efficiently. It is interesting to find that, generally, for a given set of parameters, a nonlinear Duffing equation can have three independent oscillation modes. For some sets of the parameters, it can have two modes with complex displacement and one with real displacement. But in some cases, it can have three modes, all of them having real displacement. Therefore, we can divide the parameters into two classes, according to the solution property: there is only one mode with real displacement and there are three modes with real displacement. This program should be useful to study the dynamically periodic behavior of a Duffing oscillator and can provide an approximate analytical solution with high-accuracy for testing the error behavior of newly developed numerical methods with a wide range of parameters. Program summaryTitle of program:AnalyDuffing.nb Catalogue identifier:ADWR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWR_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computer for which the program is designed and others on which it has been tested:the program has been designed for a microcomputer and been tested on the microcomputer. Computers:IBM PC Installations:the address(es) of your computer(s) Operating systems under which the program has been tested:Windows XP Programming language used:Software Mathematica 4.2, 5.0 and 5.1 No. of lines in distributed program, including test data, etc.:23 663 No. of bytes in distributed program, including test data, etc.:152 321 Distribution format:tar.gz Memory required to execute with typical data:51 712 Bytes No. of bits in a word: No. of processors used:1 Has the code been vectorized?:no Peripherals used:no Program Library subprograms used:no Nature of physical problem:To find an approximate solution with analytical expressions for the undamped nonlinear Duffing equation with periodic driving force when the fundamental frequency is identical to the driving force. Method of solution:In the frame of the general HB method, by using a new iteration algorithm to calculate the coefficients of the Fourier series, we can obtain an approximate analytical solution with high-accuracy efficiently. Restrictions on the complexity of the problem:For problems, which have a large driving frequency, the convergence may be a little slow, because more iterative times are needed. Typical running time:several seconds Unusual features of the program:For an undamped Duffing equation, it can provide all the solutions or the oscillation modes with real displacement for any interesting parameters, for the required accuracy, efficiently. The program can be used to study the dynamically periodic behavior of a nonlinear oscillator, and can provide a high-accurate approximate analytical solution for developing high-accurate numerical method.
NASA Technical Reports Server (NTRS)
Teren, F.
1977-01-01
Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.
NASA Astrophysics Data System (ADS)
Yan, Zhen-Ya; Yan, Fang-Chi
2015-09-01
We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity. Supported by the National Natural Science Foundation of China under Grant No. 61178091, the National Key Basic Research Program of China under Grant No. 2011CB302400, and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China under Grant No. Y4KF211CJ1
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
The pEst version 2.1 user's manual
NASA Technical Reports Server (NTRS)
Murray, James E.; Maine, Richard E.
1987-01-01
This report is a user's manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete generality in definig the nonlinear equations of motion used in the analysis. The equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is supplied with the program and is described in the report. The report also briefly discusses the scope of the parameter estimation problem the program addresses. The report gives detailed explanations of the purpose and usage of all available program commands and a description of the computational algorithms used in the program.
Survey of optimization techniques for nonlinear spacecraft trajectory searches
NASA Technical Reports Server (NTRS)
Wang, Tseng-Chan; Stanford, Richard H.; Sunseri, Richard F.; Breckheimer, Peter J.
1988-01-01
Mathematical analysis of the optimal search of a nonlinear spacecraft trajectory to arrive at a set of desired targets is presented. A high precision integrated trajectory program and several optimization software libraries are used to search for a converged nonlinear spacecraft trajectory. Several examples for the Galileo Jupiter Orbiter and the Ocean Topography Experiment (TOPEX) are presented that illustrate a variety of the optimization methods used in nonlinear spacecraft trajectory searches.
Picosecond Laser Pulse Interactions with Metallic and Semiconducting Surfaces
1990-01-31
Few Picoseconds," Nonlinear Opics and Ultrafast Phenomena, eds. R.R. Alfano and L.J. Rothberg, (Nova Publishers, NY 1990). J.K. Wang, P. Saeta, M...Etching," Materials Science and Engineering 97:325-328 (1988). Nonlinear Opics & Ultrafast Phenomena Eds. R.R. Alfano and L.J. Rothberg Publ. Nova, NY...Progress in Materials Science, ed. by J.W. Christian , P. Haasen and T.B. Massalski, Chalmers Anniversay Volume, 269, Pergamon (1981). 13. F. Spaepen
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
Differential quadrature method of nonlinear bending of functionally graded beam
NASA Astrophysics Data System (ADS)
Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You
2018-02-01
Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.
Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya
2008-04-01
This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.
ERIC Educational Resources Information Center
Lopez-Martin, Esther; Kuosmanen, Timo; Gaviria, Jose Luis
2014-01-01
Value-added models are considered one of the best alternatives not only for accountability purposes but also to improve the school system itself. The estimates provided by these models measure the contribution of schools to students' academic progress, once the effect of other factors outside school control are eliminated. The functional form for…
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices
1998-05-12
SUBTITLE " Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices" 6. AUTHORS Michael B. Miller 5. FUNDING NUMBERS F49620-97...ii. Lü. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices Final Technical Report Performance Period: 15 August 1997...Investigator F&S. Inc.N ̂ 1. INTRODUCTION .’ 2 2. PROGRAM TASK REVIEW 2 3. BACKGROUND 4 3.1 NONLINEAR OPTICAL THIN FILMS 4 3.2 IONIC SELF
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Levine, H.
1975-01-01
The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2018-04-01
Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.
In-vivo monitoring rat skin wound healing using nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Chen, Jing; Guo, Chungen; Zhang, Fan; Xu, Yahao; Zhu, Xiaoqin; Xiong, Shuyuan; Chen, Jianxin
2014-11-01
Nonlinear optical microscopy (NLOM) was employed for imaging and evaluating the wound healing process on rat skin in vivo. From the high-resolution nonlinear optical images, the morphology and distribution of specific biological markers in cutaneous wound healing such as fibrin clot, collagens, blood capillaries, and hairs were clearly observed at 1, 5 and 14 days post injury. We found that the disordered collagen in the fibrin clot at day 1 was replaced by regenerative collagen at day 5. By day 14, the thick collagen with well-network appeared at the original margin of the wound. These findings suggested that NLOM is ideal for noninvasively monitoring the progress of wound healing in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galperin, Michael
The progress of experimental techniques at the nanoscale in the last decade made optical measurements in current-carrying nanojunctions a reality, thus indicating the emergence of a new field of research coined optoelectronics. Optical spectroscopy of open nonequilibrium systems is a natural meeting point for (at least) two research areas: nonlinear optical spectroscopy and quantum transport, each with its own theoretical toolbox. We review recent progress in the field comparing theoretical treatments of optical response in nanojunctions as is accepted in nonlinear spectroscopy and quantum transport communities. A unified theoretical description of spectroscopy in nanojunctions is presented. Here, we argue thatmore » theoretical approaches of the quantum transport community (and in particular, the Green function based considerations) yield a convenient tool for optoelectronics when the radiation field is treated classically, and that differences between the toolboxes may become critical when studying the quantum radiation field in junctions.« less
Extended-range tiltable micromirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, James J; Wiens, Gloria J; Bronson, Jessica R
A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.
PLANS: A finite element program for nonlinear analysis of structures. Volume 1: Theoretical manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Levine, H. S.; Armen, H., Jr.
1975-01-01
The PLANS system is described which is a finite element program for nonlinear analysis. The system represents a collection of special purpose computer programs each associated with a distinct physical problem class. Modules of PLANS specifically referenced and described in detail include: (1) REVBY, for the plastic analysis of bodies of revolution; (2) OUT-OF-PLANE, for the plastic analysis of 3-D built-up structures where membrane effects are predominant; (3) BEND, for the plastic analysis of built-up structures where bending and membrane effects are significant; (4) HEX, for the 3-D elastic-plastic analysis of general solids; and (5) OUT-OF-PLANE-MG, for material and geometrically nonlinear analysis of built-up structures. The SATELLITE program for data debugging and plotting of input geometries is also described. The theoretical foundations upon which the analysis is based are presented. Discussed are the form of the governing equations, the methods of solution, plasticity theories available, a general system description and flow of the programs, and the elements available for use.
The Cooperative VAS Program with the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Diak, George R.; Menzel, W. Paul
1988-01-01
Work was divided between the analysis/forecast model development and evaluation of the impact of satellite data in mesoscale numerical weather prediction (NWP), development of the Multispectral Atmospheric Mapping Sensor (MAMS), and other related research. The Cooperative Institute for Meteorological Satellite Studies (CIMSS) Synoptic Scale Model (SSM) has progressed from a relatively basic analysis/forecast system to a package which includes such features as nonlinear vertical mode initialization, comprehensive Planetary Boundary Layer (PBL) physics, and the core of a fully four-dimensional data assimilation package. The MAMS effort has produced a calibrated visible and infrared sensor that produces imager at high spatial resolution. The MAMS was developed in order to study small scale atmospheric moisture variability, to monitor and classify clouds, and to investigate the role of surface characteristics in the production of clouds, precipitation, and severe storms.
Optimization-Based Selection of Influential Agents in a Rural Afghan Social Network
2010-06-01
nonlethal targeting model, a nonlinear programming ( NLP ) optimization formulation that identifies the k US agent assignment strategy producing the greatest...leader social network, and 3) the nonlethal targeting model, a nonlinear programming ( NLP ) optimization formulation that identifies the k US agent...NATO Coalition in Afghanistan. 55 for Afghanistan ( [54], [31], [48], [55], [30]). While Arab tribes tend to be more hierarchical, Pashtun tribes are
Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin
2013-01-01
Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties. PMID:23531490
Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin
2013-03-26
Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties.
Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber
2013-01-01
Avalanche photodiode. A 10 m long HNLF fabricated by Sumitomo with a core diameter of 4 microns is fusion spliced to a single mode fiber for a...parametric down conversion (SPDC) was first observed in χ(2) nonlinear crystal [3]. However, the compatibility of a nonlinear crystal source with fiber and...PAIR IN A SHORT HIGHLY NON-LINEAR FIBER 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8750-12-1-0136 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S
Three-Dimensional High Fidelity Progressive Failure Damage Modeling of NCF Composites
NASA Technical Reports Server (NTRS)
Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid G.; Satyanarayana, Arunkumar; Bogert, Philip B.
2017-01-01
Performance prediction of off-axis laminates is of significant interest in designing composite structures for energy absorption. Phenomenological models available in most of the commercial programs, where the fiber and resin properties are smeared, are very efficient for large scale structural analysis, but lack the ability to model the complex nonlinear behavior of the resin and fail to capture the complex load transfer mechanisms between the fiber and the resin matrix. On the other hand, high fidelity mesoscale models, where the fiber tows and matrix regions are explicitly modeled, have the ability to account for the complex behavior in each of the constituents of the composite. However, creating a finite element model of a larger scale composite component could be very time consuming and computationally very expensive. In the present study, a three-dimensional mesoscale model of non-crimp composite laminates was developed for various laminate schemes. The resin material was modeled as an elastic-plastic material with nonlinear hardening. The fiber tows were modeled with an orthotropic material model with brittle failure. In parallel, new stress based failure criteria combined with several damage evolution laws for matrix stresses were proposed for a phenomenological model. The results from both the mesoscale and phenomenological models were compared with the experiments for a variety of off-axis laminates.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1989-01-01
The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.
On a program manifold's stability of one contour automatic control systems
NASA Astrophysics Data System (ADS)
Zumatov, S. S.
2017-12-01
Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold's absolute stability of one contour automatic control systems are obtained. The Hurwitz's angle of absolute stability was determined. The sufficient conditions of program manifold's absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov's second method.
Nonlinear diffusion and viral spread through the leaf of a plant
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.
2016-10-01
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.
Ratcheting in a nonlinear viscoelastic adhesive
NASA Astrophysics Data System (ADS)
Lemme, David; Smith, Lloyd
2017-11-01
Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.
Algorithms and software for nonlinear structural dynamics
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.
1989-01-01
The objective of this research is to develop efficient methods for explicit time integration in nonlinear structural dynamics for computers which utilize both concurrency and vectorization. As a framework for these studies, the program WHAMS, which is described in Explicit Algorithms for the Nonlinear Dynamics of Shells (T. Belytschko, J. I. Lin, and C.-S. Tsay, Computer Methods in Applied Mechanics and Engineering, Vol. 42, 1984, pp 225 to 251), is used. There are two factors which make the development of efficient concurrent explicit time integration programs a challenge in a structural dynamics program: (1) the need for a variety of element types, which complicates the scheduling-allocation problem; and (2) the need for different time steps in different parts of the mesh, which is here called mixed delta t integration, so that a few stiff elements do not reduce the time steps throughout the mesh.
The YAV-8B simulation and modeling. Volume 2: Program listing
NASA Technical Reports Server (NTRS)
1983-01-01
Detailed mathematical models of varying complexity representative of the YAV-8B aircraft are defined and documented. These models are used in parameter estimation and in linear analysis computer programs while investigating YAV-8B aircraft handling qualities. Both a six degree of freedom nonlinear model and a linearized three degree of freedom longitudinal and lateral directional model were developed. The nonlinear model is based on the mathematical model used on the MCAIR YAV-8B manned flight simulator. This simulator model has undergone periodic updating based on the results of approximately 360 YAV-8B flights and 8000 hours of wind tunnel testing. Qualified YAV-8B flight test pilots have commented that the handling qualities characteristics of the simulator are quite representative of the real aircraft. These comments are validated herein by comparing data from both static and dynamic flight test maneuvers to the same obtained using the nonlinear program.
Nonlinear Structured Growth Mixture Models in Mplus and OpenMx
Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne
2014-01-01
Growth mixture models (GMMs; Muthén & Muthén, 2000; Muthén & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models because of their common use, flexibility in modeling many types of change patterns, the availability of statistical programs to fit such models, and the ease of programming. In this paper, we present additional ways of modeling nonlinear change patterns with GMMs. Specifically, we show how LCMs that follow specific nonlinear functions can be extended to examine the presence of multiple latent classes using the Mplus and OpenMx computer programs. These models are fit to longitudinal reading data from the Early Childhood Longitudinal Study-Kindergarten Cohort to illustrate their use. PMID:25419006
NASA Astrophysics Data System (ADS)
Imani Masouleh, Mehdi; Limebeer, David J. N.
2018-07-01
In this study we will estimate the region of attraction (RoA) of the lateral dynamics of a nonlinear single-track vehicle model. The tyre forces are approximated using rational functions that are shown to capture the nonlinearities of tyre curves significantly better than polynomial functions. An existing sum-of-squares (SOS) programming algorithm for estimating regions of attraction is extended to accommodate the use of rational vector fields. This algorithm is then used to find an estimate of the RoA of the vehicle lateral dynamics. The influence of vehicle parameters and driving conditions on the stability region are studied. It is shown that SOS programming techniques can be used to approximate the stability region without resorting to numerical integration. The RoA estimate from the SOS algorithm is compared to the existing results in the literature. The proposed method is shown to obtain significantly better RoA estimates.
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
Nonlinear-programming mathematical modeling of coal blending for power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Longhua; Zhou Junhu; Yao Qiang
At present most of the blending works are guided by experience or linear-programming (LP) which can not reflect the coal complicated characteristics properly. Experimental and theoretical research work shows that most of the coal blend properties can not always be measured as a linear function of the properties of the individual coals in the blend. The authors introduced nonlinear functions or processes (including neural network and fuzzy mathematics), established on the experiments directed by the authors and other researchers, to quantitatively describe the complex coal blend parameters. Finally nonlinear-programming (NLP) mathematical modeling of coal blend is introduced and utilized inmore » the Hangzhou Coal Blending Center. Predictions based on the new method resulted in different results from the ones based on LP modeling. The authors concludes that it is very important to introduce NLP modeling, instead of NL modeling, into the work of coal blending.« less
Study of solution procedures for nonlinear structural equations
NASA Technical Reports Server (NTRS)
Young, C. T., II; Jones, R. F., Jr.
1980-01-01
A method for the redution of the cost of solution of large nonlinear structural equations was developed. Verification was made using the MARC-STRUC structure finite element program with test cases involving single and multiple degrees of freedom for static geometric nonlinearities. The method developed was designed to exist within the envelope of accuracy and convergence characteristic of the particular finite element methodology used.
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Atmospheric planetary-wave response to external forcing
NASA Technical Reports Server (NTRS)
Stevens, D. E.; Reiter, E. R.
1983-01-01
A summary of the progress report is given, covering the following areas: atmospheric circulation, planetary waves, adaption of the model to the Cyber 205, continental heat flux anomalies, and nonlinear evolution of inertial instabilities in the tropics.
Photonics and spectroscopy in nanojunctions: a theoretical insight
Galperin, Michael
2017-04-11
The progress of experimental techniques at the nanoscale in the last decade made optical measurements in current-carrying nanojunctions a reality, thus indicating the emergence of a new field of research coined optoelectronics. Optical spectroscopy of open nonequilibrium systems is a natural meeting point for (at least) two research areas: nonlinear optical spectroscopy and quantum transport, each with its own theoretical toolbox. We review recent progress in the field comparing theoretical treatments of optical response in nanojunctions as is accepted in nonlinear spectroscopy and quantum transport communities. A unified theoretical description of spectroscopy in nanojunctions is presented. Here, we argue thatmore » theoretical approaches of the quantum transport community (and in particular, the Green function based considerations) yield a convenient tool for optoelectronics when the radiation field is treated classically, and that differences between the toolboxes may become critical when studying the quantum radiation field in junctions.« less
NASA Astrophysics Data System (ADS)
Safouhi, Hassan; Hoggan, Philip
2003-01-01
This review on molecular integrals for large electronic systems (MILES) places the problem of analytical integration over exponential-type orbitals (ETOs) in a historical context. After reference to the pioneering work, particularly by Barnett, Shavitt and Yoshimine, it focuses on recent progress towards rapid and accurate analytic solutions of MILES over ETOs. Software such as the hydrogenlike wavefunction package Alchemy by Yoshimine and collaborators is described. The review focuses on convergence acceleration of these highly oscillatory integrals and in particular it highlights suitable nonlinear transformations. Work by Levin and Sidi is described and applied to MILES. A step by step description of progress in the use of nonlinear transformation methods to obtain efficient codes is provided. The recent approach developed by Safouhi is also presented. The current state of the art in this field is summarized to show that ab initio analytical work over ETOs is now a viable option.
Multiscale modelling and nonlinear simulation of vascular tumour growth
Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio
2011-01-01
In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
Using Microcomputers to Teach Non-Linear Equations at Sixth Form Level.
ERIC Educational Resources Information Center
Cheung, Y. L.
1984-01-01
Promotes the use of the microcomputer in mathematics instruction, reviewing approaches to teaching nonlinear equations. Examples of computer diagrams are illustrated and compared to textbook samples. An example of a problem-solving program is included. (ML)
A computer-aided approach to nonlinear control systhesis
NASA Technical Reports Server (NTRS)
Wie, Bong; Anthony, Tobin
1988-01-01
The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.
Towards the Early Detection of Breast Cancer in Young Women
2005-10-01
T. Shiina, and F. Tranquart. Progress in Freehand Elastography of the Breast . IEICE Transactions on Information and Systems, E85D (1):5–14, 2002. [3...Meaney, Naomi R. Miller, Tsuyoshi Shiina, and Francois Tranquart. Progress in freehand elastography of the breast . IEICE Transactions on Information...solution of the non-linear inverse elasticity problem 28 [26] Liew HL and Pinsky PM. Recovery of shear modulus in elastography using an adjoint method
NASA Astrophysics Data System (ADS)
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.; Hodges, Dewey H.
1987-01-01
The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.
Finding all solutions of nonlinear equations using the dual simplex method
NASA Astrophysics Data System (ADS)
Yamamura, Kiyotaka; Fujioka, Tsuyoshi
2003-03-01
Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.
The Boeing plastic analysis capability for engines
NASA Technical Reports Server (NTRS)
Vos, R. G.
1976-01-01
The current BOPACE program is described as a nonlinear stress analysis program, which is based on a family of isoparametric finite elements. The theoretical, user, programmer, preprocessing aspects are discussed, and example problems are included. New features in the current program version include substructuring, an out-of-core Gauss wavefront equation solver, multipoint constraints, combined material and geometric nonlinearities, automatic calculation of inertia effects, provision for distributed as well as concentrated mechanical loads, follower forces, singular crack-tip elements, the SAIL automatic generation capability, and expanded user control over input quantity definition, output selection, and program execution. BOPACE is written in FORTRAN 4 and is currently available for both the IBM 360/370 and the UNIVAC 1108 machines.
Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.
NASA Astrophysics Data System (ADS)
Tsia, Kevin K.; Jalali, Bahram
2010-05-01
An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations
Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.
2015-01-01
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C
2016-02-15
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.
Research on an augmented Lagrangian penalty function algorithm for nonlinear programming
NASA Technical Reports Server (NTRS)
Frair, L.
1978-01-01
The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.
Shaping the third-harmonic radiation from silicon nanodimers
Wang, Lei; Kruk, Sergey; Xu, Lei; ...
2017-01-23
Recent progress in the study of resonant light confinement in high-index dielectric nanostructures suggests a new route for achieving efficient control of both electric and magnetic components of light. It also leads to the enhancement of nonlinear effects near electric and magnetic Mie resonances with an engineered radiation directionality. Furthermore we study the third-harmonic generation from dimers composed of pairs of two identical silicon nanoparticles and demonstrate, both numerically and experimentally, that the multipolar harmonic modes generated by the dimers near the Mie resonances allow the shaping of the directionality of nonlinear radiation.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.; Turner, Travis L.; Robinson, Jay H.; Rizzi, Stephen A.
1999-01-01
In this paper, the problem of random vibration of geometrically nonlinear MDOF structures is considered. The solutions obtained by application of two different versions of a stochastic linearization method are compared with exact (F-P-K) solutions. The formulation of a relatively new version of the stochastic linearization method (energy-based version) is generalized to the MDOF system case. Also, a new method for determination of nonlinear sti ness coefficients for MDOF structures is demonstrated. This method in combination with the equivalent linearization technique is implemented in a new computer program. Results in terms of root-mean-square (RMS) displacements obtained by using the new program and an existing in-house code are compared for two examples of beam-like structures.
NASA Technical Reports Server (NTRS)
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Osborne, A. R.
2014-01-01
Certain homoclinic solutions of the nonlinear Schrödinger (NLS) equation, with spatially periodic boundary conditions, are the most common unstable wave packets associated with the phenomenon of oceanic rogue waves. Indeed the homoclinic solutions due to Akhmediev, Peregrine and Kuznetsov-Ma are almost exclusively used in scientific and engineering applications. Herein I investigate an infinite number of other homoclinic solutions of NLS and show that they reduce to the above three classical homoclinic solutions for particular spectral values in the periodic inverse scattering transform. Furthermore, I discuss another infinity of solutions to the NLS equation that are not classifiable as homoclinic solutions. These latter are the genus-2N theta function solutions of the NLS equation: they are the most general unstable spectral solutions for periodic boundary conditions. I further describe how the homoclinic solutions of the NLS equation, for N = 1, can be derived directly from the theta functions in a particular limit. The solutions I address herein are actual spectral components in the nonlinear Fourier transform theory for the NLS equation: The periodic inverse scattering transform. The main purpose of this paper is to discuss a broader class of rogue wave packets1 for ship design, as defined in the Extreme Seas program. The spirit of this research came from D. Faulkner (2000) who many years ago suggested that ship design procedures, in order to take rogue waves into account, should progress beyond the use of simple sine waves. 1An overview of other work in the field of rogue waves is given elsewhere: Osborne 2010, 2012 and 2013. See the books by Olagnon and colleagues 2000, 2004 and 2008 for the Brest meetings. The books by Kharif et al. (2008) and Pelinovsky et al. (2010) are excellent references.
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Henry, D. P.; Banerjee, P. K.; Dargush, G. F.
1991-01-01
It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.
Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.
2016-01-01
A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.
Emergent structure-function relations in emphysema and asthma.
Winkler, Tilo; Suki, Béla
2011-01-01
Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Sakurai, Takashi
1990-01-01
This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.
Nonlinear program based optimization of boost and buck-boost converter designs
NASA Astrophysics Data System (ADS)
Rahman, S.; Lee, F. C.
The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.
A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints
NASA Astrophysics Data System (ADS)
Li, Jinquan; Feng, Shuang; Mi, Honghai
In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1972-01-01
A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
On the Nonlinear Behavior of a Glass-Ceramic Seal and its Application in Planar SOFC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Koeppel, Brian J.; Vetrano, John S.
2006-06-01
This paper studies the nonlinear behavior of a glass-ceramic seal used in planar solid oxide fuel cells (SOFCs). To this end, a viscoelastic damage model has been developed that can capture the nonlinear material response due to both progressive damage in the glass-ceramic material and viscous flow of the residual glass in this material. The model has been implemented in the MSC MARC finite element code, and its validation has been carried out using the experimental relaxation test data obtained for this material at 700oC, 750oC, and 800oC. Finally, it has been applied to the simulation of a SOFC stackmore » under thermal cycling conditions. The areas of potential damage have been predicted.« less
Learning from Non-Linear Ecosystem Dynamics Is Vital for Achieving Land Degradation Neutrality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sietz, Diana; Fleskens, Luuk; Stringer, Lindsay C.
Land Degradation Neutrality is one of the Sustainable Development Goal targets, requiring on-going degradation to be balanced by restoration and sustainable land management. However, restoration and efforts to prevent degradation have often failed to deliver expected benefits,despite enormous investments. Better acknowledging the close relationships between climate, land management and non-linear ecosystem dynamics can help restoration activities to meet their intended goals, while supporting climate change adaptation and mitigation. This paper is the first to link ecological theory of non-linear ecosystem dynamics to Land Degradation Neutrality offering essential insights into appropriate timings, climate-induced windows of opportunities and risks and the financialmore » viability of investments. These novel insights are pre-requisites for meaningful o and monitoring of progress towards Land Degradation Neutrality« less
Learning from Non-Linear Ecosystem Dynamics Is Vital for Achieving Land Degradation Neutrality
Sietz, Diana; Fleskens, Luuk; Stringer, Lindsay C.
2017-02-27
Land Degradation Neutrality is one of the Sustainable Development Goal targets, requiring on-going degradation to be balanced by restoration and sustainable land management. However, restoration and efforts to prevent degradation have often failed to deliver expected benefits,despite enormous investments. Better acknowledging the close relationships between climate, land management and non-linear ecosystem dynamics can help restoration activities to meet their intended goals, while supporting climate change adaptation and mitigation. This paper is the first to link ecological theory of non-linear ecosystem dynamics to Land Degradation Neutrality offering essential insights into appropriate timings, climate-induced windows of opportunities and risks and the financialmore » viability of investments. These novel insights are pre-requisites for meaningful o and monitoring of progress towards Land Degradation Neutrality« less
Nonlinear Krylov and moving nodes in the method of lines
NASA Astrophysics Data System (ADS)
Miller, Keith
2005-11-01
We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.
Self-excitation of a nonlinear scalar field in a random medium
Zeldovich, Ya. B.; Molchanov, S. A.; Ruzmaikin, A. A.; Sokoloff, D. D.
1987-01-01
We discuss the evolution in time of a scalar field under the influence of a random potential and diffusion. The cases of a short-correlation in time and of stationary potentials are considered. In a linear approximation and for sufficiently weak diffusion, the statistical moments of the field grow exponentially in time at growth rates that progressively increase with the order of the moment; this indicates the intermittent nature of the field. Nonlinearity halts this growth and in some cases can destroy the intermittency. However, in many nonlinear situations the intermittency is preserved: high, persistent peaks of the field exist against the background of a smooth field distribution. These widely spaced peaks may make a major contribution to the average characteristics of the field. PMID:16593872
NASA Technical Reports Server (NTRS)
Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.
2010-01-01
Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.
Design of asymptotic estimators: an approach based on neural networks and nonlinear programming.
Alessandri, Angelo; Cervellera, Cristiano; Sanguineti, Marcello
2007-01-01
A methodology to design state estimators for a class of nonlinear continuous-time dynamic systems that is based on neural networks and nonlinear programming is proposed. The estimator has the structure of a Luenberger observer with a linear gain and a parameterized (in general, nonlinear) function, whose argument is an innovation term representing the difference between the current measurement and its prediction. The problem of the estimator design consists in finding the values of the gain and of the parameters that guarantee the asymptotic stability of the estimation error. Toward this end, if a neural network is used to take on this function, the parameters (i.e., the neural weights) are chosen, together with the gain, by constraining the derivative of a quadratic Lyapunov function for the estimation error to be negative definite on a given compact set. It is proved that it is sufficient to impose the negative definiteness of such a derivative only on a suitably dense grid of sampling points. The gain is determined by solving a Lyapunov equation. The neural weights are searched for via nonlinear programming by minimizing a cost penalizing grid-point constraints that are not satisfied. Techniques based on low-discrepancy sequences are applied to deal with a small number of sampling points, and, hence, to reduce the computational burden required to optimize the parameters. Numerical results are reported and comparisons with those obtained by the extended Kalman filter are made.
Estimation of wing nonlinear aerodynamic characteristics at supersonic speeds
NASA Technical Reports Server (NTRS)
Carlson, H. W.; Mack, R. J.
1980-01-01
A computational system for estimation of nonlinear aerodynamic characteristics of wings at supersonic speeds was developed and was incorporated in a computer program. This corrected linearized theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading edge thrust, and provides an estimate of detached leading edge vortex loadings that result when the theoretical thrust forces are not fully realized.
NASA Technical Reports Server (NTRS)
Perangelo, H. J.; Milordi, F. W.
1976-01-01
Analysis techniques used in the automated telemetry station (ATS) for on line data reduction are encompassed in a broad range of software programs. Concepts that form the basis for the algorithms used are mathematically described. The control the user has in interfacing with various on line programs is discussed. The various programs are applied to an analysis of flight data which includes unimodal and bimodal response signals excited via a swept frequency shaker and/or random aerodynamic forces. A nonlinear response error modeling analysis approach is described. Preliminary results in the analysis of a hard spring nonlinear resonant system are also included.
A hybrid nonlinear programming method for design optimization
NASA Technical Reports Server (NTRS)
Rajan, S. D.
1986-01-01
Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.
Composite Beam Theory with Material Nonlinearities and Progressive Damage
NASA Astrophysics Data System (ADS)
Jiang, Fang
Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.
On the complexity of a combined homotopy interior method for convex programming
NASA Astrophysics Data System (ADS)
Yu, Bo; Xu, Qing; Feng, Guochen
2007-03-01
In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Nonlinear stability and control study of highly maneuverable high performance aircraft
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1993-01-01
This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.
Lu, Tao
2016-01-01
The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.
Nonlinear electric field structures in the inner magnetosphere
Malaspina, D. M.; Andersson, L.; Ergun, R. E.; ...
2014-08-28
Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
A nonlinear bi-level programming approach for product portfolio management.
Ma, Shuang
2016-01-01
Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.
Automated reverse engineering of nonlinear dynamical systems
Bongard, Josh; Lipson, Hod
2007-01-01
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated “reverse engineering” approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future. PMID:17553966
Automated reverse engineering of nonlinear dynamical systems.
Bongard, Josh; Lipson, Hod
2007-06-12
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated "reverse engineering" approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.
LINEAR AND NONLINEAR ANALYSIS OF SEDIMENT WAVES IN RIVERS. (R824779)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects
2017-02-22
AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0183 5c. PROGRAM
A mathematical approach to HIV infection dynamics
NASA Astrophysics Data System (ADS)
Ida, A.; Oharu, S.; Oharu, Y.
2007-07-01
In order to obtain a comprehensive form of mathematical models describing nonlinear phenomena such as HIV infection process and AIDS disease progression, it is efficient to introduce a general class of time-dependent evolution equations in such a way that the associated nonlinear operator is decomposed into the sum of a differential operator and a perturbation which is nonlinear in general and also satisfies no global continuity condition. An attempt is then made to combine the implicit approach (usually adapted for convective diffusion operators) and explicit approach (more suited to treat continuous-type operators representing various physiological interactions), resulting in a semi-implicit product formula. Decomposing the operators in this way and considering their individual properties, it is seen that approximation-solvability of the original model is verified under suitable conditions. Once appropriate terms are formulated to describe treatment by antiretroviral therapy, the time-dependence of the reaction terms appears, and such product formula is useful for generating approximate numerical solutions to the governing equations. With this knowledge, a continuous model for HIV disease progression is formulated and physiological interpretations are provided. The abstract theory is then applied to show existence of unique solutions to the continuous model describing the behavior of the HIV virus in the human body and its reaction to treatment by antiretroviral therapy. The product formula suggests appropriate discrete models describing the dynamics of host pathogen interactions with HIV1 and is applied to perform numerical simulations based on the model of the HIV infection process and disease progression. Finally, the results of our numerical simulations are visualized and it is observed that our results agree with medical and physiological aspects.
Implementation of Nonlinear Control Laws for an Optical Delay Line
NASA Technical Reports Server (NTRS)
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
EnviroLand: A Simple Computer Program for Quantitative Stream Assessment.
ERIC Educational Resources Information Center
Dunnivant, Frank; Danowski, Dan; Timmens-Haroldson, Alice; Newman, Meredith
2002-01-01
Introduces the Enviroland computer program which features lab simulations of theoretical calculations for quantitative analysis and environmental chemistry, and fate and transport models. Uses the program to demonstrate the nature of linear and nonlinear equations. (Author/YDS)
Refining a learning progression of energy
NASA Astrophysics Data System (ADS)
Yao, Jian-Xin; Guo, Yu-Ying; Neumann, Knut
2017-11-01
This paper presents a revised learning progression for the energy concept and initial findings on diverse progressions among subgroups of sample students. The revised learning progression describes how students progress towards an understanding of the energy concept along two progress variables identified from previous studies - key ideas about energy and levels of conceptual development. To assess students understanding with respect to the revised learning progression, we created a specific instrument, the Energy Concept Progression Assessment (ECPA) based on previous work on assessing students' understanding of energy. After iteratively refining the instrument in two pilot studies, the ECPA was administered to a total of 4550 students (Grades 8-12) from schools in two districts in a major city in Mainland China. Rasch analysis was used to examine the validity of the revised learning progression and explore factors explaining different progressions. Our results confirm the validity of the four conceptual development levels. In addition, we found that although following a similar progression pattern, students' progression rate was significantly influenced by environmental factors such as school type. In the discussion of our findings, we address the non-linear and complex nature of students' progression in understanding energy. We conclude with illuminating our research's implication for curriculum design and energy teaching.
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.
1994-01-01
A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Lacouture, Jean-Christoph; Johnson, Paul A; Cohen-Tenoudji, Frederic
2003-03-01
The monitoring of both linear and nonlinear elastic properties of a high performance concrete during curing is presented by application of compressional and shear waves. To follow the linear elastic behavior, both compressional and shear waves are used in wide band pulse echo mode. Through the value of the complex reflection coefficient between the cell material (Lucite) and the concrete within the cell, the elastic moduli are calculated. Simultaneously, the transmission of a continuous compressional sine wave at progressively increasing drive levels permits us to calculate the nonlinear properties by extracting the harmonics amplitudes of the signal. Information regarding the chemical evolution of the concrete based upon the reaction of hydration of cement is obtained by monitoring the temperature inside the sample. These different types of measurements are linked together to interpret the critical behavior.
Using field-particle correlations to study auroral electron acceleration in the LAPD
NASA Astrophysics Data System (ADS)
Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.
2017-10-01
Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.
From linear to nonlinear control means: a practical progression.
Gao, Zhiqiang
2002-04-01
With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
NASA Technical Reports Server (NTRS)
Fertis, D. G.; Simon, A. L.
1981-01-01
The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.
FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0
NASA Technical Reports Server (NTRS)
Lancraft, R. E.
1985-01-01
Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, D.K.
The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.
Nonlinear 0-1 Programming: II. Dominance Relations and Algorithms. Revision.
1983-02-01
Polynomial Programming," Management Science, 18B, 1972, p. 328-343. [22] W. Zangwill, "Media Selection by Decision Programming," Journal of Advertising Research , 5, 1965, p. 30-36. -- 4 * ,-; ;- ...-. .*. .- * % t T. P.9 . *FILMED 4-85 DTIC
Computer program determines chemical equilibria in complex systems
NASA Technical Reports Server (NTRS)
Gordon, S.; Zeleznik, F. J.
1966-01-01
Computer program numerically solves nonlinear algebraic equations for chemical equilibrium based on iteration equations independent of choice of components. This program calculates theoretical performance for frozen and equilibrium composition during expansion and Chapman-Jouguet flame properties, studies combustion, and designs hardware.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
On the structure of nonlinear constitutive equations for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Jansson, Stefan
1992-01-01
The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.
ERIC Educational Resources Information Center
Davis, Darrel R.; Bostow, Darrel E.; Heimisson, Gudmundur T.
2007-01-01
Web-based software was used to deliver and record the effects of programmed instruction that progressively added formal prompts until attempts were successful, programmed instruction with one attempt, and prose tutorials. Error-contingent progressive prompting took significantly longer than programmed instruction and prose. Both forms of…
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.
2017-05-10
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low- β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, andmore » also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, i.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.« less
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
NASA Astrophysics Data System (ADS)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.; Reva, A. A.; Kuzin, S. V.
2017-05-01
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low-β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, and also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, I.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.
INDES User's guide multistep input design with nonlinear rotorcraft modeling
NASA Technical Reports Server (NTRS)
1979-01-01
The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
NASA Astrophysics Data System (ADS)
Chen, G. K. C.
1981-06-01
A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.
Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.
Dong, X Neil; Guda, Teja; Millwater, Harry R; Wang, Xiaodu
2009-02-09
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.
Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites
Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu
2009-01-01
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures. PMID:19058806
Composite materials research and education program: The NASA-Virginia Tech composites program
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1980-01-01
Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.
NASA Technical Reports Server (NTRS)
1979-01-01
A nonlinear, maximum likelihood, parameter identification computer program (NLSCIDNT) is described which evaluates rotorcraft stability and control coefficients from flight test data. The optimal estimates of the parameters (stability and control coefficients) are determined (identified) by minimizing the negative log likelihood cost function. The minimization technique is the Levenberg-Marquardt method, which behaves like the steepest descent method when it is far from the minimum and behaves like the modified Newton-Raphson method when it is nearer the minimum. Twenty-one states and 40 measurement variables are modeled, and any subset may be selected. States which are not integrated may be fixed at an input value, or time history data may be substituted for the state in the equations of motion. Any aerodynamic coefficient may be expressed as a nonlinear polynomial function of selected 'expansion variables'.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1984-01-01
The technical progress of researches on alternatives for jet engine control is reported. Extensive numerical testing is included. It is indicated that optimal inputs contribute significantly to the process of calculating tensor approximations for nonlinear systems, and that the resulting approximations may be order-reduced in a systematic way.
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
Tools for Nonlinear Control Systems Design
NASA Technical Reports Server (NTRS)
Sastry, S. S.
1997-01-01
This is a brief statement of the research progress made on Grant NAG2-243 titled "Tools for Nonlinear Control Systems Design", which ran from 1983 till December 1996. The initial set of PIs on the grant were C. A. Desoer, E. L. Polak and myself (for 1983). From 1984 till 1991 Desoer and I were the Pls and finally I was the sole PI from 1991 till the end of 1996. The project has been an unusually longstanding and extremely fruitful partnership, with many technical exchanges, visits, workshops and new avenues of investigation begun on this grant. There were student visits, long term.visitors on the grant and many interesting joint projects. In this final report I will only give a cursory description of the technical work done on the grant, since there was a tradition of annual progress reports and a proposal for the succeeding year. These progress reports cum proposals are attached as Appendix A to this report. Appendix B consists of papers by me and my students as co-authors sorted chronologically. When there are multiple related versions of a paper, such as a conference version and journal version they are listed together. Appendix C consists of papers by Desoer and his students as well as 'solo' publications by other researchers supported on this grant similarly chronologically sorted.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
Materials constitutive models for nonlinear analysis of thermally cycled structures
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.
LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL
NASA Technical Reports Server (NTRS)
Duke, E. L.
1994-01-01
The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of interest, or a full non-linear aerodynamic model as used in simulations. LINEAR is written in FORTRAN and has been implemented on a DEC VAX computer operating under VMS with a virtual memory requirement of approximately 296K of 8 bit bytes. Both an interactive and batch version are included. LINEAR was developed in 1988.
Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
Predicting Failure Progression and Failure Loads in Composite Open-Hole Tension Coupons
NASA Technical Reports Server (NTRS)
Arunkumar, Satyanarayana; Przekop, Adam
2010-01-01
Failure types and failure loads in carbon-epoxy [45n/90n/-45n/0n]ms laminate coupons with central circular holes subjected to tensile load are simulated using progressive failure analysis (PFA) methodology. The progressive failure methodology is implemented using VUMAT subroutine within the ABAQUS(TradeMark)/Explicit nonlinear finite element code. The degradation model adopted in the present PFA methodology uses an instantaneous complete stress reduction (COSTR) approach to simulate damage at a material point when failure occurs. In-plane modeling parameters such as element size and shape are held constant in the finite element models, irrespective of laminate thickness and hole size, to predict failure loads and failure progression. Comparison to published test data indicates that this methodology accurately simulates brittle, pull-out and delamination failure types. The sensitivity of the failure progression and the failure load to analytical loading rates and solvers precision is demonstrated.
Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua
2015-06-01
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2015-03-01
Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
NASA Astrophysics Data System (ADS)
Zuhdi, Shaifudin; Saputro, Dewi Retno Sari
2017-03-01
GWOLR model used for represent relationship between dependent variable has categories and scale of category is ordinal with independent variable influenced the geographical location of the observation site. Parameters estimation of GWOLR model use maximum likelihood provide system of nonlinear equations and hard to be found the result in analytic resolution. By finishing it, it means determine the maximum completion, this thing associated with optimizing problem. The completion nonlinear system of equations optimize use numerical approximation, which one is Newton Raphson method. The purpose of this research is to make iteration algorithm Newton Raphson and program using R software to estimate GWOLR model. Based on the research obtained that program in R can be used to estimate the parameters of GWOLR model by forming a syntax program with command "while".
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing
Yang, Changju; Kim, Hyongsuk
2016-01-01
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.
Yang, Changju; Kim, Hyongsuk
2016-08-19
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Ogilvie, P.
1975-01-01
A special data debugging package called SAT-1P created for the STARS-2P computer program is described. The program was written exclusively in FORTRAN 4 for the IBM 370-165 computer, and then converted to the UNIVAC 1108.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Career Counseling in a Volatile Job Market: Tiedeman's Perspective Revisited
ERIC Educational Resources Information Center
Duys, David K.; Ward, Janice E.; Maxwell, Jane A.; Eaton-Comerford, Leslie
2008-01-01
This article explores implications of Tiedeman's original theory for career counselors. Some components of the theory seem to be compatible with existing volatile job market conditions. Notions of career path recycling, development in reverse, nonlinear progress, and parallel streams in career development are explored. Suggestions are made for…
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Control of large flexible space structures
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.
1986-01-01
Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1984-01-01
The technical progress of researches Alternatives for Jet Engine Control is reported. A numerical study employing feedback tensors for optimal control of nonlinear systems was completed. It is believed that these studies are the first of their kind. State regulation, with a decrease in control power is demonstrated. A detailed treatment follows.
NASA Astrophysics Data System (ADS)
Teruna, D. R.
2017-03-01
Pushover analysis or also known as nonlinear static procedures (NSP) have been recognized in recent years for practical evaluation of seismic demands and for structural design by estimating a structural building capacities and deformation demands. By comparing these demands and capacities at the performance level interest, the seismic performance of a building can be evaluated. However, the accuracy of NSP for assessment irregular building is not yet a fully satisfactory solution, since irregularities of a building influence the dynamic responses of the building. The objective of the study presented herein is to understand the nonlinear behaviour of six story RC building with mass irregularities at different floors and stiffness irregularity at first story (soft story) using NSP. For the purpose of comparison on the performance level obtained with NSP, nonlinear time history analysis (THA) were also performed under ground motion excitation with compatible to response spectra design. Finally, formation plastic hinges and their progressive development from elastic level to collapse prevention are presented and discussed.
NASA Astrophysics Data System (ADS)
Hoffmann, Robert; Liebich, Robert
2018-01-01
This paper states a unique classification to understand the source of the subharmonic vibrations of gas foil bearing (GFB) systems, which will experimentally and numerically tested. The classification is based on two cases, where an isolated system is assumed: Case 1 considers a poorly balance rotor, which results in increased displacement during operation and interacts with the nonlinear progressive structure. It is comparable to a Duffing-Oscillator. In contrast, for case 2 a well/perfectly balanced rotor is assumed. Hence, the only source of nonlinear subharmonic whirling results from the fluid film self-excitation. Experimental tests with different unbalance levels and GFB modifications confirm these assumptions. Furthermore, simulations are able to predict the self-excitations and synchronous and subharmonic resonances of the experimental test. The numerical model is based on a linearised eigenvalue problem. The GFB system uses linearised stiffness and damping parameters by applying a perturbation method on the Reynolds Equation. The nonlinear bump structure is simplified by a link-spring model. It includes Coulomb friction effects inside the elastic corrugated structure and captures the interaction between single bumps.
NASA Astrophysics Data System (ADS)
Demiray, Hilmi; El-Zahar, Essam R.
2018-04-01
We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.
Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development
NASA Technical Reports Server (NTRS)
Gallardo, Vincente C.; Black, Gerald
1986-01-01
The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
1989-03-31
present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL
Analysis of Discrete-Source Damage Progression in a Tensile Stiffened Composite Panel
NASA Technical Reports Server (NTRS)
Wang, John T.; Lotts, Christine G.; Sleight, David W.
1999-01-01
This paper demonstrates the progressive failure analysis capability in NASA Langley s COMET-AR finite element analysis code on a large-scale built-up composite structure. A large-scale five stringer composite panel with a 7-in. long discrete source damage was analyzed from initial loading to final failure including the geometric and material nonlinearities. Predictions using different mesh sizes, different saw cut modeling approaches, and different failure criteria were performed and assessed. All failure predictions have a reasonably good correlation with the test result.
Numerical optimization of Ignition and Growth reactive flow modeling for PAX2A
NASA Astrophysics Data System (ADS)
Baker, E. L.; Schimel, B.; Grantham, W. J.
1996-05-01
Variable metric nonlinear optimization has been successfully applied to the parameterization of unreacted and reacted products thermodynamic equations of state and reactive flow modeling of the HMX based high explosive PAX2A. The NLQPEB nonlinear optimization program has been recently coupled to the LLNL developed two-dimensional high rate continuum modeling programs DYNA2D and CALE. The resulting program has the ability to optimize initial modeling parameters. This new optimization capability was used to optimally parameterize the Ignition and Growth reactive flow model to experimental manganin gauge records. The optimization varied the Ignition and Growth reaction rate model parameters in order to minimize the difference between the calculated pressure histories and the experimental pressure histories.
NASA Technical Reports Server (NTRS)
Benavente, Javier E.; Luce, Norris R.
1989-01-01
Demands for nonlinear time history simulations of large, flexible multibody dynamic systems has created a need for efficient interfaces between finite-element modeling programs and time-history simulations. One such interface, TREEFLX, an interface between NASTRAN and TREETOPS, a nonlinear dynamics and controls time history simulation for multibody structures, is presented and demonstrated via example using the proposed Space Station Mobile Remote Manipulator System (MRMS). The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS), in addition to other programs used for controller design and model reduction (such as DMATLAB and TREESEL, both described), under a UNIX Workstation environment demonstrates the flexibility engineers now have in designing, developing and testing control systems for dynamically complex systems.
The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity
NASA Astrophysics Data System (ADS)
Orazzo, Annagrazia; Hoepffner, Jérôme
2012-11-01
At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.
Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles
NASA Astrophysics Data System (ADS)
Silveira, M.; Pontes, B. R.; Balthazar, J. M.
2014-03-01
In this study the behaviour of two different types of shock absorbers, symmetrical (linear) and asymmetrical (nonlinear) is compared for use on passenger vehicles. The analyses use different standard road inputs and include variation of the severity parameter, the asymmetry ratio and the velocity of the vehicle. Performance indices and acceleration values are used to assess the efficacy of the asymmetrical systems. The comparisons show that the asymmetrical system, with nonlinear characteristics, tends to have a smoother and more progressive performance, both for vertical and angular movements. The half-car front asymmetrical system was introduced, and the simulation results show that the use of the asymmetrical system only at the front of the vehicle can further diminish the angular oscillations. As lower levels of acceleration are essential for improved ride comfort, the use of asymmetrical systems for vibrations and impact absorption can be a more advantageous choice for passenger vehicles.
Do nonlinear dynamics in economics amount to a Kuhnian paradigm shift?
Dore, Mohammed H I; Rosser, J Barkley
2007-01-01
Much empirical analysis and econometric work recognizes that there are nonlinearities, regime shifts or structural breaks, asymmetric adjustment costs, irreversibilities and lagged dependencies. Hence, empirical work has already transcended neoclassical economics. Some progress has also been made in modeling endogenously generated cyclical growth and fluctuations. All this is inconsistent with neoclassical general equilibrium. Hence there is growing evidence of Kuhnian anomalies. It therefore follows that there is a Kuhnian crisis in economics and further research in nonlinear dynamics and complexity can only increase the Kuhnian anomalies. This crisis can only deepen. However, there is an ideological commitment to general equilibrium that justifies "free enterprise" with only minimal state intervention that may still sustain neoclassical economics despite the growing evidence of Kuhnian anomalies. Thus, orthodox textbook theory continues to ignore this fact and static neoclassical theory remains a dogma with no apparent reformulation to replace it.
NASA Technical Reports Server (NTRS)
Noor, A. K.
1983-01-01
Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.
Perturbation of the yield-stress rheology of polymer thin films by nonlinear shear ultrasound.
Léopoldès, J; Conrad, G; Jia, X
2015-01-01
We investigate the nonlinear response of macromolecular thin films subjected to high-amplitude ultrasonic shear oscillation using a sphere-plane contact geometry. At a film thickness comparable to the radius of gyration, we observe the rheological properties intermediate between bulk and boundary nonlinear regimes. As the driving amplitude is increased, these films progressively exhibit oscillatory linear, microslip, and full slip regimes, which can be explained by the modified Coulomb friction law. At highest oscillation amplitudes, the interfacial adhesive failure takes place, being accompanied by a dewettinglike pattern. Moreover, the steady state sliding is investigated in thicker films with imposed shear stresses beyond the yield point. We find that applying high-amplitude shear ultrasound affects not only the yielding threshold but also the sliding velocity at a given shear load. A possible mechanism for the latter effect is discussed.
Recovery from nonlinear creep provides a window into physics of polymer glasses
NASA Astrophysics Data System (ADS)
Caruthers, James; Medvedev, Grigori
Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.
A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics
NASA Astrophysics Data System (ADS)
Rawy, E. K.
2018-06-01
We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.
5D Tempest simulations of kinetic edge turbulence
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.; Umansky, M. V.; Qin, H.
2006-10-01
Results are presented from the development and application of TEMPEST, a nonlinear five dimensional (3d2v) gyrokinetic continuum code. The simulation results and theoretical analysis include studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry and its relationship to plasma flow generation with zero external momentum input, including the important orbit-squeezing effect due to the large electric field flow-shear in the edge. In order to extend the code to 5D, we have formulated a set of fully nonlinear electrostatic gyrokinetic equations and a fully nonlinear gyrokinetic Poisson's equation which is valid for both neoclassical and turbulence simulations. Our 5D gyrokinetic code is built on 4D version of Tempest neoclassical code with extension to a fifth dimension in binormal direction. The code is able to simulate either a full torus or a toroidal segment. Progress on performing 5D turbulence simulations will be reported.
Continuum Fatigue Damage Modeling for Use in Life Extending Control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1994-01-01
This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.
User-Defined Material Model for Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)
2006-01-01
An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.
Ascent guidance algorithm using lidar wind measurements
NASA Technical Reports Server (NTRS)
Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.
1990-01-01
The formulation of a general nonlinear programming guidance algorithm that incorporates wind measurements in the computation of ascent guidance steering commands is discussed. A nonlinear programming (NLP) algorithm that is designed to solve a very general problem has the potential to address the diversity demanded by future launch systems. Using B-splines for the command functional form allows the NLP algorithm to adjust the shape of the command profile to achieve optimal performance. The algorithm flexibility is demonstrated by simulation of ascent with dynamic loading constraints through a set of random wind profiles with and without wind sensing capability.
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.
Human Genome Program Report. Part 1, Overview and Progress
DOE R&D Accomplishments Database
1997-11-01
This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.
Human genome program report. Part 1, overview and progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1993-01-01
This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an advanced nonlinear signal analysis topographical mapping system (ATMS) of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbopump families.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1991-01-01
The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.
BIODEGRADATION PROBABILITY PROGRAM (BIODEG)
The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...
38 CFR 21.4277 - Discontinuance: unsatisfactory progress, conduct and attendance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... progress, conduct and attendance. (a) Satisfactory pursuit of program. Entitlement to benefits for a... the pursuit of such program, continues to maintain satisfactory progress. If the veteran or eligible person does not maintain satisfactory progress, educational benefits will be discontinued by the...
2017-01-01
The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507
Fan, Quan-Yong; Yang, Guang-Hong
2017-01-01
The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
38 CFR 21.7653 - Progress, conduct, and attendance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... on which the school official who is responsible for determining whether a student is making progress...) Satisfactory pursuit of program. In order to receive educational assistance for pursuit of a program of education, a reservist must maintain satisfactory progress. Progress is unsatisfactory if the reservist does...
Fortran programs for reliability analysis
John J. Zahn
1992-01-01
This report contains a set of FORTRAN subroutines written to calculate the Hasofer-Lind reliability index. Nonlinear failure criteria and correlated basic variables are permitted. Users may incorporate these routines into their own calling program (an example program, RELANAL, is included) and must provide a failure criterion subroutine (two example subroutines,...
From the WPA to Workfare: It's Time for a Truly Progressive Government Work Program.
ERIC Educational Resources Information Center
Rose, Nancy E.
1990-01-01
Examines two government voluntary job creation programs: the Works Progress Administration in the 1930s and the Comprehensive Employment and Training Act in the 1970s, that have created conflicts with the logic of capitalist production for profit. Suggests principles and policies for a progressive government work program. (JOW)
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Program For Analysis Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Mital, S. K.
1994-01-01
METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.
A PHARMACOKINETIC PROGRAM (PKFIT) FOR R
The purpose of this study was to create a nonlinear regression (including a genetic algorithm) program (R script) to deal with data fitting for pharmacokinetics (PK) in R environment using its available packages. We call this tool as PKfit.
Program Predicts Nonlinear Inverter Performance
NASA Technical Reports Server (NTRS)
Al-Ayoubi, R. R.; Oepomo, T. S.
1985-01-01
Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.
Hearing aid fitting for visual and hearing impaired patients with Usher syndrome type IIa.
Hartel, B P; Agterberg, M J H; Snik, A F; Kunst, H P M; van Opstal, A J; Bosman, A J; Pennings, R J E
2017-08-01
Usher syndrome is the leading cause of hereditary deaf-blindness. Most patients with Usher syndrome type IIa start using hearing aids from a young age. A serious complaint refers to interference between sound localisation abilities and adaptive sound processing (compression), as present in today's hearing aids. The aim of this study was to investigate the effect of advanced signal processing on binaural hearing, including sound localisation. In this prospective study, patients were fitted with hearing aids with a nonlinear (compression) and linear amplification programs. Data logging was used to objectively evaluate the use of either program. Performance was evaluated with a speech-in-noise test, a sound localisation test and two questionnaires focussing on self-reported benefit. Data logging confirmed that the reported use of hearing aids was high. The linear program was used significantly more often (average use: 77%) than the nonlinear program (average use: 17%). The results for speech intelligibility in noise and sound localisation did not show a significant difference between type of amplification. However, the self-reported outcomes showed higher scores on 'ease of communication' and overall benefit, and significant lower scores on disability for the new hearing aids when compared to their previous hearing aids with compression amplification. Patients with Usher syndrome type IIa prefer a linear amplification over nonlinear amplification when fitted with novel hearing aids. Apart from a significantly higher logged use, no difference in speech in noise and sound localisation was observed between linear and nonlinear amplification with the currently used tests. Further research is needed to evaluate the reasons behind the preference for the linear settings. © 2016 The Authors. Clinical Otolaryngology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Takasaki, Koichi
This paper presents a program for the multidisciplinary optimization and identification problem of the nonlinear model of large aerospace vehicle structures. The program constructs the global matrix of the dynamic system in the time direction by the p-version finite element method (pFEM), and the basic matrix for each pFEM node in the time direction is described by a sparse matrix similarly to the static finite element problem. The algorithm used by the program does not require the Hessian matrix of the objective function and so has low memory requirements. It also has a relatively low computational cost, and is suited to parallel computation. The program was integrated as a solver module of the multidisciplinary analysis system CUMuLOUS (Computational Utility for Multidisciplinary Large scale Optimization of Undense System) which is under development by the Aerospace Research and Development Directorate (ARD) of the Japan Aerospace Exploration Agency (JAXA).
Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line
NASA Astrophysics Data System (ADS)
Timings, Julian P.; Cole, David J.
2012-06-01
A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.
NASA Multidisciplinary Design and Analysis Fellowship Program
NASA Technical Reports Server (NTRS)
1995-01-01
This report is a Year 1 interim report of the progress on the NASA multidisciplinary Design and Analysis Fellowship Program covering the period, January 1, 1995 through September 30, 1995. It summarizes progress in establishing the MDA Fellowship Program at Georgia Tech during the initial year. Progress in the advertisement of the program, recruiting results for the 1995-96 academic year, placement of the Fellows in industry during Summer 1995, program development at the M.S. and Ph.D. levels, and collaboration and dissemination of results are summarized in this report. Further details of the first year's progress will be included in the report from the Year 1 Workshop to be held at NASA Langley on December 7-8, 1995.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
The technical progress of researches on alternatives for jet engine control, is reported. The principal new activities involved the initial testing of an input design method for choosing the inputs to a non-linear system to aid the approximation of its tensor parameters, and the beginning of order reduction studies designed to remove unnecessary monomials from tensor models.
1984-06-01
appears to have a progressively more difinitive concave minimum as the amount of distortion in the channel increases. These measurements illustrate...apparent nonlinear behavior in this relationship, it S 149 might not be possible to obtain a useful quantitative characterization. The next logical step in
A framework for the automated data-driven constitutive characterization of composites
J.G. Michopoulos; John Hermanson; T. Furukawa; A. Iliopoulos
2010-01-01
We present advances on the development of a mechatronically and algorithmically automated framework for the data-driven identification of constitutive material models based on energy density considerations. These models can capture both the linear and nonlinear constitutive response of multiaxially loaded composite materials in a manner that accounts for progressive...
NASA Technical Reports Server (NTRS)
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
Progress in ultrafast laser processing and future prospects
NASA Astrophysics Data System (ADS)
Sugioka, Koji
2017-03-01
The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.
Intrasystem Analysis Program (IAP) code summaries
NASA Astrophysics Data System (ADS)
Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.
1983-05-01
This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.
Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes
NASA Technical Reports Server (NTRS)
Miles, R. N.
1992-01-01
This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.
Nonlinear optimization with linear constraints using a projection method
NASA Technical Reports Server (NTRS)
Fox, T.
1982-01-01
Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.
Solving Nonlinear Euler Equations with Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
NASA Technical Reports Server (NTRS)
Geyser, L. C.
1978-01-01
A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.
Blade loss transient dynamics analysis, volume 2. Task 2: TETRA 2 user's manual
NASA Technical Reports Server (NTRS)
Black, Gerald; Gallardo, Vincente C.
1986-01-01
This is the user's manual for the TETRA 2 Computer Code, a program developed in the NASA-Lewis Blade Loss Program. TETRA 2 calculates a turbine engine's dynamic structural response from applied stimuli. The calculation options are: (1) transient response; and (2) steady state forced response. Based on the method of modal syntheses, the program allows the use of linear, as well as nonlinear connecting elements. Both transient and steady state options can include: flexible Bladed Disk Module, and Nonlinear Connecting Elements (including deadband, hardening/softening spring). The transient option has the additional capability to calculate response with a squeeze film bearing module. TETRA 2 output is summarized in a plotfile which permits post processing such as FFT or graphical animation with the proper software and computer equipment.
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon
1990-01-01
A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
Performance bounds for nonlinear systems with a nonlinear ℒ2-gain property
NASA Astrophysics Data System (ADS)
Zhang, Huan; Dower, Peter M.
2012-09-01
Nonlinear ℒ2-gain is a finite gain concept that generalises the notion of conventional (linear) finite ℒ2-gain to admit the application of ℒ2-gain analysis tools of a broader class of nonlinear systems. The computation of tight comparison function bounds for this nonlinear ℒ2-gain property is important in applications such as small gain design. This article presents an approximation framework for these comparison function bounds through the formulation and solution of an optimal control problem. Key to the solution of this problem is the lifting of an ℒ2-norm input constraint, which is facilitated via the introduction of an energy saturation operator. This admits the solution of the optimal control problem of interest via dynamic programming and associated numerical methods, leading to the computation of the proposed bounds. Two examples are presented to demonstrate this approach.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Shultz, Louis A.
1994-01-01
The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Automatic computation of the travelling wave solutions to nonlinear PDEs
NASA Astrophysics Data System (ADS)
Liang, Songxin; Jeffrey, David J.
2008-05-01
Various extensions of the tanh-function method and their implementations for finding explicit travelling wave solutions to nonlinear partial differential equations (PDEs) have been reported in the literature. However, some solutions are often missed by these packages. In this paper, a new algorithm and its implementation called TWS for solving single nonlinear PDEs are presented. TWS is implemented in MAPLE 10. It turns out that, for PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases. Program summaryProgram title:TWS Catalogue identifier:AEAM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAM_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:1250 No. of bytes in distributed program, including test data, etc.:78 101 Distribution format:tar.gz Programming language:Maple 10 Computer:A laptop with 1.6 GHz Pentium CPU Operating system:Windows XP Professional RAM:760 Mbytes Classification:5 Nature of problem:Finding the travelling wave solutions to single nonlinear PDEs. Solution method:Based on tanh-function method. Restrictions:The current version of this package can only deal with single autonomous PDEs or ODEs, not systems of PDEs or ODEs. However, the PDEs can have any finite number of independent space variables in addition to time t. Unusual features:For PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases. Additional comments:It is easy to use. Running time:Less than 20 seconds for most cases, between 20 to 100 seconds for some cases, over 100 seconds for few cases. References: [1] E.S. Cheb-Terrab, K. von Bulow, Comput. Phys. Comm. 90 (1995) 102. [2] S.A. Elwakil, S.K. El-Labany, M.A. Zahran, R. Sabry, Phys. Lett. A 299 (2002) 179. [3] E. Fan, Phys. Lett. 277 (2000) 212. [4] W. Malfliet, Amer. J. Phys. 60 (1992) 650. [5] W. Malfliet, W. Hereman, Phys. Scripta 54 (1996) 563. [6] E.J. Parkes, B.R. Duffy, Comput. Phys. Comm. 98 (1996) 288.
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.
1989-01-01
The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.
CAD of control systems: Application of nonlinear programming to a linear quadratic formulation
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.
DOT National Transportation Integrated Search
2001-01-01
The following progress report is intended to highlight the significant activities of the Florida Transit Training Program and Florida Technical Assistant Program for the 2001 year. Activities of the Florida Statewide Transit Training Program are pres...
NASA Technical Reports Server (NTRS)
Robinson, J. C.
1979-01-01
Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.
Development of control strategies for safe microburst penetration: A progress report
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1987-01-01
A single-engine, propeller-driven, general-aviation model was incorporated into the nonlinear simulation and into the linear analysis of root loci and frequency response. Full-scale wind tunnel data provided its aerodynamic model, and the thrust model included the airspeed dependent effects of power and propeller efficiency. Also, the parameters of the Jet Transport model were changed to correspond more closely to the Boeing 727. In order to study their effects on steady-state repsonse to vertical wind inputs, altitude and total specific energy (air-relative and inertial) feedback capabilities were added to the nonlinear and linear models. Multiloop system design goals were defined. Attempts were made to develop controllers which achieved these goals.
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.
Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.
Bai, L; Wang, F; Wadee, M A; Yang, J
2017-11-01
A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.
Koga, D; Chian, A C-L; Hada, T; Rempel, E L
2008-02-13
Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress.
Recent progress in tidal modeling
NASA Technical Reports Server (NTRS)
Vial, F.; Forbes, J. M.
1989-01-01
Recent contributions to tidal theory during the last five years are reviewed. Specific areas where recent progress has occurred include: the action of mean wind and dissipation on tides, interactions of other waves with tides, the use of TGCM in tidal studies. Furthermore, attention is put on the nonlinear interaction between semidiurnal and diurnal tides. Finally, more realistic thermal excitation and background wind and temperature models have been developed in the past few years. This has led to new month-to-month numerical simulations of the semidiurnal tide. Some results using these models are presented and compared with ATMAP tidal climatologies.
Optical properties and progressive sterical hindering in pyridinium phenoxides
NASA Astrophysics Data System (ADS)
Boeglin, A.; Barsella, A.; Fort, A.; Mançois, F.; Rodriguez, V.; Diemer, V.; Chaumeil, H.; Defoin, A.; Jacques, P.; Carré, C.
2007-07-01
Pyridinium phenoxides are model compounds associating large dipole moments with high optical nonlinearities. A progression of sterically hindered forms of such zwitterions has been synthesized in order to investigate their structure/property relationships. Their UV-vis absorption in acetonitrile has been analyzed as a function of concentration in order to assess the presence of aggregates and the level of protonation. The quadratic optical properties have been measured by the EFISH and hyper-Rayleigh techniques and are interpreted via semi-empirical calculations. The solvation model used leads to results that agree with our experimental findings indicating an increased response for intermediate twist angles.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... (Five Year Program). The Annual Progress Report is available for review at: www.boem.gov/Five-Year-Program-Annual-Progress-Report/ . Information on the Five Year Program is available online at http://www... final on August 27, 2012, after the required 60-day congressional review period. Section 18(e) of the...
OPTIMIZATION OF COUNTERCURRENT STAGED PROCESSES.
CHEMICAL ENGINEERING , OPTIMIZATION), (*DISTILLATION, OPTIMIZATION), INDUSTRIAL PRODUCTION, INDUSTRIAL EQUIPMENT, MATHEMATICAL MODELS, DIFFERENCE EQUATIONS, NONLINEAR PROGRAMMING, BOUNDARY VALUE PROBLEMS, NUMERICAL INTEGRATION
Alcohol Safety Program progress. Volume 2, State program progress
DOT National Transportation Integrated Search
1979-06-01
This report focuses on the efforts of states and communities to reduce drunk driving as a major factor in traffic crashes. It examines general indications of progress in that have been established in those regions since 1970.
A New Model for Solving Time-Cost-Quality Trade-Off Problems in Construction
Fu, Fang; Zhang, Tao
2016-01-01
A poor quality affects project makespan and its total costs negatively, but it can be recovered by repair works during construction. We construct a new non-linear programming model based on the classic multi-mode resource constrained project scheduling problem considering repair works. In order to obtain satisfactory quality without a high increase of project cost, the objective is to minimize total quality cost which consists of the prevention cost and failure cost according to Quality-Cost Analysis. A binary dependent normal distribution function is adopted to describe the activity quality; Cumulative quality is defined to determine whether to initiate repair works, according to the different relationships among activity qualities, namely, the coordinative and precedence relationship. Furthermore, a shuffled frog-leaping algorithm is developed to solve this discrete trade-off problem based on an adaptive serial schedule generation scheme and adjusted activity list. In the program of the algorithm, the frog-leaping progress combines the crossover operator of genetic algorithm and a permutation-based local search. Finally, an example of a construction project for a framed railway overpass is provided to examine the algorithm performance, and it assist in decision making to search for the appropriate makespan and quality threshold with minimal cost. PMID:27911939
Duality in non-linear programming
NASA Astrophysics Data System (ADS)
Jeyalakshmi, K.
2018-04-01
In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.
Structural Optimization for Reliability Using Nonlinear Goal Programming
NASA Technical Reports Server (NTRS)
El-Sayed, Mohamed E.
1999-01-01
This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.
Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Yong; Lin, Ji
2017-12-01
Not Available Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11675054 and 11435005), the Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213), and the Natural Science Foundation of Hebei Province, China (Grant No. A2014210140).
Toward Control of Universal Scaling in Critical Dynamics
2016-01-27
program that aims to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Uwe Tauber Uwe C. T? uber , Michel Pleimling, Daniel J. Stilwell 611102 c. THIS PAGE The public reporting burden...to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems, namely
Non-Linear Editing for the Smaller College-Level Production Program, Rev. 2.0.
ERIC Educational Resources Information Center
Tetzlaff, David
This paper focuses on a specific topic and contention: Non-linear editing earns its place in a liberal arts setting because it is a superior tool to teach the concepts of how moving picture discourse is constructed through editing. The paper first points out that most students at small liberal arts colleges are not going to wind up working…
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
NASA Astrophysics Data System (ADS)
Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin
2014-09-01
We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin
2014-09-01
We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.
Multiple imputation of rainfall missing data in the Iberian Mediterranean context
NASA Astrophysics Data System (ADS)
Miró, Juan Javier; Caselles, Vicente; Estrela, María José
2017-11-01
Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.
2015-04-02
A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loadsmore » is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.« less
2018-05-15
This report summarizes the annual progress of EPA’s Clean Air Markets Programs such as the Acid Rain Program (ARP) and the Cross-State Air Pollution Rule (CSAPR). EPA systematically collects data on emissions, compliance, and environmental effects, these data are highlighted in our Progress Reports.
2018-05-16
This report summarizes the annual progress of EPA’s Clean Air Markets Programs such as the Acid Rain Program (ARP) and the Cross-State Air Pollution Rule (CSAPR). EPA systematically collects data on emissions, compliance, and environmental effects, these data are highlighted in our Progress Reports.
A computational algorithm for spacecraft control and momentum management
NASA Technical Reports Server (NTRS)
Dzielski, John; Bergmann, Edward; Paradiso, Joseph
1990-01-01
Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.
NASA Astrophysics Data System (ADS)
Dyer, Brian Jay
This study documented the changes in understanding a class of eighth grade high school-level biology students experienced through a biology unit introducing genetics. Learning profiles for 55 students were created using concept maps and interviews as qualitative and quantitative instruments. The study provides additional support to the theory of learning progressions called for by experts in the field. The students' learning profiles were assessed to determine the alignment with a researcher-developed learning profile. The researcher-developed learning profile incorporated the learning progressions published in the Next Generation Science Standards, as well as current research in learning progressions for 5-10th grade students studying genetics. Students were found to obtain understanding of the content in a manner that was nonlinear, even circuitous. This opposes the prevailing interpretation of learning progressions, that knowledge is ascertained in escalating levels of complexity. Learning progressions have implications in teaching sequence, assessment, education research, and policy. Tracking student understanding of other populations of students would augment the body of research and enhance generalizability.
Cracow clean fossil fuels and energy efficiency program. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.
CRACOW CLEAN FOSSIL FUELS AND ENERGY EFFICIENCY PROGRAM. PROGRESS REPORT, OCTOBER 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
PIERCE,B.
1998-10-01
Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.
Scientific study of data analysis
NASA Technical Reports Server (NTRS)
Wu, S. T.
1990-01-01
We present a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized and the accuracy and numerical instability are discussed. On the basis of this investigation, we claim that the two methods do resemble each other qualitatively.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad
2017-03-01
Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.
NASA Astrophysics Data System (ADS)
Liao, Haitao; Wu, Wenwang; Fang, Daining
2018-07-01
A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.
NASA Astrophysics Data System (ADS)
Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban
2017-10-01
The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.
Duarte, Belmiro P M; Wong, Weng Kee
2015-08-01
This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach
Duarte, Belmiro P. M.; Wong, Weng Kee
2014-01-01
Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159
CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.
Zahery, Mahsa; Maes, Hermine H; Neale, Michael C
2017-08-01
We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1980-01-01
The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.
Creating objective and measurable postgraduate year 1 residency graduation requirements.
Starosta, Kaitlin; Davis, Susan L; Kenney, Rachel M; Peters, Michael; To, Long; Kalus, James S
2017-03-15
The process of developing objective and measurable postgraduate year 1 (PGY1) residency graduation requirements and a progress tracking system is described. The PGY1 residency accreditation standard requires that programs establish criteria that must be met by residents for successful completion of the program (i.e., graduation requirements), which should presumably be aligned with helping residents to achieve the purpose of residency training. In addition, programs must track a resident's progress toward fulfillment of residency goals and objectives. Defining graduation requirements and establishing the process for tracking residents' progress are left up to the discretion of the residency program. To help standardize resident performance assessments, leaders of an academic medical center-based PGY1 residency program developed graduation requirement criteria that are objective, measurable, and linked back to residency goals and objectives. A system for tracking resident progress relative to quarterly progress targets was instituted. Leaders also developed a focused, on-the-spot skills assessment termed "the Thunderdome," which was designed for objective evaluation of direct patient care skills. Quarterly data on residents' progress are used to update and customize each resident's training plan. Implementation of this system allowed seamless linkage of the training plan, the progress tracking system, and the specified graduation requirement criteria. PGY1 residency requirements that are objective, that are measurable, and that attempt to identify what skills the resident must demonstrate in order to graduate from the program were developed for use in our residency program. A system for tracking the residents' progress by comparing residents' performance to predetermined quarterly benchmarks was developed. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan
1995-01-01
Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.
Nonlinear Dynamics, Noise and Cooperative Behavior in Affective Disorders
NASA Astrophysics Data System (ADS)
Huber, Martin
2001-03-01
Mood disorders tend to be recurrent and progressive and illness patterns typically evolve from isolated episodes at the beginning to more rapid, rhythmic and finally irregular "chaotic" mood patterns. This chararacteristic timecourse prompted the consideration of nonlinear dynamics as a way to describe and analyze course and disease states of mood disorders. Indeed, some evidences now exist indicating that low-dimensional dynamics underly the illness progression. To gain an understanding of prinicple mechanisms that might underly the course and disease patterns of mood disorders, we developed a phenomenological mathematical model for the disease course. In doing so, we made use of a neuronal analogy that exists between disease patterns and neuronal spike patterns and which is commonly referred to as the kindling model of mood disorders (Post, Am J of Psychiatry 1992,149:999-1010; Huber, Braun, Krieg, Biol Psychiatry 1999,46:256-262; Huber, Braun, Krieg, Biol Psychiatry 2000,47:634-642). Using a computational implementation of this approach we investigated the possible relevance of nonlinear dynamics for the disease course, the role of cooperative interactions between nonlinear and noisy dynamics as well as the effect of sensitization mechanisms between disease episodes and disease system. Our simulations show that a low-dimensional model can phenomenologically map the timecourse of mood disorders. From a functional perspective, the model indicates an important role for stochastic fluctuations which can amplify subthreshold states into disease states and can induce transitions to irregular rapidly changing disease patterns. Interesting dynamics are observed with respect to deterministically defined disease states and their dependence on noise intensity. Finally, our simulations show how sensitization effects quite naturally lead to a disease course which ends in irregular fluctuating disease patterns as observed in clinical data. Our findings indicate the usefulness of a computational approach as a way to understand and explain the complexity of temporal disease dynamics of mood disorders but also to procede to new experimental approaches for disease characterisation with the aim of better treatment options.
Nonlinear tumor evolution from dysplastic nodules to hepatocellular carcinoma.
Joung, Je-Gun; Ha, Sang Yun; Bae, Joon Seol; Nam, Jae-Yong; Gwak, Geum-Youn; Lee, Hae-Ock; Son, Dae-Soon; Park, Cheol-Keun; Park, Woong-Yang
2017-01-10
Dysplastic nodules are premalignant neoplastic nodules found in explanted livers with cirrhosis. Genetic signatures of premalignant dysplastic nodules (DNs) with concurrent hepatocellular carcinoma (HCC) may provide an insight in the molecular evolution of hepatocellular carcinogenesis. We analyzed four patients with multifocal nodular lesions and cirrhotic background by whole-exome sequencing (WES). The genomic profiles of somatic single nucleotide variations (SNV) and copy number variations (CNV) in DNs were compared to those of HCCs. The number and variant allele frequency of somatic SNVs of DNs and HCCs in each patient was identical along the progression of pathological grade. The somatic SNVs in DNs showed little conservation in HCC. Additionally, CNVs showed no conservation. Phylogenetic analysis based on SNVs and copy number profiles indicated a nonlinear segregation pattern, implying independent development of DNs and HCC in each patient. Thus, somatic mutations in DNs may be developed separately from other malignant nodules in the same liver, suggesting a nonlinear model for hepatocarcinogenesis from DNs to HCC.
Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.
Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N
2012-03-26
We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.
Multimodal nonlinear optical imaging of obesity-induced liver steatosis and fibrosis
NASA Astrophysics Data System (ADS)
Lin, Jian; Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei
2011-03-01
Liver steatosis/fibrosis represents the major conditions and symptoms for many liver diseases. Nonlinear optical microscopy has emerged as a powerful tool for label-free tissue imaging with high sensitivity and chemical specificity for several typical biochemical compounds. Three nonlinear microscopy imaging modalities are implemented on the sectioned tissues from diseased livers induced by high fat diet (HFD). Coherent anti-Stokes Raman scattering (CARS) imaging visualizes and quantifies the lipid droplets accumulated in the liver, Second harmonic generation (SHG) is used to map the distribution of aggregated collagen fibers, and two-photon excitation fluorescence (TPEF) reveals the morphology of hepatic cells based on the autofluorescence signals from NADH and flavins within the hepatocytes. Our results demonstrate that obesity induces liver steatosis in the beginning stage, which may progress into liver fibrosis with high risk. There is a certain correlation between liver steatosis and fibrosis. This study may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.
Ghate, Deborah
2016-01-01
The transfer of knowledge of effective practice, especially into "usual care" settings, remains challenging. This article argues that to close this gap we need to recognize the particular challenges of whole-system improvement. We need to move beyond a limited focus on individual programs and experimental research on their effectiveness. The rapidly developing field of implementation science and practice (ISP) provides a particular lens and a set of important constructs that can helpfully accelerate progress. A review of selected key constructs and distinctive features of ISP, including recognizing invisible system infrastructure, co-construction involving active collaboration between stakeholders, and attention to active implementation, supports for providers beyond education and training. Key aspects of an implementation lens likely to be most helpful in sustaining effectiveness include assisting innovators to identify and accommodate the architecture of existing systems, understand the implementation process as a series of distinct but nonlinear stages, identify implementation outcomes as prerequisites for treatment outcomes, and analyse implementation challenges using frameworks of implementation drivers. In complex adaptive systems, how services are implemented may matter more than their specific content, and how services align and adapt to local context may determine their sustained usefulness. To improve implementation-relevant research, we need better process evaluation and cannot rely on experimental methods that do not capture complex systemic contexts. Deployment of an implementation lens may perhaps help to avoid future "rigor mortis," enabling more productively flexible and integrative approaches to both program design and evaluation.
NASA Astrophysics Data System (ADS)
Farreras, Salvador; Ortiz, Modesto; Gonzalez, Juan I.
2007-03-01
The highly vulnerable Pacific southwest coast of Mexico has been repeatedly affected by local, regional and remote source tsunamis. Mexico presently has no national tsunami warning system in operation. The implementation of key elements of a National Program on Tsunami Detection, Monitoring, Warning and Mitigation is in progress. For local and regional events detection and monitoring, a prototype of a robust and low cost high frequency sea-level tsunami gauge, sampling every minute and equipped with 24 hours real time transmission to the Internet, was developed and is currently in operation. Statistics allow identification of low, medium and extreme hazard categories of arriving tsunamis. These categories are used as prototypes for computer simulations of coastal flooding. A finite-difference numerical model with linear wave theory for the deep ocean propagation, and shallow water nonlinear one for the near shore and interaction with the coast, and non-fixed boundaries for flooding and recession at the coast, is used. For prevention purposes, tsunami inundation maps for several coastal communities, are being produced in this way. The case of the heavily industrialized port of Lázaro Cárdenas, located on the sand shoals of a river delta, is illustrated; including a detailed vulnerability assessment study. For public education on preparedness and awareness, printed material for children and adults has been developed and published. It is intended to extend future coverage of this program to the Mexican Caribbean and Gulf of Mexico coastal areas.
Documenting Progress and Demonstrating Results: Evaluating Local Out-of-School Time Programs.
ERIC Educational Resources Information Center
Little, Priscilla; DuPree, Sharon; Deich, Sharon
A collaborative publication between Harvard Family Research Project and The Finance Project, this brief offers guidance in documenting progress and demonstrating results in local out-of-school-time programs. Following introductory remarks providing a rationale for program evaluation, discussing principles of program evaluation, and clarifying key…
DOT National Transportation Integrated Search
2000-01-01
The following progress report is intended to highlight the significant activities of the Florida Transit Training Program and Florida Technical Assistant Program. The following progress report is intended to highlight the significant activities of th...
7 CFR 3402.23 - Documentation of progress on funded projects.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: Graduates; is officially terminated from the Fellowship or the academic program due to unsatisfactory academic progress; or voluntarily withdraws from the Fellowship or the academic program. If a Fellow has... Research Information System (CRIS). The CRIS database contains narrative project information, progress...
Nonlinear dynamics of the human lumbar intervertebral disc.
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J
2015-02-05
Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Mathematical Techniques for Nonlinear System Theory.
1978-01-01
4. TITLE (and Subtitle) 5. TYPE OF REPORT 6 PERIOD COVERED MATHEMATICAL TECHNIQUES FOR NONLINEAR SYSTEM THEORY Interim 6...ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK AREA & WORK UNIT NUMBERS Unlvers].ty of Flori.da Center for Mathematical System Theory ~~~~ Gainesville , FL...rings”, Mathematical System Theory , 9: 327—344. E. D. SONTAG (1976b1 “Linear systems over commutative rings: a survey”, Richerche di Automatica, 7: 1-34
Scilab software package for the study of dynamical systems
NASA Astrophysics Data System (ADS)
Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.
2008-05-01
This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.
Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela
2016-01-01
In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George
2017-08-15
A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.
Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan
2011-12-01
In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.
Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad
2018-05-01
The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
Features of tuned mass damper behavior under strong earthquakes
NASA Astrophysics Data System (ADS)
Nesterova, Olga; Uzdin, Alexander; Fedorova, Maria
2018-05-01
Plastic deformations, cracks and destruction of structure members appear in the constructions under strong earthquakes. Therefore constructions are characterized by a nonlinear deformation diagram. Two types of construction non-linearity are considered in the paper. The first type of nonlinearity is elastoplastic one. In this case, plastic deformations occur in the structural elements, and when the element is unloaded, its properties restores. Among such diagrams are the Prandtl diagram, the Prandtl diagram with hardening, the Ramberg-Osgood diagram and others. For systems with such nonlinearity there is an amplitude-frequency characteristic and resonance oscillation frequencies. In this case one can pick up the most dangerous accelerograms for the construction. The second type of nonlinearity is nonlinearity with degrading rigidity and dependence of behavior on the general loading history. The Kirikov-Amankulov model is one of such ones. Its behavior depends on the maximum displacement in the stress history. Such systems do not have gain frequency characteristic and resonance frequency. The period of oscillation of such system is increasing during the system loading, and the system eigen frequency decreases to zero at the time of collapse. In the cases under consideration, when investigating the system with MD behavior, the authors proposed new efficiency criteria. These include the work of plastic deformation forces for the first type of nonlinearity, which determines the possibility of progressive collapse or low cycle fatigue of the structure members. The period of system oscillations and the time to collapse of the structural support members are the criterion for systems with degrading rigidity. In the case of non-linear system behavior, the efficiency of MD application decreases, because the fundamental structure period is reduced because of structure damages and the MD will be rebound from the blanking regime. However, the MD using can significantly reduce the damageability of the protected object.
User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.
1988-01-01
Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
NASA Technical Reports Server (NTRS)
Mironenko, G.
1972-01-01
Programs for the analyses of the free or forced, undamped vibrations of one or two elastically-coupled lumped parameter teams are presented. Bearing nonlinearities, casing and rotor distributed mass and elasticity, rotor imbalance, forcing functions, gyroscopic moments, rotary inertia, and shear and flexural deformations are all included in the system dynamics analysis. All bearings have nonlinear load displacement characteristics, the solution is achieved by iteration. Rotor imbalances allowed by such considerations as pilot tolerances and runouts as well as bearing clearances (allowing concail or cylindrical whirl) determine the forcing function magnitudes. The computer programs first obtain a solution wherein the bearings are treated as linear springs of given spring rates. Then, based upon the computed bearing reactions, new spring rates are predicted and another solution of the modified system is made. The iteration is continued until the changes to bearing spring rates and bearing reactions become negligibly small.
Multilevel algorithms for nonlinear optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.
Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.
Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian
2018-06-01
In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
7 CFR 3402.23 - Documentation of progress on funded projects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the academic program due to unsatisfactory academic progress; or voluntarily withdraws from the Fellowship or the academic program. If a Fellow has not completed all degree requirements at the end of the... database contains narrative project information, progress/impact statements, and final technical reports...
7 CFR 3402.23 - Documentation of progress on funded projects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the academic program due to unsatisfactory academic progress; or voluntarily withdraws from the Fellowship or the academic program. If a Fellow has not completed all degree requirements at the end of the... database contains narrative project information, progress/impact statements, and final technical reports...
7 CFR 3402.23 - Documentation of progress on funded projects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the academic program due to unsatisfactory academic progress; or voluntarily withdraws from the Fellowship or the academic program. If a Fellow has not completed all degree requirements at the end of the... database contains narrative project information, progress/impact statements, and final technical reports...
7 CFR 3402.23 - Documentation of progress on funded projects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the academic program due to unsatisfactory academic progress; or voluntarily withdraws from the Fellowship or the academic program. If a Fellow has not completed all degree requirements at the end of the... database contains narrative project information, progress/impact statements, and final technical reports...
Chaos theory for clinical manifestations in multiple sclerosis.
Akaishi, Tetsuya; Takahashi, Toshiyuki; Nakashima, Ichiro
2018-06-01
Multiple sclerosis (MS) is a demyelinating disease which characteristically shows repeated relapses and remissions irregularly in the central nervous system. At present, the pathological mechanism of MS is unknown and we do not have any theories or mathematical models to explain its disseminated patterns in time and space. In this paper, we present a new theoretical model from a viewpoint of complex system with chaos model to reproduce and explain the non-linear clinical and pathological manifestations in MS. First, we adopted a discrete logistic equation with non-linear dynamics to prepare a scalar quantity for the strength of pathogenic factor at a specific location of the central nervous system at a specific time to reflect the negative feedback in immunity. Then, we set distinct minimum thresholds in the above-mentioned scalar quantity for demyelination possibly causing clinical relapses and for cerebral atrophy. With this simple model, we could theoretically reproduce all the subtypes of relapsing-remitting MS, primary progressive MS, and secondary progressive MS. With the sensitivity to initial conditions and sensitivity to minute change in parameters of the chaos theory, we could also reproduce the spatial dissemination. Such chaotic behavior could be reproduced with other similar upward-convex functions with appropriate set of initial conditions and parameters. In conclusion, by applying chaos theory to the three-dimensional scalar field of the central nervous system, we can reproduce the non-linear outcome of the clinical course and explain the unsolved disseminations in time and space of the MS patients. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Reed, Charlotte
This report discusses progress in achieving goals, general program effectiveness, and progress toward institutionalization of the Urban Teacher Education Program (UTEP) at Indiana University Northwest. This program has two major goals: (1) to change what the urban teacher knows and is able to do and (2) to significantly affect the education of…
Pattern Formations for Optical Switching Using Cold Atoms as a Nonlinear Medium
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie; Greenberg, Joel; Gauthier, Daniel
2011-05-01
The study of spatio-temporal pattern formation in nonlinear optical systems has both led to an increased understanding of nonlinear dynamics as well as given rise to sensitive new methods for all-optical switching. Whereas the majority of past experiments utilized warm atomic vapors as nonlinear media, we report the first observation of an optical instability leading to pattern formation in a cloud of cold Rubidium atoms. When we shine a pair of counterpropagating pump laser beams along the pencil-shaped cloud's long axis, new beams of light are generated along cones centered on the trap. This generated light produces petal-like patterns in the plane orthogonal to the pump beams that can be used for optical switching. We gratefully acknowledge the financial support of the NSF through Grant #PHY-0855399 and the DARPA Slow Light Program.
On the theory of quantum measurement
NASA Technical Reports Server (NTRS)
Haus, Hermann A.; Kaertner, Franz X.
1994-01-01
Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.
NASA Astrophysics Data System (ADS)
Otterstrom, Nils T.; Behunin, Ryan O.; Kittlaus, Eric A.; Wang, Zheng; Rakich, Peter T.
2018-06-01
Brillouin laser oscillators offer powerful and flexible dynamics as the basis for mode-locked lasers, microwave oscillators, and optical gyroscopes in a variety of optical systems. However, Brillouin interactions are markedly weak in conventional silicon photonic waveguides, stifling progress toward silicon-based Brillouin lasers. The recent advent of hybrid photonic-phononic waveguides has revealed Brillouin interactions to be one of the strongest and most tailorable nonlinearities in silicon. In this study, we have harnessed these engineered nonlinearities to demonstrate Brillouin lasing in silicon. Moreover, we show that this silicon-based Brillouin laser enters a regime of dynamics in which optical self-oscillation produces phonon linewidth narrowing. Our results provide a platform to develop a range of applications for monolithic integration within silicon photonic circuits.
McWhinney, Sean R; Tremblay, Antoine; Chevalier, Thérèse M; Lim, Vanessa K; Newman, Aaron J
2016-12-01
Healthy aging has been associated with a global reduction in white matter integrity, which is thought to reflect cognitive decline. The present study aimed to investigate this reduction over a broad range of the life span, using diffusion tensor imaging analyzed with conditional inference random forest modeling (CForest). This approach is sensitive to subtle and potentially nonlinear effects over the age continuum and was used to characterize the progression of decline in greater detail than has been possible in the past. Data were collected from 45 healthy individuals ranging in age from 19 to 67 years. Fractional anisotropy (FA) was estimated using probabilistic tractography for a number of major tracts across the brain. Age coincided with a nonlinear decrease in FA, with onset beginning at ∼30 years of age and the steepest declines occurring later in life. However, several tracts showed a transient increase before this decline. The progression of decline varied by tract, with steeper but later decline occurring in more anterior tracts. Finally, strongly right-handed individuals demonstrated relatively preserved FA until more than a decade following the onset of decline of others. These results demonstrate that using a novel, nonparametric analysis approach, previously reported reductions in FA with healthy aging were confirmed, while at the same time, new insight was provided into the onset and progression of decline, with evidence suggesting increases in integrity continuing into adulthood.
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
NASA Astrophysics Data System (ADS)
Sharqawy, Mostafa H.
2016-12-01
Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-20
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5603-N-93] Healthy Home and Lead Hazard... collection is designed to provide HUD timely information on progress of Healthy Homes Demonstration Program, Healthy Homes Technical Studies Program, Lead Base paint Hazard Control program, Lead Hazard Reduction...
NASA Technical Reports Server (NTRS)
Pearlman, Michael R.; Carter, David (Technical Monitor)
2004-01-01
This progress report discusses the status and progress made in joint international programs including: 1) WEGENER; 2) Arabian Peninsula program; 3) Asia-Pacific Space Geodynamics (APSG) program; 4) the Fourteenth International Workshop on Laser Ranging; 5) the International Laser Ranging Service; and 6) current support for the NASA network.
ERIC Educational Resources Information Center
Jones, Douglas H.
The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…
ERIC Educational Resources Information Center
Bower-Phipps, Laura
2017-01-01
Significant progress has been made in equal rights for lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) individuals, yet schools remain institutions where sexual and gender diversity are marginalized and/or silenced. Queer theory, a non-linear theory that disrupts dominant beliefs about gender and sexuality and what…
Cross-separatrix Coupling in Nonlinear Global Electrostatic Turbulent Transport in C-2U
NASA Astrophysics Data System (ADS)
Lau, Calvin; Fulton, Daniel; Bao, Jian; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar; TAE Team
2017-10-01
In recent years, the progress of the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy, Inc. has pushed FRCs to transport limited regimes. Understanding particle and energy transport is a vital step towards an FRC reactor, and two particle-in-cell microturbulence codes, the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC), are being developed and applied toward this goal. Previous local electrostatic GTC simulations find the core to be robustly stable with drift-wave instability only in the scrape-off layer (SOL) region. However, experimental measurements showed fluctuations in both regions; one possibility is that fluctuations in the core originate from the SOL, suggesting the need for non-local simulations with cross-separatrix coupling. Current global ANC simulations with gyrokinetic ions and adiabatic electrons find that non-local effects (1) modify linear growth-rates and frequencies of instabilities and (2) allow instability to move from the unstable SOL to the linearly stable core. Nonlinear spreading is also seen prior to mode saturation. We also report on the progress of the first turbulence simulations in the SOL. This work is supported by the Norman Rostoker Fellowship.
New Quantum Diffusion Monte Carlo Method for strong field time dependent problems
NASA Astrophysics Data System (ADS)
Kalinski, Matt
2017-04-01
We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.
NASA Technical Reports Server (NTRS)
Dillenius, Marnix F. E.
1985-01-01
Program LRCDM2 was developed for supersonic missiles with axisymmetric bodies and up to two finned sections. Predicted are pressure distributions and loads acting on a complete configuration including effects of body separated flow vorticity and fin-edge vortices. The computer program is based on supersonic panelling and line singularity methods coupled with vortex tracking theory. Effects of afterbody shed vorticity on the afterbody and tail-fin pressure distributions can be optionally treated by companion program BDYSHD. Preliminary versions of combined shock expansion/linear theory and Newtonian/linear theory have been implemented as optional pressure calculation methods to extend the Mach number and angle-of-attack ranges of applicability into the nonlinear supersonic flow regime. Comparisons between program results and experimental data are given for a triform tail-finned configuration and for a canard controlled configuration with a long afterbody for Mach numbers up to 2.5. Initial tests of the nonlinear/linear theory approaches show good agreement for pressures acting on a rectangular wing and a delta wing with attached shocks for Mach numbers up to 4.6 and angles of attack up to 20 degrees.
NASA Astrophysics Data System (ADS)
Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.
2012-09-01
The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.
Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao
2018-02-01
Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang
2016-08-01
Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1984-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1985-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
Direct heuristic dynamic programming for damping oscillations in a large power system.
Lu, Chao; Si, Jennie; Xie, Xiaorong
2008-08-01
This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
Determination of Tafel Constants in Nonlinear Polarization Curves.
1987-12-01
resulted in difficulty in determining the Tafel constants from such plots. A FORTRAN based program involving numerical differentiation techniques was...MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 1987 Auho:Th as Edr L~oughlin Approved by: J erkins hesis Advisor...Inthony J.f Healey, Chai man, Departm o Mhnical E gineering ’ Gordon E. Schacher Dean of Science and Engineering 21 ABSTRACT The presence of non-linear
Annual Review of Research under the Joint Services Electronics Program. Volume 1.
1982-12-01
time varying nonlinear system be transformable to a controllable time -invariant linear system have been presented. * If a...Conference Papers and Abstracts 1. Hunt, L.R., and R. Su, " Control of Nonlinear Time -Varying Systems ," 20th IEEE Conf. on Decision and Control , pp. 558...being C= vector fields on I,. We give necessary and sufficient conditions for this system to be transformable to a time -invariant controllable
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
ERIC Educational Resources Information Center
Goldman, Rosalie; And Others
The focus of this manual is on the step-by-step development and implementation of a continuous-progress reading program--a system that permits instruction at each student's diagnosed level of ability. Analysis of program development includes advice on choosing a committee, writing the program, and presenting the program to others. The implications…
Assessment Program Technical Progress Report, 1996-1997.
ERIC Educational Resources Information Center
McCown, Laurie; Fanning, Erin; Eickmeyer, Barbara
Coconino Community College (CCC) annually assesses its institutional effectiveness to demonstrate its commitment to improving programs and services to students. The 1996-97 Assessment Program Technical Progress Report records the assessment and institutional activities enacted during the academic year, detailing the assessment model, timelines,…
Constructivist Approach to Teacher Education: An Integrative Model for Reflective Teaching
ERIC Educational Resources Information Center
Vijaya Kumari, S. N.
2014-01-01
The theory of constructivism states that learning is non-linear, recursive, continuous, complex and relational--Despite the difficulty of deducing constructivist pedagogy from constructivist theories, there are models and common elements to consider in planning new program. Reflective activities are a common feature of all the programs of…
Variable-Metric Algorithm For Constrained Optimization
NASA Technical Reports Server (NTRS)
Frick, James D.
1989-01-01
Variable Metric Algorithm for Constrained Optimization (VMACO) is nonlinear computer program developed to calculate least value of function of n variables subject to general constraints, both equality and inequality. First set of constraints equality and remaining constraints inequalities. Program utilizes iterative method in seeking optimal solution. Written in ANSI Standard FORTRAN 77.
Intervention and Evaluation: A Proactive Team Approach to OD
ERIC Educational Resources Information Center
Gavin, James F.; McPhail, S. Morton
1978-01-01
A team of change agents initiated an intensive organizational development (OD) program in a nonacademic, service department of a midwestern university. Concluding comments include exploration of the feasibility of substantive OD change in short-term programs, and the possibility of nonlinear relations between OD outcomes and time investments. For…
Program for solution of ordinary differential equations
NASA Technical Reports Server (NTRS)
Sloate, H.
1973-01-01
A program for the solution of linear and nonlinear first order ordinary differential equations is described and user instructions are included. The program contains a new integration algorithm for the solution of initial value problems which is particularly efficient for the solution of differential equations with a wide range of eigenvalues. The program in its present form handles up to ten state variables, but expansion to handle up to fifty state variables is being investigated.
Effects of EPI distortion correction pipelines on the connectome in Parkinson's Disease
NASA Astrophysics Data System (ADS)
Galvis, Justin; Mezher, Adam F.; Ragothaman, Anjanibhargavi; Villalon-Reina, Julio E.; Fletcher, P. Thomas; Thompson, Paul M.; Prasad, Gautam
2016-03-01
Echo-planar imaging (EPI) is commonly used for diffusion-weighted imaging (DWI) but is susceptible to nonlinear geometric distortions arising from inhomogeneities in the static magnetic field. These inhomogeneities can be measured and corrected using a fieldmap image acquired during the scanning process. In studies where the fieldmap image is not collected, these distortions can be corrected, to some extent, by nonlinearly registering the diffusion image to a corresponding anatomical image, either a T1- or T2-weighted image. Here we compared two EPI distortion correction pipelines, both based on nonlinear registration, which were optimized for the particular weighting of the structural image registration target. The first pipeline used a 3D nonlinear registration to a T1-weighted target, while the second pipeline used a 1D nonlinear registration to a T2-weighted target. We assessed each pipeline in its ability to characterize high-level measures of brain connectivity in Parkinson's disease (PD) in 189 individuals (58 healthy controls, 131 people with PD) from the Parkinson's Progression Markers Initiative (PPMI) dataset. We computed a structural connectome (connectivity map) for each participant using regions of interest from a cortical parcellation combined with DWI-based whole-brain tractography. We evaluated test-retest reliability of the connectome for each EPI distortion correction pipeline using a second diffusion scan acquired directly after the participants' first. Finally, we used support vector machine (SVM) classification to assess how accurately each pipeline classified PD versus healthy controls using each participants' structural connectome.
Predictive and Neural Predictive Control of Uncertain Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.
34 CFR 106.43 - Standards for measuring skill or progress in physical education classes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 106.43 Standards for measuring skill or progress in physical... 34 Education 1 2011-07-01 2011-07-01 false Standards for measuring skill or progress in physical...
75 FR 57251 - Notice of Request for a Revision of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
...), Food for Progress, and the McGovern-Dole International Food for Education and Child Nutrition programs... (Section 416(b), Food for Progress, and McGovern-Dole International Food for Education and Child Nutrition... Progress, and McGovern-Dole International Food for Education and Child Nutrition programs (the Foreign...
34 CFR 535.42 - What is the period of a fellowship?
Code of Federal Regulations, 2010 CFR
2010-07-01
... one-year periods to an individual who maintains satisfactory progress in a master's or post-doctoral... satisfactory progress in a doctoral program of study. (b) Subject to the availability of funds, and if an IHE... maintain satisfactory progress in the program of study. (Authority: 20 U.S.C. 7475) ...
Student Experiences of High-Stakes Testing for Progression in One Undergraduate Nursing Program
ERIC Educational Resources Information Center
McClenny, Tammy
2016-01-01
High-stakes testing in undergraduate nursing education are those assessments used to make critical decisions for student progression and graduation. The purpose of this study was to explore the different ways students experience multiple high-stakes tests for progression in one undergraduate BSN program. Research participants were prelicensure…
34 CFR 106.43 - Standards for measuring skill or progress in physical education classes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 106.43 Standards for measuring skill or progress in physical... 34 Education 1 2014-07-01 2014-07-01 false Standards for measuring skill or progress in physical...
34 CFR 106.43 - Standards for measuring skill or progress in physical education classes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 106.43 Standards for measuring skill or progress in physical... 34 Education 1 2012-07-01 2012-07-01 false Standards for measuring skill or progress in physical...
34 CFR 106.43 - Standards for measuring skill or progress in physical education classes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 106.43 Standards for measuring skill or progress in physical... 34 Education 1 2013-07-01 2013-07-01 false Standards for measuring skill or progress in physical...
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
Marceau, Kristine; Ram, Nilam; Houts, Renate M.; Grimm, Kevin J.; Susman, Elizabeth J.
2014-01-01
Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear mixed-effects models to describe both the timing and tempo of pubertal development in the sample of 364 White boys and 373 White girls measured across 6 years as part of the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development. Individual differences in timing and tempo were extracted with models of logistic growth. Differential relations emerged for how boys’ and girls’ timing and tempo of development were related to physical characteristics (body mass index, height, and weight) and psychological outcomes (internalizing problems, externalizing problems, and risky sexual behavior). Timing and tempo are associated in boys but not girls. Pubertal timing and tempo are particularly important for predicting psychological outcomes in girls but only sparsely related to boys’ psychological outcomes. Results highlight the importance of considering the nonlinear nature of puberty and expand the repertoire of possibilities for examining important aspects of how and when pubertal processes contribute to development. PMID:21639623
Mechanical control of mitotic progression in single animal cells
Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.
2015-01-01
Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback–controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50–100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement. PMID:26305930
A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan
2014-10-01
The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.
Nonlinear mesomechanics of composites with periodic microstructure
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.
1989-01-01
This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of the structure.
Structural analysis of cylindrical thrust chambers, volume 3
NASA Technical Reports Server (NTRS)
Pearson, M. L.
1981-01-01
A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.
Computational and analytical methods in nonlinear fluid dynamics
NASA Astrophysics Data System (ADS)
Walker, James
1993-09-01
The central focus of the program was on the application and development of modern analytical and computational methods to the solution of nonlinear problems in fluid dynamics and reactive gas dynamics. The research was carried out within the Division of Engineering Mathematics in the Department of Mechanical Engineering and Mechanics and principally involved Professors P.A. Blythe, E. Varley and J.D.A. Walker. In addition. the program involved various international collaborations. Professor Blythe completed work on reactive gas dynamics with Professor D. Crighton FRS of Cambridge University in the United Kingdom. Professor Walker and his students carried out joint work with Professor F.T. Smith, of University College London, on various problems in unsteady flow and turbulent boundary layers.
A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao
2016-10-01
A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.
A comparison of washout filters using a human dynamic orientation model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Riedel, S. A.
1977-01-01
The Ormsby model of human dynamic orientation, a discrete time computer program, was used to provide a vestibular explanation for observed differences between two washout schemes. These washout schemes, a linear washout and a nonlinear washout, were subjectively evaluated. It was found that the linear washout presented false rate cues, causing pilots to rate the simulation fidelity of the linear scheme much lower than the nonlinear scheme. By inputting these motion histories into the Ormsby model, it was shown that the linear filter causes discontinuities in the pilot's perceived angular velocity, resulting in the sensation of an anomalous rate cue. This phenomenon does not occur with the use of the nonlinear filter.
3D simulation for solitons used in optical fibers
NASA Astrophysics Data System (ADS)
Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.
2016-12-01
In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.
FORTRAN programs for calculating nonlinear seismic ground response in two dimensions
Joyner, W.B.
1978-01-01
The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.
Endocrine Disruptor Screening Program Reports to Congress
This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.
NASA Astrophysics Data System (ADS)
Sun, Jingliang; Liu, Chunsheng
2018-01-01
In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.
High-resolution mapping of bifurcations in nonlinear biochemical circuits
NASA Astrophysics Data System (ADS)
Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.
2016-08-01
Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.
Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.
Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G
2016-07-01
We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.
Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Cheng, Ron-Bin
2010-01-01
A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
NASA Astrophysics Data System (ADS)
Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.
2014-12-01
Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].
Lingley-Pottie, Patricia; Janz, Teresa; McGrath, Patrick J.; Cunningham, Charles; MacLean, Cathy
2011-01-01
Abstract Objective To determine health care professional and parental preferences for receiving progress letters from a pediatric mental health program between a traditional text-only format and a version in which information was presented using graphs and tables with limited text. Design Mailed survey. Setting Nova Scotia. Participants Parents (n = 98) of children who received treatment from and health care professionals (n = 74) who referred patients to the Strongest Families Program (formerly the Family Help Program) were eligible. Most of the health care professionals were family practitioners (83.8%). Main outcome measures Preference between 2 letters that contained the same content (including progress in the program, results from a questionnaire, and resolved and ongoing problems) in different formats—one using text only, the other using graphs as well as text. Results In total, 83.8% of health professionals and 76.5% of parents indicated that they preferred to receive feedback in letters containing information in graphical format. Background and demographic information did not predict preferences. Parents preferred to receive progress letters at the beginning, midway through, and at the end of treatment, and health professionals preferred to receive progress letters at the beginning and end of treatment. Conclusion When receiving progress letters from a pediatric mental health program, health care professionals and parents preferred to receive letters that used graphs to help convey information. PMID:22170209
Shuttle Risk Progression by Flight
NASA Technical Reports Server (NTRS)
Hamlin, Teri; Kahn, Joe; Thigpen, Eric; Zhu, Tony; Lo, Yohon
2011-01-01
Understanding the early mission risk and progression of risk as a vehicle gains insights through flight is important: . a) To the Shuttle Program to understand the impact of re-designs and operational changes on risk. . b) To new programs to understand reliability growth and first flight risk. . Estimation of Shuttle Risk Progression by flight: . a) Uses Shuttle Probabilistic Risk Assessment (SPRA) and current knowledge to calculate early vehicle risk. . b) Shows impact of major Shuttle upgrades. . c) Can be used to understand first flight risk for new programs.
1977-02-01
CONTENTS I. INTRODUCTION ------------------------------------------- -I A. DARPA PROGRAM PLANS AND PROGRESS ------------------- 1-6 1. High Energy...beyond. In brief, we have followed our long-range plan and have impressive progress to report. A. DARPA Program Plans and Progress 1. High Energy Lasers...stimulate growth of technological "saplings" that have proven promising; and (3) harvest those technologies that have become mature "trees." These three
Thermal barrier coating life prediction model development, phase 1
NASA Technical Reports Server (NTRS)
Demasi, Jeanine T.; Ortiz, Milton
1989-01-01
The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.
Direct numerical simulation of vacillation in convection induced by centrifugal buoyancy
NASA Astrophysics Data System (ADS)
Pitz, Diogo B.; Marxen, Olaf; Chew, John W.
2017-11-01
Flows induced by centrifugal buoyancy occur in industrial systems, such as in the compressor cavities of gas turbines, as well as in flows of geophysical interest. In this numerical study we use direct numerical simulation (DNS) to investigate the transition between the steady waves regime, which is characterized by great regularity, to the vacillation regime, which is critical to understand transition to the fully turbulent regime. From previous work it is known that the onset of convection occurs in the form of pairs of nearly-circular rolls which span the entire axial length of the cavity, with small deviations near the parallel, no-slip end walls. When non-linearity sets in triadic interactions occur and, depending on the value of the centrifugal Rayleigh number, the flow is dominated by either a single mode and its harmonics or by broadband effects if turbulence develops. In this study we increase the centrifugal Rayleigh number progressively and investigate mode interactions during the vacillation regime which eventually lead to chaotic motion. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.
Precision pharmacology for Alzheimer's disease.
Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone
2018-04-01
The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lally, J. Ronald
This progress report on the Family Development Research Program for 108 low-income families, conducted at Syracuse University Children's Center, provides information on a longitudinal comparison instituted when the program children reached 36 months of age. The families of the children were matched to control families on a number of variables.…
ERIC Educational Resources Information Center
Comprehensive Adult Student Assessment System, San Diego, CA.
This document outlines student progress within each of California's Adult Education programs for the 1997-1998 academic year. During this time period, California's Adult Education programs served 1,435,341 learners. Among those enrolled, 161,364 students were served by Adult Basic Education (ABE) programs, and an additional 1,220,594 students were…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology.more » We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.« less
Simulations of nonlinear continuous wave pressure fields in FOCUS
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
Reliability Advancement for Electronic Engine Controllers. Volume 1
1980-06-01
natural frequency increases. Hence, the natural frequency is dependent upon pressure in the nonlinear rela- tionship: Pressure = A + Bft + Cft 2 + Dft 3...Hence, the natural frequency is dependent upon pressure in the nonlinear re- I ationship: Pressure = A + Bft + Cft 2 + Dft 3 + Eft 4 where A, B, C, D...BIT STTE TO’, AML ’’E ICONVERTER ICOUNTER BUFFE CPUT IBUS TOAMPLIFIER________IBUS PROGRAM-COKRSE -TT PER:OO INPUTS ENABLE M MR- - L
NASA Technical Reports Server (NTRS)
Trosset, Michael W.
1999-01-01
Comprehensive computational experiments to assess the performance of algorithms for numerical optimization require (among other things) a practical procedure for generating pseudorandom nonlinear objective functions. We propose a procedure that is based on the convenient fiction that objective functions are realizations of stochastic processes. This report details the calculations necessary to implement our procedure for the case of certain stationary Gaussian processes and presents a specific implementation in the statistical programming language S-PLUS.
Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime
NASA Astrophysics Data System (ADS)
Zhu, Ping; Yan, Xingting; Huang, Wenlong
2017-10-01
Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Evaluating Youth Development Programs: Progress and Promise
ERIC Educational Resources Information Center
Roth, Jodie L.; Brooks-Gunn, Jeanne
2016-01-01
Advances in theories of adolescent development and positive youth development have greatly increased our understanding of how programs and practices with adolescents can impede or enhance their development. In this article the authors reflect on the progress in research on youth development programs in the last two decades, since possibly the…
10 CFR 600.341 - Monitoring and reporting program and financial performance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... will be taken to address the deviations. (2) A final technical report if the award is for research and... dates for reports. At a minimum, requirements must include: (1) Periodic progress reports (at least... follows: (i) The program portions of the reports must address progress toward achieving program...
10 CFR 600.341 - Monitoring and reporting program and financial performance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... will be taken to address the deviations. (2) A final technical report if the award is for research and... dates for reports. At a minimum, requirements must include: (1) Periodic progress reports (at least... follows: (i) The program portions of the reports must address progress toward achieving program...
10 CFR 600.341 - Monitoring and reporting program and financial performance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... will be taken to address the deviations. (2) A final technical report if the award is for research and... dates for reports. At a minimum, requirements must include: (1) Periodic progress reports (at least... follows: (i) The program portions of the reports must address progress toward achieving program...
10 CFR 600.341 - Monitoring and reporting program and financial performance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... will be taken to address the deviations. (2) A final technical report if the award is for research and... dates for reports. At a minimum, requirements must include: (1) Periodic progress reports (at least... follows: (i) The program portions of the reports must address progress toward achieving program...
2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-11-01
The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.
The Impact of the Measures of Academic Progress (MAP) Program on Student Reading Achievement
ERIC Educational Resources Information Center
Cordray, David S.; Pion, Georgine M.; Brandt, Chris; Molefe, Ayrin
2013-01-01
One of the most widely used commercially available systems incorporating benchmark assessment and training in differentiated instruction is the Northwest Evaluation Association's (NWEA) Measures of Academic Progress (MAP) program. The MAP program involves two components: (1) computer-adaptive assessments administered to students three to four…
Progress in Orientation-Patterned GAAS for Next-Generation Nonlinear Optical Devices (Postprint)
2008-02-01
FORCE MATERIEL COMMAND UNITED STATES AIR FORCE i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this...www.iiviinfrared.com/materials.html#anchor2) with α = 5x10-4 cm-1 at 10.6 μm. 13. J. Wang, M. Sheik- Bahae , A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1980-01-01
Nonlinear modeling researches involving the use of tensor analysis are presented. Progress was achieved by extending the studies to a controlled equation and by considering more complex situations. Included in the report are calculations illustrating the modeling methodology for cases in which variables take values in real spaces of dimension up to three, and in which the degree of tensor term retention is as high as three.
Topics in strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Nicholson, D. R.
1983-01-01
Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.
Topics in strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Nicholson, D. R.
1982-01-01
Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.
Absorption Of Crushing Energy In Square Composite Tubes
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1992-01-01
Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.
[Individual Progress Program for the Extremely Gifted Student in the Greater Seattle Area.
ERIC Educational Resources Information Center
Norsen, Barbara G.; Wick, Christine
The Individual Progress Program (IPP) is an approach designed to serve extremely advanced gifted students (grades 1 through 9) in the Seattle area. IPP is intended to meet students' unmet educational needs by allowing them to progress at their own accelerated pace through a broadly based curriculum while also pursuing interest areas. The program…