Sample records for nonlinear reaction-diffusion system

  1. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less

  2. Turing instability in reaction-diffusion systems with nonlinear diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemskov, E. P., E-mail: zemskov@ccas.ru

    2013-10-15

    The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.

  3. Cross-Diffusion Driven Instability for a Lotka-Volterra Competitive Reaction-Diffusion System

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2008-04-01

    In this work we investigate the possibility of the pattern formation for a reaction-diffusion system with nonlinear diffusion terms. Through a linear stability analysis we find the conditions which allow a homogeneous steady state (stable for the kinetics) to become unstable through a Turing mechanism. In particular, we show how cross-diffusion effects are responsible for the initiation of spatial patterns. Finally, we find a Fisher amplitude equation which describes the weakly nonlinear dynamics of the system near the marginal stability.

  4. Linking actin networks and cell membrane via a reaction-diffusion-elastic description of nonlinear filopodia initiation.

    PubMed

    Ben Isaac, Eyal; Manor, Uri; Kachar, Bechara; Yochelis, Arik; Gov, Nir S

    2013-08-01

    Reaction-diffusion models have been used to describe pattern formation on the cellular scale, and traditionally do not include feedback between cellular shape changes and biochemical reactions. We introduce here a distinct reaction-diffusion-elasticity approach: The reaction-diffusion part describes bistability between two actin orientations, coupled to the elastic energy of the cell membrane deformations. This coupling supports spatially localized patterns, even when such solutions do not exist in the uncoupled self-inhibited reaction-diffusion system. We apply this concept to describe the nonlinear (threshold driven) initiation mechanism of actin-based cellular protrusions and provide support by several experimental observations.

  5. Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Lombardo, S.; Mulone, G.; Trovato, M.

    2008-06-01

    We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.

  6. Instability of turing patterns in reaction-diffusion-ODE systems.

    PubMed

    Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako

    2017-02-01

    The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.

  7. Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves

    NASA Astrophysics Data System (ADS)

    Yi, Taishan; Chen, Yuming; Wu, Jianhong

    Reaction diffusion equations with delayed nonlinear reaction terms are used as prototypes to motivate an appropriate abstract formulation of dynamical systems with unimodal nonlinearity. For such non-monotone dynamical systems, we develop a general comparison principle and show how this general comparison principle, coupled with some existing results for monotone dynamical systems, can be used to establish results on the asymptotic speeds of spread and travelling waves. We illustrate our main results by an integral equation which includes a nonlocal delayed reaction diffusion equation and a nonlocal delayed lattice differential system in an unbounded domain, with the non-monotone nonlinearities including the Ricker birth function and the Mackey-Glass hematopoiesis feedback.

  8. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    NASA Astrophysics Data System (ADS)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-04-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

  9. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  10. Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration.

    PubMed

    Chen, Yunjin; Pock, Thomas

    2017-06-01

    Image restoration is a long-standing problem in low-level computer vision with many interesting applications. We describe a flexible learning framework based on the concept of nonlinear reaction diffusion models for various image restoration problems. By embodying recent improvements in nonlinear diffusion models, we propose a dynamic nonlinear reaction diffusion model with time-dependent parameters (i.e., linear filters and influence functions). In contrast to previous nonlinear diffusion models, all the parameters, including the filters and the influence functions, are simultaneously learned from training data through a loss based approach. We call this approach TNRD-Trainable Nonlinear Reaction Diffusion. The TNRD approach is applicable for a variety of image restoration tasks by incorporating appropriate reaction force. We demonstrate its capabilities with three representative applications, Gaussian image denoising, single image super resolution and JPEG deblocking. Experiments show that our trained nonlinear diffusion models largely benefit from the training of the parameters and finally lead to the best reported performance on common test datasets for the tested applications. Our trained models preserve the structural simplicity of diffusion models and take only a small number of diffusion steps, thus are highly efficient. Moreover, they are also well-suited for parallel computation on GPUs, which makes the inference procedure extremely fast.

  11. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  12. Breathing pulses in singularly perturbed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Veerman, Frits

    2015-07-01

    The weakly nonlinear stability of pulses in general singularly perturbed reaction-diffusion systems near a Hopf bifurcation is determined using a centre manifold expansion. A general framework to obtain leading order expressions for the (Hopf) centre manifold expansion for scale separated, localised structures is presented. Using the scale separated structure of the underlying pulse, directly calculable expressions for the Hopf normal form coefficients are obtained in terms of solutions to classical Sturm-Liouville problems. The developed theory is used to establish the existence of breathing pulses in a slowly nonlinear Gierer-Meinhardt system, and is confirmed by direct numerical simulation.

  13. Class of self-limiting growth models in the presence of nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar

    2002-06-01

    The source term in a reaction-diffusion system, in general, does not involve explicit time dependence. A class of self-limiting growth models dealing with animal and tumor growth and bacterial population in a culture, on the other hand, are described by kinetics with explicit functions of time. We analyze a reaction-diffusion system to study the propagation of spatial front for these models.

  14. Evidence of negative-index refraction in nonlinear chemical waves.

    PubMed

    Yuan, Xujin; Wang, Hongli; Ouyang, Qi

    2011-05-06

    The negative index of refraction of nonlinear chemical waves has become a recent focus in nonlinear dynamics researches. Theoretical analysis and computer simulations have predicted that the negative index of refraction can occur on the interface between antiwaves and normal waves in a reaction-diffusion (RD) system. However, no experimental evidence has been found so far. In this Letter, we report our experimental design in searching for such a phenomenon in a chlorite-iodide-malonic acid (CIMA) reaction. Our experimental results demonstrate that competition between waves and antiwaves at their interface determines the fate of the wave interaction. The negative index of refraction was only observed when the oscillation frequency of a normal wave is significantly smaller than that of the antiwave. All experimental results were supported by simulations using the Lengyel-Epstein RD model which describes the CIMA reaction-diffusion system.

  15. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    PubMed

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  16. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property

    NASA Astrophysics Data System (ADS)

    Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.

    We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.

  17. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  18. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  19. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    PubMed

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  1. Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2007-06-01

    In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.

  2. Feynman-Kac equations for reaction and diffusion processes

    NASA Astrophysics Data System (ADS)

    Hou, Ru; Deng, Weihua

    2018-04-01

    This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.

  3. A hybrid continuous-discrete method for stochastic reaction-diffusion processes.

    PubMed

    Lo, Wing-Cheong; Zheng, Likun; Nie, Qing

    2016-09-01

    Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.

  4. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  5. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  6. Parametric spatiotemporal oscillation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  7. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    PubMed

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  8. Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.

    2016-12-01

    Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.

  9. Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions

    NASA Astrophysics Data System (ADS)

    Fujieda, S.; Mori, Y.; Nakazawa, A.; Mogami, Y.

    2001-01-01

    Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.

  10. On the Existence of a Free Boundary for a Class of Reaction-Diffusion Systems.

    DTIC Science & Technology

    1982-02-01

    I. Diaz. "Soluciones con soporte compacto para alguno. problemas semilineales". Collect. Math. 30 (1979), 141-179. -26- [121 J. I. Diaz. Tecnica de ...supersoluciones locales para problemas estacionarios no lineales: applicacion al estudio de flujoe subsonicos. Memory of the Real Academia de Ciencias...nonlinearity, nonlinear boundary conditions, dead core set, chemical reactions Work Unit Number I - Applied Analysis (1) Seccion de Matematicas

  11. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  12. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  13. Nonlinear diffusion and viral spread through the leaf of a plant

    NASA Astrophysics Data System (ADS)

    Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.

    2016-10-01

    The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.

  14. A generalized reaction diffusion model for spatial structure formed by motile cells.

    PubMed

    Ochoa, F L

    1984-01-01

    A non-linear stability analysis using a multi-scale perturbation procedure is carried out on a model of a generalized reaction diffusion mechanism which involves only a single equation but which nevertheless exhibits bifurcation to non-uniform states. The patterns generated by this model by variation in a parameter related to the scalar dimensions of domain of definition, indicate its capacity to represent certain key morphogenetic features of multicellular systems formed by motile cells.

  15. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  16. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  17. Link between alginate reaction front propagation and general reaction diffusion theory.

    PubMed

    Braschler, Thomas; Valero, Ana; Colella, Ludovica; Pataky, Kristopher; Brugger, Jürgen; Renaud, Philippe

    2011-03-15

    We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.

  18. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.

    PubMed

    Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi

    2014-04-11

    Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.

  19. A hybrid continuous-discrete method for stochastic reaction–diffusion processes

    PubMed Central

    Zheng, Likun; Nie, Qing

    2016-01-01

    Stochastic fluctuations in reaction–diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method. PMID:27703710

  20. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK

    PubMed Central

    2014-01-01

    Background Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system’s set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This “code-based” approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. Results As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. Conclusions The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts. PMID:24725437

  1. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  2. Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Wang, Mingxin

    2018-06-01

    This paper concerns the reaction-diffusion systems modeling the population dynamics of two predators and one prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit system with type I functional responses and density-dependent death rates for the predators and logistic growth for the prey. Moreover, the convergence rates are also established.

  3. Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd

    2012-01-01

    For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001

  4. The Fisher-KPP problem with doubly nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Audrito, Alessandro; Vázquez, Juan Luis

    2017-12-01

    The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical KPP reaction term, and appears in a number of relevant applications in biology and chemistry. It is remarkable as a mathematical model since it possesses a family of travelling waves that describe the asymptotic behaviour of a large class solutions 0 ≤ u (x , t) ≤ 1 of the problem posed in the real line. The existence of propagation waves with finite speed has been confirmed in some related models and disproved in others. We investigate here the corresponding theory when the linear diffusion is replaced by the "slow" doubly nonlinear diffusion and we find travelling waves that represent the wave propagation of more general solutions even when we extend the study to several space dimensions. A similar study is performed in the critical case that we call "pseudo-linear", i.e., when the operator is still nonlinear but has homogeneity one. With respect to the classical model and the "pseudo-linear" case, the "slow" travelling waves exhibit free boundaries.

  5. Theorems and application of local activity of CNN with five state variables and one port.

    PubMed

    Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas

    2012-01-01

    Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems.

  6. A deterministic particle method for one-dimensional reaction-diffusion equations

    NASA Technical Reports Server (NTRS)

    Mascagni, Michael

    1995-01-01

    We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.

  7. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  8. From conservative to reactive transport under diffusion-controlled conditions

    NASA Astrophysics Data System (ADS)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  9. Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection.

    PubMed

    Sabelnikov, V A; Lipatnikov, A N

    2014-09-01

    The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.

  10. Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback

    NASA Astrophysics Data System (ADS)

    Gurevich, Svetlana V.

    2013-05-01

    We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.

  11. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  12. A minimally-resolved immersed boundary model for reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar

    2013-12-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.

  13. A HIGHWAY MODEL FOR THE ADVECTION, DIFFUSION AND CHEMICAL REACTION OF POLLUTANTS RELEASED BY AUTOMOBILES: PART I. ADVECTION AND DIFFUSION OF SF6 TRACER GAS

    EPA Science Inventory

    A two-dimensional, finite-difference model simulating a highway has been developed which is able to handle linear and nonlinear chemical reactions. Transport of the pollutants is accomplished by use of an upstream-flux-corrected algorithm developed at the Naval Research Laborator...

  14. Isostable reduction with applications to time-dependent partial differential equations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2016-07-01

    Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory systems, are useful in the study of nonlinear equations which asymptotically approach a stationary solution. In this work, we present a general method for isostable reduction of partial differential equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity to 1. We illustrate the utility of this reduction by applying it to two different models with biological relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the necessary framework to design a simple control strategy to desynchronize a population of pathologically synchronized oscillatory neurons, as might be relevant to Parkinson's disease. Another example analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a cardiac system.

  15. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2018-01-01

    In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.

  16. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    NASA Astrophysics Data System (ADS)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  17. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  18. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  19. 1/f Noise Inside a Faraday Cage

    NASA Astrophysics Data System (ADS)

    Handel, Peter H.; George, Thomas F.

    2009-04-01

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  20. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie

    2007-01-01

    A novel microstirring strategy is applied to accelerate the digestion rate of the substrate Nα-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cm∕s, are generated around a small (∼1.2 mm) conductive ion exchange granule when ac electric fields (133 V∕cm) are applied across a miniature chamber smaller than 10 μl. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of ∼30 and ∼8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate. PMID:19693360

  1. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie

    2007-09-04

    A novel microstirring strategy is applied to accelerate the digestion rate of the substrate N(alpha)-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cms, are generated around a small ( approximately 1.2 mm) conductive ion exchange granule when ac electric fields (133 Vcm) are applied across a miniature chamber smaller than 10 mul. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of approximately 30 and approximately 8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate.

  2. Enhanced diffusion on oscillating surfaces through synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui

    2018-02-01

    The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.

  3. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  4. Numerical method for solution of systems of non-stationary spatially one-dimensional nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Morozov, S. K.; Krasitskiy, O. P.

    1978-01-01

    A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.

  5. New Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2017-04-01

    We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.

  6. Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities

    NASA Astrophysics Data System (ADS)

    De Wit, A.; Eckert, K.; Kalliadasis, S.

    2012-09-01

    Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field.

  7. Analytical solution of reaction-diffusion equations for calcium wave propagation in a starburst amacrine cell.

    PubMed

    Poznanski, R R

    2010-09-01

    A reaction-diffusion model is presented to encapsulate calcium-induced calcium release (CICR) as a potential mechanism for somatofugal bias of dendritic calcium movement in starburst amacrine cells. Calcium dynamics involves a simple calcium extrusion (pump) and a buffering mechanism of calcium binding proteins homogeneously distributed over the plasma membrane of the endoplasmic reticulum within starburst amacrine cells. The system of reaction-diffusion equations in the excess buffer (or low calcium concentration) approximation are reformulated as a nonlinear Volterra integral equation which is solved analytically via a regular perturbation series expansion in response to calcium feedback from a continuously and uniformly distributed calcium sources. Calculation of luminal calcium diffusion in the absence of buffering enables a wave to travel at distances of 120 μm from the soma to distal tips of a starburst amacrine cell dendrite in 100 msec, yet in the presence of discretely distributed calcium-binding proteins it is unknown whether the propagating calcium wave-front in the somatofugal direction is further impeded by endogenous buffers. If so, this would indicate CICR to be an unlikely mechanism of retinal direction selectivity in starburst amacrine cells.

  8. Distinguishing graded and ultrasensitive signalling cascade kinetics by the shape of morphogen gradients in Drosophila.

    PubMed

    MacNamara, Shev; Baker, Ruth E; Maini, Philip K

    2011-09-21

    Recently, signalling gradients in cascades of two-state reaction-diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose-response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  10. Characterization of a Dynamic String Method for the Construction of Transition Pathways in Molecular Reactions

    PubMed Central

    Johnson, Margaret E.; Hummer, Gerhard

    2012-01-01

    We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575

  11. Some Fundamental Issues of Mathematical Simulation in Biology

    NASA Astrophysics Data System (ADS)

    Razzhevaikin, V. N.

    2018-02-01

    Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.

  12. Asymptotic properties of blow-up solutions in reaction-diffusion equations with nonlocal boundary flux

    NASA Astrophysics Data System (ADS)

    Liu, Bingchen; Dong, Mengzhen; Li, Fengjie

    2018-04-01

    This paper deals with a reaction-diffusion problem with coupled nonlinear inner sources and nonlocal boundary flux. Firstly, we propose the critical exponents on nonsimultaneous blow-up under some conditions on the initial data. Secondly, we combine the scaling technique and the Green's identity method to determine four kinds of simultaneous blow-up rates. Thirdly, the lower and the upper bounds of blow-up time are derived by using Sobolev-type differential inequalities.

  13. Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Miyaji, Tomoyuki

    2017-02-01

    We study a billiard problem in nonlinear and nonequilibrium systems. This is motivated by the motions of a traveling spot in a reaction-diffusion system (RDS) in a rectangular domain. We consider a four-dimensional dynamical system, defined by ordinary differential equations. This was first derived by S.-I. Ei et al. (2006), based on a reduced system on the center manifold in a neighborhood of a pitchfork bifurcation of a stationary spot for the RDS. In contrast to the classical billiard problem, this defines a dynamical system that is dissipative rather than conservative, and has an attractor. According to previous numerical studies, the attractor of the system changes depending on parameters such as the aspect ratio of the domain. It may be periodic, quasi-periodic, or chaotic. In this paper, we elucidate that it results from parameters crossing Arnold tongues and that the organizing center is a Hopf-Hopf bifurcation of the trivial equilibrium.

  14. An analysis of the effect of defect structures on catalytic surfaces by the boundary element technique

    NASA Astrophysics Data System (ADS)

    Peirce, Anthony P.; Rabitz, Herschel

    1988-08-01

    The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.

  15. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  16. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  17. Reaction front barriers in time aperiodic fluid flows

    NASA Astrophysics Data System (ADS)

    Locke, Rory; Mitchell, Kevin

    2016-11-01

    Many chemical and biological systems can be characterized by the propagation of a front that separates different phases or species. One approach to formalizing a general theory is to apply frameworks developed in nonlinear dynamics. It has been shown that invariant manifolds form barriers to passive transport in time-dependent or time-periodic fluid flows. More recently, analogous manifolds termed burning- invariant-manifolds (BIMs), have been shown to form one-sided barriers to reaction fronts in advection-reaction-diffusion (ARD) systems. To model more realistic time-aperiodic systems, recent theoretical work has suggested that similar one-sided barriers, termed burning Lagrangian coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval. In this presentation, we use a stochastic "wind" to generate time dependence in a double-vortex channel flow and demonstrate the (locally) most attracting or repelling curves are the bLCSs.

  18. Properties of Differential Equations through Different Measures.

    DTIC Science & Technology

    1980-03-01

    34 Parabolic differential inequalities in cones". Appl. Ana l., 9 (1979), 257-266. 8O =3𔄀-1i74 2 Lakshmikantham, V., and Vaughn, R. "Reaction-diffusion...Gronwall type inequalities , existence of extremal solutions, a comparison prin- ciple, and Peano’s type of existence result (for the Volterra ...differential systems with impulsive perturbations in terms of two measures." Nonlinear Analysis 1 (1977), 667-677. Leela, S., and Moauro, V. "Existence of

  19. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things

    PubMed Central

    Akan, Ozgur B.

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics. PMID:29415019

  20. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  1. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    NASA Astrophysics Data System (ADS)

    Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz

    2016-06-01

    Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellesia, Giovanni; Bales, Benjamin B.

    Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less

  3. Characterizing Strength of Chaotic Dynamics and Numerical Simulation Relevant to Modified Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Kowalski, Adam; Schroder, Kjell; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-05-01

    We characterize the strength of chaos in two different regimes of Modified Taylor-Couette flow with Hourglass Geometry: the formation of Taylor Vortices with laminar flow and with turbulent flow. We measure the strength of chaos by calculating the correlation dimension and the Kaplan-Yorke dimension based upon the Lyapunov Exponents of each system. We determine the reliability of our calculations by considering data from a chaotic electronic circuit. In order to predict the behavior of the Modified Taylor-Couette flow system, we employ simulations based upon an idealized Reaction-Diffusion model with a third order non-linearity in the reaction rate. Variation of reaction rate with length corresponds to variation of the effective Reynolds Number along the Taylor-Couette apparatus. We present preliminary results and compare to experimental data.

  4. TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.

    2016-02-01

    In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.

  5. Analysis of Mathematical Modelling on Potentiometric Biosensors

    PubMed Central

    Mehala, N.; Rajendran, L.

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  6. Analysis of mathematical modelling on potentiometric biosensors.

    PubMed

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  7. Pattern formation in three-dimensional reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  8. Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold.

    PubMed

    Yamada, H; Nakagaki, T; Baker, R E; Maini, P K

    2007-06-01

    In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.

  9. In General, the Total Voltammetric Current from a Mixture of Redox-Active Substances will Not be the Sum of the Currents that Each Substance would Produce Independently at the Same Concentration as in the Mixture

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Oh, Woon Su; Gao, Xue-Rong; Rawashdeh, Abdel Monem M.

    2003-01-01

    At the potential range where both decamethylferrocene (dMeFc) and ferrocene (Fc) are oxidized with rates controlled by linear diffusion, electrogenerated Fc(+) radicals diffusing outwards from the electrode react quantitatively (K23 C=5.8 x 10(exp 8) with dMeFc diffusing towards the electrode and produce Fc and dMeFc. That reaction replaces dMeFc with Fc, whose diffusion coefficient is higher than that of dMeFc(+), and the total mass-transfer limited current from the mixture is increased by approximately 10%. Analogous observations are made when mass-transfer is controlled by convective-diffusion as in RDE voltammetry. Similar results have been obtained with another, and for all practical purposes randomly selected pair of redox-active substances, [Co(bipy)3](2+) and N - methylphenothiazine (MePTZ); reaction of MePTZ(+) with [Co(bipy)3](2+) replaces the latter with MePTZ, which diffuses faster and the current increases by approximately 20%. The experimental voltammograms have been simulated numerically and the role of (a) the rate constant of the homogeneous reaction; (b) the relative concentrations; and, (c) the diffusion coefficients of all species involved have been studied in detail. Importantly, it was also identified that within any given redox system the dependence of the mass-transfer limited current on the bulk concentrations of the redox-active species is expected to be non-linear. These findings are discussed in terms of their electroanalytical implications.

  10. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  11. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  12. Melting Heat in Radiative Flow of Carbon Nanotubes with Homogeneous-Heterogeneous Reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Muhammad, Khursheed; Muhammad, Taseer; Alsaedi, Ahmed

    2018-04-01

    The present article provides mathematical modeling for melting heat and thermal radiation in stagnation-point flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneous-heterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst. Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.

  13. On two parabolic systems: Convergence and blowup

    NASA Astrophysics Data System (ADS)

    Huang, Yamin

    1998-12-01

    This dissertation studies two parabolic systems. It consists of two parts. In part one (chapter one), we prove a convergence result, namely, the solution (AK,/ BK) of a system of chemical diffusion-reaction equations (with reaction rate K) converges to the solution (A, B) of a diffusion- instantaneous-reaction equation. To prove our main result, we use some L1 and L2 'energy' estimates and a compactness result due to Aubin (1). As a by-product we also prove that as K approaches infinity, the limit solution exhibits phase separation between A and B. In part two (chapter two), we study the blowup rate for a system of heat equations ut=/Delta u,/ vt=/Delta v in a bounded domain Ωtimes(0,T) coupled in the nonlinear Neumann boundary conditions [/partial u/over/partial n]=vp,/ [/partial v/over/partial n]=uq on ∂Omega×[ 0,T), where p>0,/ q>0,/ pq>1 and n is the exterior normal vector on ∂Omega. Under certain assumptions, we establish exact blowup rate which generalizes the corresponding results of some authors' recent work including Deng (2), Deng-Fila-Levine (3) and Hu-Yin (4). ftn (1) J. P. A scUBIN, Un theoreme de compacite, C. R. Acad. Sci., 256(1963), pp. 5042-5044. (2) K. D scENG, Blow-up rates for parabolic systems, Z. Angew. Math. Phys., 47(1996), No. 1, pp. 132-143. (3) K. D scENG, M. F scILA AND H. A. L scEVINE, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenian. (N.S.), 36(1994), No. 2, pp. 169-192. (4) B. H scU scAND H. M. Y scIN, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346(1994), pp. 117-135.

  14. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  15. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  16. Effect of static porosity fluctuations on reactive transport in a porous medium

    NASA Astrophysics Data System (ADS)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  17. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  18. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less

  19. Reaction-diffusion systems in natural sciences and new technology transfer

    NASA Astrophysics Data System (ADS)

    Keller, André A.

    2012-12-01

    Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.

  20. Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise

    NASA Astrophysics Data System (ADS)

    Deng, M. L.; Zhu, W. Q.

    2007-10-01

    The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.

  1. Hydrodynamic fingering instability induced by a precipitation reaction

    NASA Astrophysics Data System (ADS)

    De Wit, Anne; Nagatsu, Yuichiro

    2014-05-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the build-up of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A+B → C type of reaction when a solution containing one of the reactant is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Finger-like precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice-versa. A mathematical modeling of the underlying mobility profile in the cell reconstructed on the basis of one-dimensional reaction-diffusion concentration profiles confirms that the instability originates from a local decrease in mobility driven by the precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  2. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  3. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.

    PubMed

    Zou, Wei; Sebek, Michael; Kiss, István Z; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  4. Scaling of chaos in strongly nonlinear lattices.

    PubMed

    Mulansky, Mario

    2014-06-01

    Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.

  5. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  6. Part-2: Analytical Expressions of Concentrations of Glucose, Oxygen, and Gluconic Acid in a Composite Membrane for Closed-Loop Insulin Delivery for the Non-steady State Conditions.

    PubMed

    Mehala, N; Rajendran, L; Meena, V

    2017-02-01

    A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived. These analytical results are compared with the numerical results, and limiting case results for steady state conditions and a good agreement is observed. The influence of various kinetic parameters involved in the model has been presented graphically. Theoretical evaluation of the kinetic parameters like the maximal reaction velocity (V max ) and Michaelis-Menten constants for glucose and oxygen (K g and K ox ) is also reported. This predicted model is very much useful for designing the glucose-responsive composite membranes for closed-loop insulin delivery.

  7. The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion

    NASA Astrophysics Data System (ADS)

    Leyva, J. Francisco; Málaga, Carlos; Plaza, Ramón G.

    2013-11-01

    This paper studies a reaction-diffusion-chemotaxis model for bacterial aggregation patterns on the surface of thin agar plates. It is based on the non-linear degenerate cross diffusion model proposed by Kawasaki et al. (1997) [5] and it includes a suitable nutrient chemotactic term compatible with such type of diffusion, as suggested by Ben-Jacob et al. (2000) [20]. An asymptotic estimation predicts the growth velocity of the colony envelope as a function of both the nutrient concentration and the chemotactic sensitivity. It is shown that the growth velocity is an increasing function of the chemotactic sensitivity. High resolution numerical simulations using Graphic Processing Units (GPUs), which include noise in the diffusion coefficient for the bacteria, are presented. The numerical results verify that the chemotactic term enhances the velocity of propagation of the colony envelope. In addition, the chemotaxis seems to stabilize the formation of branches in the soft-agar, low-nutrient regime.

  8. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    DOE PAGES

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-10

    Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less

  9. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements.

    PubMed

    Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L

    2014-03-01

    Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.

  10. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  11. Birth-jump processes and application to forest fire spotting.

    PubMed

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  12. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    NASA Astrophysics Data System (ADS)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  13. Petrological evidence for non-linear increase of magmatic intrusion rates before eruption at open vent mafic volcanoe

    NASA Astrophysics Data System (ADS)

    Ruth, D. C. S.; Costa Rodriguez, F.

    2015-12-01

    The most active volcanoes on earth erupt in a yearly to decadal time scales, typically erupt mafic magmas and are open-vent systems with prominent degassing plumes (e.g. Mayon, Arenal, Llaima, Etna). Here we investigate the plumbing systems, dynamics, and processes that drive eruptions at these systems. These are key questions for improving hazard evaluation, and better understanding the unrest associated with these types of volcanoes. The petrology and geochemistry from six historical eruptions (1947-2006) of Mayon volcano (Philippines) shows that all lavas are basaltic andesite with phenocrysts of plagioclase + orthopyroxene (Opx) + clinopyroxene. Opx crystals show a variety of compositions and zoning patterns (reverse, normal or complex) with Mg# (= 100 *Mg/[Mg+Fe]) varying from 67 to 81. The simplest interpretation is that the low Mg# parts of the crystals resided on an upper crustal and crystal rich reservoir that was intruded by more primitive magmas from which the high Mg# parts of the crystals grew. Modelling Mg-Fe diffusion in Opx shows that times since magma injection and eruption range from a few days up to 3.5 years in all of the investigated eruptions. The longest diffusion times are shorter than the repose times between the eruptions, which implies that crystal recycling between eruptive events is negligible. This is a surprising result that shows that for each eruption a different part of the evolved crystal-rich plumbing system is activated. This can be due to random intrusion location or an irreversibility of the plumbing system that prevents multiple eruptions from the same crystal-rich part. Moreover, we find that the number of intrusions markedly increases before each eruption in a non-linear manner. Such an increased rate of intrusions with time might reflect non-linear rheological properties of the crystal-rich system, of the enclosing rocks, or the non-linear evolution of crystal-melt reaction-dissolution fronts during magma intrusions.

  14. Chemotaxis of active, self-oscillating polymer gels in solution

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Bhattacharya, Amitabh; Kuksenok, Olga; Balazs, Anna C.

    2012-02-01

    Fighting, fleeing and feeding are hallmarks of all living things; all these activities require some degree of mobility. Herein, we undertake the first computational study of self-oscillating polymer gels and show that this system can ``communicate'' to undergo a biomimetic, collective response to small-scale chemical changes. In this study we harness unique properties of polymer gels that undergo oscillatory Belousov-Zhabotinsky (BZ) reaction. The activator for the reaction is generated within these BZ cilia and diffuses between the neighboring gels. In order to simulate the dynamics of the BZ gels in surrounding fluid we have developed a nonlinear hybrid 3D model which captures the elasto-dynamics of polymer gel and diffusive exchange of BZ reagents between the gel and the fluid. We illustrate that multiple BZ gels in solution exhibit a distinct form of chemotaxis, moving towards the highest activator concentration in the solution. Similar ability to sense and move in response to chemical gradients constitutes a vital function in simple organisms, enabling them to find food and flee from poisons.

  15. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  16. Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction.

    PubMed

    Malkyarenko, Dariya I; Chenevert, Thomas L

    2014-12-01

    To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.

  17. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations.

    PubMed

    Sánchez-Garduño, Faustino; Pérez-Velázquez, Judith

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D (0) = 0) and advection-degenerate (at h '(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h ( u ): (1)   h '( u ) is constant k , (2)   h '( u ) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.

  18. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131

  19. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?

    PubMed

    Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A

    2017-12-01

    Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.

  20. Demonstration of Nonlinearity Bias in the Measurement of the Apparent Diffusion Coefficient in Multicenter Trials

    PubMed Central

    Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.

    2015-01-01

    Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607

  1. Demonstration of nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter trials.

    PubMed

    Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L

    2016-03-01

    Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.

  2. Coupling Schemes for Multiphysics Reactor Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less

  3. Modeling Chemically Reactive Flow of Sutterby Nanofluid by a Rotating Disk in Presence of Heat Generation/Absorption

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.

    2018-05-01

    In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.

  4. Characterizing acid diffusion lengths in chemically amplified resists from measurements of deprotection kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Abhijit A.; Pandey, Yogendra Narayan; Doxastakis, Manolis

    2014-10-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tertbutyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a nonlinear dependence on acid loading. Fickian diffusion is approached by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings demonstrate that acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. To complement the analysismore » of bulk kinetics, acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.« less

  5. Spatial dynamics of a population with stage-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.

    2015-05-01

    We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.

  6. A Luenberger observer for reaction-diffusion models with front position data

    NASA Astrophysics Data System (ADS)

    Collin, Annabelle; Chapelle, Dominique; Moireau, Philippe

    2015-11-01

    We propose a Luenberger observer for reaction-diffusion models with propagating front features, and for data associated with the location of the front over time. Such models are considered in various application fields, such as electrophysiology, wild-land fire propagation and tumor growth modeling. Drawing our inspiration from image processing methods, we start by proposing an observer for the eikonal-curvature equation that can be derived from the reaction-diffusion model by an asymptotic expansion. We then carry over this observer to the underlying reaction-diffusion equation by an ;inverse asymptotic analysis;, and we show that the associated correction in the dynamics has a stabilizing effect for the linearized estimation error. We also discuss the extension to joint state-parameter estimation by using the earlier-proposed ROUKF strategy. We then illustrate and assess our proposed observer method with test problems pertaining to electrophysiology modeling, including with a realistic model of cardiac atria. Our numerical trials show that state estimation is directly very effective with the proposed Luenberger observer, while specific strategies are needed to accurately perform parameter estimation - as is usual with Kalman filtering used in a nonlinear setting - and we demonstrate two such successful strategies.

  7. Analysis and correction of gradient nonlinearity bias in ADC measurements

    PubMed Central

    Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.

    2013-01-01

    Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533

  8. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  9. Delay-induced wave instabilities in single-species reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  10. Electrochemical Impedance Imaging via the Distribution of Diffusion Times.

    PubMed

    Song, Juhyun; Bazant, Martin Z

    2018-03-16

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  11. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    NASA Astrophysics Data System (ADS)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  12. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  13. Analysis of Classes of Singular Steady State Reaction Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Son, Byungjae

    We study positive radial solutions to classes of steady state reaction diffusion problems on the exterior of a ball with both Dirichlet and nonlinear boundary conditions. We study both Laplacian as well as p-Laplacian problems with reaction terms that are p-sublinear at infinity. We consider both positone and semipositone reaction terms and establish existence, multiplicity and uniqueness results. Our existence and multiplicity results are achieved by a method of sub-supersolutions and uniqueness results via a combination of maximum principles, comparison principles, energy arguments and a-priori estimates. Our results significantly enhance the literature on p-sublinear positone and semipositone problems. Finally, we provide exact bifurcation curves for several one-dimensional problems. In the autonomous case, we extend and analyze a quadrature method, and in the nonautonomous case, we employ shooting methods. We use numerical solvers in Mathematica to generate the bifurcation curves.

  14. Hydrodynamic Fingering Instability Induced by a Precipitation Reaction

    NASA Astrophysics Data System (ADS)

    Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A.

    2014-07-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the buildup of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A +B→C type of reaction when a solution containing one of the reactants is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Fingerlike precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice versa. A mathematical modeling of the underlying mobility profile confirms that the instability originates from a local decrease in mobility driven by the localized precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  15. Model and Comparative Study for Flow of Viscoelastic Nanofluids with Cattaneo-Christov Double Diffusion

    PubMed Central

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-01-01

    Here two classes of viscoelastic fluids have been analyzed in the presence of Cattaneo-Christov double diffusion expressions of heat and mass transfer. A linearly stretched sheet has been used to create the flow. Thermal and concentration diffusions are characterized firstly by introducing Cattaneo-Christov fluxes. Novel features regarding Brownian motion and thermophoresis are retained. The conversion of nonlinear partial differential system to nonlinear ordinary differential system has been taken into place by using suitable transformations. The resulting nonlinear systems have been solved via convergent approach. Graphs have been sketched in order to investigate how the velocity, temperature and concentration profiles are affected by distinct physical flow parameters. Numerical values of skin friction coefficient and heat and mass transfer rates at the wall are also computed and discussed. Our observations demonstrate that the temperature and concentration fields are decreasing functions of thermal and concentration relaxation parameters. PMID:28046011

  16. Interplay between inhibited transport and reaction in nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David Michael

    2013-01-01

    This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walkmore » based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.« less

  17. The well-posedness of the Kuramoto-Sivashinsky equation

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1984-01-01

    The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction diffusion systems, flame propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of a quadratic nonlinearity and an arbitrary linear parabolic part. It is shown that such equations are well posed, thus admitting a unique smooth solution, continuously dependent on its initial data. As an attractive alternative to standard energy methods, existence and stability are derived in this case, by patching in the large short time solutions without loss of derivatives.

  18. The well-posedness of the Kuramoto-Sivashinsky equation

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1986-01-01

    The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction diffusion systems, flame propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of a quadratic nonlinearity and an arbitrary linear parabolic part. It is shown that such equations are well posed, thus admitting a unique smooth solution, continuously dependent on its initial data. As an attractive alternative to standard energy methods, existence and stability are derived in this case, by patching in the large short time solutions without 'loss of derivatives'.

  19. Induced polarization: Simulation and inversion of nonlinear mineral electrodics

    NASA Astrophysics Data System (ADS)

    Agunloye, Olu

    1983-02-01

    Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.

  20. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

    PubMed Central

    Macklin, Paul

    2011-01-01

    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304

  1. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates

    PubMed Central

    Lu, Benzhuo; Zhou, Y.C.

    2011-01-01

    The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582

  2. Effect of surface curvature on diffusion-limited reactions on a curved surface

    NASA Astrophysics Data System (ADS)

    Eun, Changsun

    2017-11-01

    To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.

  3. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.

    PubMed

    Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang

    2005-03-01

    We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (01) implies an anomalous heat conduction with a divergent thermal conductivity (beta>0), and more interestingly, a subdiffusion (alpha<1) implies an anomalous heat conduction with a convergent thermal conductivity (beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.

  4. Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Naruemon, Rueangkham; Charin, Modchang

    2016-04-01

    Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.

  5. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    PubMed

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  6. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  7. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  8. Thermodynamics of Random Reaction Networks

    PubMed Central

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  9. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    PubMed

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Interface- and discontinuity-aware numerical schemes for plasma 3-T radiation diffusion in two and three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.

    2015-11-01

    A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less

  11. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  12. Stochastic Analysis of Reaction–Diffusion Processes

    PubMed Central

    Hu, Jifeng; Kang, Hye-Won

    2013-01-01

    Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732

  13. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    NASA Astrophysics Data System (ADS)

    Kim, Changho; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar

    2017-03-01

    We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.

  14. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    DOE PAGES

    Kim, Changho; Nonaka, Andy; Bell, John B.; ...

    2017-03-24

    Here, we develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules,more » to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. Furthermore, by comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.« less

  15. Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.

    PubMed

    Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng

    2018-06-01

    The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.

  16. Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality

    NASA Astrophysics Data System (ADS)

    Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel

    2017-03-01

    The origin of homochirality, the observed single-handedness of biological amino acids and sugars, has long been attributed to autocatalysis, a frequently assumed precursor for early life self-replication. However, the stability of homochiral states in deterministic autocatalytic systems relies on cross-inhibition of the two chiral states, an unlikely scenario for early life self-replicators. Here we present a theory for a stochastic individual-level model of autocatalytic prebiotic self-replicators that are maintained out of thermal equilibrium. Without chiral inhibition, the racemic state is the global attractor of the deterministic dynamics, but intrinsic multiplicative noise stabilizes the homochiral states. Moreover, we show that this noise-induced bistability is robust with respect to diffusion of molecules of opposite chirality, and systems of diffusively coupled autocatalytic chemical reactions synchronize their final homochiral states when the self-replication is the dominant production mechanism for the chiral molecules. We conclude that nonequilibrium autocatalysis is a viable mechanism for homochirality, without imposing additional nonlinearities such as chiral inhibition.

  17. Master stability functions reveal diffusion-driven pattern formation in networks

    NASA Astrophysics Data System (ADS)

    Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2018-03-01

    We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.

  18. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    PubMed

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  19. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems.

    PubMed

    Lampoudi, Sotiria; Gillespie, Dan T; Petzold, Linda R

    2009-03-07

    The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the stochastic simulation algorithm in which the spatially inhomogeneous volume of the system is divided into homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffusive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when the system is such that diffusive transfers occur much more frequently than chemical reactions. In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed to, on the one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on the other, to handle small reactant populations with greater accuracy than deterministic-stochastic hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately conditioned binomial random variables for representing the net numbers of molecules diffusing from any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the benefits of the algorithm.

  20. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  1. Traveling wave to a reaction-hyperbolic system for axonal transport

    NASA Astrophysics Data System (ADS)

    Huang, Feimin; Li, Xing; Zhang, Yinglong

    2017-07-01

    In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.

  2. A Huygens principle for diffusion and anomalous diffusion in spatially extended systems

    PubMed Central

    Gottwald, Georg A.; Melbourne, Ian

    2013-01-01

    We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481

  3. Boundary mediated position control of traveling waves

    NASA Astrophysics Data System (ADS)

    Martens, Steffen; Ziepke, Alexander; Engel, Harald

    Reaction control is an essential task in biological systems and chemical process industry. Often, the excitable medium supporting wave propagation exhibits an irregular shape and/or is limited in size. In particular, the analytic treatment of wave phenomena is notoriously difficult due to the spatial modulation of the domain's. Recently, we have provided a first systematic treatment by applying asymptotic perturbation analysis leading to an approximate description that involves a reduction of dimensionality; the 3D RD equation with spatially dependent NFBCs on the reactants reduces to a 1D reaction-diffusion-advection equation. Here, we present a novel method to control the position ϕ (t) of traveling waves in modulated domains according to a prespecified protocol of motion. Given this protocol, the ``optimal'' geometry of reactive domains Q (x) is found as the solution of the perturbatively derived equation of motion. Noteworthy, such a boundary control can be expressed in terms of the uncontrolled wave profile and its propagation velocity, rendering detailed knowledge of the reaction kinetics unnecessary. German Science Foundation DFG through the SFB 910 ''Control of Self-Organizing Nonlinear Systems''.

  4. A Simple Demonstration of Convective Effects on Reaction-Diffusion Systems: A Burning Cigarette.

    ERIC Educational Resources Information Center

    Pojman, John A.

    1990-01-01

    Described is a demonstration that provides an introduction to nonequilibrium reaction-diffusion systems and the coupling of hydrodynamics to chemical reactions. Experiments that demonstrate autocatalytic behavior that are effected by gravity and convection are included. (KR)

  5. Improvement of time-delayed feedback control by periodic modulation: analytical theory of Floquet mode control scheme.

    PubMed

    Just, Wolfram; Popovich, Svitlana; Amann, Andreas; Baba, Nilüfer; Schöll, Eckehard

    2003-02-01

    We investigate time-delayed feedback control schemes which are based on the unstable modes of the target state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external time scale in the control process. Phase shifts that develop between these modes and the controlled periodic orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear reaction diffusion system with global coupling and give a detailed investigation for the Rössler model. In addition we provide the analytical explanation for the observed control features.

  6. Semistable extremal ground states for nonlinear evolution equations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    2008-02-01

    In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.

  7. Information Processing Capacity of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  8. Information Processing Capacity of Dynamical Systems

    PubMed Central

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  9. Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.

    PubMed

    Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M

    2012-01-01

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.

  10. Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.

    2012-04-23

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leadsmore » to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.« less

  11. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  12. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    NASA Astrophysics Data System (ADS)

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ˜3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  13. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2003-07-01

    Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.

  14. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  15. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1997-01-01

    In this paper, we study the Local Discontinuous Galerkin methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, their high-order formal accuracy, and their easy handling of complicated geometries, for convection dominated problems. It is proven that for scalar equations, the Local Discontinuous Galerkin methods are L(sup 2)-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are k-th order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown.

  16. Nonlinear electrokinetic phenomena in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing

    This thesis addresses nonlinear electrokinetic mechanisms for transporting fluid and particles in microfluidic devices for potential applications in biomedical chips, microelectronic cooling and micro-fuel cells. Nonlinear electrokinetics have many advantages, such as low voltage, low power, high velocity, and no significant gas formation in the electrolyte. However, they involve new and complex charging and flow mechanisms that are still not fully understood or explored. Linear electrokinetic fingering that occurs when a fluid with a lower electrolyte concentration advances into one with a higher concentration is first analyzed. Unlike earlier miscible fingering theories, the linear stability analysis is carried out in the self-similar coordinates of the diffusing front. This new spectral theory is developed for small-amplitude gravity and viscous miscible fingering phenomena in general and applied to electrokinetic miscible fingering specifically. Transient electrokinetic fingering is shown to be insignificant in sub-millimeter micro-devices. Nonlinear electroosmotic flow around an ion-exchange spherical granule is studied next. When an electric field is applied across a conducting and ion-selective porous granule in an electrolyte solution, a polarized surface layer with excess counter-ions is created. The flux-induced polarization produces a nonlinear slip velocity to produce micro-vortices around this sphere. This polarization layer is reduced by convection at high velocity. Two velocity scalings at low and high electric fields are derived and favorably compared with experimental results. A mixing device based on this mechanism is shown to produce mixing efficiency 10-100 times higher than molecular diffusion. Finally, AC nonlinear electrokinetic flow on planar electrodes is studied. Two double layer charging mechanisms are responsible for the flow---one due to capacitive charging of ions from the bulk electrolyte and one due to Faradaic reactions at the electrode that consume or produce ions in the double layer. Faradaic charging is analyzed for specific reactions. From the theory, particular electrokinetic flows above the electrodes are selected for micropumps and bioparticle trapping by specifying the electrode geometry and the applied voltage and frequency.

  17. Suite of Benchmark Tests to Conduct Mesh-Convergence Analysis of Nonlinear and Non-constant Coefficient Transport Codes

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F. A.

    2014-12-01

    Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.

  18. The Role of Diffusivity Quenching in Flux-transport Dynamo Models

    NASA Astrophysics Data System (ADS)

    Guerrero, Gustavo; Dikpati, Mausumi; de Gouveia Dal Pino, Elisabete M.

    2009-08-01

    In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the α-quenching effect) and the turbulent magnetic diffusivity (the η-quenching effect). While the former has been widely explored, the effects of η-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear α-quenching term. Our results indicate that, although for α-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to η-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to ~2.5 times larger at the tachocline and up to ~2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the η-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in η produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in η remains in the diffusion-dominated regime.

  19. A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.

    2018-07-01

    We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.

  20. Primal-mixed formulations for reaction-diffusion systems on deforming domains

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo

    2015-10-01

    We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.

  1. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks

    NASA Astrophysics Data System (ADS)

    Fiorina, B.; Lele, S. K.

    2007-03-01

    A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.

  2. Efficient reactive Brownian dynamics

    DOE PAGES

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-21

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less

  3. Efficient reactive Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-01

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.

  4. Efficient reactive Brownian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less

  5. Extremal equilibria for reaction-diffusion equations in bounded domains and applications

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    We show the existence of two special equilibria, the extremal ones, for a wide class of reaction-diffusion equations in bounded domains with several boundary conditions, including non-linear ones. They give bounds for the asymptotic dynamics and so for the attractor. Some results on the existence and/or uniqueness of positive solutions are also obtained. As a consequence, several well-known results on the existence and/or uniqueness of solutions for elliptic equations are revisited in a unified way obtaining, in addition, information on the dynamics of the associated parabolic problem. Finally, we ilustrate the use of the general results by applying them to the case of logistic equations. In fact, we obtain a detailed picture of the positive dynamics depending on the parameters appearing in the equation.

  6. A computationally efficient scheme for the non-linear diffusion equation

    NASA Astrophysics Data System (ADS)

    Termonia, P.; Van de Vyver, H.

    2009-04-01

    This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.

  7. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  8. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods

    DTIC Science & Technology

    2002-05-06

    reaction- diffusion equation is a difficult problem in analysis that will not be addressed here. Errors will also arise from numerically approx solutions to...the ODEs. When comparing the approximate solution to actual reaction- diffusion systems found in nature, we must also take into account errors that...

  9. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  10. Nonlinear theory of diffusive acceleration of particles by shock waves

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Drury, L. O'C.

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.

  11. Modelling and simulating reaction-diffusion systems using coloured Petri nets.

    PubMed

    Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming

    2014-10-01

    Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  13. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.

  14. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  15. DRBEM solution of the acid-mediated tumour invasion model with time-dependent carrying capacities

    NASA Astrophysics Data System (ADS)

    Meral, Gülnihal

    2017-07-01

    It is known that the pH level of the extracellular tumour environment directly effects the progression of the tumour. In this study, the mathematical model for the acid-mediated tumour cell invasion consisting of a system of nonlinear reaction diffusion equations describing the interaction between the density of the tumour cells, normal cells and the concentration of ? protons produced by the tumour cells is solved numerically using the combined application of dual reciprocity boundary element method (DRBEM) and finite difference method. The space derivatives in the model are discretised by DRBEM using the fundamental solution of Laplace equation considering the time derivative and the nonlinearities as the nonhomogenity. The resulting systems of ordinary differential equations after the application of DRBEM are then discretised using forward difference. Because of the highly nonlinear character of the model, there arises difficulties in solving the model especially for two-dimensions and the boundary-only nature of DRBEM discretisation gives the advantage of having solutions with a lower computational cost. The proposed method is tested with different kinds of carrying capacities which also depend on time. The results of the numerical simulations are compared among each case and seen to confirm the expected behaviour of the model.

  16. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud

  17. Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients

    DOE PAGES

    Kolev, Tzanio V.; Xu, Jinchao; Zhu, Yunrong

    2015-08-23

    In this study, we extend some of the multilevel convergence results obtained by Xu and Zhu, to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner.

  18. Molecular, metabolic, and genetic control: An introduction

    NASA Astrophysics Data System (ADS)

    Tyson, John J.; Mackey, Michael C.

    2001-03-01

    The living cell is a miniature, self-reproducing, biochemical machine. Like all machines, it has a power supply, a set of working components that carry out its necessary tasks, and control systems that ensure the proper coordination of these tasks. In this Special Issue, we focus on the molecular regulatory systems that control cell metabolism, gene expression, environmental responses, development, and reproduction. As for the control systems in human-engineered machines, these regulatory networks can be described by nonlinear dynamical equations, for example, ordinary differential equations, reaction-diffusion equations, stochastic differential equations, or cellular automata. The articles collected here illustrate (i) a range of theoretical problems presented by modern concepts of cellular regulation, (ii) some strategies for converting molecular mechanisms into dynamical systems, (iii) some useful mathematical tools for analyzing and simulating these systems, and (iv) the sort of results that derive from serious interplay between theory and experiment.

  19. Spatial self-organization in hybrid models of multicellular adhesion

    NASA Astrophysics Data System (ADS)

    Bonforti, Adriano; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard

    2016-10-01

    Spatial self-organization emerges in distributed systems exhibiting local interactions when nonlinearities and the appropriate propagation of signals are at work. These kinds of phenomena can be modeled with different frameworks, typically cellular automata or reaction-diffusion systems. A different class of dynamical processes involves the correlated movement of agents over space, which can be mediated through chemotactic movement or minimization of cell-cell interaction energy. A classic example of the latter is given by the formation of spatially segregated assemblies when cells display differential adhesion. Here, we consider a new class of dynamical models, involving cell adhesion among two stochastically exchangeable cell states as a minimal model capable of exhibiting well-defined, ordered spatial patterns. Our results suggest that a whole space of pattern-forming rules is hosted by the combination of physical differential adhesion and the value of probabilities modulating cell phenotypic switching, showing that Turing-like patterns can be obtained without resorting to reaction-diffusion processes. If the model is expanded allowing cells to proliferate and die in an environment where diffusible nutrient and toxic waste are at play, different phases are observed, characterized by regularly spaced patterns. The analysis of the parameter space reveals that certain phases reach higher population levels than other modes of organization. A detailed exploration of the mean-field theory is also presented. Finally, we let populations of cells with different adhesion matrices compete for reproduction, showing that, in our model, structural organization can improve the fitness of a given cell population. The implications of these results for ecological and evolutionary models of pattern formation and the emergence of multicellularity are outlined.

  20. Localized mRNA translation and protein association

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2014-08-01

    Recent direct observations of localization of mRNAs and proteins both in prokaryotic and eukaryotic cells can be related to slowdown of diffusion of these species due to macromolecular crowding and their ability to aggregate and form immobile or slowly mobile complexes. Here, a generic kinetic model describing both these factors is presented and comprehensively analyzed. Although the model is non-linear, an accurate self-consistent analytical solution of the corresponding reaction-diffusion equation has been constructed, the types of localized protein distributions have been explicitly shown, and the predicted kinetic regimes of gene expression have been classified.

  1. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal autoregressive filter models are considered, for a prediction of EEG signal values. Thus Signal features values for successive, short, quasi stationary segments of brain electrical activity can be obtained, with the objective of detecting distinct changes prior to impending epileptic seizures. Furthermore long term recordings gained during presurgical diagnostics in temporal lobe epilepsy are analyzed and the predictive performance of the extracted features is evaluated statistically. Therefore a Receiver Operating Characteristic analysis is considered, assessing the distinguishability between distributions of supposed preictal and interictal periods.

  2. Physarum machines: encapsulating reaction-diffusion to compute spanning tree

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2007-12-01

    The Physarum machine is a biological computing device, which employs plasmodium of Physarum polycephalum as an unconventional computing substrate. A reaction-diffusion computer is a chemical computing device that computes by propagating diffusive or excitation wave fronts. Reaction-diffusion computers, despite being computationally universal machines, are unable to construct certain classes of proximity graphs without the assistance of an external computing device. I demonstrate that the problem can be solved if the reaction-diffusion system is enclosed in a membrane with few ‘growth points’, sites guiding the pattern propagation. Experimental approximation of spanning trees by P. polycephalum slime mold demonstrates the feasibility of the approach. Findings provided advance theory of reaction-diffusion computation by enriching it with ideas of slime mold computation.

  3. Interface Reactions and Synthetic Reaction of Composite Systems

    PubMed Central

    Park, Joon Sik; Kim, Jeong Min

    2010-01-01

    Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.

  4. Stochastic lattice model of synaptic membrane protein domains.

    PubMed

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  5. An accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems using gradient-based diffusion and tau-leaping.

    PubMed

    Koh, Wonryull; Blackwell, Kim T

    2011-04-21

    Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.

  6. Water-Rock Interaction Simulations of Iron Oxide Mobilization and Precipitation: Implications of Cross-diffusion Reactions for Terrestrial and Mars 'Blueberry' Hematite Concretions

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.; Parry, W. T.

    2005-12-01

    Modeling of how terrestrial concretions form can provide valuable insights into understanding water-rock interactions that led to the formation of hematite concretions at Meridiani Planum, Mars. Numerical simulations of iron oxide concretions in the Jurassic Navajo Sandstone of southern Utah provide physical and chemical input parameters for emulating conditions that may have prevailed on Mars. In the terrestrial example, iron oxide coatings on eolian sand grains are reduced and mobilized by methane or petroleum. Precipitation of goethite or hematite occurs as Fe interacts with oxygen. Conditions that produced Navajo Sandstone concretions can range from a regional scale that is strongly affected by advection of large pore volumes of water, to small sub-meter scale features that are dominantly controlled by diffusive processes. Hematite concretions are results of a small-scale cross-diffusional process, where Fe and oxygen are supplied from two opposite sides from the 'middle' zone of mixing where concretions precipitate. This is an ideal natural system where Liesegang banding and other self-organized patterns can evolve. A complicating variable here is the sedimentologic (both mineralogic and textural) heterogeneity that, in reality, may be the key factor controlling the nucleation and precipitation habits (including possible competitive growth) of hematite concretions. Sym.8 water-rock interaction simulator program was used for the Navajo Sandstone concretions. Sym.8 is a water-rock simulator that accounts for advective and diffusive mass-transfer, and equilibrium and kinetic reactions. The program uses a dynamic composite media texture model to address changing sediment composition and texture to be consistent with the reaction progress. Initial one-dimensional simulation results indicate precipitation heterogeneity in the range of sub-meters, e.g., possible banding and distribution of iron oxide nodules may be centimeters apart for published diffusivities and water chemistries of the solutes involved. This modeling effort underscores the importance of coupled reactions and mass-transfer in formation of iron oxide concretions in both terrestrial and Mars sediments. Methane is interpreted to be the reactive agent that mobilizes iron in Navajo Sandstone. On Mars volatile volcanic gases may be the reactive agents that mobilize iron from volcanic sediments. In both cases, subsequent diffusive and advective mass-transfer coupled to nonlinear chemical reactions produces localized precipitates.

  7. An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Ilie, Silvana

    2017-12-01

    Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.

  8. Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects

    NASA Technical Reports Server (NTRS)

    Vainshtein, Samuel I.; Cattaneo, Fausto

    1992-01-01

    Astrophysical dynamos operate in the limit of small magnetic diffusivity. In order for magnetic reconnection to occur, very small magnetic structures must form so that diffusion becomes effective. The formation of small-scale fields is accompanied by the stretching of the field lines and therefore by an amplification of the magnetic field strength. The back reaction of the magnetic field on the motions leads to the eventual saturation of the dynamo process, thus posing a constraint on the amount of magnetic flux that can be generated by dynamo action, It is argued that in the limit of small diffusivity only a small amount of flux, many orders of magnitude less than the observed fluxes, can be created by dynamo processes.

  9. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  10. A numerical method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation

    NASA Astrophysics Data System (ADS)

    Mamehrashi, K.; Yousefi, S. A.

    2017-02-01

    This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.

  11. Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Collier, N.; Knepley, M.

    2015-12-01

    The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).

  12. Analysis of Classes of Superlinear Semipositone Problems with Nonlinear Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Morris, Quinn A.

    We study positive radial solutions for classes of steady state reaction diffusion problems on the exterior of a ball with both Dirichlet and nonlinear boundary conditions. We consider p-Laplacian problems (p > 1) with reaction terms which are superlinear at infinity and semipositone. In the case p = 2, using variational methods, we establish the existence of a solution, and via detailed analysis of the Green's function, we prove the positivity of the solution. In the case p ≠ 2, we again use variational methods to establish the existence of a solution, but the positivity of the solution is achieved via sophisticated a priori estimates. In the case p ≠ 2, the Green's function analysis is no longer available. Our results significantly enhance the literature on superlinear semipositone problems. Finally, we provide algorithms for the numerical generation of exact bifurcation curves for one-dimensional problems. In the autonomous case, we extend and analyze a quadrature method, and using nonlinear solvers in Mathematica, generate bifurcation curves. In the nonautonomous case, we employ shooting methods in Mathematica to generate bifurcation curves.

  13. New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.

  14. Emergent Chemical Behavior in Variable-Volume Protocells

    PubMed Central

    Shirt-Ediss, Ben; Solé, Ricard V.; Ruiz-Mirazo, Kepa

    2015-01-01

    Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account. PMID:25590570

  15. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  16. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  17. Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2017-12-21

    The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.

  18. Simulation tools for particle-based reaction-diffusion dynamics in continuous space

    PubMed Central

    2014-01-01

    Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics. PMID:25737778

  19. DEVELOPMENT OF SPLIT-OPERATOR, PETROV-GALERKIN METHODS TO SIMULATE TRANSPORT AND DIFFUSION PROBLEMS

    EPA Science Inventory

    The rate at which contaminants in groundwater undergo sorption and desorption is routinely described using diffusion models. Such approaches, when incorporated into transport models, lead to large systems of coupled equations, often nonlinear. This has restricted applications of ...

  20. A note on stress-driven anisotropic diffusion and its role in active deformable media.

    PubMed

    Cherubini, Christian; Filippi, Simonetta; Gizzi, Alessio; Ruiz-Baier, Ricardo

    2017-10-07

    We introduce a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to employ diffusion tensors directly influenced by the coupling with mechanical stress. The proposed generalised reaction-diffusion-mechanics model reveals that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the mathematical model and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-driven diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electric feedback in actively deforming bio-materials such as the cardiac tissue. Copyright © 2017. Published by Elsevier Ltd.

  1. Analytical Solution for Transport with Bimolecular Reactions in Fracture-Matrix Systems with Application to In-Situ Chemical Oxidation

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Arshadi, M.

    2016-12-01

    In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.

  2. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations

    NASA Astrophysics Data System (ADS)

    Budroni, M. A.

    2015-12-01

    Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.

  3. Pattern formation in the iodate-sulfite-thiosulfate reaction-diffusion system.

    PubMed

    Liu, Haimiao; Pojman, John A; Zhao, Yuemin; Pan, Changwei; Zheng, Juhua; Yuan, Ling; Horváth, Attila K; Gao, Qingyu

    2012-01-07

    Sodium polyacrylate-induced pH pattern formation and starch-induced iodine pattern formation were investigated in the iodate-sulfite-thiosulfate (IST) reaction in a one-side fed disc gel reactor (OSFR). As binding agents of the autocatalyst of hydrogen ions or iodide ions, different content of sodium polyacrylate or starch has induced various types of pattern formation. We observed pH pulses, striped patterns, mixed spots and stripes, and hexagonal spots upon increasing the content of sodium polyacrylate and observed iodine pulses, branched patterns, and labyrinthine patterns upon increasing the starch content in the system. Coexistence of a pH front and an iodine front was also studied in a batch IST reaction-diffusion system. Both pH and iodine front instabilities were observed in the presence of sodium polyacrylate, i.e., cellular fronts and transient Turing structures resulting from the decrease in diffusion coefficients of activators. The mechanism of multiple feedback may explain the different patterns in the IST reaction-diffusion system.

  4. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811

  5. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  6. A study on ?-dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.

    2018-03-01

    This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.

  7. Generalized Hydrodynamic Treatment of the Interplay between Restricted Transport and Catalytic Reactions in Nanoporous Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David M.; Wang, Jing; Evans, James W.

    2012-05-30

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  8. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

    PubMed

    Ackerman, David M; Wang, Jing; Evans, James W

    2012-06-01

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  9. Quasisolitons in self-diffusive excitable systems, or Why asymmetric diffusivity obeys the Second Law

    PubMed Central

    Biktashev, V. N.; Tsyganov, M. A.

    2016-01-01

    Solitons, defined as nonlinear waves which can reflect from boundaries or transmit through each other, are found in conservative, fully integrable systems. Similar phenomena, dubbed quasi-solitons, have been observed also in dissipative, “excitable” systems, either at finely tuned parameters (near a bifurcation) or in systems with cross-diffusion. Here we demonstrate that quasi-solitons can be robustly observed in excitable systems with excitable kinetics and with self-diffusion only. This includes quasi-solitons of fixed shape (like KdV solitons) or envelope quasi-solitons (like NLS solitons). This can happen in systems with more than two components, and can be explained by effective cross-diffusion, which emerges via adiabatic elimination of a fast but diffusing component. We describe here a reduction procedure can be used for the search of complicated wave regimes in multi-component, stiff systems by studying simplified, soft systems. PMID:27491430

  10. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.

    PubMed

    Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik

    2012-05-10

    Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. We describe STEPS, a stochastic reaction-diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction-diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. STEPS simulates models of cellular reaction-diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/

  11. Chemically reactive species in squeezed flow through modified Fourier's and Fick's laws

    NASA Astrophysics Data System (ADS)

    Farooq, M.; Ahmad, S.; Javed, M.; Anjum, Aisha

    2018-02-01

    The squeezing flow of a Newtonian fluid with variable viscosity over a stretchable sheet embedded in Darcy porous medium is addressed. Cattaneo-Christov double diffusion models are adopted to disclose the salient features of heat and mass transport via variable thermal conductivity and variable mass diffusivity instead of conventional Fourier's and Fick's laws. Further, the concept of heat generation/absorption coefficient and first-order chemical reaction are also imposed to illustrate the characteristics of heat and mass transfer. Highly nonlinear computations are developed in dimensionless form and analyzed via the homotopic technique. The variation of flow parameters on velocity, concentration, and temperature distributions are sketched and disclosed physically. The results found that both concentration and temperature distributions decay for higher solutal and thermal relaxation parameters, respectively. Moreover, a higher chemical reaction parameter results in the reduction of the concentration field whereas the temperature profile enhances for a higher heat generation/absorption parameter.

  12. [Influence of mediator diffusion on trigger mode of a synapse].

    PubMed

    Vasilev, A N; Kulish, M V

    2014-01-01

    The model of postsynaptic membrane activation, is proposed in the paper. This model takes into account inhomogeneity of mediator's space distribution in the region of the synaptic cleft as well as nonlinear nature of interaction between the mediator and receptors on the postsynaptic membrane. Based on equations of this model stationary solutions are calculated for mediator distribution in the synaptic cleft and the number of activated receptors. Kinetics of reactions for activation and deactivation of receptors is analyzed within the concept of a trigger mode of the synapse. It is shown that activation-deactivation processes and redistribution of the mediator in the cleft can be interpreted as successive transitions between two stationary states of the system. Time of transitions between these states is found and its dependence on system parameters (in particular on the width of the synaptic cleft) is analyzed.

  13. Multiscale Modeling of Diffusion in a Crowded Environment.

    PubMed

    Meinecke, Lina

    2017-11-01

    We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.

  14. Towards a minimal stochastic model for a large class of diffusion-reactions on biological membranes.

    PubMed

    Chevalier, Michael W; El-Samad, Hana

    2012-08-28

    Diffusion of biological molecules on 2D biological membranes can play an important role in the behavior of stochastic biochemical reaction systems. Yet, we still lack a fundamental understanding of circumstances where explicit accounting of the diffusion and spatial coordinates of molecules is necessary. In this work, we illustrate how time-dependent, non-exponential reaction probabilities naturally arise when explicitly accounting for the diffusion of molecules. We use the analytical expression of these probabilities to derive a novel algorithm which, while ignoring the exact position of the molecules, can still accurately capture diffusion effects. We investigate the regions of validity of the algorithm and show that for most parameter regimes, it constitutes an accurate framework for studying these systems. We also document scenarios where large spatial fluctuation effects mandate explicit consideration of all the molecules and their positions. Taken together, our results derive a fundamental understanding of the role of diffusion and spatial fluctuations in these systems. Simultaneously, they provide a general computational methodology for analyzing a broad class of biological networks whose behavior is influenced by diffusion on membranes.

  15. Approximate Analytical Time-Dependent Solutions to Describe Large-Amplitude Local Calcium Transients in the Presence of Buffers

    PubMed Central

    Mironova, Lidia A.; Mironov, Sergej L.

    2008-01-01

    Local Ca2+ signaling controls many neuronal functions, which is often achieved through spatial localization of Ca2+ signals. These nanodomains are formed due to combined effects of Ca2+ diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca2+ diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca2+ levels up to 50 μM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca2+] transients, which participate in various physiological processes. PMID:17872951

  16. Breakdown of the reaction-diffusion master equation with nonelementary rates

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  17. Efficient gradient calibration based on diffusion MRI.

    PubMed

    Teh, Irvin; Maguire, Mahon L; Schneider, Jürgen E

    2017-01-01

    To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. The errors in apparent diffusion coefficients along orthogonal axes ranged from -9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and -0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from -5.5% to + 4.5% precalibration and were likewise reduced to -0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170-179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 Wiley Periodicals, Inc.

  18. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  19. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    NASA Astrophysics Data System (ADS)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  20. Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts

    NASA Astrophysics Data System (ADS)

    D'Hernoncourt, J.; De Wit, A.

    2010-06-01

    Across traveling exothermic autocatalytic fronts, a density jump can be observed due to changes in composition and temperature. These density changes are prone to induce buoyancy-driven convection around the front when the propagation takes place in absence of gel within the gravity field. Most recent experiments devoted to studying such reaction-diffusion-convection dynamics are performed in Hele-Shaw cells, two glass plates separated by a thin gap width and filled by the chemical solutions. We investigate here the influence of heat losses through the walls of such cells on the nonlinear fingering dynamics of exothermic autocatalytic fronts propagating in vertical Hele-Shaw cells. We show that these heat losses increase tip splittings and modify the properties of the flow field. A comparison of the differences between the dynamics in reactors with respectively insulating and conducting walls is performed as a function of the Lewis number Le, the Newton cooling coefficient α quantifying the amplitude of heat losses and the width of the system. We find that tip splitting is enhanced for intermediate values of α while coarsening towards one single finger dominates for insulated systems or large values of α leading to situations equivalent to isothermal ones.

  1. Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2 + and its dyes

    NASA Astrophysics Data System (ADS)

    Sigaut, Lorena; Villarruel, Cecilia; Ponce, María Laura; Ponce Dawson, Silvina

    2017-06-01

    Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2 +) and single-wavelength dyes that increase their fluorescence upon Ca2 + binding. We validate the approach with experiments performed in aqueous solutions containing Ca2 + and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.

  2. Computational methods for diffusion-influenced biochemical reactions.

    PubMed

    Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G

    2007-08-01

    We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/

  3. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A fully coupled 3D transport model in SPH for multi-species reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adami, Stefan; Hu, X. Y.; Adams, N. A.

    2011-08-23

    Abstract—In this paper we present a fully generalized transport model for multiple species in complex two and threedimensional geometries. Based on previous work [1] we have extended our interfacial reaction-diffusion model to handle arbitrary numbers of species allowing for coupled reaction models. Each species is tracked independently and we consider different physics of a species with respect to the bulk phases in contact. We use our SPH model to simulate the reaction-diffusion problem on a pore-scale level of a solid oxide fuel cell (SOFC) with special emphasize on the effect of surface diffusion.

  5. Double-Diffusive Convection at Low Prandtl Number

    NASA Astrophysics Data System (ADS)

    Garaud, Pascale

    2018-01-01

    This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.

  6. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  7. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.

    PubMed

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  8. Interface proliferation and the growth of labyrinths in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Muraki, David J.; Petrich, Dean M.

    1996-04-01

    In the bistable regime of the FitzHugh-Nagumo model of reaction-diffusion systems, spatially homogeneous patterns may be nonlinearly unstable to the formation of compact "localized states." The formation of space-filling patterns from instabilities of such structures is studied in the context of a nonlocal contour dynamics model for the evolution of boundaries between high and low concentrations of the activator. An earlier heuristic derivation [D. M. Petrich and R. E. Goldstein,

    Phys. Rev. Lett. 72, 1120 (1994)
    ] is made more systematic by an asymptotic analysis appropriate to the limits of fast inhibition, sharp activator interfaces, and small asymmetry in the bistable minima. The resulting contour dynamics is temporally local, with the normal component of the velocity involving a local contribution linear in the interface curvature and a nonlocal component having the form of a screened Biot-Savart interaction. The amplitude of the nonlocal interaction is set by the activator-inhibitor coupling and controls the "lateral inhibition" responsible for the destabilization of localized structures such as spots and stripes, and the repulsion of nearby interfaces in the later stages of those instabilities. The phenomenology of pattern formation exhibited by the contour dynamics is consistent with that seen by Lee, McCormick, Ouyang, and Swinney
    [Science 261, 192 (1993)]
    in experiments on the iodide-ferrocyanide-sulfite reaction in a gel reactor. Extensive numerical studies of the underlying partial differential equations are presented and compared in detail with the contour dynamics. The similarity of these phenomena (and their mathematical description) with those observed in amphiphilic monolayers, type I superconductors in the intermediate state, and magnetic fluids in Hele-Shaw geometry is emphasized.

  9. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    NASA Astrophysics Data System (ADS)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  10. S{sub 2}SA preconditioning for the S{sub n} equations with strictly non negative spatial discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less

  11. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  12. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  13. Unprecedented homotopy perturbation method for solving nonlinear equations in the enzymatic reaction of glucose in a spherical matrix.

    PubMed

    Saranya, K; Mohan, V; Kizek, R; Fernandez, C; Rajendran, L

    2018-02-01

    The theory of glucose-responsive composite membranes for the planar diffusion and reaction process is extended to a microsphere membrane. The theoretical model of glucose oxidation and hydrogen peroxide production in the chitosan-aliginate microsphere has been discussed in this manuscript for the first time. We have successfully reported an analytical derived methodology utilizing homotopy perturbation to perform the numerical simulation. The influence and sensitive analysis of various parameters on the concentrations of gluconic acid and hydrogen peroxide are also discussed. The theoretical results enable to predict and optimize the performance of enzyme kinetics.

  14. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

    PubMed

    Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa

    2010-02-21

    We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

  15. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  16. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  17. Numerical methods of solving a system of multi-dimensional nonlinear equations of the diffusion type

    NASA Technical Reports Server (NTRS)

    Agapov, A. V.; Kolosov, B. I.

    1979-01-01

    The principles of conservation and stability of difference schemes achieved using the iteration control method were examined. For the schemes obtained of the predictor-corrector type, the conversion was proved for the control sequences of approximate solutions to the precise solutions in the Sobolev metrics. Algorithms were developed for reducing the differential problem to integral relationships, whose solution methods are known, were designed. The algorithms for the problem solution are classified depending on the non-linearity of the diffusion coefficients, and practical recommendations for their effective use are given.

  18. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.

  19. Multi-Algorithm Particle Simulations with Spatiocyte.

    PubMed

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  20. Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system.

    PubMed

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2016-07-01

    We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.

  1. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  2. Multispecies reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.

    2000-10-01

    Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large-time behavior of the average densities has also been obtained.

  3. Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas

    NASA Astrophysics Data System (ADS)

    Liu, Yechi

    2018-06-01

    The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.

  4. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less

  5. Characterization of Perovskite Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Walker, Phillip

    The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained. This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor.

  6. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    PubMed

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  7. Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning

    NASA Astrophysics Data System (ADS)

    Walter, J.-C.; Dorignac, J.; Lorman, V.; Rech, J.; Bouet, J.-Y.; Nollmann, M.; Palmeri, J.; Parmeggiani, A.; Geniet, F.

    2017-07-01

    Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.

  8. Adaptive boundary concentration control using Zakai equation

    NASA Astrophysics Data System (ADS)

    Tenno, R.; Mendelson, A.

    2010-06-01

    A mean-variance control problem is formulated with respect to a partially observed nonlinear system that includes unknown constant parameters. A physical prototype of the system is the cathode surface reaction in an electrolysis cell, where the controller aim is to keep the boundary concentration of species in the near vicinity of the cathode surface low but not zero. The boundary concentration is a diffusion-controlled process observed through the measured current density and, in practice, controlled through the applied voltage. The former incomplete data control problem is converted to complete data-to the so-called separated control problem whose solution is given by the infinite-dimensional Zakai equation. In this article, the separated control problem is solved numerically using pathwise integration of the Zakai equation. This article demonstrates precise tracking of the target trajectory with a rapid convergence of estimates to unknown parameters, which take place simultaneously with control.

  9. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  10. The existence of minimum speed of traveling wave solutions to a non-KPP isothermal diffusion system

    NASA Astrophysics Data System (ADS)

    Chen, Xinfu; Liu, Guirong; Qi, Yuanwei

    2017-08-01

    The reaction-diffusion system at =axx - abn ,bt = Dbxx + abn, where n ≥ 1 and D > 0, arises from many real-world chemical reactions. Whereas n = 1 is the KPP type nonlinearity, which is much studied and very important results obtained in literature not only in one dimensional spatial domains, but also multi-dimensional spaces, but n > 1 proves to be much harder. One of the interesting features of the system is the existence of traveling wave solutions. In particular, for the traveling wave solution a (x , t) = a (x - vt), b (x , t) = b (x - vt), where v > 0, if we fix lim x → - ∞ ⁡ (a , b) = (0 , 1) it was proved by many authors with different bounds v* (n , D) > 0 such that a traveling wave solution exists for any v ≥v* when n > 1. For the latest progress, see [7]. That is, the traveling wave problem exhibits the mono-stable phenomenon for traveling wave of scalar equation ut =uxx + f (u) with f (0) = f (1) = 0, f (u) > 0 in (0 , 1) and, u = 0 is unstable and u = 1 is stable. A natural and significant question is whether, like the scalar case, there exists a minimum speed. That is, whether there exists a minimum speed vmin > 0 such that traveling wave solution of speed v exists iff v ≥vmin? This is an open question, in spite of many works on traveling wave of the system in last thirty years. This is duo to the reason, unlike the KPP case, the minimum speed cannot be obtained through linear analysis at equilibrium points (a , b) = (0 , 1) and (a , b) = (1 , 0). In this work, we give an affirmative answer to this question.

  11. Determination of the diffusion coefficient of hydrogen ion in hydrogels.

    PubMed

    Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső

    2017-05-17

    The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.

  12. Discrete and continuum links to a nonlinear coupled transport problem of interacting populations

    NASA Astrophysics Data System (ADS)

    Duong, M. H.; Muntean, A.; Richardson, O. M.

    2017-07-01

    We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.

  13. Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Khrennikov, A.

    2017-10-01

    This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.

  14. Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems

    PubMed Central

    Hummer, Gerhard

    2015-01-01

    We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592

  15. Stochastic thermodynamics across scales: Emergent inter-attractoral discrete Markov jump process and its underlying continuous diffusion

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2013-01-01

    We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.

  16. Pattern formation in mass conserving reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Brauns, Fridtjof; Halatek, Jacob; Frey, Erwin

    We present a rigorous theoretical framework able to generalize and unify pattern formation for quantitative mass conserving reaction-diffusion models. Mass redistribution controls chemical equilibria locally. Separation of diffusive mass redistribution on the level of conserved species provides a general mathematical procedure to decompose complex reaction-diffusion systems into effectively independent functional units, and to reveal the general underlying bifurcation scenarios. We apply this framework to Min protein pattern formation and identify the mechanistic roles of both involved protein species. MinD generates polarity through phase separation, whereas MinE takes the role of a control variable regulating the existence of MinD phases. Hence, polarization and not oscillations is the generic core dynamics of Min proteins in vivo. This establishes an intrinsic mechanistic link between the Min system and a broad class of intracellular pattern forming systems based on bistability and phase separation (wave-pinning). Oscillations are facilitated by MinE redistribution and can be understood mechanistically as relaxation oscillations of the polarization direction.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Andres

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less

  18. Domainal cleavage as an Anisotropic Reaction-diffusion Process

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran; Meere, Patrick

    2017-04-01

    Domainal cleavage comprises zones dominated by quartz and feldspar (QF-domains) and zones dominated by Mica (M-domains) which form at low metamorphic grades. The protolith is typically fairly homogeneous mudstone, siltstone, sandstone or limestone. Wet diffusion or pressure solution along grain boundaries is a key mechanism in the development of domanial cleavage. However, this does not explain why M-domains become sub-regularly spaced, visually evident in coarser-grained rocks, and take on an anastomising morphology. The ratio of M to QF-domains by volume can range from 1 to 0.1 and lower i.e. in extreme cases M-domains are intermittent but regularly spaced. It is suggested here that an anisotropic reaction-diffusion process model can explain these features. The imposed stress field instantaneously leads to anisotropy of diffusion by narrowing intergranular channels perpendicular to the principal stress. This leads to a preferred diffusion of chemicals parallel to the principal stress direction and lower diffusion rates in the normal direction. Combining this with the chemical reaction of pressure solution produces an anisotropic reaction-diffusion system. Both isotropic and anistropic reaction diffusion systems lead to pattern formation as discovered by Alan Turing on the 1950's as an explanation for patterns found in animal skins such as spots and stripes. Thus domanial cleavage is a striped pattern induced by diffusion anisotropy combined with a chemical reaction. Furthermore, rates of chemical reaction in intergranular fluids is likely to be many orders of magnitude greater that rates of deformation. Therefore we expect domanial cleavage to form relatively rapidly. As deformation progresses the M-domains behave less competently and may be the site of enhanced shearing. An example from Co. Cork, Ireland demonstrates shear folding in low-grade metasedimentary rocks with reverse shear along M-domains at a high angle to the maximum compressive stress.

  19. Self-Organized Patterns in Gas-Discharge: Particle-Like Behaviour and Dissipative Solitons

    NASA Astrophysics Data System (ADS)

    Purwins, H.-G.

    2008-03-01

    The understanding of self-organise patterns in spatially extended nonlinear dissipative systems (SOPs) is one of the most challenging subjects in modern natural sciences. In the last 20 years it turned out that research in the field of low temperature gas-discharge can help to obtain insight into important aspect of SOPs. At the same time, due to the practical relevance of plasma systems one might expect interesting applications. In the present paper the focus is on self-organised filamentary patterns in planar dc and ac systems with high ohmic and dielectric barrier, respectively. - In the discharge plane of these systems filaments show up as spots which are also referred to as dissipative solitons (DSs). In many respect experimentally detected DSs exhibit particle-like behaviour. Among other things, isolated stationary or travelling DSs, stationary, travelling or rotating "molecules" and various kinds of many-body systems have been observed. Also scattering, generation and annihilation of DSs are frequent phenomena. - At least some of these patterns can be described quantitatively in terms of a drift diffusion model. It is also demonstrated that a simple reaction diffusion model allows for an intuitive understanding of many of the observed phenomena. At the same time this model is the basis for a theoretical foundation of the particle picture and the experimentally observed universal behaviour of SOPs. - Finally some hypothetical applications are discussed.

  20. Reaction-diffusion systems and external morphogen gradients: the two-dimensional case, with an application to skeletal pattern formation.

    PubMed

    Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A

    2012-03-01

    We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.

  1. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  2. Diffusion and Surface Reaction in Heterogeneous Catalysis

    ERIC Educational Resources Information Center

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  3. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  4. Incomplete Mixing and Reactions - A Lagrangian Approach in a Pure Shear Flow

    NASA Astrophysics Data System (ADS)

    Paster, A.; Aquino, T.; Bolster, D.

    2014-12-01

    Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. As reactions progress in a system and deplete reactant concentrations, initial fluctuations in the concentrations of reactions can be amplified relative to mean background concentrations and lead to spatial segregation of reactants. As the system evolves, in the absence of sufficient mixing, this segregation will increase, leading to a persistence of incomplete mixing that fundamentally changes the effective rate at which overall reactions will progress. On the other hand, non-uniform fluid flows are known to affect mixing between interacting solutes. Thus a natural question arises: Can non-uniform flows sufficiently enhance mixing to suppress incomplete mixing effects, and if so, under what conditions? In this work we address this question by considering one of the simplest possible flows, a laminar pure shear flow, which is known to significantly enhance mixing relative to diffusion alone. To study this system we adapt a novel Lagrangian particle-based random walk method, originally designed to simulate reactions in purely diffusive systems, to the case of advection and diffusion in a shear flow. To interpret the results we develop a semi-analytical solution, by proposing a closure approximation that aims to capture the effect of incomplete mixing. The results obtained via the Lagrangian model and the semi-analytical solutions consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well-mixed, but represented by a reduced effective reaction rate. If shear effects are sufficiently strong, the incomplete mixing regime never emerges and the system can behave as well-mixed at all times.

  5. Incomplete Mixing and Reactions - A Lagrangian Approach in a Pure Shear Flow

    NASA Astrophysics Data System (ADS)

    Paster, Amir; Bolster, Diogo; Aquino, Tomas

    2015-04-01

    Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. As reactions progress in a system and deplete reactant concentrations, initial fluctuations in the concentrations of reactions can be amplified relative to mean background concentrations and lead to spatial segregation of reactants. As the system evolves, in the absence of sufficient mixing, this segregation will increase, leading to a persistence of incomplete mixing that fundamentally changes the effective rate at which overall reactions will progress. On the other hand, nonuniform fluid flows are known to affect mixing between interacting solutes. Thus a natural question arises: Can non-uniform flows sufficiently enhance mixing to suppress incomplete mixing effects, and if so, under what conditions? In this work we address this question by considering one of the simplest possible flows, a laminar pure shear flow, which is known to significantly enhance mixing relative to diffusion alone. To study this system we adapt a novel Lagrangian particle-based random walk method, originally designed to simulate reactions in purely diffusive systems, to the case of advection and diffusion in a shear flow. To interpret the results we develop a semi-analytical solution, by proposing a closure approximation that aims to capture the effect of incomplete mixing. The results obtained via the Lagrangian model and the semi-analytical solutions consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well-mixed, but represented by a reduced effective reaction rate. If shear effects are sufficiently strong, the incomplete mixing regime never emerges and the system can behave as well-mixed at all times.

  6. Long-time behavior and Turing instability induced by cross-diffusion in a three species food chain model with a Holling type-II functional response.

    PubMed

    Haile, Dawit; Xie, Zhifu

    2015-09-01

    In this paper, we study a strongly coupled reaction-diffusion system describing three interacting species in a food chain model, where the third species preys on the second one and simultaneously the second species preys on the first one. An intra-species competition b2 among the second predator is introduced to the food chain model. This parameter produces some very interesting result in linear stability and Turing instability. We first show that the unique positive equilibrium solution is locally asymptotically stable for the corresponding ODE system when the intra-species competition exists among the second predator. The positive equilibrium solution remains linearly stable for the reaction diffusion system without cross diffusion, hence it does not belong to the classical Turing instability scheme. But it becomes linearly unstable only when cross-diffusion also plays a role in the reaction-diffusion system, hence the instability is driven solely from the effect of cross diffusion. Our results also exhibit some interesting combining effects of cross-diffusion, intra-species competitions and inter-species interactions. Numerically, we conduct a one parameter analysis which illustrate how the interactions change the existence of stable equilibrium, limit cycle, and chaos. Some interesting dynamical phenomena occur when we perform analysis of interactions in terms of self-production of prey and intra-species competition of the middle predator. By numerical simulations, it illustrates the existence of nonuniform steady solutions and new patterns such as spot patterns, strip patterns and fluctuations due to the diffusion and cross diffusion in two-dimension. Published by Elsevier Inc.

  7. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    PubMed

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Strongly nonlinear dynamics of electrolytes in large ac voltages.

    PubMed

    Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik

    2010-07-01

    We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.

  9. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2015-09-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  10. Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows

    NASA Astrophysics Data System (ADS)

    Lenarda, Pietro; Paggi, Marco; Ruiz Baier, Ricardo

    2017-09-01

    We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simulation of coupled advection-diffusion-reaction systems and incompressible, viscous flow. The space discretisation of the governing equations is based on mixed finite element methods defined on unstructured meshes, whereas the time integration hinges on an operator splitting strategy that exploits the differences in scales between the reaction, advection, and diffusion processes, considering the global system as a number of sequentially linked sets of partial differential, and algebraic equations. The flow solver presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection and Boussinesq systems.

  11. Efficient Green's Function Reaction Dynamics (GFRD) simulations for diffusion-limited, reversible reactions

    NASA Astrophysics Data System (ADS)

    Bashardanesh, Zahedeh; Lötstedt, Per

    2018-03-01

    In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.

  12. Estimation of parameters in rational reaction rates of molecular biological systems via weighted least squares

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke

    2010-01-01

    The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.

  13. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  14. Turing patterns and a stochastic individual-based model for predator-prey systems

    NASA Astrophysics Data System (ADS)

    Nagano, Seido

    2012-02-01

    Reaction-diffusion theory has played a very important role in the study of pattern formations in biology. However, a group of individuals is described by a single state variable representing population density in reaction-diffusion models and interaction between individuals can be included only phenomenologically. Recently, we have seamlessly combined individual-based models with elements of reaction-diffusion theory. To include animal migration in the scheme, we have adopted a relationship between the diffusion and the random numbers generated according to a two-dimensional bivariate normal distribution. Thus, we have observed the transition of population patterns from an extinction mode, a stable mode, or an oscillatory mode to the chaotic mode as the population growth rate increases. We show our phase diagram of predator-prey systems and discuss the microscopic mechanism for the stable lattice formation in detail.

  15. A nonlinear equation for ionic diffusion in a strong binary electrolyte

    PubMed Central

    Ghosal, Sandip; Chen, Zhen

    2010-01-01

    The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176

  16. Spectral method for pricing options in illiquid markets

    NASA Astrophysics Data System (ADS)

    Pindza, Edson; Patidar, Kailash C.

    2012-09-01

    We present a robust numerical method to solve a problem of pricing options in illiquid markets. The governing equation is described by a nonlinear Black-Scholes partial differential equation (BS-PDE) of the reaction-diffusion-advection type. To discretise this BS-PDE numerically, we use a spectral method in the asset (spatial) direction and couple it with a fifth order RADAU method for the discretisation in the time direction. Numerical experiments illustrate that our approach is very efficient for pricing financial options in illiquid markets.

  17. A diffusion model of protected population on bilocal habitat with generalized resource

    NASA Astrophysics Data System (ADS)

    Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.

    2017-11-01

    A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.

  18. Considering the reversibility of passive and reactive transport problems: Are forward-in-time and backward-in-time models ever equivalent?

    NASA Astrophysics Data System (ADS)

    Engdahl, N.

    2017-12-01

    Backward in time (BIT) simulations of passive tracers are often used for capture zone analysis, source area identification, and generation of travel time and age distributions. The BIT approach has the potential to become an immensely powerful tool for direct inverse modeling but the necessary relationships between the processes modeled in the forward and backward models have yet to be formally established. This study explores the time reversibility of passive and reactive transport models in a variety of 2D heterogeneous domains using particle-based random walk methods for the transport and nonlinear reaction steps. Distributed forward models are used to generate synthetic observations that form the initial conditions for the backward in time models and we consider both linear-flood and point injections. The results for passive travel time distributions show that forward and backward models are not exactly equivalent but that the linear-flood BIT models are reasonable approximations. Point based BIT models fall within the travel time range of the forward models, though their distributions can be distinctive in some cases. The BIT approximation is not as robust when nonlinear reactive transport is considered and we find that this reaction system is only exactly reversible under uniform flow conditions. We use a series of simplified, longitudinally symmetric, but heterogeneous, domains to illustrate the causes of these discrepancies between the two model types. Many of the discrepancies arise because diffusion is a "self-adjoint" operator, which causes mass to spread in the forward and backward models. This allows particles to enter low velocity regions in the both models, which has opposite effects in the forward and reverse models. It may be possible to circumvent some of these limitations using an anti-diffusion model to undo mixing when time is reversed, but this is beyond the capabilities of the existing Lagrangian methods.

  19. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.

    2001-01-01

    Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.

  20. Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge

    NASA Astrophysics Data System (ADS)

    Ullah, Imran; Shafie, Sharidan; Khan, Ilyas; Hsiao, Kai Long

    2018-06-01

    The effect of Brownian diffusion and thermophoresis on electrically conducting mixed convection flow of Casson fluid induced by moving wedge is investigated in this paper. It is assumed that the wedge is saturated in a porous medium and experiences the thermal radiation and chemical reaction effects. The transformed nonlinear governing equations are solved numerically by Keller box scheme. Findings reveal that increase in Casson and magnetic parameters reduced the boundary layer thickness. The effect of Brownian motion and thermophoresis parameters are more pronounced on temperature profile as compared to nanoparticles concentration. The presence of thermal radiation assisted the heat transfer rate significantly. The influence of magnetic parameter is observed less significant on temperature and nanoparticles concentration.

  1. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    PubMed

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  2. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    PubMed

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  3. Adaptive output-feedback control for switched stochastic uncertain nonlinear systems with time-varying delay.

    PubMed

    Song, Zhibao; Zhai, Junyong

    2018-04-01

    This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGES

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  5. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    PubMed

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  6. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Evolution Nonlinear Diffusion-Convection PDE Models for Spectrogram Enhancement

    NASA Astrophysics Data System (ADS)

    Dugnol, B.; Fernández, C.; Galiano, G.; Velasco, J.

    2008-09-01

    In previous works we studied the application of PDE-based image processing techniques applied to the spectrogram of audio signals in order to improve the readability of the signal. In particular we considered the implementation of the nonlinear diffusive model proposed by Álvarez, Lions and Morel [1](ALM) combined with a convective term inspired by the differential reassignment proposed by Chassandre-Mottin, Daubechies, Auger and Flandrin [2]-[3]. In this work we consider the possibility of replacing the diffusive model of ALM by diffusive terms in divergence form. In particular we implement finite element approximations of nonlinear diffusive terms studied by Chen, Levine, Rao [4] and Antontsev, Shmarev [5]-[8] with a convective term.

  8. Clinical system model for monitoring the physiological status of jaundice by extracting bilirubin components from skin diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Alla S.; Clark, Joseph; Beyette, Fred R., Jr.

    2009-02-01

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. The excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. As the bilirubin levels rise in the blood stream, there is a continuous exchange between the extra vascular bilirubin and bilirubin in the blood stream. Exposure to phototherapy alters the concentration of bilirubin in the vascular and extra vascular regions by causing bilirubin in the skin layers to be broken down. Thus, the relative concentration of extra vascular bilirubin is reduced leading to a diffusion of bilirubin out of the vascular region. Diffuse reflectance spectra from human skin contains physiological and structural information of the skin and nearby tissue. A diffuse reflectance spectrum must be captured before and after blanching in order to isolate the intravascular and extra vascular bilirubin. A new mathematical model is proposed with extra vascular bilirubin concentration taken into consideration along with other optical parameters in defining the diffuse reflectance spectrum from human skin. A nonlinear optimization algorithm has been adopted to extract the optical properties (including bilirubin concentration) from the skin reflectance spectrum. The new system model and nonlinear algorithm have been combined to enable extraction of Bilirubin concentrations within an average error of 10%.

  9. Nonlinear diffusion filtering of the GOCE-based satellite-only MDT

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Mikula, Karol

    2015-04-01

    A combination of the GRACE/GOCE-based geoid models and mean sea surface models provided by satellite altimetry allows modelling of the satellite-only mean dynamic topography (MDT). Such MDT models are significantly affected by a stripping noise due to omission errors of the spherical harmonics approach. Appropriate filtering of this kind of noise is crucial in obtaining reliable results. In our study we use the nonlinear diffusion filtering based on a numerical solution to the nonlinear diffusion equation on closed surfaces (e.g. on a sphere, ellipsoid or the discretized Earth's surface), namely the regularized surface Perona-Malik model. A key idea is that the diffusivity coefficient depends on an edge detector. It allows effectively reduce the noise while preserve important gradients in filtered data. Numerical experiments present nonlinear filtering of the satellite-only MDT obtained as a combination of the DTU13 mean sea surface model and GO_CONS_GCF_2_DIR_R5 geopotential model. They emphasize an adaptive smoothing effect as a principal advantage of the nonlinear diffusion filtering. Consequently, the derived velocities of the ocean geostrophic surface currents contain stronger signal.

  10. Nonlinear Dynamics of a Diffusing Interface

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    2001-01-01

    Excitation of two miscible-viscous liquids inside a bounded enclosure in a microgravity environment has shown the evolution of quasi-stationary waves of various modes for a range of parameters. We examine computationally the nonlinear dynamics of the system as the interface breakup and bifurcates to resonance structures typified by the Rayleigh-Taylor instability mechanism. Results show that when the mean steady field is much smaller than the amplitude of the sinusoidal excitation, the system behaves linearly, and growth of quasi-stationary waves occurs through the Kelvin-Helmholtz instability mechanism. However, as the amplitude of excitation increases, nonlinearity occurs through subharmonic bifurcation prior to broadband chaos.

  11. Emergent structures in reaction-advection-diffusion systems on a sphere.

    PubMed

    Krause, Andrew L; Burton, Abigail M; Fadai, Nabil T; Van Gorder, Robert A

    2018-04-01

    We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.

  12. Emergent structures in reaction-advection-diffusion systems on a sphere

    NASA Astrophysics Data System (ADS)

    Krause, Andrew L.; Burton, Abigail M.; Fadai, Nabil T.; Van Gorder, Robert A.

    2018-04-01

    We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.

  13. Control of transversal instabilities in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Totz, Sonja; Löber, Jakob; Totz, Jan Frederik; Engel, Harald

    2018-05-01

    In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov–Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.

  14. Mathematical approach to nonlocal interactions using a reaction-diffusion system.

    PubMed

    Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu

    2017-06-01

    In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.

  15. Anomalous dimension in a two-species reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.

    2018-01-01

    We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \

  16. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  17. Convective instability and boundary driven oscillations in a reaction-diffusion-advection model

    NASA Astrophysics Data System (ADS)

    Vidal-Henriquez, Estefania; Zykov, Vladimir; Bodenschatz, Eberhard; Gholami, Azam

    2017-10-01

    In a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream. To confirm this, we performed analytical analysis and numerical simulations of a modified Martiel-Goldbeter reaction-diffusion model with the addition of an advection term. We provide a quantitative description of the wave packet appearing in the convectively unstable regime, which we found to be in excellent agreement with the numerical simulations. We characterize this new instability and show that in the limit of high advection speed, it is suppressed. This type of instability can be expected for reaction-diffusion systems that present both a convective instability and an excitable regime. In particular, it can be relevant to understand the signaling mechanism of the social amoeba Dictyostelium discoideum that may experience fluid flows in its natural habitat.

  18. Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji; Hara, Naoyuki

    2018-05-01

    This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.

  19. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  20. A moving mesh finite difference method for equilibrium radiation diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less

  1. Theory and Simulation of Self- and Mutual-Diffusion of Carrier Density and Temperature in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.

    2001-01-01

    Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.

  2. Exact Solutions of Coupled Multispecies Linear Reaction-Diffusion Equations on a Uniformly Growing Domain.

    PubMed

    Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.

  3. Event-triggered synchronization for reaction-diffusion complex networks via random sampling

    NASA Astrophysics Data System (ADS)

    Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng

    2018-04-01

    In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.

  4. A parallel algorithm for nonlinear convection-diffusion equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1990-01-01

    A parallel algorithm for the efficient solution of nonlinear time-dependent convection-diffusion equations with small parameter on the diffusion term is presented. The method is based on a physically motivated domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. The method is suitable for the solution of problems arising in the simulation of fluid dynamics. Experimental results for a nonlinear equation in two-dimensions are presented.

  5. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities

    PubMed Central

    Vázquez, J. L.

    2010-01-01

    The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy–Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations. PMID:20823259

  6. Feedback coupling in dynamical systems

    NASA Astrophysics Data System (ADS)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  7. A model for the compositions of non-stoichiometric intermediate phases formed by diffusion reactions, and its application to Nb 3Sn superconductors

    DOE PAGES

    Xu, X.; Sumption, M. D.

    2016-01-12

    In this work we explore the compositions of non-stoichiometric intermediate phases formed by diffusion reactions: a mathematical framework is developed and tested against the specific case of Nb 3Sn superconductors. In the first part, the governing equations for the bulk diffusion and interphase interface reactions during the growth of a compound are derived, numerical solutions to which give both the composition profile and growth rate of the compound layer. The analytic solutions are obtained with certain approximations made. In the second part, we explain an effect that the composition characteristics of compounds can be quite different depending on whether itmore » is the bulk diffusion or grain boundary diffusion that dominates in the compounds, and that “frozen” bulk diffusion leads to unique composition characteristics that the bulk composition of a compound layer remains unchanged after its initial formation instead of varying with the diffusion reaction system; here the model is modified for the case of grain boundary diffusion. Lastly, we apply this model to the Nb 3Sn superconductors and propose approaches to control their compositions.« less

  8. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    NASA Astrophysics Data System (ADS)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  9. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  10. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.

  11. Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.

    2009-06-01

    Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.

  12. Self-organizing biochemical cycle in dynamic feedback with soil structure

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes formulated as a sum of state variables products, with no need to introduce any saturation functions, such as Mikhaelis-Menten type kinetics, inside the model. Analyzed dynamic soil model is being further developed to describe soil structure formation and its effect on organic matter decomposition at macro-scale, to predict changes with external perturbations. To link micro- and macro-scales we additionally model soil particles aggregation process. The results from local biochemical soil organic matter cycle serve as inputs to aggregation process, while the output aggregate size distributions define physical properties in the soil profile, these in turn serve as dynamic parameters in local biochemical cycles. The additional formulation is a system of non-linear ordinary differential equations, including Smoluchowski-type equations for aggregation and reaction kinetics equations for coagulation/adsorption/adhesion processes. Vasilyeva N.A., Ingtem J.G., Silaev D.A. Nonlinear dynamical model of microbial growth in soil medium. Computational Mathematics and Modeling, vol. 49, p.31-44, 2015 (in Russian). English version is expected in corresponding vol.27, issue 2, 2016.

  13. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  14. Diffusion of multiple species with excluded-volume effects.

    PubMed

    Bruna, Maria; Chapman, S Jonathan

    2012-11-28

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.

  15. A discrete model to study reaction-diffusion-mechanics systems.

    PubMed

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  16. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  17. Chemoviscosity modeling for thermosetting resins - I

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1984-01-01

    A new analytical model for chemoviscosity variation during cure of thermosetting resins was developed. This model is derived by modifying the widely used WLF (Williams-Landel-Ferry) Theory in polymer rheology. Major assumptions involved are that the rate of reaction is diffusion controlled and is linearly inversely proportional to the viscosity of the medium over the entire cure cycle. The resultant first order nonlinear differential equation is solved numerically, and the model predictions compare favorably with experimental data of EPON 828/Agent U obtained on a Rheometrics System 4 Rheometer. The model describes chemoviscosity up to a range of six orders of magnitude under isothermal curing conditions. The extremely non-linear chemoviscosity profile for a dynamic heating cure cycle is predicted as well. The model is also shown to predict changes of glass transition temperature for the thermosetting resin during cure. The physical significance of this prediction is unclear at the present time, however, and further research is required. From the chemoviscosity simulation point of view, the technique of establishing an analytical model as described here is easily applied to any thermosetting resin. The model thus obtained is used in real-time process controls for fabricating composite materials.

  18. FAST TRACK COMMUNICATION: Quantum anomalies and linear response theory

    NASA Astrophysics Data System (ADS)

    Sela, Itamar; Aisenberg, James; Kottos, Tsampikos; Cohen, Doron

    2010-08-01

    The analysis of diffusive energy spreading in quantized chaotic driven systems leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation, a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient D that is proportional to the intensity ɛ2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tɛ, and a self-generated (intrinsic) dephasing process leads to nonlinear dependence of D on ɛ2.

  19. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  20. Distribution of thermal neutrons in a temperature gradient

    NASA Astrophysics Data System (ADS)

    Molinari, V. G.; Pollachini, L.

    A method to determine the spatial distribution of the thermal spectrum of neutrons in heterogeneous systems is presented. The method is based on diffusion concepts and has a simple mathematical structure which increases computing efficiency. The application of this theory to the neutron thermal diffusion induced by a temperature gradient, as found in nuclear reactors, is described. After introducing approximations, a nonlinear equation system representing the neutron temperature is given. Values of the equation parameters and its dependence on geometrical factors and media characteristics are discussed.

  1. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.

    PubMed

    Biesheuvel, P M; Bazant, M Z

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  2. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NASA Astrophysics Data System (ADS)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  3. A new necessary condition for Turing instabilities.

    PubMed

    Elragig, Aiman; Townley, Stuart

    2012-09-01

    Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Diffusion Geometry Based Nonlinear Methods for Hyperspectral Change Detection

    DTIC Science & Technology

    2010-05-12

    for matching biological spectra across a data base of hyperspectral pathology slides acquires with different instruments in different conditions, as...generalizing wavelets and similar scaling mechanisms. Plain Sight Systems, Inc. -7- Proprietary and Confidential To be specific, let the bi-Markov...remarkably well. Conventional nearest neighbor search , compared with a diffusion search. The data is a pathology slide ,each pixel is a digital

  5. A Role of the Reaction Kernel in Propagation and Stabilization of Edge Diffusion Flames of C1-C3 Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2003-01-01

    Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.

  6. Confinement regulates complex biochemical networks: initiation of blood clotting by "diffusion acting".

    PubMed

    Shen, Feng; Pompano, Rebecca R; Kastrup, Christian J; Ismagilov, Rustem F

    2009-10-21

    This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.

  7. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  8. Critical time scales for advection-diffusion-reaction processes.

    PubMed

    Ellery, Adam J; Simpson, Matthew J; McCue, Scott W; Baker, Ruth E

    2012-04-01

    The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J. 99, L59 (2010); A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Phys. Rev. E 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb and G. C. Wake, IMA J. Appl. Math. 47, 193 (1991)]. Although McNabb's initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.

  9. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  10. Gas Exchange Models for a Flexible Insect Tracheal System.

    PubMed

    Simelane, S M; Abelman, S; Duncan, F D

    2016-06-01

    In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrida, B.; Spohn, H.

    We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.

  12. M.G. Velarde: Succint Biography. Doing Science in Spain as a Maverick

    NASA Astrophysics Data System (ADS)

    Ryazantsev, Yu. S.

    A succint account is presented about the professional career of Prof. Manuel García Velarde. Different periods illustrate his engagement with science, education and (domestic and international) organizational endeavor. The chapter also oversees some of the major areas of research he has covered with significant scientific achievements. They embrace kinetic theory, statistical mechanics, thermodynamics, fluid physics, geophysics, optics and lasers, ferromagnetism, electron transport theory, acoustics, elasticity, wave theory, reaction-diffusion science, biophysics, active lattice dynamics, and neuro-dynamics, all phenomena and methodologies treated from the unifying perspective of nonlinear dynamics.

  13. On Some Parabolic Type Problems from Thin Film Theory and Chemical Reaction-Diffusion Networks

    NASA Astrophysics Data System (ADS)

    Mohamed, Fatma Naser Ali

    This dissertation considers some parabolic type problems from thin film theory and chemical reaction-diffusion networks. The dissertation consists of two parts: In the first part, we study the evolution of a thin film of fluid modeled by the lubrication approximation for thin viscous films. We prove an existence of (dissipative) strong solutions for the Cauchy problem when the sub-diffusive exponent ranges between 3/8 and 2; then we show that these solutions tend to zero at rates matching the decay of the source-type self-similar solutions with zero contact angle. We introduce the weaker concept of dissipative mild solutions and we show that, in this case, the surface-tension energy dissipation is the mechanism responsible for the H1-norm decay to zero of the thickness of the film at an explicit rate. Relaxed problems, with second-order nonlinear terms of porous media type, are also successfully treated by the same means. [special characters omitted]. In the second part, we are concerned with the convergence of a certain space-discretization scheme -the so-called method of lines- for mass-action reaction-diffusion systems. First, we start with a toy model, namely. [special characters omitted]. and prove convergence of method of lines for this linear case. Here weak convergence in L2(0,1) is enough to prove convergence of the method of lines. Then we adopt the framework for convergence analysis introduced in [23] and concentrate on the proof-of-concept reaction. within 1D space, while at the same time noting that our techniques are readily generalizable to other reaction-diffusion networks and to more than one space dimension. Indeed, it will be obvious how to extend our proofs to the multi-dimensional case; we only note that the proof of the comparison principle (the continuous and the discrete versions; see chapter 6) imposes a limitation on the spatial dimension (should be at most five; see [24] for details). The Method of Lines (MOL) is not a mainstream numerical tool and the specialized literature is rather scarce. The method amounts to discretizing evolutionary PDE's in space only, so it produces a semi-discrete numerical scheme which consists of a system of ODE's (in the time variable). To prove convergence of the semi-discrete MOL scheme to the original PDE one needs to perform some more or less traditional analysis: it is necessary to show that the scheme is consistent with the continuous problem and that the discretized version of the spatial differential operator retains sufficient dissipative properties in order to allow an application of Gronwall's Lemma to the error term. As shown in [23], a uniform (in time) consistency estimate is sufficient to obtain convergence; however, the consistency estimate we proved is not uniform for a small time, so we cannot directly employ the results in [23] to prove convergence in our case. Instead, we prove all the required estimates "from the scratch", then we use their exact quantitative form in order to conclude convergence.

  14. Reactive multiphase flow at the pore-scale: the melting of a crystalline framework during the injection of buoyant hot volatiles

    NASA Astrophysics Data System (ADS)

    Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.

    2010-12-01

    Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.

  15. A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying

    2018-04-01

    Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.

  16. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.

    PubMed

    Liu, Biao; Wu, Ranchao; Chen, Liping

    2018-04-01

    Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.

  17. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    PubMed

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.

  18. Topics in Diffusion Limited Reaction Processes

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Cheng

    We study, both theoretically and numerically, the macroscopic particle concentration in a class of simple diffusion-limited reactions: one species coagulation A + A to A, reversible coagulation A + A rightleftharpoons A, A + A to A with particle input, A + A rightleftharpoons A with particle input, single species annihilation A + A to inert, and two species annihilation A + B to inert. The main interest is in the asymptotic behavior of the particle concentration. We review the standard mean-field theory, mass-reaction kinetics and the associated nonlinear rate and diffusion-reaction equations. Theoretically we study the concentration using several closure schemes for truncating the infinite hierarchy of the kinetic equations for the joint density functions. Our goal is to evaluate the quality of some nonsystematic approximations by comparison with exact solutions. It is found that these approximations are very good at capturing the asymptotic behavior of the particle concentrations in the irreversible reactions, while they fail to predict the far-from-equilibrium dynamic phase transition in the one dimensional reversible coagulation reaction predicted by exact results. Numerically we use Monte Carlo simulation to study concentrations in the single species reversible coagulation process. In one dimension the numerical results are in excellent agreement with the exact analytic results. In two dimensions, our simulation data in the transient states suggest an interesting scaling for the deviation of the concentration from its equilibrium value, delta C(t) ~ exp( -beta(C_0)t^{alpha(C_0) }), where alpha(C_0) and beta(C_0) are functions of the initial concentration C_0. However, it seems unlikely to be able to answer the question of the existence of a dynamic phase transition in two dimensions by Monte Carlo simulation within a reasonable CPU time due to the long persistence of the transient states. In an appendix we solve exactly an annihilation-related percolation problem.

  19. Self-organization at the frictional interface for green tribology.

    PubMed

    Nosonovsky, Michael

    2010-10-28

    Despite the fact that self-organization during friction has received relatively little attention from tribologists so far, it has the potential for the creation of self-healing and self-lubricating materials, which are important for green or environment-friendly tribology. The principles of the thermodynamics of irreversible processes and of the nonlinear theory of dynamical systems are used to investigate the formation of spatial and temporal structures during friction. The transition to the self-organized state with low friction and wear occurs through destabilization of steady-state (stationary) sliding. The criterion for destabilization is formulated and several examples are discussed: the formation of a protective film, microtopography evolution and slip waves. The pattern formation may involve self-organized criticality and reaction-diffusion systems. A special self-healing mechanism may be embedded into the material by coupling the corresponding required forces. The analysis provides the structure-property relationship, which can be applied for the design optimization of composite self-lubricating and self-healing materials for various ecologically friendly applications and green tribology.

  20. Studies in premixed combustion. [Benjamin Levich Inst. for Physico-Chemical Hydrodynamics, City College of CUNY, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivashinsky, G.I.

    1993-01-01

    During the period under review, significant progress was been made in studying the intrinsic dynamics of premixed flames and the problems of flame-flow interaction. (1) A weakly nonlinear model for Bunsen burner stabilized flames was proposed and employed for the simulation of three-dimensional polyhedral flames -- one of the most graphic manifestations of thermal-diffusive instability in premixed combustion. (2) A high-precision large-scale numerical simulation of Bunsen burner tip structure was conducted. The results obtained supported the earlier conjecture that the tip opening observed in low Lewis number systems is a purely optical effect not involving either flame extinction or leakagemore » of unburned fuel. (3) A one-dimensional model describing a reaction wave moving through a unidirectional periodic flow field is proposed and studied numerically. For long-wavelength fields the system exhibits a peculiar non-uniqueness of possible propagation regimes. The transition from one regime to another occurs in a manner of hysteresis.« less

  1. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    PubMed

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.

    PubMed

    Tiani, R; Rongy, L

    2016-09-28

    The nonlinear dynamics of A + B → C fronts is analyzed both numerically and theoretically in the presence of Marangoni flows, i.e., convective motions driven by surface tension gradients. We consider horizontal aqueous solutions where the three species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection (RDC) equations for the three chemical species. We show that the dynamics of the front cannot be predicted solely on the basis of the one-dimensional reaction-diffusion profiles as is the case for buoyancy-driven convection around such fronts. We relate this observation to the structure of Marangoni flows which lead to more complex and exotic dynamics. We find in particular the surprising possibility of a reversal of the front propagation direction in time for some sets of Marangoni numbers, quantifying the influence of each chemical species concentration on the solution surface tension. We explain this reversal analytically and propose a new classification of the convective effects on A + B → C reaction fronts as a function of the Marangoni numbers. The influence of the layer thickness on the RDC dynamics is also presented. Those results emphasize the importance of flow symmetry properties when studying convective front dynamics in a given geometry.

  3. Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions.

    PubMed

    Bauler, Patricia; Huber, Gary A; McCammon, J Andrew

    2012-04-28

    Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.

  4. Rethinking pattern formation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  5. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.

  6. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions

    PubMed Central

    Hayat, Tasawar; Haider, Farwa; Alsaedi, Ahmed

    2017-01-01

    Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field. PMID:28380014

  7. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  8. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  9. Modeling transport kinetics in clinoptilolite-phosphate rock systems

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.

    1995-01-01

    Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.

  10. Computing diffusivities from particle models out of equilibrium

    NASA Astrophysics Data System (ADS)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  11. Scaling of seismicity induced by nonlinear fluid-rock interaction after an injection stop

    NASA Astrophysics Data System (ADS)

    Johann, L.; Dinske, C.; Shapiro, S. A.

    2016-11-01

    Fluid injections into unconventional reservoirs, performed for fluid-mobility enhancement, are accompanied by microseismic activity also after the injection. Previous studies revealed that the triggering of seismic events can be effectively described by nonlinear diffusion of pore fluid pressure perturbations where the hydraulic diffusivity becomes pressure dependent. The spatiotemporal distribution of postinjection-induced microseismicity has two important features: the triggering front, corresponding to early and distant events, and the back front, representing the time-dependent spatial envelope of the growing seismic quiescence zone. Here for the first time, we describe analytically the temporal behavior of these two fronts after the injection stop in the case of nonlinear pore fluid pressure diffusion. We propose a scaling law for the fronts and show that they are sensitive to the degree of nonlinearity and to the Euclidean dimension of the dominant growth of seismicity clouds. To validate the theoretical finding, we numerically model nonlinear pore fluid pressure diffusion and generate synthetic catalogs of seismicity. Additionally, we apply the new scaling relation to several case studies of injection-induced seismicity. The derived scaling laws describe well synthetic and real data.

  12. A network model of successive partitioning-limited solute diffusion through the stratum corneum.

    PubMed

    Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon

    2010-02-07

    As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.

  13. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  14. On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn; Graduate School of China Academy Engineering Physics, Beijing 100083; An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn

    2013-03-01

    Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods canmore » improve the convergence behavior and efficiency of JFNK method.« less

  15. On a Multiphase Multicomponent Model of Biofilm Growth

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hu, Bei; Xue, Chuan

    2014-01-01

    Biofilms are formed when free-floating bacteria attach to a surface and secrete polysaccharide to form an extracellular polymeric matrix (EPS). A general model of biofilm growth needs to include the bacteria, the EPS, and the solvent within the biofilm region Ω( t), and the solvent in the surrounding region D( t). The interface between the two regions, Γ( t), is a free boundary. In this paper, we consider a mathematical model that consists of a Stokes equation for the EPS with bacteria attached to it, a Stokes equation for the solvent in Ω( t) and another for the solvent in D( t). The volume fraction of the EPS is another unknown satisfying a reaction-diffusion equation. The entire system is coupled nonlinearly within Ω( t) and across the free surface Γ( t). We prove the existence and uniqueness of a solution, with a smooth surface Γ( t), for a small time interval.

  16. Size effects in non-linear heat conduction with flux-limited behaviors

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  17. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  18. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  19. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  20. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  1. Numerical Test of the Additivity Principle in Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Tamaki, Shuji

    2017-10-01

    The additivity principle (AP) is one of the remarkable predictions that systematically generates all information on current fluctuations once the value of average current in the linear response regime is input. However, conditions to justify the AP are still ambiguous. We hence consider three tractable models, and discuss possible conditions. The models include the harmonic chain (HC), momentum exchange (ME) model, and momentum flip (MF) model, which respectively show ballistic, anomalous, and diffusive transport. We compare the heat current cumulants predicted by the AP with exact numerical data obtained for these models. The HC does not show the AP, whereas the MF model satisfies it, as expected, since the AP was originally proposed for diffusive systems. Surprisingly, the ME model also shows the AP. The ME model is known to show the anomalous transport similar to that shown in nonlinear systems such as the Fermi-Pasta-Ulam model. Our finding indicates that general nonlinear systems may satisfy the AP. Possible conditions for satisfying the AP are discussed.

  2. Hybrid stochastic simulations of intracellular reaction-diffusion systems.

    PubMed

    Kalantzis, Georgios

    2009-06-01

    With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

  3. An ignition-temperature model with two free interfaces in premixed flames

    NASA Astrophysics Data System (ADS)

    Brauner, Claude-Michel; Gordon, Peter V.; Zhang, Wen

    2016-11-01

    In this paper we consider an ignition-temperature zero-order reaction model of thermo-diffusive combustion. This model describes the dynamics of thick flames, which have recently received considerable attention in the physical and engineering literature. The model admits a unique (up to translations) planar travelling wave solution. This travelling wave solution is quite different from those usually studied in combustion theory. The main qualitative feature of this travelling wave is that it has two interfaces: the ignition interface where the ignition temperature is attained and the trailing interface where the concentration of deficient reactants reaches zero. We give a new mathematical framework for studying the cellular instability of such travelling front solutions. Our approach allows the analysis of a free boundary problem to be converted into the analysis of a boundary value problem having a fully nonlinear system of parabolic equations. The latter is very suitable for both mathematical and numerical analysis. We prove the existence of a critical Lewis number such that the travelling wave solution is stable for values of Lewis number below the critical one and is unstable for Lewis numbers that exceed this critical value. Finally, we discuss the results of numerical simulations of a fully nonlinear system that describes the perturbation dynamics of planar fronts. These simulations reveal, in particular, some very interesting 'two-cell' steady patterns of curved combustion fronts.

  4. Vertical distribution of vibrational energy of molecular nitrogen in a stable auroral red arc and its effect on ionospheric electron densities. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Newton, G. P.

    1973-01-01

    Previous solutions of the problem of the distribution of vibrationally excited molecular nitrogen in the thermosphere have either assumed a Boltzmann distribution and considered diffusion as one of the loss processes or solved for the energy level populations and neglected diffusion. Both of the previous approaches are combined by solving the time dependent continuity equations, including the diffusion process, for the first six energy levels of molecular nitrogen for conditions in the thermosphere corresponding to a stable auroral red arc. The primary source of molecular nitrogen excitation was subexcitation, and inelastic collisions between thermal electrons and molecular nitrogen. The reaction rates for this process were calculated from published cross section calculations. The loss processes for vibrational energy were electron and atomic oxygen quenching and vibrational energy exchange. The coupled sets of nonlinear, partial differential equations were solved numerically by employing finite difference equations.

  5. Reaction-diffusion processes at the nano- and microscales

    NASA Astrophysics Data System (ADS)

    Epstein, Irving R.; Xu, Bing

    2016-04-01

    The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.

  6. Genipin diffusion and reaction into a gelatin matrix for tissue engineering applications.

    PubMed

    Montemurro, Francesca; De Maria, Carmelo; Orsi, Gianni; Ghezzi, Lisa; Tinè, Maria Rosaria; Vozzi, Giovanni

    2017-04-01

    Genipin is a natural low-toxic cross-linker for molecules with primary amino groups, and its use with collagen and gelatin has shown a great potential in tissue engineering applications. The fabrication of scaffolds with a well-organized micro and macro topology using additive manufacturing systems requires an accurate control of working parameters, such as reaction rate, gelling time, and diffusion constant. A polymeric system of 5% w/v gelatin in PBS with 2 mg/mL collagen solutions in a 1:1 weight ratio was used as template to perform measurements varying genipin concentration in a range of 0.1-1.5% w/w with respect to gelatin. In the first part of this work, the reaction rate of the polymeric system was estimated using a new colorimetric analysis of the reaction. Then its workability time, closely related to the gelling time, was evaluated thanks to rheological analysis: finally, the quantification of static and dynamic diffusion constants of genipin across nonreacting and reacting membranes, made respectively by agarose and gelatin, was performed. It was shown that the colorimetric analysis is a good indicator of the reaction progress. The gelling time depends on the genipin concentration, but a workability window of 40 min guaranteed up to 0.5% w/w genipin. The dynamic diffusion constant of genipin in the proposed polymeric system is in the order of magnitude of 10 -7 . The obtained results indicated the possibility to use the genipin, gelatin, and collagen, in the proposed concentrations, to build well-defined hydrogel scaffolds with both extrusion-based and 3D ink-jet system. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 473-480, 2017. © 2015 Wiley Periodicals, Inc.

  7. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrödinger chain in the regime of homogeneous chaos.

    PubMed

    Basko, D M

    2014-02-01

    We study the discrete nonlinear Schröinger equation with weak disorder, focusing on the regime when the nonlinearity is, on the one hand, weak enough for the normal modes of the linear problem to remain well resolved but, on the other, strong enough for the dynamics of the normal mode amplitudes to be chaotic for almost all modes. We show that in this regime and in the limit of high temperature, the macroscopic density ρ satisfies the nonlinear diffusion equation with a density-dependent diffusion coefficient, D(ρ) = D(0)ρ(2). An explicit expression for D(0) is obtained in terms of the eigenfunctions and eigenvalues of the linear problem, which is then evaluated numerically. The role of the second conserved quantity (energy) in the transport is also quantitatively discussed.

  8. Effect of the universal acid-base indicator on the formation of the concentration-dependent diffusion instability

    NASA Astrophysics Data System (ADS)

    Mosheva, E. A.; Shmyrov, A. V.

    2017-06-01

    The effect of the universal acid-base indicator on the pattern formation and mass transfer in a two-layer system composed of two reactive miscible liquids in a vertical Hele-Shaw cell is studied experimentally. The reaction we study is a neutralization one. It turns out that the presence of the indicator leads to a change in the spatio-temporal characteristics of the system and even in the mass transfer mechanism near the reaction front—from diffusive to convective. The conditions, where the universal indicator does not affect the reaction and can be used as a visualizing mean, are reported.

  9. Wave reflection in a reaction-diffusion system: breathing patterns and attenuation of the echo.

    PubMed

    Tsyganov, M A; Ivanitsky, G R; Zemskov, E P

    2014-05-01

    Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).

  10. Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. A.; Ivanitsky, G. R.; Zemskov, E. P.

    2014-05-01

    Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).

  11. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    PubMed

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  12. An analysis of a nonlinear instability in the implementation of a VTOL control system

    NASA Technical Reports Server (NTRS)

    Weber, J. M.

    1982-01-01

    The contributions to nonlinear behavior and unstable response of the model following yaw control system of a VTOL aircraft during hover were determined. The system was designed as a state rate feedback implicit model follower that provided yaw rate command/heading hold capability and used combined full authority parallel and limited authority series servo actuators to generate an input to the yaw reaction control system of the aircraft. Both linear and nonlinear system models, as well as describing function linearization techniques were used to determine the influence on the control system instability of input magnitude and bandwidth, series servo authority, and system bandwidth. Results of the analysis describe stability boundaries as a function of these system design characteristics.

  13. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Willert, Jeffrey; Park, H.; Knoll, D. A.

    2014-10-01

    Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.

  14. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  15. Modern aspects of homogeneous-heterogeneous reactions and variable thickness in nanofluids through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Ahmed, Sohail; Muhammad, Taseer; Alsaedi, Ahmed

    2017-10-01

    This article examines homogeneous-heterogeneous reactions and internal heat generation in Darcy-Forchheimer flow of nanofluids with different base fluids. Flow is generated due to a nonlinear stretchable surface of variable thickness. The characteristics of nanofluid are explored using CNTs (single and multi walled carbon nanotubes). Equal diffusion coefficients are considered for both reactants and auto catalyst. The conversion of partial differential equations (PDEs) to ordinary differential equations (ODEs) is done via appropriate transformations. Optimal homotopy approach is implemented for solutions development of governing problems. Averaged square residual errors are computed. The optimal solution expressions of velocity, temperature and concentration are explored through plots by using several values of physical parameters. Further the coefficient of skin friction and local Nusselt number are examined through graphs.

  16. Spin diffusion from an inhomogeneous quench in an integrable system.

    PubMed

    Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž

    2017-07-13

    Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

  17. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  18. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  19. Density profiles around A+B→C reaction-diffusion fronts in partially miscible systems: A general classification.

    PubMed

    Loodts, V; Trevelyan, P M J; Rongy, L; De Wit, A

    2016-10-01

    Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.

  20. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  1. Stability of Gradient Field Corrections for Quantitative Diffusion MRI.

    PubMed

    Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A

    2017-02-11

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  2. Interfacial reactions between metal and gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.C.; Schulz, K.J.; Hsieh, K.C.

    1989-10-01

    The phase formation sequence for GaAs/metal ternary diffusion couples is discussed. The diffusion path concept is introduced and is used with the phase diagram to understand interfacial reactions between GaAs and metal. The correlation between growth kinetics and interface morphology is discussed. Studies of bulk and thin film couples in two systems, GaAs/Pd and GaAs/Pt, are given to illustrate these concepts.

  3. Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.

    PubMed

    Wang, Hongli; Ouyang, Qi

    2007-11-23

    The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.

  4. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.

    PubMed

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-14

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics

  5. A model for shrinkage strain in photo polymerization of dental composites.

    PubMed

    Petrovic, Ljubomir M; Atanackovic, Teodor M

    2008-04-01

    We formulate a new model for the shrinkage strain developed during photo polymerization in dental composites. The model is based on the diffusion type fractional order equation, since it has been proved that polymerization reaction is diffusion controlled (Atai M, Watts DC. A new kinetic model for the photo polymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006;22:785-91). Our model strongly confirms the observation by Atai and Watts (see reference details above) and their experimental results. The shrinkage strain is modeled by a nonlinear differential equation in (see reference details above) and that equation must be solved numerically. In our approach, we use the linear fractional order differential equation to describe the strain rate due to photo polymerization. This equation is solved exactly. As shrinkage is a consequence of the polymerization reaction and polymerization reaction is diffusion controlled, we postulate that shrinkage strain rate is described by a diffusion type equation. We find explicit form of solution to this equation and determine the strain in the resin monomers. Also by using equations of linear viscoelasticity, we determine stresses in the polymer due to the shrinkage. The time evolution of stresses implies that the maximal stresses are developed at the very beginning of the polymerization process. The stress in a dental composite that is light treated has the largest value short time after the treatment starts. The strain settles at the constant value in the time of about 100s (for the cases treated in Atai and Watts). From the model developed here, the shrinkage strain of dental composites and resin monomers is analytically determined. The maximal value of stresses is important, since this value must be smaller than the adhesive bond strength at cavo-restoration interface. The maximum stress determined here depends on the diffusivity coefficient. Since diffusivity coefficient increases as polymerization proceeds, it follows that the periods of light treatments should be shorter at the beginning of the treatment and longer at the end of the treatment, with dark interval between the initial low intensity and following high intensity curing. This is because at the end of polymerization the stress relaxation cannot take place.

  6. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag

    NASA Astrophysics Data System (ADS)

    Plastino, A. R.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.

    2018-02-01

    Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q -Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.

  7. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  8. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  9. Spectral analysis of localized rotating waves in parabolic systems.

    PubMed

    Beyn, Wolf-Jürgen; Otten, Denny

    2018-04-13

    In this paper, we study the spectra and Fredholm properties of Ornstein-Uhlenbeck operators [Formula: see text]where [Formula: see text] is the profile of a rotating wave satisfying [Formula: see text] as [Formula: see text], the map [Formula: see text] is smooth and the matrix [Formula: see text] has eigenvalues with positive real parts and commutes with the limit matrix [Formula: see text] The matrix [Formula: see text] is assumed to be skew-symmetric with eigenvalues (λ 1 ,…,λ d )=(±i σ 1 ,…,±i σ k ,0,…,0). The spectra of these linearized operators are crucial for the nonlinear stability of rotating waves in reaction-diffusion systems. We prove under appropriate conditions that every [Formula: see text] satisfying the dispersion relation [Formula: see text]belongs to the essential spectrum [Formula: see text] in L p For values Re λ to the right of the spectral bound for [Formula: see text], we show that the operator [Formula: see text] is Fredholm of index 0, solve the identification problem for the adjoint operator [Formula: see text] and formulate the Fredholm alternative. Moreover, we show that the set [Formula: see text]belongs to the point spectrum [Formula: see text] in L p We determine the associated eigenfunctions and show that they decay exponentially in space. As an application, we analyse spinning soliton solutions which occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated eigenfunctions. Our results form the basis for investigating the nonlinear stability of rotating waves in higher space dimensions and truncations to bounded domains. This article is part of the themed issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  10. Confinement Regulates Complex Biochemical Networks: Initiation of Blood Clotting by “Diffusion Acting”

    PubMed Central

    Shen, Feng; Pompano, Rebecca R.; Kastrup, Christian J.; Ismagilov, Rustem F.

    2009-01-01

    Abstract This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da2, was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as “diffusion acting”, which is distinct from “diffusion sensing”. The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological “on” and “off” processes that are controlled by thresholds. PMID:19843446

  11. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  12. Synchronization of generalized reaction-diffusion neural networks with time-varying delays based on general integral inequalities and sampled-data control approach.

    PubMed

    Dharani, S; Rakkiyappan, R; Cao, Jinde; Alsaedi, Ahmed

    2017-08-01

    This paper explores the problem of synchronization of a class of generalized reaction-diffusion neural networks with mixed time-varying delays. The mixed time-varying delays under consideration comprise of both discrete and distributed delays. Due to the development and merits of digital controllers, sampled-data control is a natural choice to establish synchronization in continuous-time systems. Using a newly introduced integral inequality, less conservative synchronization criteria that assure the global asymptotic synchronization of the considered generalized reaction-diffusion neural network and mixed delays are established in terms of linear matrix inequalities (LMIs). The obtained easy-to-test LMI-based synchronization criteria depends on the delay bounds in addition to the reaction-diffusion terms, which is more practicable. Upon solving these LMIs by using Matlab LMI control toolbox, a desired sampled-data controller gain can be acuqired without any difficulty. Finally, numerical examples are exploited to express the validity of the derived LMI-based synchronization criteria.

  13. A Nonequilibrium Rate Formula for Collective Motions of Complex Molecular Systems

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2010-09-01

    We propose a compact reaction rate formula that accounts for a non-equilibrium distribution of residence times of complex molecules, based on a detailed study of the coarse-grained phase space of a reaction coordinate. We take the structural transition dynamics of a six-atom Morse cluster between two isomers as a prototype of multi-dimensional molecular reactions. Residence time distribution of one of the isomers shows an exponential decay, while that of the other isomer deviates largely from the exponential form and has multiple peaks. Our rate formula explains such equilibrium and non-equilibrium distributions of residence times in terms of the rates of diffusions of energy and the phase of the oscillations of the reaction coordinate. Rapid diffusions of energy and the phase generally give rise to the exponential decay of residence time distribution, while slow diffusions give rise to a non-exponential decay with multiple peaks. We finally make a conjecture about a general relationship between the rates of the diffusions and the symmetry of molecular mass distributions.

  14. Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane

    NASA Astrophysics Data System (ADS)

    Hu, Wenjie; Duan, Yueliang

    2018-04-01

    We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.

  15. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  16. Rule-based spatial modeling with diffusing, geometrically constrained molecules.

    PubMed

    Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter

    2010-06-07

    We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.

  17. Rule-based spatial modeling with diffusing, geometrically constrained molecules

    PubMed Central

    2010-01-01

    Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264

  18. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities.

    PubMed

    D'Hernoncourt, J; Merkin, J H; De Wit, A

    2007-09-01

    Traveling fronts can become transversally unstable either because of a diffusive instability arising when the key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mechanism when the density jump across the front is statically unfavorable. The interaction between such diffusive and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability analysis and nonlinear simulations show that their interplay changes considerably the stability properties with regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover, spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the front. Experimental conditions to test our predictions are suggested.

  19. An electromechanical based deformable model for soft tissue simulation.

    PubMed

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  20. Analytical solution of the nonlinear diffusion equation

    NASA Astrophysics Data System (ADS)

    Shanker Dubey, Ravi; Goswami, Pranay

    2018-05-01

    In the present paper, we derive the solution of the nonlinear fractional partial differential equations using an efficient approach based on the q -homotopy analysis transform method ( q -HATM). The fractional diffusion equations derivatives are considered in Caputo sense. The derived results are graphically demonstrated as well.

  1. EUPDF: Eulerian Monte Carlo Probability Density Function Solver for Applications With Parallel Computing, Unstructured Grids, and Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The success of any solution methodology used in the study of gas-turbine combustor flows depends a great deal on how well it can model the various complex and rate controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as convective and radiative heat transfer and other phenomena. The phenomena to be modeled, which are controlled by these processes, often strongly interact with each other at different times and locations. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. The influence of turbulence in a diffusion flame manifests itself in several forms, ranging from the so-called wrinkled, or stretched, flamelets regime to the distributed combustion regime, depending upon how turbulence interacts with various flame scales. Conventional turbulence models have difficulty treating highly nonlinear reaction rates. A solution procedure based on the composition joint probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices (such as extinction, blowoff limits, and emissions predictions) because it can account for nonlinear chemical reaction rates without making approximations. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on the PDF method to unstructured grids, parallel computing, and sprays. EUPDF, which was developed by M.S. Raju of Nyma, Inc., was designed to be massively parallel and could easily be coupled with any existing gas-phase and/or spray solvers. EUPDF can use an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements. The application of the PDF method showed favorable results when applied to several supersonic-diffusion flames and spray flames. The EUPDF source code will be available with the National Combustion Code (NCC) as a complete package.

  2. Hopping Conduction and Bacteria: Transport Properties of Disordered Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Missel, Andrew; Dahmen, Karin

    2008-03-01

    Reaction-diffusion (RD) systems are used to model everything from the formation of animal coat patterns to the spread of genes in a population to the seasonal variation of plankton density in the ocean. In all of these problems, disorder plays a large role, but determining its effects on transport properties in RD systems has been a challenge. We present here both analytical and numerical studies of a particular disordered RD system consisting of particles which are allowed to diffuse and compete for resources (2A->A) with spatially homogeneous rates, reproduce (A->2A) in certain areas (``oases''), and die (A->0) everywhere else (the ``desert''). In the low oasis density regime, transport is mediated through rare ``hopping events'' in which a small number of particles diffuse through the desert from one oasis to another; the situation is mathematically analogous to hopping conduction in doped semiconductors, and this analogy, along with some ideas from first passage percolation theory, allows us to make some quantitative predictions about the transport properties of the system on a large scale.

  3. Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion

    NASA Astrophysics Data System (ADS)

    Komoto, Atsushi; Maenosono, Shinya

    2006-09-01

    The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.

  4. Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion.

    PubMed

    Komoto, Atsushi; Maenosono, Shinya

    2006-09-21

    The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.

  5. Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Shahid, Amna; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    Current analysis has been made to scrutinize the consequences of chemical response against magneto-hydrodynamic Carreau-Yasuda nanofluid flow induced by a non-linear stretching surface considering zero normal flux, slip and convective boundary conditions. Joule heating effect is also considered. Appropriate similarity approach is used to convert leading system of PDE's for Carreau-Yasuda nanofluid into nonlinear ODE's. Well known mathematical scheme namely shooting method is utilized to solve the system numerically. Physical parameters, namely Weissenberg number We , thermal slip parameter δ , thermophoresis number NT, non-linear stretching parameter n, magnetic field parameter M, velocity slip parameter k , Lewis number Le, Brownian motion parameter NB, Prandtl number Pr, Eckert number Ec and chemical reaction parameter γ upon temperature, velocity and concentration profiles are visualized through graphs and tables. Numerical influence of mass and heat transfer rates and friction factor are also represented in tabular as well as graphical form respectively. Skin friction coefficient reduces when Weissenberg number We is incremented. Rate of heat transfer enhances for large values of Brownian motion constraint NB. By increasing Lewis quantity Le rate of mass transfer declines.

  6. Chemistry with spatial control using particles and streams†

    PubMed Central

    Kalinin, Yevgeniy V.; Murali, Adithya

    2012-01-01

    Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348

  7. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    NASA Astrophysics Data System (ADS)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  8. Irreversibility and entropy production in transport phenomena, III—Principle of minimum integrated entropy production including nonlinear responses

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    A new variational principle of steady states is found by introducing an integrated type of energy dissipation (or entropy production) instead of instantaneous energy dissipation. This new principle is valid both in linear and nonlinear transport phenomena. Prigogine’s dream has now been realized by this new general principle of minimum “integrated” entropy production (or energy dissipation). This new principle does not contradict with the Onsager-Prigogine principle of minimum instantaneous entropy production in the linear regime, but it is conceptually different from the latter which does not hold in the nonlinear regime. Applications of this theory to electric conduction, heat conduction, particle diffusion and chemical reactions are presented. The irreversibility (or positive entropy production) and long time tail problem in Kubo’s formula are also discussed in the Introduction and last section. This constitutes the complementary explanation of our theory of entropy production given in the previous papers (M. Suzuki, Physica A 390 (2011) 1904 and M. Suzuki, Physica A 391 (2012) 1074) and has given the motivation of the present investigation of variational principle.

  9. Solution of the nonlinear Poisson-Boltzmann equation: Application to ionic diffusion in cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, J.; Kosson, D.S., E-mail: david.s.kosson@vanderbilt.edu; Garrabrants, A.

    2013-02-15

    A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  10. Curved fronts in the Belousov-Zhabotinskii reaction-diffusion systems in R2

    NASA Astrophysics Data System (ADS)

    Niu, Hong-Tao; Wang, Zhi-Cheng; Bu, Zhen-Hui

    2018-05-01

    In this paper we consider a diffusion system with the Belousov-Zhabotinskii (BZ for short) chemical reaction. Following Brazhnik and Tyson [4] and Pérez-Muñuzuri et al. [45], who predicted V-shaped fronts theoretically and discovered V-shaped fronts by experiments respectively, we give a rigorous mathematical proof of their results. We establish the existence of V-shaped traveling fronts in R2 by constructing a proper supersolution and a subsolution. Furthermore, we establish the stability of the V-shaped front in R2.

  11. Using Directional Diffusion Coefficients for Nonlinear Diffusion Acceleration of the First Order SN Equations in Near-Void Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Hammer, Hans; Lou, Jijie

    2016-11-01

    The common definition of the diffusion coeffcient as the inverse of three times the transport cross section is not compat- ible with voids. Morel introduced a non-local tensor diffusion coeffcient that remains finite in voids[1]. It can be obtained by solving an auxiliary transport problem without scattering or fission. Larsen and Trahan successfully applied this diffusion coeffcient for enhancing the accuracy of diffusion solutions of very high temperature reactor (VHTR) problems that feature large, optically thin channels in the z-direction [2]. It is demonstrated that a significant reduction of error can be achieved in particular in the optically thin region.more » Along the same line of thought, non-local diffusion tensors are applied modeling the TREAT reactor confirming the findings of Larsen and Trahan [3]. Previous work of the authors have introduced a flexible Nonlinear-Diffusion Acceleration (NDA) method for the first order S N equations discretized with the discontinuous finite element method (DFEM), [4], [5], [6]. This NDA method uses a scalar diffusion coeffcient in the low-order system that is obtained as the flux weighted average of the inverse transport cross section. Hence, it su?ers from very large and potentially unbounded diffusion coeffcients in the low order problem. However, it was noted that the choice of the diffusion coeffcient does not influence consistency of the method at convergence and hence the di?usion coeffcient is essentially a free parameter. The choice of the di?usion coeffcient does, however, affect the convergence behavior of the nonlinear di?usion iterations. Within this work we use Morel’s non-local di?usion coef- ficient in the aforementioned NDA formulation in lieu of the flux weighted inverse of three times the transport cross section. The goal of this paper is to demonstrate that significant en- hancement of the spectral properties of NDA can be achieved in near void regions. For testing the spectral properties of the NDA with non-local diffusion coeffcients, the periodical horizontal interface problem is used [7]. This problem consists of alternating stripes of optically thin and thick materials both of which feature scattering ratios close to unity.« less

  12. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  13. Consumption and diffusion of dissolved oxygen in sedimentary rocks.

    PubMed

    Manaka, M; Takeda, M

    2016-10-01

    Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (D e , in m 2 s -1 ) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of D e for DO to lie within the range 2.69×10 -11

  14. Finite element procedures for time-dependent convection-diffusion-reaction systems

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Park, Y. J.; Deans, H. A.

    1988-01-01

    New finite element procedures based on the streamline-upwind/Petrov-Galerkin formulations are developed for time-dependent convection-diffusion-reaction equations. These procedures minimize spurious oscillations for convection-dominated and reaction-dominated problems. The results obtained for representative numerical examples are accurate with minimal oscillations. As a special application problem, the single-well chemical tracer test (a procedure for measuring oil remaining in a depleted field) is simulated numerically. The results show the importance of temperature effects on the interpreted value of residual oil saturation from such tests.

  15. Product interactions and feedback in diffusion-controlled reactions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim

    2018-02-01

    Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.

  16. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2014-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130

  17. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    NASA Astrophysics Data System (ADS)

    Chevalier, Michael W.; El-Samad, Hana

    2014-12-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.

  18. Scalar dissipation rates in non-conservative transport systems

    PubMed Central

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2014-01-01

    This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates are investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state. PMID:23584457

  19. Reactive multi-particle collision dynamics with reactive boundary conditions

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Rohlf, Katrin

    2018-07-01

    In the present study, an off-lattice particle-based method called the reactive multi-particle collision (RMPC) dynamics is extended to model reaction-diffusion systems with reactive boundary conditions in which the a priori diffusion coefficient of the particles needs to be maintained throughout the simulation. To this end, the authors have made use of the so-called bath particles whose purpose is only to ensure proper diffusion of the main particles in the system. In order to model partial adsorption by a reactive boundary in the RMPC, the probability of a particle being adsorbed, once it hits the boundary, is calculated by drawing an analogy between the RMPC and Brownian Dynamics. The main advantages of the RMPC compared to other molecular based methods are less computational cost as well as conservation of mass, energy and momentum in the collision and free streaming steps. The proposed approach is tested on three reaction-diffusion systems and very good agreement with the solutions to their corresponding partial differential equations is observed.

  20. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population.

    PubMed

    Ducrot, Arnaud; Giletti, Thomas

    2014-09-01

    In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.

  1. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  2. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.

    PubMed

    Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady

    2008-02-01

    We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald ripening (only one hole survives at the end), and we report a particular regime where the "hole ripening" statistics exhibits a simple dynamic scaling behavior.

  3. Global Regularity for the Fractional Euler Alignment System

    NASA Astrophysics Data System (ADS)

    Do, Tam; Kiselev, Alexander; Ryzhik, Lenya; Tan, Changhui

    2018-04-01

    We study a pressureless Euler system with a non-linear density-dependent alignment term, originating in the Cucker-Smale swarming models. The alignment term is dissipative in the sense that it tends to equilibrate the velocities. Its density dependence is natural: the alignment rate increases in the areas of high density due to species discomfort. The diffusive term has the order of a fractional Laplacian {(-partial _{xx})^{α/2}, α \\in (0, 1)}. The corresponding Burgers equation with a linear dissipation of this type develops shocks in a finite time. We show that the alignment nonlinearity enhances the dissipation, and the solutions are globally regular for all {α \\in (0, 1)}. To the best of our knowledge, this is the first example of such regularization due to the non-local nonlinear modulation of dissipation.

  4. Traveling wave solutions to a reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.

    2009-07-01

    In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.

  5. Multi-scale modeling of diffusion-controlled reactions in polymers: renormalisation of reactivity parameters.

    PubMed

    Everaers, Ralf; Rosa, Angelo

    2012-01-07

    The quantitative description of polymeric systems requires hierarchical modeling schemes, which bridge the gap between the atomic scale, relevant to chemical or biomolecular reactions, and the macromolecular scale, where the longest relaxation modes occur. Here, we use the formalism for diffusion-controlled reactions in polymers developed by Wilemski, Fixman, and Doi to discuss the renormalisation of the reactivity parameters in polymer models with varying spatial resolution. In particular, we show that the adjustments are independent of chain length. As a consequence, it is possible to match reactions times between descriptions with different resolution for relatively short reference chains and to use the coarse-grained model to make quantitative predictions for longer chains. We illustrate our results by a detailed discussion of the classical problem of chain cyclization in the Rouse model, which offers the simplest example of a multi-scale descriptions, if we consider differently discretized Rouse models for the same physical system. Moreover, we are able to explore different combinations of compact and non-compact diffusion in the local and large-scale dynamics by varying the embedding dimension.

  6. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  7. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  8. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  9. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  10. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  11. Existence and exponential stability of traveling waves for delayed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian

    2018-03-01

    The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

  12. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    PubMed

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  13. Simulation of miniature endplate potentials in neuromuscular junctions by using a cellular automaton

    NASA Astrophysics Data System (ADS)

    Avella, Oscar Javier; Muñoz, José Daniel; Fayad, Ramón

    2008-01-01

    Miniature endplate potentials are recorded in the neuromuscular junction when the acetylcholine contents of one or a few synaptic vesicles are spontaneously released into the synaptic cleft. Since their discovery by Fatt and Katz in 1952, they have been among the paradigms in neuroscience. Those potentials are usually simulated by means of numerical approaches, such as Brownian dynamics, finite differences and finite element methods. Hereby we propose that diffusion cellular automata can be a useful alternative for investigating them. To illustrate this point, we simulate a miniature endplate potential by using experimental parameters. Our model reproduces the potential shape, amplitude and time course. Since our automaton is able to track the history and interactions of each single particle, it is very easy to introduce non-linear effects with little computational effort. This makes cellular automata excellent candidates for simulating biological reaction-diffusion processes, where no other external forces are involved.

  14. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    de Brito, P. E.; Nazareno, H. N.

    2012-09-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  15. Bootstrapping Least Squares Estimates in Biochemical Reaction Networks

    PubMed Central

    Linder, Daniel F.

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  16. Critical time scales for advection-diffusion-reaction processes

    NASA Astrophysics Data System (ADS)

    Ellery, Adam J.; Simpson, Matthew J.; McCue, Scott W.; Baker, Ruth E.

    2012-04-01

    The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J.BIOJAU0006-349510.1016/j.bpj.2010.07.045 99, L59 (2010); A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.051906 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb and G. C. Wake, IMA J. Appl. Math.IJAMDM0272-496010.1093/imamat/47.2.193 47, 193 (1991)]. Although McNabb's initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.

  17. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms.

    PubMed

    Bandyopadhyay, Promode R; Hellum, Aren M

    2014-10-23

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.

  18. Monotonic non-linear transformations as a tool to investigate age-related effects on brain white matter integrity: A Box-Cox investigation.

    PubMed

    Morozova, Maria; Koschutnig, Karl; Klein, Elise; Wood, Guilherme

    2016-01-15

    Non-linear effects of age on white matter integrity are ubiquitous in the brain and indicate that these effects are more pronounced in certain brain regions at specific ages. Box-Cox analysis is a technique to increase the log-likelihood of linear relationships between variables by means of monotonic non-linear transformations. Here we employ Box-Cox transformations to flexibly and parsimoniously determine the degree of non-linearity of age-related effects on white matter integrity by means of model comparisons using a voxel-wise approach. Analysis of white matter integrity in a sample of adults between 20 and 89years of age (n=88) revealed that considerable portions of the white matter in the corpus callosum, cerebellum, pallidum, brainstem, superior occipito-frontal fascicle and optic radiation show non-linear effects of age. Global analyses revealed an increase in the average non-linearity from fractional anisotropy to radial diffusivity, axial diffusivity, and mean diffusivity. These results suggest that Box-Cox transformations are a useful and flexible tool to investigate more complex non-linear effects of age on white matter integrity and extend the functionality of the Box-Cox analysis in neuroimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  20. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  1. Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinney, H.L.; Lee, K.J.; McCormick, W.D.

    Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less

  2. Darcy-Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-09-01

    The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy-Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.

  3. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less

  4. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling

    PubMed Central

    Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.

    2015-01-01

    Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355

  5. Numerical simulation of the interaction of transport, diffusion and chemical reactions in an urban plume

    NASA Technical Reports Server (NTRS)

    Vogel, Bernhard; Vogel, Heike; Fiedler, Franz

    1994-01-01

    A model system is presented that takes into account the main physical and chemical processes on the regional scale here in an area of 100x100 sq km. The horizontal gridsize used is 2x2 sq km. For a case study, it is demonstrated how the model system can be used to separate the contributions of the processes advection, turbulent diffusion, and chemical reactions to the diurnal cycle of ozone. In this way, typical features which are visible in observations and are reproduced by the numerical simulations can be interpreted.

  6. Square Turing patterns in reaction-diffusion systems with coupled layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Wang, Hongli, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn; Center for Quantitative Biology, Peking University, Beijing 100871

    Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

  7. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  8. Label-Free Fluorescent DNA Dendrimers for microRNA Detection Based On Nonlinear Hybridization Chain Reaction-Mediated Multiple G-Quadruplex with Low Background Signal.

    PubMed

    Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng

    2018-04-18

    Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative approach for simple, sensitive, and selective miRNA quantification.

  9. The Weakly Nonlinear Magnetorotational Instability in a Local Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu

    2017-05-20

    The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg–Landau equation. We further find that the Ginzburg–Landau equation will arise for the local MRI system with shear-periodic boundary conditions,more » when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg–Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.« less

  10. Fractional Diffusion Equations and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  11. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    PubMed

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  12. Tethered satellite system control using electromagnetic forces and reaction wheels

    NASA Astrophysics Data System (ADS)

    Alandi Hallaj, Mohammad Amin; Assadian, Nima

    2015-12-01

    In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.

  13. Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction.

    PubMed

    Ramzan, M; Ullah, Naeem; Chung, Jae Dong; Lu, Dianchen; Farooq, Umer

    2017-10-10

    A mathematical model has been developed to examine the magneto hydrodynamic micropolar nanofluid flow with buoyancy effects. Flow analysis is carried out in the presence of nonlinear thermal radiation and dual stratification. The impact of binary chemical reaction with Arrhenius activation energy is also considered. Apposite transformations are engaged to transform nonlinear partial differential equations to differential equations with high nonlinearity. Resulting nonlinear system of differential equations is solved by differential solver method in Maple software which uses Runge-Kutta fourth and fifth order technique (RK45). To authenticate the obtained results, a comparison with the preceding article is also made. The evaluations are executed graphically for numerous prominent parameters versus velocity, micro rotation component, temperature, and concentration distributions. Tabulated numerical calculations of Nusselt and Sherwood numbers with respective well-argued discussions are also presented. Our findings illustrate that the angular velocity component declines for opposing buoyancy forces and enhances for aiding buoyancy forces by changing the micropolar parameter. It is also found that concentration profile increases for higher values of chemical reaction parameter, whereas it diminishes for growing values of solutal stratification parameter.

  14. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  15. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  16. Understanding and controlling regime switching in molecular diffusion

    NASA Astrophysics Data System (ADS)

    Hallerberg, S.; de Wijn, A. S.

    2014-12-01

    Diffusion can be strongly affected by ballistic flights (long jumps) as well as long-lived sticking trajectories (long sticks). Using statistical inference techniques in the spirit of Granger causality, we investigate the appearance of long jumps and sticks in molecular-dynamics simulations of diffusion in a prototype system, a benzene molecule on a graphite substrate. We find that specific fluctuations in certain, but not all, internal degrees of freedom of the molecule can be linked to either long jumps or sticks. Furthermore, by changing the prevalence of these predictors with an outside influence, the diffusion of the molecule can be controlled. The approach presented in this proof of concept study is very generic and can be applied to larger and more complex molecules. Additionally, the predictor variables can be chosen in a general way so as to be accessible in experiments, making the method feasible for control of diffusion in applications. Our results also demonstrate that data-mining techniques can be used to investigate the phase-space structure of high-dimensional nonlinear dynamical systems.

  17. Unimolecular diffusion-mediated reactions with a nonrandom time-modulated absorbing barrier

    NASA Technical Reports Server (NTRS)

    Bashford, D.; Weaver, D. L.

    1986-01-01

    A diffusion-reaction model with time-dependent reactivity is formulated and applied to unimolecular reactions. The model is solved exactly numerically and approximately analytically for the unreacted fraction as a function of time. It is shown that the approximate analytical solution is valid even when the system is far from equilibrium, and when the reactivity probability is more complicated than a square-wave function of time. A discussion is also given of an approach to problems of this type using a stochastically fluctuating reactivity, and the first-passage time for a particular example is derived.

  18. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  19. Intrinsic electric fields and proton diffusion in immobilized protein membranes. Effects of electrolytes and buffers.

    PubMed Central

    Zabusky, N J; Deem, G S

    1979-01-01

    We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570

  20. Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.

    PubMed

    Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini

    2017-01-01

    For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.

  1. Changes in Effective Thermal Conductivity During the Carbothermic Reduction of Magnetite Using Graphite

    NASA Astrophysics Data System (ADS)

    Kiamehr, Saeed; Ahmed, Hesham; Viswanathan, Nurni; Seetharaman, Seshadri

    2017-06-01

    Knowledge of the effective thermal diffusivity changes of systems undergoing reactions where heat transfer plays an important role in the reaction kinetics is essential for process understanding and control. Carbothermic reduction process of magnetite containing composites is a typical example of such systems. The reduction process in this case is highly endothermic and hence, the overall rate of the reaction is greatly influenced by the heat transfer through composite compact. Using Laser-Flash method, the change of effective thermal diffusivity of magnetite-graphite composite pellet was monitored in the dynamic mode over a pre-defined thermal cycle (heating at the rate of 7 K/min to 1423 K (1150 °C), holding the sample for 270 minutes at this temperature and then cooling it down to the room temperature at the same rate as heating). These measurements were supplemented by Thermogravimetric Analysis under comparable experimental conditions as well as quenching tests of the samples in order to combine the impact of various factors such as sample dilatations and changes in apparent density on the progress of the reaction. The present results show that monitoring thermal diffusivity changes during the course of reduction would be a very useful tool in a total understanding of the underlying physicochemical phenomena. At the end, effort is made to estimate the apparent thermal conductivity values based on the measured thermal diffusivity and dilatations.

  2. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  3. Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems on unbounded domains via Cauchy's criterion

    NASA Astrophysics Data System (ADS)

    Fukao, Takeshi; Kurima, Shunsuke; Yokota, Tomomi

    2018-05-01

    This paper develops an abstract theory for subdifferential operators to give existence and uniqueness of solutions to the initial-boundary problem (P) for the nonlinear diffusion equation in an unbounded domain $\\Omega\\subset\\mathbb{R}^N$ ($N\\in{\\mathbb N}$), written as \\[ \\frac{\\partial u}{\\partial t} + (-\\Delta+1)\\beta(u) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which represents the porous media, the fast diffusion equations, etc., where $\\beta$ is a single-valued maximal monotone function on $\\mathbb{R}$, and $T>0$. Existence and uniqueness for (P) were directly proved under a growth condition for $\\beta$ even though the Stefan problem was excluded from examples of (P). This paper completely removes the growth condition for $\\beta$ by confirming Cauchy's criterion for solutions of the following approximate problem (P)$_{\\varepsilon}$ with approximate parameter $\\varepsilon>0$: \\[ \\frac{\\partial u_{\\varepsilon}}{\\partial t} + (-\\Delta+1)(\\varepsilon(-\\Delta+1)u_{\\varepsilon} + \\beta(u_{\\varepsilon}) + \\pi_{\\varepsilon}(u_{\\varepsilon})) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which is called the Cahn--Hilliard system, even if $\\Omega \\subset \\mathbb{R}^N$ ($N \\in \\mathbb{N}$) is an unbounded domain. Moreover, it can be seen that the Stefan problem is covered in the framework of this paper.

  4. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor.

    PubMed

    Pan, Shu-Yuan; Liu, Hsing-Lu; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-07-01

    Basic oxygen furnace slag (BOFS) exhibits highly alkaline properties due to its high calcium content, which is beneficial to carbonation reaction. In this study, accelerated carbonation of BOFS was evaluated under different reaction times, temperatures, and liquid-to-solid (L/S) ratios in a slurry reactor. CO2 mass balance within the slurry reactor was carried out to validate the technical feasibility of fixing gaseous CO2 into solid precipitates. After that, a multiple model approach, i.e., theoretical kinetics and empirical surface model, for carbonation reaction was presented to determine the maximal carbonation conversion of BOFS in a slurry reactor. On one hand, the reaction kinetics of BOFS carbonation was evaluated by the shrinking core model (SCM). Calcite (CaCO3) was identified as a reaction product through the scanning electronic microscopy and X-ray diffraction analyses, which provided the rationale of applying the SCM in this study. The rate-limiting step of carbonation was found to be ash-diffusion controlled, and the effective diffusivity for carbonation of BOFS in a slurry reactor were determined accordingly. On the other hand, the carbonation conversion of BOFS was predicted by the response surface methodology (RSM) via a nonlinear mathematical programming. According to the experimental data, the highest carbonation conversion of BOFS achieved was 57% under an L/S ratio of 20 mL g(-1), a CO2 flow rate of 0.1 L min(-1), and a pressure of 101.3 kPa at 50 °C for 120 min. Furthermore, the applications and limitations of SCM and RSM were examined and exemplified by the carbonation of steelmaking slags. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  6. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less

  7. A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes.

    PubMed

    Ovchinnikov, Victor; Nam, Kwangho; Karplus, Martin

    2016-08-25

    A method is developed to obtain simultaneously free energy profiles and diffusion constants from restrained molecular simulations in diffusive systems. The method is based on low-order expansions of the free energy and diffusivity as functions of the reaction coordinate. These expansions lead to simple analytical relationships between simulation statistics and model parameters. The method is tested on 1D and 2D model systems; its accuracy is found to be comparable to or better than that of the existing alternatives, which are briefly discussed. An important aspect of the method is that the free energy is constructed by integrating its derivatives, which can be computed without need for overlapping sampling windows. The implementation of the method in any molecular simulation program that supports external umbrella potentials (e.g., CHARMM) requires modification of only a few lines of code. As a demonstration of its applicability to realistic biomolecular systems, the method is applied to model the α-helix ↔ β-sheet transition in a 16-residue peptide in implicit solvent, with the reaction coordinate provided by the string method. Possible modifications of the method are briefly discussed; they include generalization to multidimensional reaction coordinates [in the spirit of the model of Ermak and McCammon (Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352-1360)], a higher-order expansion of the free energy surface, applicability in nonequilibrium systems, and a simple test for Markovianity. In view of the small overhead of the method relative to standard umbrella sampling, we suggest its routine application in the cases where umbrella potential simulations are appropriate.

  8. Unsteady Crystal Growth Due to Step-Bunch Cascading

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Lin, Hong; Rosenberger, Franz

    1997-01-01

    Based on our experimental findings of growth rate fluctuations during the crystallization of the protein lysozym, we have developed a numerical model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evaluation of the model with properties characteristic for the solute transport, and the generation and propagation of steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.

  9. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Wave theory of turbulence in compressible media

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.

  11. Multiscale Metabolic Modeling of C4 Plants: Connecting Nonlinear Genome-Scale Models to Leaf-Scale Metabolism in Developing Maize Leaves

    PubMed Central

    Bogart, Eli; Myers, Christopher R.

    2016-01-01

    C4 plants, such as maize, concentrate carbon dioxide in a specialized compartment surrounding the veins of their leaves to improve the efficiency of carbon dioxide assimilation. Nonlinear relationships between carbon dioxide and oxygen levels and reaction rates are key to their physiology but cannot be handled with standard techniques of constraint-based metabolic modeling. We demonstrate that incorporating these relationships as constraints on reaction rates and solving the resulting nonlinear optimization problem yields realistic predictions of the response of C4 systems to environmental and biochemical perturbations. Using a new genome-scale reconstruction of maize metabolism, we build an 18000-reaction, nonlinearly constrained model describing mesophyll and bundle sheath cells in 15 segments of the developing maize leaf, interacting via metabolite exchange, and use RNA-seq and enzyme activity measurements to predict spatial variation in metabolic state by a novel method that optimizes correlation between fluxes and expression data. Though such correlations are known to be weak in general, we suggest that developmental gradients may be particularly suited to the inference of metabolic fluxes from expression data, and we demonstrate that our method predicts fluxes that achieve high correlation with the data, successfully capture the experimentally observed base-to-tip transition between carbon-importing tissue and carbon-exporting tissue, and include a nonzero growth rate, in contrast to prior results from similar methods in other systems. PMID:26990967

  12. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2006-09-01

    We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.

  13. Reaction-diffusion controlled growth of complex structures

    NASA Astrophysics Data System (ADS)

    Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna

    2013-03-01

    Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support

  14. Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution.

    PubMed

    Wu, Nan; Courtois, Fabienne; Zhu, Yonggang; Oakeshott, John; Easton, Chris; Abell, Chris

    2010-09-01

    Fluorongenic reagents based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase, sulfatase, esterase, lipase and glycosidase activities in conventionally formatted enzyme assay systems. However, the sensitivity of assays based on these substrates is also potentially very useful in the microdroplet formats now being developed for high throughput in vitro evolution experiments. In this article, we report the investigation of diffusion of 4-MU as a model dye from water-in-oil droplets and the internal aqueous phase of water-in-oil-in-water droplets in microfluidics. The effect of BSA in the aqueous phase on the diffusion of 4-MU is also discussed. Based on these results, we provided here proof-of-concept of the reaction of the enzyme OpdA with the substrate coumaphos in water-in-oil-in-water droplets. In this double-emulsion system, the reaction of OpdA and coumaphos was achieved by allowing coumaphos to diffuse from the continuous aqueous phase across the oil phase into the internal aqueous droplets.

  15. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-09-15

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less

  16. FAST SIMULATION OF SOLID TUMORS THERMAL ABLATION TREATMENTS WITH A 3D REACTION DIFFUSION MODEL *

    PubMed Central

    BERTACCINI, DANIELE; CALVETTI, DANIELA

    2007-01-01

    An efficient computational method for near real-time simulation of thermal ablation of tumors via radio frequencies is proposed. Model simulations of the temperature field in a 3D portion of tissue containing the tumoral mass for different patterns of source heating can be used to design the ablation procedure. The availability of a very efficient computational scheme makes it possible update the predicted outcome of the procedure in real time. In the algorithms proposed here a discretization in space of the governing equations is followed by an adaptive time integration based on implicit multistep formulas. A modification of the ode15s MATLAB function which uses Krylov space iterative methods for the solution of for the linear systems arising at each integration step makes it possible to perform the simulations on standard desktop for much finer grids than using the built-in ode15s. The proposed algorithm can be applied to a wide class of nonlinear parabolic differential equations. PMID:17173888

  17. Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2015-11-01

    Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.

  18. Forward design of a complex enzyme cascade reaction

    PubMed Central

    Hold, Christoph; Billerbeck, Sonja; Panke, Sven

    2016-01-01

    Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. PMID:27677244

  19. High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations

    NASA Astrophysics Data System (ADS)

    Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.

    2018-06-01

    Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.

  20. Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models.

    PubMed

    Simpson, Matthew J; Baker, Ruth E; McCue, Scott W

    2011-02-01

    Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.

Top