Science.gov

Sample records for nonlinear semiconducting devices

  1. Semiconducting compounds and devices incorporating same

    SciTech Connect

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  2. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  3. Bulk semiconducting scintillator device for radiation detection

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  4. Exciton Dynamics and Many Body Interactions in Layered Semiconducting Materials Revealed with Non-linear Coherent Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dey, Prasenjit

    Atomically thin, semiconducting transition metal dichalogenides (TMDs), a special class of layered semiconductors, that can be shaped as a perfect two dimensional material, have garnered a lot of attention owing to their fascinating electronic properties which are achievable at the extreme nanoscale. In contrast to graphene, the most celebrated two-dimensional (2D) material thus far; TMDs exhibit a direct band gap in the monolayer regime. The presence of a non-zero bandgap along with the broken inversion symmetry in the monolayer limit brands semiconducting TMDs as the perfect candidate for future optoelectronic and valleytronics-based device application. These remarkable discoveries demand exploration of different materials that possess similar properties alike TMDs. Recently, III-VI layered semiconducting materials (example: InSe, GaSe etc.) have also emerged as potential materials for optical device based applications as, similar to TMDs, they can be shaped into a perfect two-dimensional form as well as possess a sizable band gap in their nano-regime. The perfect 2D character in layered materials cause enhancement of strong Coulomb interaction. As a result, excitons, a coulomb bound quasiparticle made of electron-hole pair, dominate the optical properties near the bandgap. The basis of development for future optoelectronic-based devices requires accurate characterization of the essential properties of excitons. Two fundamental parameters that characterize the quantum dynamics of excitons are: a) the dephasing rate, gamma, which represents the coherence loss due to the interaction of the excitons with their environment (for example- phonons, impurities, other excitons, etc.) and b) excited state population decay rate arising from radiative and non-radiative relaxation processes. The dephasing rate is representative of the time scale over which excitons can be coherently manipulated, therefore accurately probing the source of exciton decoherence is crucial for

  5. Logic-gate devices based on printed polymer semiconducting nanostripes.

    PubMed

    Gentili, Denis; Sonar, Prashant; Liscio, Fabiola; Cramer, Tobias; Ferlauto, Laura; Leonardi, Francesca; Milita, Silvia; Dodabalapur, Ananth; Cavallini, Massimiliano

    2013-08-14

    The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm(2) V(-1) s(-1) for electrons and 0.70 cm(2) V(-1) s(-1) for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.

  6. Semiconducting boron carbide polymers devices for neutron detection

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Pasquale, Frank L.; James, Robinson; Colón Santana, Juan A.; Adenwalla, Shireen; Kelber, Jeffry A.; Dowben, Peter A.

    2014-03-01

    Boron carbide materials, with aromatic compounds included, prove to be effective materials as solid state neutron detector detectors. The I-V characteristic curves for these heterojunction diodes with silicon show that these modified boron carbides, in the presence of these linking groups such as 1,4-diaminobenzene (DAB) and pyridine, are p-type. Cadmium was used as shield to discriminate between neutron-induced signals and thermal neutrons, and thermal neutron capture is evident, while gamma detection was not realized. Neutron detection signals for these heterojunction diode were observed, a measurable zero bias current noted, even without complete electron-hole collection. This again illustrates that boron carbide devices can be considered a neutron voltaic.

  7. High-Field Transport in Semiconducting Material and Devices.

    NASA Astrophysics Data System (ADS)

    Ahmad, Nisar

    1990-01-01

    Available from UMI in association with The British Library. Considering the developments and most recent technological innovations of semiconductor devices, it is important to investigate the ramifications of charge carrier transport in high electric field in modern semiconductor microstructures, where the electric fields are found to be necessarily high. The fundamental ideas of transport theory including the mobility -limiting scattering mechanisms are reviewed. The ideas of linear transport are extended and the derivation of the high-field distribution is described in a single-valley model appropriate for the band structures of silicon and germanium. The velocity-field profile obtained from this distribution function is compared with the experimental results on bulk (3-dimensional) samples of silicon and germanium. The two-band model of intrinsic transport in a high electric field is also included. The single valley distribution is applied to the multi-valley structures of CaAs and (InGa)As to explain the experimentally observed negative differential resistivity in bulk samples. The calculations are further extended to two dimensional quantum -well microstructures of GaAs and (InGa)As. The conditions necessary for negative differential resistivity in these microstructures to be observable is also discussed. The applications of the above ideas in modelling submicron -length channel field effect transistors (MOSFET's and MODFET's) is discussed. Suggestions for further future applications of the analysis are offered.

  8. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.

    PubMed

    Wei, Li; Tezuka, Noriyasu; Umeyama, Tomokazu; Imahori, Hiroshi; Chen, Yuan

    2011-04-01

    Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.

  9. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  10. Inkjet printed polymer light-emitting devices fabricated by thermal embedding of semiconducting polymer nanospheres in an inert matrix

    NASA Astrophysics Data System (ADS)

    Fisslthaler, Evelin; Sax, Stefan; Scherf, Ullrich; Mauthner, Gernot; Moderegger, Erik; Landfester, Katharina; List, Emil J. W.

    2008-05-01

    An aqueous dispersion of semiconducting polymer nanospheres was used to fabricate polymer light-emitting devices by inkjet printing in an easy-to-apply process with a minimum feature size of 20μm. To form the devices, the electroluminescent material was printed on a nonemitting polystyrene matrix layer and embedded by thermal annealing. The process allows the printing of light-emitting thin-film devices without extensive optimization of film homogeneity and thickness of the active layer. Optical micrographs of printed device arrays, electroluminescence emission spectra, and I /V characteristics of printed ITO/PEDOT:PSS/PS/SPN/Al devices are presented.

  11. High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends.

    PubMed

    Chiu, Yu-Cheng; Chen, Tzu-Ying; Chen, Yougen; Satoh, Toshifumi; Kakuchi, Toyoji; Chen, Wen-Chang

    2014-08-13

    Organic nonvolatile transistor memory devices of the n-type semiconductor N,N'-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI) were prepared using various electrets (i.e., three-armed star-shaped poly[4-(diphenylamino)benzyl methacrylate] (N(PTPMA)3) and its blends with 6,6-phenyl-C61-butyric acid methyl ester (PCBM), 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pen) or ferrocene). In the device using the PCBM:N(PTPMA)3 blend electret, it changed its memory feature from a write-once-read-many (WORM) type to a flash type as the PCBM content increased and could be operated repeatedly based on a tunneling process. The large shifts on the reversible transfer curves and the hysteresis after implementing a gate bias indicated the considerable charge storage in the electret layer. On the other hand, the memory characteristics showed a flash type and a WORM characteristic, respectively, using the donor/donor electrets TIPS-pen:N(PTPMA)3 and ferrocene:N(PTPMA)3. The variation on the memory characteristics was attributed to the difference of energy barrier at the interface when different types of electret materials were employed. All the studied memory devices exhibited a long retention over 10(4) s with a highly stable read-out current. In addition, the afore-discussed memory devices by inserting another electret layer of poly(methacrylic acid) (PMAA) between the BPE-PTCDI layer and the semiconducting blend layer enhanced the write-read-erase-read (WRER) operation cycle as high as 200 times. This study suggested that the energy level and charge transfer in the blend electret had a significant effect on tuning the characteristics of nonvolatile transistor memory devices.

  12. Semiconducting organic thin films as monitoring devices for NO2 air pollution

    NASA Astrophysics Data System (ADS)

    Heilmann, A.; Lantto, V.

    The chemisorption of NO2 on lead phthalocyanine (PbPc) thin films changes the electrical conductivity of this semiconducting organic material and so the detection of NO2 concentration in the ppb range is possible. Some mesurements concerning the NO2 concentration in city air (Oulu, Finland) were carried out using this kind of device (PbPc thin film on metal slit electrodes). In the first part of the study, the sensor devices were heated in a test chamber up to 170 C and air from outside the laboratory was pumped into the test chamber using a conventional pump. In the second part of the study, a PbPc sensor with internal heating and measuring amplifier was installed directly at the city air pollution monitoring station where a commercial equipment based on chemiluminescnece was also used for continuous monitoring of the NO2 concentration in the city air. Good correlation between the sensor response and the chemiluminescence values was obtained under these circumstances. The measurements show that NO2 sensors based on PbPc thin films are suited to monitor NO2 as an air pollutant in city air.

  13. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    PubMed

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.

  14. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-01

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge

  15. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    PubMed

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption. PMID:26847814

  16. Interfacial Nonlinear Dynamics, Phenomena, and Devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ping

    The dynamics of an optical switch based on a dielectric -clad nonlinear film is presented. Two transition processes of the optical switching, from total internal reflection (TIR) to transmission (Tr) and from Tr to TIR, are investigated in theory as well as experiment. Nonlinear dynamic layered transfer matrix theory is developed to study the transition process from TIR to Tr at a nonlinear thin film due to the optically induced refractive index change. A simple theoretical model based on a dynamic nonlinear Fabry-Perot etalon is given for the analysis of the switching process from Tr to TIR. The quantitative analysis can be used for the design and optimization of an optical sensor protector and other devices. Experiments have been done on both the processes of TIR to Tr and Tr to TIR switching for visible as well as infrared wavelengths. A theory for the design of an optimal anti-reflection coating is proposed in order to aid the design and optimization of a nonlinear interfacial switch. Furthermore, a detailed study of the dynamic optical tunneling through the nonlinear interface indicates that the reflected wave would undergo an additional dynamic nonlinear phase shift which is a novel nonlinear interfacial phenomenon, first revealed by this study.

  17. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices.

    PubMed

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ(opt)/σ(dc) = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I(on)/I(off) ratios from 10-19,800 and electron mobility values μ(e) = 0.3-78.8 cm(2) (V-s)(-1), hole mobility values μ(h) = 0.4-287 cm(2) (V-s)(-1). High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ(dc)/σ(opt) values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  18. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices

    NASA Astrophysics Data System (ADS)

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ opt/σ dc = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I on/I off ratios from 10-19 800 and electron mobility values μ e = 0.3-78.8 cm2 (V-s)-1, hole mobility values μ h = 0.4-287 cm2 (V-s)-1. High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ dc/σ opt values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  19. Heat devices in nonlinear irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Izumida, Y.; Okuda, K.; Roco, J. M. M.; Hernández, A. Calvo

    2015-05-01

    We present results obtained by using nonlinear irreversible models for heat devices. In particular, we focus on the global performance characteristics, the maximum efficiency and the efficiency at maximum power regimes for heat engines, and the maximum coefficient of performance (COP) and the COP at maximum cooling power regimes for refrigerators. We analyze the key role played by the interplay between irreversibilities coming from heat leaks and internal dissipations. We also discuss the relationship between these results and those obtained by different models.

  20. Nonlinear buffer layers relevant for reduced nonlinear effects in HTS microwave devices

    NASA Astrophysics Data System (ADS)

    Seron, D.

    2008-02-01

    Microwave devices made of a High-Temperature Superconductor (HTS) exhibit a nonlinear response as the microwave power increases. The HTS nonlinearities generate a nonlinear inductance Ld(irf) and a nonlinear resistance Rd(irf) in a device. Ld(irf) and Rd(irf) are responsible for an increase of the device loss, a small frequency dispersion as well as the generation of spurious signals like Intermodulation Distortion (IMD). Nevertheless, the HTS nonlinearities in a microwave device can be reduced using a nonlinear dielectric like a ParaElectric Material (PEM). This assumption has recently been demonstrated theoretically. In a microwave device made of a HTS and a PEM, the nonlinear contribution to the capacitance Cd(vrf) from the PEM acts oppositely to the nonlinear contribution to Ld(irf). This may cancel the effect of the HTS inductive nonlinearities. The PEM also produces a nonlinear conductance Gd(vrf) in a device. All these nonlinear terms contribute to the IMD output power and the nonlinear quality factor (Q0) of a resonant passive microwave device. In this paper, the dependence of the different nonlinear contributions on frequency and applied dc bias voltage (Vdc) is investigated. The relevance to employ PEM in order to reduce the nonlinearities in HTS microwave devices is discussed.

  1. Final Report for DE-FG36-08GO18007 "All-Inorganic, Efficient Photovoltaic Solid State Devices Utilizing Semiconducting Colloidal Nanocrystal Quantum Dots"

    SciTech Connect

    Vladimir Bulovic and Moungi Bawendi

    2011-09-30

    We demonstrated robust colloidal quantum dot (QD) photovoltaics with high internal quantum efficiencies. In our structures, device durability is derived from use of all-inorganic atmospherically-stable semiconducting metal-oxide films together with QD photoreceptors. We have shown that both QD and metal-oxide semiconducting films and contacts are amenable to room temperature processing under minimal vacuum conditions, enabling large area processing of PV structures of high internal efficiency. We generated the state of the art devices with power conversion efficiency of more than 4%, and have shown that efficiencies as high as 9% are achievable in the near-term, and as high as 17% in the long-term.

  2. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  3. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  4. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.

    PubMed

    Che, Yuchi; Wang, Chuan; Liu, Jia; Liu, Bilu; Lin, Xue; Parker, Jason; Beasley, Cara; Wong, H-S Philip; Zhou, Chongwu

    2012-08-28

    The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.

  5. Nonlinear periodic structures: From classical to quantum devices

    NASA Astrophysics Data System (ADS)

    Sarrafi, Peyman

    In this thesis, nonlinear periodic structures and their applications in both classical and quantum regime are investigated. New theoretical models are developed, and novel applications of nonlinear periodic structures are proposed and demonstrated. The theoretical studies, both design and simulation, are based on but not limited to InGaAsP material. A new method, namely the time-domain transfer-matrix (TDTM), is presented to simulate optical pulse propagation in layered media with resonant nonlinearity. As there were no satisfactory methods in the literature to model this problem, in order to validate and compare with the TDTM method, the standard FDTD method is generalized to include the rate equation in the analysis of semi-conductors. Also in this work, optical manipulation of absorption in periodic structures is studied for the first time. Thanks to the large accessible nonlinearity that results from the absorption saturation and frequency selectivity of periodic structures, a sensitive and compact optical limiter is designed. The novel design and modeling work developed in this thesis has provided new insights and tools to the utilization of resonant nonlinearities in compact all-optical devices. The experimental studies are based on quasi-phase matched AlGaAs superlattice waveguides. These devices have been previously designed and used for classical optical wavelength conversion such as second harmonic generation and difference frequency generation. In this work, these devices are exploited for spontaneous down conversion, which is a quantum effect, for the first time, through this process, entangled photon pairs are generated. Unprecedented performance, in terms of brightness and purity, of III-V semiconductor-based entangled photon sources has been demonstrated here. Moreover, the quantum properties of these entangled photons are characterized. The experimental studies presented in this thesis open up new application areas for III-V nonlinear optical

  6. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  7. Hole-selective and impedance characteristics of an aqueous solution-processable MoO3 layer for solution-processable organic semiconducting devices

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Park, Byoungchoo

    2015-02-01

    We herein report an investigation of aqueous solution-processable molybdenum-oxide (MoO3) hole-selective layers fabricated for solution-processable organic semiconducting devices. A homogeneous MoO3 layer was successfully deposited via spin-coating using aqueous solutions of ammonium heptamolybdate as a MoO3 precursor. The use of the solution-processable MoO3 layer as a hole-injecting layer (HIL) on an indium-tin-oxide (ITO) anode in solution-processable organic light-emitting diodes (OLEDs) resulted in excellent device performance in terms of the brightness (maximum brightness of 37,000 cd m-2) and the efficiency (peak efficiency of 25.2 cd A-1), comparable to or better than those of a reference OLED with a conventional poly(ethylenedioxy thiophene):poly(styrene sulfonate) (PEDOT:PSS) HIL. Such good device performance is attributed to the water-processable MoO3 hole-selective layers, which allowed the formation of a high-quality film and provided good matching of the energy levels between adjacent layers with improved hole-injecting properties, impedance characteristics, and stability. Furthermore, polymer solar cells (PSCs) with a MoO3 layer used as a hole-collecting layer (HCL) showed improved power conversion efficiency (3.81%), which was higher than that obtained using the PEDOT:PSS HCL. These results clearly indicate the benefits of using a water-processable MoO3 layer, which effectively acts as a hole-selective layer on an ITO anode and provides good hole-injection/collection, electron-blocking and energy-level-matching properties, and improved stability. They, therefore, offer considerable promise as an alternative to a conventional PEDOT:PSS layer in the production of high-performance solution-processable organic semiconducting devices.

  8. Carbon Nanotube Passive Intermodulation Device for Nonlinear Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lerner, Mitchell; Perez, Israel; Rockway, John

    2014-03-01

    The navy is interested in designing RF front-ends for receivers to handle high power jammers and other strong interferers. Instead of blocking that energy or dissipating it as heat in filters or amplifiers, this project investigates re-directing that energy for harvesting and storage. The approach is based on channelizing a high power jamming signal into a passive intermodulation device to create intermodulation products in sub-band frequencies, which could then be harvested for energy. The intermodulation device is fabricated using carbon nanotube transistors and such devices can be modified by creating chemical defects in the sidewalls of the nanotubes and locally gating the devices with a slowly varying electric field. These effects controllably enhance the hysteretic non-linearity in the transistors IV behavior. Combining these components with a RF energy harvester on the back-end should optimize the re-use of inbound jamming energy while maximizing the utility of standard back end radio components.

  9. Magnetoresistance in organic spintronic devices: the role of nonlinear effects

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. A.

    2015-02-01

    We derive kinetic equations describing injection and transport of spin-polarized carriers in organic semiconductors with hopping conductivity via an impurity level. The model predicts a strongly voltage dependent magnetoresistance, defined as resistance variation between devices with parallel and antiparallel electrode magnetizations (spin-valve effect). The voltage dependence of the magnetoresistance splits into three distinct regimes. The first regime matches well-known inorganic spintronic regimes, corresponding to barrier-controlled spin injection or the well-known conductivity mismatch case. The second regime at intermediate voltages corresponds to strongly suppressed magnetoresistance. The third regime develops at higher voltages and accounts for a novel paradigm. It is promoted by the strong nonlinearity in the charge transport whose strength is characterized by the dimensionless parameter eU/kBT. This nonlinearity, depending on device conditions, can lead to both significant enhancement or to exponential suppression of the spin-valve effect in organic devices. We believe that these predictions are valid beyond the case of organic semiconductors and should be considered for any material characterized by strongly nonlinear charge transport.

  10. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    PubMed

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices. PMID:19076042

  11. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  12. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  13. Semiconducting selenium nanoparticles: Structural, electrical characterization, and formation of a back-to-back Schottky diode device

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit

    2013-03-01

    Well crystalline selenium nanoparticles having an optical band gap of 2.95 eV have been synthesized using oxalic acid. Microstructural parameters such as crystallite size, lattice strain, cell parameters, and unit cell volume are estimated from X-ray diffraction line profile analysis by Rietveld refinement technique. dc and ac transport properties of the nanoparticles in the temperature range 300 K ≤ T ≤ 390 K and frequency range 20 Hz ≤ f ≤ 2 MHz have also been studied. The values of dc activation energies in the low and high temperature regions are found to be 0.083 eV and 0.382 eV, respectively. The charge transport mechanism of the sample follows correlated barrier hopping (CBH) model and the calculated value of barrier height and relaxation time is 0.786 eV and 2.023 × 10-11 s, respectively, while grain boundary contribution being greater than the grain contribution. Considering metal electrode-semiconductor contact as a back-to-back Schottky diode device, analysis of the current-voltage and capacitance-voltage characteristics is done to extract the Schottky barrier heights, ideality parameters, built in voltage, and charge density. With ±40 V sweep the capacitance versus voltage characteristics of the sample shows hysteresis behavior which may be attributed to the presence of deep traps.

  14. Nonlinear parametric amplification in a triport nanoelectromechanical device

    NASA Astrophysics Data System (ADS)

    Collin, E.; Moutonet, T.; Heron, J.-S.; Bourgeois, O.; Bunkov, Yu. M.; Godfrin, H.

    2011-08-01

    We report on measurements performed at low temperatures on a nanoelectromechanical system (NEMS) under (capacitive) parametric pumping. The excitations and detection schemes are purely electrical and, in the present experiment, enable the straightforward measurement of forces down to about a femtonewton, for displacements of an angström, using standard room-temperature electronics. We demonstrate that a small (linear) force applied on the device can be amplified up to more than a 100 times, while the system is truly moving. We explore the dynamics up to about 50-nm deflections for cantilevers about 200 nm thick and 3 μm long, oscillating at a frequency of 7 MHz. We present a generic modeling of nonlinear parametric amplification and give analytic theoretical solutions enabling the fit of experimental results. We finally discuss the practical limits of the technique, with a particular application: the measurement of anelastic damping in the metallic coating of the device, with an exceptional resolution of about 0.5%.

  15. Nonlinear quantum transport in low-dimensional electronic devices

    NASA Astrophysics Data System (ADS)

    Barrios, Andres Javier

    recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.

  16. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  17. Novel Nanoelectronic Device Applications Based on the Nonlinearity of Three-Terminal Ballistic Junctions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wallin, D.; Brusheim, P.; Maximov, I.; Wang, Z. G.; Xu, H. Q.

    2007-04-01

    Nanometer-scale electron devices containing three-terminal ballistic junctions are fabricated by electron-beam lithography on InP/InGaAs two-dimensional electron gas materials. Based on the intrinsic nonlinearity of the devices, frequency mixer, phase detector and RS flip-flop memory functioning at room temperature are successfully achieved. The devices have simple structure layout and small size, and are expected to function at high speed.

  18. NONLINEAR OPTICAL PHENOMENA AND DEVICES: Nonlinear refraction of silver hydrosols during their aggregation

    NASA Astrophysics Data System (ADS)

    Karpov, S. V.; Kodirov, M. K.; Ryasnyansky, A. I.; Slabko, V. V.

    2001-10-01

    The relation between the degree of aggregation of silver hydrosols and their nonlinear refractive index n2 is studied experimentally. It is found that the sign of n2 at a wavelength of 1.064 μm changes with increasing the aggregation degree, which corresponds to the replacing of self-focusing by self-defocusing. The observed effects are explained based on the analysis of a change in nonlinear dispersion of the medium, taking into account the interaction between phases and the photochromic effects, which are typical for colloidal structures with fractal geometry. It is shown that the change in the sign of the nonlinear refractive index of hydrosols upon irradiation by laser pulses of duration of less than 10-7 s is caused by the perturbation of resonances of silver and water and by the competition between Kerr nonlinear polarisations involving these resonances.

  19. Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device.

    PubMed

    Loo, V; Arnold, C; Gazzano, O; Lemaître, A; Sagnes, I; Krebs, O; Voisin, P; Senellart, P; Lanco, L

    2012-10-19

    Giant optical nonlinearity is observed under both continuous wave and pulsed excitation in a deterministically coupled quantum dot-micropillar system, in a pronounced strong-coupling regime. Using absolute reflectivity measurements we determine the critical intracavity photon number as well as the input and output coupling efficiencies of the device. Thanks to a near-unity input-coupling efficiency, we demonstrate a record nonlinearity threshold of only 8 incident photons per pulse. The output-coupling efficiency is found to strongly influence this nonlinearity threshold. We show how the fundamental limit of single-photon nonlinearity can be attained in realistic devices, which would provide an effective interaction between two coincident single-photons.

  20. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process. PMID:16901706

  1. Nonlinear Optics in Optoelectronic Integration with Some Novel Waveguide Devices.

    NASA Astrophysics Data System (ADS)

    Vakhshoori, Daryoosh

    By integration we mean realizing an integrable solution to existing discrete devices which perform some useful operation. Systems are built from these functional parts. System integration requires compatible integration of these parts. At present the most important example that also relates to our work is communication systems. For this system to work reliably, the optical pulses should be stable in time and shape (small time and amplitude jitter.) The devices that measure these properties are optical correlators. These devices are bulky, occupying a cubic foot of volume with no satisfactory integrable counterpart. Here we present an integrable waveguide correlator which experimentally measured pulses from 150fsec to 12psec with an average guide power of sub mW to 2mW in the spectral range of 1.7mum to 1.06mu m. All these measurements were performed on the same waveguide structure without mechanical movements where the spectral range was limited to the band gap of the waveguide material, GaAs in our case. The other communication scheme uses wavelength division multiplexing. Optical spectrometers are ~1 meter long devices capable of 0.1A spectral resolution. Again, like correlators, there is no satisfactory integrable counterpart. In this thesis, we present an integrable parametric waveguide spectrometer capable of measuring individual modes of semiconductor laser diodes and their movement as a function of laser current. For our experiments, the resolving power of the waveguide device was about 3A and is easily extendible to the sub A range. It should be pointed out that these spectrometer devices can also be used in stabilizing laser diode frequencies which are required for the realization of reliable wavelength division multiplexed systems. Last, but not least, a possible coherent visible surface emitting waveguide device capable of mW range powers is also presented. The motivation for this study is the ever growing market for shorter wavelength semiconductor

  2. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  3. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  4. Understanding nonlinear vibration behaviours in high-power ultrasonic surgical devices

    PubMed Central

    Mathieson, Andrew; Cardoni, Andrea; Cerisola, Niccolò; Lucas, Margaret

    2015-01-01

    Ultrasonic surgical devices are increasingly used in oral, craniofacial and maxillofacial surgery to cut mineralized tissue, offering the surgeon high accuracy with minimal risk to nerve and vessel tissue. Power ultrasonic devices operate in resonance, requiring their length to be a half-wavelength or multiple-half-wavelength. For bone surgery, devices based on a half-wavelength have seen considerable success, but longer multiple-half-wavelength endoscopic devices have recently been proposed to widen the range of surgeries. To provide context for these developments, some examples of surgical procedures and the associated designs of ultrasonic cutting tips are presented. However, multiple-half-wavelength components, typical of endoscopic devices, have greater potential to exhibit nonlinear dynamic behaviours that have a highly detrimental effect on device performance. Through experimental characterization of the dynamic behaviour of endoscopic devices, it is demonstrated how geometrical features influence nonlinear dynamic responses. Period doubling, a known route to chaotic behaviour, is shown to be significantly influenced by the cutting tip shape, whereas the cutting tip has only a limited effect on Duffing-like responses, particularly the shape of the hysteresis curve, which is important for device stability. These findings underpin design, aiming to pave the way for a new generation of ultrasonic endoscopic surgical devices. PMID:27547081

  5. Nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    NASA Technical Reports Server (NTRS)

    Wang, Zhong L. (Inventor); Wang, Xudong (Inventor); Song, Jinhui (Inventor); Zhou, Jun (Inventor); He, Jr-Hau (Inventor)

    2011-01-01

    A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode.

  6. Microwave-induced adjustable nonlinear temperature gradients in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Shah, Jayna J.; Geist, Jon; Gaitan, Michael

    2010-10-01

    We describe on-chip microwave generation of spatial temperature gradients in a polymeric microfluidic device that includes an integrated microstrip transmission line. The transmission line was fabricated photolithographically on commercially available adhesive copper tape. The fluid temperature during microwave heating was measured by observing the temperature-dependent fluorescence intensity of a dye solution in the microchannel. Large interference effects, which were produced by superposition of a sinusoidal and two exponential temperature distributions, were measured at 12 GHz and 19 GHz. Temperature extremes of 31 °C and 53 °C at the minimum and maximum of the sinusoid were established within 1 s. The sinusoid also produced a quasilinear temperature gradient along a 2 mm distance with a slope of 7.3 °C mm-1. This technique has the potential to benefit many biological, chemical and physical applications requiring rapid temperature gradients.

  7. Non-linear control of the ''clam'' wave energy device. Final report

    SciTech Connect

    Not Available

    1983-09-01

    A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.

  8. Nonlinear modeling of low-to-high-frequency noise up-conversion in microwave electron devices

    NASA Astrophysics Data System (ADS)

    Filicori, Fabio; Traverso, Pier A.; Florian, Corrado

    2003-05-01

    Measurement-based, circuit-oriented non-linear noise modeling of microwave electron devices is still an open field of research, since existing approaches are not always suitable for the accurate prediction of low-frequency noise up-conversion to RF, which represents an essential information for the non-linear circuit analyses performed in the CAD of low phase-noise oscillators. In this paper a technology-independent, empirical approach to the modeling of noise contributions at the ports of electron devices, operating under strongly non-linear conditions, is proposed. Details concerning the analytical formulation of the model, which is derived by considering randomly time-varying perturbations in the basic equations of an otherwise conventional charge-controlled non-linear model, are presented, along with a discussion about the measurement techniques devoted to its experimental characterization. An example of application of the proposed Charge-Controlled Non-linear Noise (CCNN) model is considered in the case of a HBT transistor. Techniques devoted to the implementation of the obtained model in the framework of commercial CAD tools for circuit analysis and design are provided as well.

  9. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage.

    PubMed

    Cai, Ronggang; Kassa, Hailu G; Haouari, Rachid; Marrani, Alessio; Geerts, Yves H; Ruzié, Christian; van Breemen, Albert J J M; Gelinck, Gerwin H; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M

    2016-03-21

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction intrinsic to the nanostructured hybrid layer offers opportunities for the development of strongly miniaturized ferroelectric and piezoelectric devices.

  10. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage

    NASA Astrophysics Data System (ADS)

    Cai, Ronggang; Kassa, Hailu G.; Haouari, Rachid; Marrani, Alessio; Geerts, Yves H.; Ruzié, Christian; van Breemen, Albert J. J. M.; Gelinck, Gerwin H.; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M.

    2016-03-01

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction intrinsic to the nanostructured hybrid layer offers opportunities for the development of strongly miniaturized ferroelectric and piezoelectric devices.Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction

  11. Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices

    NASA Astrophysics Data System (ADS)

    Rébillat, Marc; Hennequin, Romain; Corteel, Étienne; Katz, Brian F. G.

    2011-02-01

    In a number of vibration applications, systems under study are slightly nonlinear. It is thus of great importance to have a way to model and to measure these nonlinearities in the frequency range of use. Cascade of Hammerstein models conveniently allows one to describe a large class of nonlinearities. A simple method based on a phase property of exponential sine sweeps is proposed to identify the structural elements of such a model from only one measured response of the system. Mathematical foundations and practical implementation of the method are discussed. The method is afterwards validated on simulated and real systems. Vibrating devices such as acoustical transducers are well approximated by cascade of Hammerstein models. The harmonic distortion generated by those transducers can be predicted by the model over the entire audio frequency range for any desired input amplitude. Agreement with more time consuming classical distortion measurement methods was found to be good.

  12. Modified hyperspheres algorithm to trace homotopy curves of nonlinear circuits composed by piecewise linear modelled devices.

    PubMed

    Vazquez-Leal, H; Jimenez-Fernandez, V M; Benhammouda, B; Filobello-Nino, U; Sarmiento-Reyes, A; Ramirez-Pinero, A; Marin-Hernandez, A; Huerta-Chua, J

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  13. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    PubMed Central

    Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157

  14. Modified hyperspheres algorithm to trace homotopy curves of nonlinear circuits composed by piecewise linear modelled devices.

    PubMed

    Vazquez-Leal, H; Jimenez-Fernandez, V M; Benhammouda, B; Filobello-Nino, U; Sarmiento-Reyes, A; Ramirez-Pinero, A; Marin-Hernandez, A; Huerta-Chua, J

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157

  15. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs.

    PubMed

    Qu, Liangti; Du, Feng; Dai, Liming

    2008-09-01

    We have combined fast heating with plasma enhanced chemical vapor deposition (PECVD) for preferential growth of semiconducting vertically aligned single-walled carbon nanotubes (VA-SWNTs). Raman spectroscopic estimation indicated a high yield of up to 96% semiconducting SWNTs in the VA-SWNT array. The as-synthesized semiconducting SWNTs can be used directly for fabricating FET devices without the need for any postsynthesis purification or separation. PMID:18665651

  16. Tunable strong nonlinearity of a micromechanical beam embedded in a dc-superconducting quantum interference device

    SciTech Connect

    Ella, Lior Yuvaraj, D.; Suchoi, Oren; Shtempluk, Oleg; Buks, Eyal

    2015-01-07

    We present a study of the controllable nonlinear dynamics of a micromechanical beam coupled to a dc-SQUID (superconducting quantum interference device). The coupling between these systems places the modes of the beam in a highly nonlinear potential, whose shape can be altered by varying the bias current and applied flux of the SQUID. We detect the position of the beam by placing it in an optical cavity, which sets free the SQUID to be used solely for actuation. This enables us to probe the previously unexplored full parameter space of this device. We measure the frequency response of the beam and find that it displays a Duffing oscillator behavior which is periodic in the applied magnetic flux. To account for this, we develop a model based on the standard theory for SQUID dynamics. In addition, with the aim of understanding if the device can reach nonlinearity at the single phonon level, we use this model to show that the responsivity of the current circulating in the SQUID to the position of the beam can become divergent, with its magnitude limited only by noise. This suggests a direction for the generation of macroscopically distinguishable superposition states of the beam.

  17. Identification procedures for the charge-controlled nonlinear noise model of microwave electron devices

    NASA Astrophysics Data System (ADS)

    Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia

    2004-05-01

    The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.

  18. Microscopy of semiconducting materials

    NASA Astrophysics Data System (ADS)

    Pennycook, S. J.

    1991-04-01

    The purpose of the trip was to present an invited talk at the 7th Oxford Conference on Microscopy of Semiconducting Materials entitled, High-Resolution Z-Contrast Imaging of Heterostructures and Superlattices, (Oxford, United Kingdom) and to visit VG Microscopes, East Grinstead, for discussions on the progress of the Oak Ridge National Laboratory (ORNL) 300-kV high-resolution scanning transmission electron microscope (STEM), which is currently on order. The traveler also visited three other institutions with 100-kV STEMs that either have or intend to purchase the necessary modifications to provide Z-contrast capability similar to that of the existing ORNL machine. Specifically, Max-Planck Institut fuer Metallforschung (Stuttgart, Germany); Cambridge University, Department of Materials Science and Metallurgy (Cambridge, United Kingdom); and Cavendish Laboratory, Cambridge University (Cambridge, United Kingdom) were visited. In addition, discussions were held with C. Humphreys on the possibility of obtaining joint funding for collaborative research involving electron beam writing and Z-contrast imaging in the Cambridge and Oak Ridge STEMs, respectively.

  19. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  20. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  1. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; Clark, R.

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  2. Loss of energy dissipation capacity from the deadzone in linear and nonlinear viscous damping devices

    NASA Astrophysics Data System (ADS)

    Tong, Mai; Liebner, Thomas

    2007-03-01

    In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper’s initial stroke as it moves away from its neutral position. This phenomenon is referred to as the effect of “deadzone”. The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers. An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping if a deadzone is to be considered.

  3. Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Wang, Fengqiu; Zhu, Chunhui; Meng, Yafei; Liu, Yujie; Liu, Wenqing; Tang, Jingyi; Liu, Kaihui; Hu, Guohua; Howe, Richard C. T.; Hasan, Tawfique; Zhang, Rong; Shi, Yi; Xu, Yongbing

    2016-04-01

    Understanding of the fundamental photoresponse of carbon nanotubes has broad implications for various photonic and optoelectronic devices. Here, Z-scan and pump-probe spectroscopy performed across 600-2400 nm were combined to give a broadband `degenerate' mapping of the nonlinear absorption properties of single-wall carbon nanotubes (SWNTs). In contrast to the views obtained from non-degenerate techniques, sizable saturable absorption is observed from the visible to the near-infrared range, including the spectral regions between semiconducting excitonic peaks and metallic tube transitions. In addition, the broadband mapping unambiguously reveals a photobleaching to photoinduced absorption transition feature within the first semiconducting excitonic band ~2100 nm, quantitatively marking the long-wavelength cut-off for saturable absorption of the SWNTs investigated. Our findings present a much clearer physical picture of SWNTs' nonlinear absorption characteristics, and help provide updated design guidelines for SWNT based nonlinear optical devices.Understanding of the fundamental photoresponse of carbon nanotubes has broad implications for various photonic and optoelectronic devices. Here, Z-scan and pump-probe spectroscopy performed across 600-2400 nm were combined to give a broadband `degenerate' mapping of the nonlinear absorption properties of single-wall carbon nanotubes (SWNTs). In contrast to the views obtained from non-degenerate techniques, sizable saturable absorption is observed from the visible to the near-infrared range, including the spectral regions between semiconducting excitonic peaks and metallic tube transitions. In addition, the broadband mapping unambiguously reveals a photobleaching to photoinduced absorption transition feature within the first semiconducting excitonic band ~2100 nm, quantitatively marking the long-wavelength cut-off for saturable absorption of the SWNTs investigated. Our findings present a much clearer physical picture of

  4. Broadband high-sensitivity current-sensing device utilizing nonlinear magnetoelectric medium and nanocrystalline flux concentrator

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; He, Wei; Zhang, Ming; Zhao, Hongmei; Yang, Qian; Guo, Shuting; Wang, Xiaolei; Zheng, Xiaowan; Cao, Lingzhi

    2015-09-01

    A broadband current-sensing device with frequency-conversion mechanism consisting of Terfenol-D/Pb(Zr.Ti)O3 (PZT)/Terfenol-D magnetoelectric laminate and Fe73.5Cu1Nb3Si13.5B9 nanocrystalline flux concentrator is fabricated and characterized. For the purpose of acquiring resonance-enhanced sensitivity within broad bandwidth, a frequency-modulation mechanism is introduced into the presented device through the nonlinearity of field-dependence giant magnetostrictive materials. The presented configuration provides a solution to monitor the weak currents and achieves resonance-enhanced sensitivity of 178.4 mV/A at power-line frequency, which exhibits ˜3.86 times higher than that of direct output at power-line frequency of 50 Hz. Experimental results demonstrate that a weak step-change input current of 1 mA can be clearly distinguished by the output amplitude or phase. This miniature current-sensing device provides a promising application in power-line weak current measurement.

  5. Broadband high-sensitivity current-sensing device utilizing nonlinear magnetoelectric medium and nanocrystalline flux concentrator.

    PubMed

    Zhang, Jitao; He, Wei; Zhang, Ming; Zhao, Hongmei; Yang, Qian; Guo, Shuting; Wang, Xiaolei; Zheng, Xiaowan; Cao, Lingzhi

    2015-09-01

    A broadband current-sensing device with frequency-conversion mechanism consisting of Terfenol-D/Pb(Zr.Ti)O3 (PZT)/Terfenol-D magnetoelectric laminate and Fe73.5Cu1Nb3Si13.5B9 nanocrystalline flux concentrator is fabricated and characterized. For the purpose of acquiring resonance-enhanced sensitivity within broad bandwidth, a frequency-modulation mechanism is introduced into the presented device through the nonlinearity of field-dependence giant magnetostrictive materials. The presented configuration provides a solution to monitor the weak currents and achieves resonance-enhanced sensitivity of 178.4 mV/A at power-line frequency, which exhibits ∼3.86 times higher than that of direct output at power-line frequency of 50 Hz. Experimental results demonstrate that a weak step-change input current of 1 mA can be clearly distinguished by the output amplitude or phase. This miniature current-sensing device provides a promising application in power-line weak current measurement.

  6. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical

  7. CONTROL OF NONLINEAR DYNAMICS BY ACTIVE AND PASSIVE METHODS FOR THE NSLS-II INSERTION DEVICES

    SciTech Connect

    Bengtsson J.; Chubar, O.; Kitegi, C.; Tanabe, T.

    2012-05-20

    Nonlinear effects from insertion devices are potentially a limiting factor for the electron beam quality of modern ring-based light sources, i.e., the on and off-dynamical aperture, leading to reduced injection efficiency and beam lifetime. These effects can be modelled by e.g. kick maps ({approx}1/{gamma}{sup 2}) and controlled by e.g. first-order thin or thick magnetic kicks introduced by 'magic fingers,' 'L-shims,' or 'current strips'. However, due to physical or technological constraints, these corrections are typically only partial. Therefore, a precise model is needed to correctly minimize the residual nonlinear effects for the entire system. We outline a systematic method for integrated design and rapid prototyping based on evaluation of the 3D magnetic field and control of the local trajectory with RADIA, and particle tracking with Tracy-3 for validation. The optimal geometry for the compensating magnetic fields is determined from the results of these simulations using a combination of linear algebra and genetic optimization.

  8. Frequency-Domain Models for Nonlinear Microwave Devices Based on Large-Signal Measurements

    PubMed Central

    Jargon, Jeffrey A.; DeGroot, Donald C.; Gupta, K. C.

    2004-01-01

    In this paper, we introduce nonlinear large-signal scattering ( S) parameters, a new type of frequency-domain mapping that relates incident and reflected signals. We present a general form of nonlinear large-signal S-parameters and show that they reduce to classic S-parameters in the absence of nonlinearities. Nonlinear large-signal impedance ( Z) and admittance ( D) parameters are also introduced, and equations relating the different representations are derived. We illustrate how nonlinear large-signal S-parameters can be used as a tool in the design process of a nonlinear circuit, specifically a single-diode 1 GHz frequency-doubler. For the case where a nonlinear model is not readily available, we developed a method of extracting nonlinear large-signal S-parameters obtained with artificial neural network models trained with multiple measurements made by a nonlinear vector network analyzer equipped with two sources. Finally, nonlinear large-signal S-parameters are compared to another form of nonlinear mapping, known as nonlinear scattering functions. The nonlinear large-signal S-parameters are shown to be more general. PMID:27366621

  9. Acceleration Sensing, Feedback Cooling, and Nonlinear Dynamics with Nanoscale Cavity-Optomechanical Devices

    NASA Astrophysics Data System (ADS)

    Krause, Alexander Grey

    Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg). In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10. In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to

  10. Photocurrent generation in semiconducting and metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barkelid, Maria; Zwiller, Val

    2014-01-01

    The fundamental mechanism underlying photocurrent generation in carbon nanotubes has long been an open question. In photocurrent generation, the temperature of the photoexcited charge carriers determines the transport regime by which the electrons and holes are conducted through the nanotube. Here, we identify two different photocurrent mechanisms for metallic and semiconducting carbon nanotube devices with induced p-n junctions. Our photocurrent measurements as a function of charge carrier doping demonstrate a thermal origin for metallic nanotubes, where photo-excited hot carriers give rise to a current. For semiconducting nanotubes we demonstrate a photovoltaic mechanism, where a built-in electric field results in electron-hole separation. Our results provide an understanding of the photoresponse in carbon nanotubes, which is not only of fundamental interest but also of importance for designing carbon-based, high-efficiency photodetectors and energy-harvesting devices.

  11. A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices

    SciTech Connect

    Lu, Y.; Cottone, F.; Marty, F.; Basset, P.; Galayko, D.

    2015-12-21

    This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 g{sub rms}, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm{sup 3}. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.

  12. A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Cottone, F.; Boisseau, S.; Marty, F.; Galayko, D.; Basset, P.

    2015-12-01

    This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 grms, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm3. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.

  13. Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena.

    PubMed

    Sugioka, Hideyuki

    2015-12-01

    Surface science is key to innovations on microfluidics, smart materials, and future non-equilibrium systems. However, challenging issues still exist in this field. In this article, from the viewpoint of the fundamental design, we will briefly review our strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena. In particular, we will review the microfluidic applications using ICEO, the correction based on the ion-conserving Poisson-Boltzmann theory, the direct simulation on ICEO, and the new horizon such as nonlinear thermo-kinetic phenomena and the artificial cilia.

  14. Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena.

    PubMed

    Sugioka, Hideyuki

    2015-12-01

    Surface science is key to innovations on microfluidics, smart materials, and future non-equilibrium systems. However, challenging issues still exist in this field. In this article, from the viewpoint of the fundamental design, we will briefly review our strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena. In particular, we will review the microfluidic applications using ICEO, the correction based on the ion-conserving Poisson-Boltzmann theory, the direct simulation on ICEO, and the new horizon such as nonlinear thermo-kinetic phenomena and the artificial cilia. PMID:26482087

  15. Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal.

    PubMed

    Hu, Xiao; Zeng, Mengqi; Wang, Andong; Zhu, Long; Fu, Lei; Wang, Jian

    2015-10-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using such graphene-assisted nonlinear optical device, we experimentally demonstrate tunable wavelength conversion of a 10 Gbaud quadrature phase-shift keying (QPSK) signal by exploiting degenerate four-wave mixing (FWM) progress in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. The observed optical signal-to-noise ratio (OSNR) penalties for tunable QPSK wavelength conversion are less than 2.2 dB at a BER of 1 × 10(-3).

  16. Atomistic study on dithiolated oligo-phenylenevinylene gated device

    SciTech Connect

    Mahmoud, Ahmed Lugli, Paolo

    2014-11-28

    Thanks to their semiconducting behavior, conjugated molecules are considered as an attractive candidate for future electronic devices. Understanding the charge transport characteristics through such molecules for different device applications would accelerate the progress in the field of molecular electronics. In addition, it would become more feasible to introduce/enhance specific properties of molecular devices. This theoretical paper focuses on atomistic simulation and characterization of novel molecular FET employing dithiolated oligo-phenylenevinylene molecules. The simulation is validated by its agreement with the experimental measurements conducted on the same molecules. The employed molecule has oxygen linkers, which are responsible for the strongly nonlinear current characteristics on the molecular device. We perform a thorough atomistic device analysis to illustrate the principles behind the nonlinear current characteristics and the gating effect.

  17. Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites.

    PubMed

    Kirmayer, Saar; Aharon, Eyal; Dovgolevsky, Ekaterina; Kalina, Michael; Frey, Gitti L

    2007-06-15

    Lamellar nanocomposites based on semiconducting polymers incorporated into layered inorganic matrices are prepared by the co-assembly of organic and inorganic precursors. Semiconducting polymer-incorporated silica is prepared by introducing the semiconducting polymers into a tetrahydrofuran (THF)/water homogeneous sol solution containing silica precursor species and a surface-active agent. Semiconducting polymer-incorporated MoS(2) and SnS(2) are prepared by Li intercalation into the inorganic compound, exfoliation and restack in the presence of the semiconducting polymer. All lamellar nanocomposite films are organized in domains aligned parallel to the substrate surface plane. The incorporated polymers maintain their semiconducting properties, as evident from their optical absorption and photoluminescence spectra. The optoelectronic properties of the nanocomposites depend on the properties of both the inorganic host and the incorporated guest polymer as demonstrated by integrating the nanocomposite films into light-emitting diodes. Devices based on polymer-incorporated silica and polymer-incorporated MoS(2) show no diode behaviour and no light emission due to the insulating and metallic properties of the silica and MoS(2) hosts. In contrast, diode performance and electroluminescence are obtained from devices based on semiconducting polymer-incorporated semiconducting SnS(2), demonstrating that judicious selection of the composite components in combination with the optimization of material synthesis conditions allows new hierarchical structures to be tailored for electronic and optoelectronic applications.

  18. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  19. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.

    PubMed

    Lu, Fushen; Meziani, Mohammed J; Cao, Li; Sun, Ya-Ping

    2011-04-19

    Ever since the discovery of single-walled carbon nanotubes (SWNTs), there have been many reports and predictions on their superior properties for use in a wide variety of potential applications. However, an SWNT is either metallic or semiconducting; these properties are distinctively different in electrical conductivity and many other aspects. The available bulk-production methods generally yield mixtures of metallic and semiconducting SWNTs, despite continuing efforts in metallicity-selective nanotube growth. Presented here are significant advances and major achievements in the development of postproduction separation methods, which are now capable of harvesting separated metallic and semiconducting SWNTs from different production sources with sufficiently high enrichment and quantities for satisfying at least the needs in research and technological explorations. Opportunities and some available examples for the use of metallic SWNTs in transparent electrodes and semiconducting SWNTs in various device nanotechnologies are highlighted and discussed.

  20. Determining ionizing radiation using sensors based on organic semiconducting material

    SciTech Connect

    Raval, Harshil N.; Tiwari, Shree Prakash; Navan, Ramesh R.; Rao, V. Ramgopal

    2009-03-23

    The use of organic semiconducting material sensors as total dose radiation detectors is proposed, wherein the change in conductivity of an organic material is measured as a function of ionizing radiation dose. The simplest sensor is a resistor made using organic semiconductor. Furthermore, for achieving higher sensitivity, organic field effect transistor (OFET) is used as a sensor. A solution processed organic semiconductor resistor and an OFET were fabricated using poly 3-hexylthiophene (P3HT), a p-type organic semiconductor material. The devices are exposed to Cobalt-60 radiation for different total dose values. The changes in electrical characteristics indicate the potential of these devices as radiation sensors.

  1. Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator.

    PubMed

    Liu, Yung-Tien; Fung, Rong-Fong; Wang, Chun-Chao

    2007-02-01

    In this research, the nonlinear, double-dynamic Taguchi method was used as design and analysis methods for a high-precision positioning device using the combined piezo-voice-coil motor (VCM) actuator. An experimental investigation into the effects of two input signals and three control factors were carried out to determine the optimum parametric configuration of the positioning device. The double-dynamic Taguchi method, which permits optimization of several control factors concurrently, is particularly suitable for optimizing the performance of a positioning device with multiple actuators. In this study, matrix experiments were conducted with L9(3(4)) orthogonal arrays (OAs). The two most critical processes for the optimization of positioning device are the identification of the nonlinear ideal function and the combination of the double-dynamic signal factors for the ideal function's response. The driving voltage of the VCM and the waveform amplitude of the PZT actuator are combined into a single quality characteristic to evaluate the positioning response. The application of the double-dynamic Taguchi method, with dynamic signal-to-noise ratio (SNR) and L9(3(4)) OAs, reduced the number of necessary experiments. The analysis of variance (ANOVA) was applied to set the optimum parameters based on the high-precision positioning process.

  2. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  3. Correlation between quasi-static and dynamic experiments for a practical torsional device with multiple discontinuous nonlinearities

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Singh, Rajendra

    2016-09-01

    Vehicle clutch dampers belong to a family of torsional devices or isolators that contain multi-staged torsional springs, pre-load features, clearances, and multi-staged dry friction elements. Estimation of elastic and dissipative parameters is usually carried out under quasi-static loading and then these static parameters are often assumed when predicting dynamic responses. For the purpose of comparison, this article proposes a new time domain parameter estimation method under dynamic, transient loading conditions. The proposed method assumes a priori knowledge of few nonlinear features based on the design and quasi-static characterization. Angular motion measurements from a component-level laboratory experiment under dynamic loading are utilized. Elastic parameters are first estimated through an instantaneous stochastic linearization technique. A model-based approach and energy balance principle are employed to estimate a combination of viscous and Coulomb damping parameters for seven local (stage-dependent) and global damping formulations for a practical device. The proposed method is validated by comparing time domain predictions from nonlinear models to dynamic measurements. Nonlinear models that utilize the proposed damping formulations are found to be superior to those that solely rely on parameters from a quasi-static experiment.

  4. A non-device-specific approach to display characterization based on linear, nonlinear, and hybrid search algorithms.

    PubMed

    Ban, Hiroshi; Yamamoto, Hiroki

    2013-01-01

    In almost all of the recent vision experiments, stimuli are controlled via computers and presented on display devices such as cathode ray tubes (CRTs). Display characterization is a necessary procedure for such computer-aided vision experiments. The standard display characterization called "gamma correction" and the following linear color transformation procedure are established for CRT displays and widely used in the current vision science field. However, the standard two-step procedure is based on the internal model of CRT display devices, and there is no guarantee as to whether the method is applicable to the other types of display devices such as liquid crystal display and digital light processing. We therefore tested the applicability of the standard method to these kinds of new devices and found that the standard method was not valid for these new devices. To overcome this problem, we provide several novel approaches for vision experiments to characterize display devices, based on linear, nonlinear, and hybrid search algorithms. These approaches never assume any internal models of display devices and will therefore be applicable to any display type. The evaluations and comparisons of chromaticity estimation accuracies based on these new methods with those of the standard procedure proved that our proposed methods largely improved the calibration efficiencies for non-CRT devices. Our proposed methods, together with the standard one, have been implemented in a MATLAB-based integrated graphical user interface software named Mcalibrator2. This software can enhance the accuracy of vision experiments and enable more efficient display characterization procedures. The software is now available publicly for free.

  5. A non-device-specific approach to display characterization based on linear, nonlinear, and hybrid search algorithms.

    PubMed

    Ban, Hiroshi; Yamamoto, Hiroki

    2013-01-01

    In almost all of the recent vision experiments, stimuli are controlled via computers and presented on display devices such as cathode ray tubes (CRTs). Display characterization is a necessary procedure for such computer-aided vision experiments. The standard display characterization called "gamma correction" and the following linear color transformation procedure are established for CRT displays and widely used in the current vision science field. However, the standard two-step procedure is based on the internal model of CRT display devices, and there is no guarantee as to whether the method is applicable to the other types of display devices such as liquid crystal display and digital light processing. We therefore tested the applicability of the standard method to these kinds of new devices and found that the standard method was not valid for these new devices. To overcome this problem, we provide several novel approaches for vision experiments to characterize display devices, based on linear, nonlinear, and hybrid search algorithms. These approaches never assume any internal models of display devices and will therefore be applicable to any display type. The evaluations and comparisons of chromaticity estimation accuracies based on these new methods with those of the standard procedure proved that our proposed methods largely improved the calibration efficiencies for non-CRT devices. Our proposed methods, together with the standard one, have been implemented in a MATLAB-based integrated graphical user interface software named Mcalibrator2. This software can enhance the accuracy of vision experiments and enable more efficient display characterization procedures. The software is now available publicly for free. PMID:23729771

  6. Electrospun Composite Nanofibers of Semiconductive Polymers for Coaxial PN Junctions

    NASA Astrophysics Data System (ADS)

    Serrano, William; Thomas, Sylvia

    The objective of this research is to investigate the conditions under P3HT and Activink, semiconducting polymers, form 1 dimension (1D) coaxial p-n junctions and to characterize their behavior in the presence of UV radiation and organic gases. For the first time, fabrication and characterization of semiconductor polymeric single fiber coaxial arrangements will be studied. Electrospinning, a low cost, fast and reliable method, with a coaxial syringe arrangement will be used to fabricate these fibers. With the formation of fiber coaxial arrangements, there will be investigations of dimensionality crossovers e.g., from one-dimensional (1D) to two-dimensional (2D). Coaxial core/shell fibers have been realized as seen in a recent publication on an electrospun nanofiber p-n heterojunction of oxides (BiFeO3 and TiO2, respectively) using the electrospinning technique with hydrothermal method. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting nano devices for flexible electronics and multi-dimensional integrated circuits.

  7. Semiconducting nanowire field effect transistor for nanoelectronics and nanomechanics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Mandar

    2013-02-01

    Semiconducting nanowire transistors offer an interesting avenue to make fundamentally new device architecture for future switching devices. I will our work to develop a simple fabrication technique for lateral nanowire wrap-gate devices with high capacitive coupling and field-effect mobility using InAs nanowires and also discuss electrical characterization of these devices. Our process uses e-beam lithography with a single resist-spinning step and does not require chemical etching. We measure significantly larger mobility and good sub-threshold characteristics [1]. I will also discuss the applications of using suspended nanowire transistors in studying mechanics and thermal properties of nanostructures as they can be useful in studying a wide variety of physics at the nanoscale. This work is supported by Government of India and partially supported by IBM India.

  8. Assembly of ordered carbon shells on semiconducting nanomaterials

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  9. Assembly of ordered carbon shells on semiconducting nanomaterials

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2010-05-11

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  10. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.

    PubMed

    Chang, Shun-Wen; Hazra, Jubin; Amer, Moh; Kapadia, Rehan; Cronin, Stephen B

    2015-12-22

    We present a comparative study of quasi-metallic (Eg ∼ 100 meV) and semiconducting (Eg ∼ 1 eV) suspended carbon nanotube pn-junctions introduced by electrostatic gating. While the built-in fields of the quasi-metallic carbon nanotubes (CNTs) are 1-2 orders of magnitude smaller than those of the semiconducting CNTs, their photocurrent is 2 orders of magnitude higher than the corresponding semiconducting CNT devices under the same experimental conditions. Here, the large exciton binding energy in semiconducting nanotubes (∼400 meV) makes it difficult for excitons to dissociate into free carriers that can contribute to an externally measured photocurent. As such, semiconducting nanotubes require a phonon to assist in the exciton dissociation process, in order to produce a finite photocurrent, while quasi-metallic nanotubes do not. The quasi-metallic nanotubes have much lower exciton binding energies (∼50 meV) as well as a continuum of electronic states to decay into and, therefore, do not require the absorption of a phonon in order to dissociate, making it much easier for these excitons to produce a photocurrent. We performed detailed simulations of the band energies in quasi-metallic and semiconducting nanotube devices in order to obtain the electric field profiles along the lengths of the nanotubes. These simulations predict maximum built-in electric field strengths of 2.3 V/μm for semiconducting and 0.032-0.22 V/μm for quasi-metallic nanotubes under the applied gate voltages used in this study.

  11. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  12. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    NASA Astrophysics Data System (ADS)

    Zhuang, Shendong; Chen, Yan; Xia, Yidong; Tang, Nujiang; Xu, Xiaoyong; Hu, Jingguo; Chen, Zhuo

    2016-04-01

    Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  13. Short Channel Field-Effect-Transistors with Inkjet-Printed Semiconducting Carbon Nanotubes.

    PubMed

    Jang, Seonpil; Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2015-11-01

    Short channel field-effect-transistors with inkjet-printed semiconducting carbon nanotubes are fabricated using a novel strategy to minimize material consumption, confining the inkjet droplet into the active channel area. This fabrication approach is compatible with roll-to-roll processing and enables the formation of high-performance short channel device arrays based on inkjet printing. PMID:26312458

  14. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  15. High-performing nonlinear visualization of terahertz radiation on a silicon charge-coupled device

    PubMed Central

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2015-01-01

    Photoinduced electron transitions can lead to significant changes of the macroscopic electronic properties in semiconductors. This principle is responsible for the detection of light with charge-coupled devices. Their spectral sensitivity is limited by the semiconductor bandgap which has restricted their visualization capabilities to the optical, ultraviolet, and X-ray regimes. The absence of an imaging device in the low frequency terahertz range has severely hampered the advance of terahertz imaging applications in the past. Here we introduce a high-performing imaging concept to the terahertz range. On the basis of a silicon charge-coupled device we visualize 5–13 THz radiation with photon energy under 2% of the sensor's band-gap energy. The unprecedented small pitch and large number of pixels allow the visualization of complex terahertz radiation patterns in real time and with high spatial detail. This advance will have a great impact on a wide range of terahertz imaging disciplines. PMID:26496973

  16. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures

    PubMed Central

    Huang, Jin; Wan, Qing

    2009-01-01

    This article provides a comprehensive review of recent (2008 and 2009) progress in gas sensors based on semiconducting metal oxide one-dimensional (1D) nanostructures. During last few years, gas sensors based on semiconducting oxide 1D nanostructures have been widely investigated. Additionally, modified or doped oxide nanowires/nanobelts have also been synthesized and used for gas sensor applications. Moreover, novel device structures such as electronic noses and low power consumption self-heated gas sensors have been invented and their gas sensing performance has also been evaluated. Finally, we also point out some challenges for future investigation and practical application. PMID:22303154

  17. Large-Area Semiconducting Graphene Nanomesh Tailored by Interferometric Lithography

    PubMed Central

    Kazemi, Alireza; He, Xiang; Alaie, Seyedhamidreza; Ghasemi, Javad; Dawson, Noel Mayur; Cavallo, Francesca; Habteyes, Terefe G.; Brueck, Steven R. J.; Krishna, Sanjay

    2015-01-01

    Graphene nanostructures are attracting a great deal of interest because of newly emerging properties originating from quantum confinement effects. We report on using interferometric lithography to fabricate uniform, chip-scale, semiconducting graphene nanomesh (GNM) with sub-10 nm neck widths (smallest edge-to-edge distance between two nanoholes). This approach is based on fast, low-cost, and high-yield lithographic technologies and demonstrates the feasibility of cost-effective development of large-scale semiconducting graphene sheets and devices. The GNM is estimated to have a room temperature energy bandgap of ~30 meV. Raman studies showed that the G band of the GNM experiences a blue shift and broadening compared to pristine graphene, a change which was attributed to quantum confinement and localization effects. A single-layer GNM field effect transistor exhibited promising drive current of ~3.9 μA/μm and ON/OFF current ratios of ~35 at room temperature. The ON/OFF current ratio of the GNM-device displayed distinct temperature dependence with about 24-fold enhancement at 77 K. PMID:26126936

  18. Nonlinear saturation of the ion-electron Buneman instability in a spherical positively pulsed gridded inertial electrostatic confinement device

    SciTech Connect

    Bandara, R.; Khachan, J.

    2015-08-15

    A pulsed, positively biased gridded inertial electrostatic confinement device has been investigated experimentally, using Doppler broadened spectra and current and voltage traces as primary diagnostics. In the high current and energy regime explored in this paper resulting from the removal of the series ballast resistance from the external biasing circuit, large amplitude oscillations in the plasma current and potential were observed within 100 ns of the discharge onset. These oscillations are attributed to the nonlinear and saturated Buneman instability, characterised by a locked oscillation frequency as a function of increasing anode potential. The saturated Buneman instability is known to exhibit ion mass independent behaviour and cause electron trapping, resulting in a transient spatio-temporal virtual cathode and ponderomotive ion confinement, as evidenced by broadened spectra when operated at high currents.

  19. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry.

    PubMed

    Araneo, Rodolfo; Lovat, Giampiero; Burghignoli, Paolo; Falconi, Christian

    2012-09-01

    The piezopotential in floating, homogeneous, quasi-1D piezo-semiconductive nanostructures under axial stress is an anti-symmetric (i.e., odd) function of force. Here, after introducing piezo-nano-devices with floating electrodes for maximum piezo-potential, we show that breaking the anti-symmetric nature of the piezopotential-force relation, for instance by using conical nanowires, can lead to better nanogenerators, piezotronic and piezophototronic devices.

  20. Synthesis and nonlinear optical properties of novel fluorinated polyimides with thiazolylazo chromophores for electrooptic devices

    NASA Astrophysics Data System (ADS)

    He, Man; Zhou, Yuming; Dai, Jia; Liu, Rong; Cui, Yiping; Zhang, Tong

    2008-11-01

    A series of novel fluorinated polyimides second-order nonlinear optical (NLO) materials were synthesized from poly(hydroxy-imide)s, followed by the Mitsunobu reaction with NLO thiazolylazo chromophores. The polyimides prepared were characterized by IR, UV-vis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetric analysis (DSC) and X-ray diffraction (XRD). These NLO polyimides possess high glass transition temperature (Tg) in the range of 193-200 °C with thermal stability up to 288 °C. The electro-optic coefficients (r33) at the wavelength of 1550nm for polymer thin films poled were measured by the attenuated total reflection (ATR) method. The r33 values of the polyimides 1a and 2a containing thiazolylazoaniline chromophore are better than that of the polyimides 1b and 2b attached thiazolylazopyrimidine chromophore, due to the thiazolylazoaniline chromophore having large hyperpolarizability in contrast to the thiazolylazopyrimidine chromophore. Low optical losses (1.8-2.1 dB/cm at 1.55 μm), which were measured via an immersion technique have been observed for these polymers. The polyimides demonstrate an excellent combination of thermal stability, electrooptic (EO) coefficients and optical loss, and therefore they are suitable for EO applications.

  1. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    SciTech Connect

    Beninato, A.; Baglio, S.; Andò, B.; Emery, T.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-09

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3} shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3}, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a “blueprint” for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or “target” B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  2. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.

    PubMed

    Liu, Hsuan-Wei; Lin, Fan-Cheng; Lin, Shi-Wei; Wu, Jau-Yang; Chou, Bo-Tsun; Lai, Kuang-Jen; Lin, Sheng-Di; Huang, Jer-Shing

    2015-04-28

    Aluminum, as a metallic material for plasmonics, is of great interest because it extends the applications of surface plasmon resonance into the ultraviolet (UV) region and is superior to noble metals in natural abundance, cost, and compatibility with modern semiconductor fabrication processes. Ultrasmooth single-crystalline metallic films are beneficial for the fabrication of high-definition plasmonic nanostructures, especially complex integrated nanocircuits. The absence of surface corrugation and crystal boundaries also guarantees superior optical properties and applications in nanolasers. Here, we present UV to near-infrared plasmonic resonance of single-crystalline aluminum nanoslits and nanoholes. The high-definition nanostructures are fabricated with focused ion-beam milling into an ultrasmooth single-crystalline aluminum film grown on a semiconducting GaAs substrate with a molecular beam epitaxy method. The single-crystalline aluminum film shows improved reflectivity and reduced two-photon photoluminescence (TPPL) due to the ultrasmooth surface. Both linear scattering and nonlinear TPPL are studied in detail. The nanoslit arrays show clear Fano-like resonance, and the nanoholes are found to support both photonic modes and localized surface plasmon resonance. We also found that TPPL generation is more efficient when the excitation polarization is parallel rather than perpendicular to the edge of the aluminum film. Such a counterintuitive phenomenon is attributed to the high refractive index of the GaAs substrate. We show that the polarization of TPPL from aluminum preserves the excitation polarization and is independent of the crystal orientation of the film or substrate. Our study gains insight into the optical property of aluminum nanostructures on a high-index semiconducting GaAs substrate and illustrates a practical route to implement plasmonic devices onto semiconductors for future hybrid nanodevices.

  3. Piezo-phototronic effect devices

    DOEpatents

    Wang, Zhong L.; Yang, Qing

    2013-09-10

    A semiconducting device includes a piezoelectric structure that has a first end and an opposite second end. A first conductor is in electrical communication with the first end and a second conductor is in electrical communication with the second end so as to form an interface therebetween. A force applying structure is configured to maintain an amount of strain in the piezoelectric member sufficient to generate a desired electrical characteristic in the semiconducting device.

  4. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  5. Nonlinear Magnetic Dynamics and The Switching Phase Diagrams in Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Yan, Shu

    Spin-transfer torque induced magnetic switching, by which the spin-polarized current transfers its magnetic moment to the ferromagnetic layer and changes its magnetization, holds great promise towards faster and smaller magnetic bits in data-storage applications due to the lower power consumption and better scalability. We propose an analytic approach which can be used to calculate the switching phase diagram of a nanomagnetic system in the presence of both magnetic field and spin-transfer torque in an exact fashion. This method is applied to the study of switching conditions for the uniaxial, single domain magnetic layers in different spin-transfer devices. In a spin valve with spin polarization collinear with the easy axis, we get a modified Stoner-Wohlfarth astroid which represents many of the features that have been found in experiment. It also shows a self-crossing boundary and demonstrates a region with three stable equilibria. We demonstrate that the region of stable equilibria with energy near the maximum can be reached only through a narrow bottleneck in the field space, which sets a stringent requirement for magnetic field alignment in the experiments. Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy axis. In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in plane current becomes spin-polarized and transfers its magnetic moment to the ferromagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is calculated. In the case that the external field is confined in the vertical plane defined by the direction of the current and the easy axis, the spin-transfer torque shifts the conventional in-plane (IP) equilibria within the same plane, and also creates two out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching currents for IP switching and OOP switching are discussed. We also address the magnetic switching processes. Damping

  6. Fabrication of electrically bistable organic semiconducting/ferroelectric blend films by temperature controlled spin coating.

    PubMed

    Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong

    2015-03-25

    Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.

  7. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    PubMed Central

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-01-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces. PMID:27762315

  8. Growth of single crystals of organic salts with large second-order optical nonlinearities by solution processes for devices

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1995-01-01

    Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.

  9. Excitons in semiconducting superlattices, quantum wells, and ternary alloys

    SciTech Connect

    Sturge, M.D. . Dept. of Physics); Nahory, R.E.; Tamargo, M.C. )

    1990-08-22

    It is now possible to fabricated semiconducting layered structures with precisely defined layer thicknesses of a few atomic diameters. Examples are the quantum well'' and the superlattice'' structures, in which semiconductors with different band gaps are interleaved. Microstructures'' can be produced from this material by patterning and etching them on a small ({approximately}10nm) scale. Their electronic properties are quite different from those of the constituents and offer interesting new possibilities both in device design and in basic physics. This proposal aims to improve our understanding of optically excited states ( excitons'' and electron-hole plasmas'') in these structures. Work will also continue on ternary alloys, primarily to establish if the alloy disorder produces a mobility edge for excitons, and on II-VI compounds, where the principal interest at present is in the nature of the exciton-phonon coupling.

  10. Enhanced Thermoelectric Properties in Tailored Semiconducting SWCNT Networks

    NASA Astrophysics Data System (ADS)

    Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L.; Kim, Y.; Blackburn, J. L.; Ferguson, A. J.

    Single-walled carbon nanotubes (SWCNTs) are a versatile electronic material being explored as cost-effective, high-performance alternative in a variety of renewable energy applications. In this talk, we present a series of experiments designed to probe the thermal and electrical transport through networks of semiconducting SWCNT dispersed in matrices of polyfluorene polymers. We measured electrical transport as a function of hole density to explore the coupling between the electrical conductivity and Seebeck coefficient (thermopower) in the s-SWCNT networks. These networks exhibit large thermopowers > 1000 μV/K at very low hole densities. Thermopower values remain high at high doping levels, resulting in thermoelectric power factors greater than 340 μW/m K. Finally, we present measurements that demonstrate our doping process significantly reduces the thermal conductivity relative to undoped networks suggesting s-SWCNTs are a viable material for realizing thermally stable room temperature thermoelectric devices fashioned from inexpensive and abundant organic constituents.

  11. On field emission from a semiconducting substrate

    NASA Astrophysics Data System (ADS)

    Waters, Richard; Van Zeghbroeck, Bart

    1999-10-01

    A theoretical examination of field emission from the conduction band of a semiconducting substrate is reported. The analysis includes a comparison with Fowler-Nordheim theory, and it is concluded that the formalism of the Fowler-Nordheim theory is incorrect when applied to carriers originating from a semiconducting substrate. The use of a Fowler-Nordheim analysis results in an error in the extraction of the barrier height that is dependent upon the applied electric field across the oxide, conduction band offset, and temperature. A lower limit of the error was calculated to be between 5% and 15%. An analytical expression is developed to describe the field emission of electrons from the conduction band of a semiconductor.

  12. Low bandgap semiconducting polymers for polymeric photovoltaics.

    PubMed

    Liu, Chang; Wang, Kai; Gong, Xiong; Heeger, Alan J

    2016-08-22

    In order to develop high performance polymer solar cells (PSCs), full exploitation of the sun-irradiation from ultraviolet (UV) to near infrared (NIR) is one of the key factors to ensure high photocurrents and thus high efficiency. In this review, five of the effective design rules for approaching LBG semiconducting polymers with high molar absorptivity, suitable energy levels, high charge carrier mobility and high solubility in organic solvents are overviewed. These design stratagems include fused heterocycles for facilitating π-electron flowing along the polymer backbone, groups/atoms bridging adjacent rings for maintaining a high planarity, introduction of electron-withdrawing units for lowering the bandgap (Eg), donor-acceptor (D-A) copolymerization for narrowing Eg and 2-dimensional conjugation for broadened absorption and enhanced hole mobility. It has been demonstrated that LBG semiconducting polymers based on electron-donor units combined with strong electron-withdrawing units possess excellent electronic and optic properties, emerging as excellent candidates for efficient PSCs. While for ultrasensitive photodetectors (PDs), which have intensive applications in both scientific and industrial sectors, sensing from the UV to the NIR region is of critical importance. For polymer PDs, Eg as low as 0.8 eV has been obtained through a rational design stratagem, covering a broad wavelength range from the UV to the NIR region (1450 nm). However, the response time of the polymer PDs are severely limited by the hole mobility of LBG semiconducting polymers, which is significantly lower than those of the inorganic materials. Thus, further advancing the hole mobility of LBG semiconducting polymers is of equal importance as broadening the spectral response for approaching uncooled ultrasensitive broadband polymer PDs in the future study. PMID:26548402

  13. Low bandgap semiconducting polymers for polymeric photovoltaics.

    PubMed

    Liu, Chang; Wang, Kai; Gong, Xiong; Heeger, Alan J

    2016-08-22

    In order to develop high performance polymer solar cells (PSCs), full exploitation of the sun-irradiation from ultraviolet (UV) to near infrared (NIR) is one of the key factors to ensure high photocurrents and thus high efficiency. In this review, five of the effective design rules for approaching LBG semiconducting polymers with high molar absorptivity, suitable energy levels, high charge carrier mobility and high solubility in organic solvents are overviewed. These design stratagems include fused heterocycles for facilitating π-electron flowing along the polymer backbone, groups/atoms bridging adjacent rings for maintaining a high planarity, introduction of electron-withdrawing units for lowering the bandgap (Eg), donor-acceptor (D-A) copolymerization for narrowing Eg and 2-dimensional conjugation for broadened absorption and enhanced hole mobility. It has been demonstrated that LBG semiconducting polymers based on electron-donor units combined with strong electron-withdrawing units possess excellent electronic and optic properties, emerging as excellent candidates for efficient PSCs. While for ultrasensitive photodetectors (PDs), which have intensive applications in both scientific and industrial sectors, sensing from the UV to the NIR region is of critical importance. For polymer PDs, Eg as low as 0.8 eV has been obtained through a rational design stratagem, covering a broad wavelength range from the UV to the NIR region (1450 nm). However, the response time of the polymer PDs are severely limited by the hole mobility of LBG semiconducting polymers, which is significantly lower than those of the inorganic materials. Thus, further advancing the hole mobility of LBG semiconducting polymers is of equal importance as broadening the spectral response for approaching uncooled ultrasensitive broadband polymer PDs in the future study.

  14. Predicting X-ray absorption spectra of semiconducting polymers for electronic structure and morphology characterization

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Patel, Shrayesh; Pemmaraju, C. Das; Kramer, Edward; Prendergast, David; Chabinyc, Michael

    2015-03-01

    Core-level X-ray absorption spectroscopy (XAS) reveals important information on the electronic structure of materials and plays a key role in morphology characterization. Semiconducting polymers are the active component in many organic electronics. Their electronic properties are critically linked to device performance, and a proper understanding of semiconducting polymer XAS is crucial. Techniques such as resonant X-ray scattering rely on core-level transitions to gain materials contrast and probe orientational order. However, it is difficult to identify these transitions based on experiments alone, and complementary simulations are required. We show that first-principles calculations can capture the essential features of experimental XAS of semiconducting polymers, and provide insight into which molecular model, such as oligomers or periodic boundary conditions, are best suited for XAS calculations. Simulated XAS can reveal contributions from individual atoms and be used to visualize molecular orbitals. This allows for improved characterization of molecular orientation and scattering analysis. These predictions lay the groundwork for understanding how chemical makeup is linked to electronic structure, and to properly utilize experiments to characterize semiconducting polymers.

  15. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography.

    PubMed

    Tulevski, George S; Franklin, Aaron D; Afzali, Ali

    2013-04-23

    The isolation of semiconducting carbon nanotubes (CNTs) to ultrahigh (ppb) purity is a prerequisite for their integration into high-performance electronic devices. Here, a method employing column chromatography is used to isolate semiconducting nanotubes to 99.9% purity. The study finds that by modifying the solution preparation step, both the metallic and semiconducting fraction are resolved and elute using a single surfactant system, allowing for multiple iterations. Iterative processing enables a far more rapid path to achieving the level of purities needed for high performance computing. After a single iteration, the metallic peak in the absorption spectra is completely attenuated. Although absorption spectroscopy is typically used to characterize CNT purity, it is found to be insufficient in quantifying solutions of high purity (>98 to 99%) due to low signal-to-noise in the metallic region of ultrahigh purity solutions. Therefore, a high throughput electrical testing method was developed to quantify the degree of separation by characterizing ∼4000 field-effect transistors fabricated from the separated nanotubes after multiple iterations of the process. The separation and characterization methods described here provide a path to produce the ultrahigh purity semiconducting CNT solutions needed for high performance electronics. PMID:23484490

  16. Semiconducting polymers with nanocrystallites interconnected via boron-doped carbon nanotubes.

    PubMed

    Yu, Kilho; Lee, Ju Min; Kim, Junghwan; Kim, Geunjin; Kang, Hongkyu; Park, Byoungwook; Ho Kahng, Yung; Kwon, Sooncheol; Lee, Sangchul; Lee, Byoung Hun; Kim, Jehan; Park, Hyung Il; Kim, Sang Ouk; Lee, Kwanghee

    2014-12-10

    Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs). In contrast to undoped CNTs, which tend to form undesired aggregates, the B-CNTs exhibit an excellent dispersion in conjugated polymer matrices and improve the charge transport between polymer chains. Consequently, the B-CNT-mixed semiconducting polymers enable the fabrication of high-performance FETs on plastic substrates via a solution process; the μFET of the resulting FETs reaches 7.2 cm(2) V(-1) s(-1), which is the highest value reported for a flexible FET based on a semiconducting polymer. Our approach is applicable to various semiconducting polymers without any additional undesirable processing treatments, indicating its versatility, universality, and potential for high-performance printable electronics. PMID:25372930

  17. Suppression of Nonlinear Interactions in Resonant Macroscopic Quantum Devices: The Example of the Solid-State Ring Laser Gyroscope

    SciTech Connect

    Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Gutty, Francois; Bouyer, Philippe

    2008-05-09

    We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.

  18. Ab initio nonadiabatic molecular dynamics of the ultrafast excitation energy transfer in small semiconducting carbon nanotube aggregates

    NASA Astrophysics Data System (ADS)

    Postupna, Olena; Long, Run; Prezhdo, Oleg

    2012-02-01

    Outstanding physical properties of carbon nanotubes (CNTs), such as well-defined optical resonance and ultrafast nonlinear response, result in CNTs gaining popularity in academic and industrial endeavors as potential effective energy generating devices. Following recent experiments on ultrafast excitation energy transfer in small semiconducting carbon nanotube aggregates [1], we report results of ab initio nonadiabatic molecular dynamics simulation of the energy transfer taking place in two carbon nanotube systems. We investigate the energy transfer between (8,4) and (10,0) CNTs, as well as (8,4) and (13,0) CNTs. In both cases, the CNTs are orthogonal to each other. Luer et al. in [1] elucidate the second excitonic transitions followed by fast intratube relaxation and energy transfer from the (8,4) CNT toward other acceptor tubes. Our project aims to provide a better understanding of the energy transfer mechanism in the given systems, which should foster development of a theory for the electronic structure and dynamics of CNT networks, hence enhancing their tailoring and application in the future. References 1.Larry Luer, Jared Crochet, Tobias Hertel, Giulio Cerullo, Gugliermo Lanzani. ACSNano. Vol.4, No. 7, 4265-4273

  19. Thin film thermistor with positive temperature coefficient of resistance based on phase separated blends of ferroelectric and semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Lenz, Thomas; Sharifi Dehsari, Hamed; Asadi, Kamal; Blom, Paul W. M.; Groen, Wilhelm A.; de Leeuw, Dago M.

    2016-09-01

    We demonstrate that ferroelectric memory diodes can be utilized as switching type positive temperature coefficient (PTC) thermistors. The diode consists of a phase separated blend of a ferroelectric and a semiconducting polymer stacked between two electrodes. The current through the semiconducting polymer depends on the ferroelectric polarization. At the Curie temperature the ferroelectric polymer depolarizes and consequently the current density through the semiconductor decreases by orders of magnitude. The diode therefore acts as switching type PTC thermistor. Unlike their inorganic counterparts, the PTC thermistors presented here are thin film devices. The switching temperature can be tuned by varying the Curie temperature of the ferroelectric polymer.

  20. Label-free immunodetection with CMOS-compatible semiconducting nanowires.

    PubMed

    Stern, Eric; Klemic, James F; Routenberg, David A; Wyrembak, Pauline N; Turner-Evans, Daniel B; Hamilton, Andrew D; LaVan, David A; Fahmy, Tarek M; Reed, Mark A

    2007-02-01

    Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms. Successful solution-phase nanowire sensing has been demonstrated for ions, small molecules, proteins, DNA and viruses; however, 'bottom-up' nanowires (or similarly configured carbon nanotubes) used for these demonstrations require hybrid fabrication schemes, which result in severe integration issues that have hindered widespread application. Alternative 'top-down' fabrication methods of nanowire-like devices produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications. PMID:17268465

  1. Proposed strategy to sort semiconducting nanotubes by band-gap

    NASA Astrophysics Data System (ADS)

    Narayan, V.

    2007-01-01

    We propose a strategy that uses a tunable infra-red source and an alternating non-linear potential defined by an electrode to sort a suspension of assorted semiconducting nanotubes. The band-gap scales with the inverse of the nanotube diameter, hence the infra-red frequency can be tuned to create excitons in some of the nanotubes; these excitons will be polarized by the potential. Since, a polarized exciton is a dipole, the excited nanotubes will experience a net force and may then diffuse towards the electrode, unlike the other nanotubes. We discuss experimental parameters such as IR intensity, electrode design, and potential frequency for a pilot experiment to sort nanotubes with lengths ≈0.5 μm. The basic physics of the system has been illustrated using a Hartree model applied to nanotubes with nanoscale lengths. The calculated exciton binding energy suddenly drops to zero and the force on the nanotube increases dramatically when the exciton disassociates as the nanotube moves towards the electrode. The quantum adiabatic theorem shows that excitons will be adiabatically polarized for potential frequencies typical for experiments ≈1-10 MHz. The analysis indicates that the manipulation of nanotubes with nanometer lengths requires nanoscale electrodes.

  2. On the Uniqueness of Solutions of a Nonlinear Elliptic Problem Arising in the Confinement of a Plasma in a Stellarator Device

    SciTech Connect

    Diaz, J. I.; Galiano, G.; Padial, J. F.

    1999-01-15

    We study the uniqueness of solutions of a semilinear elliptic problem obtained from an inverse formulation when the nonlinear terms of the equation are prescribed in a general class of real functions. The inverse problem arises in the modeling of the magnetic confinement of a plasma in a Stellarator device. The uniqueness proof relies on an L{sup {infinity}} -estimate on the solution of an auxiliary nonlocal problem formulated in terms of the relative rearrangement of a datum with respect to the solution.

  3. Response functions of semiconducting lithium indium diselenide

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric; Chvala, Ondrej; Stowe, Ashley

    2016-06-01

    This paper presents the results of a computational investigation that determined the gamma-ray and neutron response functions of a new semiconducting material, 6LiInSe2, which is very sensitive to thermal neutrons. Both MCNP6 simulations and custom post-processing/simulation techniques were used to determine various detection properties of LISe. The computational study included consideration of energetic electron escape, the contribution from the activation of 115In and subsequent decay of 116In, triton and alpha particle escape from the 6Li reaction pathway, and the effect of incomplete charge collection when detecting neutrons via the 6Li reaction pathway. The result of neutron detection with incomplete charge collection was compared to experimental results and showed general agreement, where holes exhibit a lower mobility-lifetime product than electrons, as expected for compound semiconductors.

  4. Optical antenna effect in semiconducting nanowires.

    PubMed

    Chen, G; Wu, Jian; Lu, Qiujie; Gutierrez, H R; Xiong, Qihua; Pellen, M E; Petko, J S; Werner, D H; Eklund, P C

    2008-05-01

    We report on investigations of the interaction of light with nanoscale antennae made from crystalline GaP nanowires (NWs). Using Raman scattering, we have observed strong optical antenna effects which we identify with internal standing wave photon modes of the wire. The antenna effects were probed in individual NWs whose diameters are in the range 40 < d < 300 nm. The data and our calculations show that the nature of the backscattered light is critically dependent on the interplay between a photon confinement effect and bulk Raman scattering. At small diameter, d < 65 nm, the NWs are found to act like a nearly perfect dipole antenna and the bulk Raman selection rules are masked leading to a polarized scattering intensity function I R approximately cos4 theta. Underscoring the importance of this work is the realization that a fundamental understanding of the "optical antenna effect" in semiconducting NWs is essential to the analysis of all electro-optic effects in small diameter filaments.

  5. Doping Scheme of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomic chains, precise structures of atomic scale created on an atomically regulated substrate surface, are candidates for future electronics. A doping scheme for intrinsic semiconducting Mg chains is considered. In order to suppress the unwanted Anderson localization and minimize the deformation of the original band shape, atomic modulation doping is considered, which is to place dopant atoms beside the chain periodically. Group I atoms are donors, and group VI or VII atoms are acceptors. As long as the lattice constant is long so that the s-p band crossing has not occurred, whether dopant atoms behave as donors or acceptors is closely related to the energy level alignment of isolated atomic levels. Band structures are calculated for Br-doped (p-type) and Cs-doped (n-type) Mg chains using the tight-binding theory with universal parameters, and it is shown that the band deformation is minimized and only the Fermi energy position is modified.

  6. Tunable surface plasmon devices

    DOEpatents

    Shaner, Eric A.; Wasserman, Daniel

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  7. Parallel Pool Analysis of Transient Spectroscopy Reveals Origins of and Perspectives for ZnO Hybrid Solar Cell Performance Enhancement Using Semiconducting Surfactants.

    PubMed

    Meister, Michael; Amsden, Jason J; Howard, Ian A; Park, Insun; Lee, Changhee; Yoon, Do Y; Laquai, Frédéric

    2012-09-20

    Recently, the performance of ZnO nanocrystals as an electron acceptor in a solar cell device was significantly increased by a semiconducting surfactant. Here we show, using transient absorption spectroscopy and a parallel pool analysis, that changes in the quantum efficiency of charge generation account for the performance variation among semiconducting-surfactant-coated, surfactant-coated, and uncoated ZnO nanoparticles. We demonstrate that even better surfactant design to suppress fast recombination could still lead to a further doubling of device efficiency. PMID:26295889

  8. Enhanced x-ray detection sensitivity in semiconducting polymer diodes containing metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mills, Christopher A.; Al-Otaibi, Hulayel; Intaniwet, Akarin; Shkunov, Maxim; Pani, Silvia; Keddie, Joseph L.; Sellin, Paul J.

    2013-07-01

    Semiconducting polymer X-radiation detectors are a completely new family of low-cost radiation detectors with potential application as beam monitors or dosimeters. These detectors are easy to process, mechanically flexible, relatively inexpensive, and able to cover large areas. However, their x-ray photocurrents are typically low as, being composed of elements of low atomic number (Z), they attenuate x-rays weakly. Here, the addition of high-Z nanoparticles is used to increase the x-ray attenuation without sacrificing the attractive properties of the host polymer. Two types of nanoparticles (NPs) are compared: metallic tantalum and electrically insulating bismuth oxide. The detection sensitivity of 5 µm thick semiconducting poly([9,9-dioctylfluorenyl-2,7-diyl]-co-bithiophene) diodes containing tantalum NPs is four times greater than that for the analogous NP-free devices; it is approximately double that of diodes containing an equal volume of bismuth oxide NPs. The x-ray induced photocurrent output of the diodes increases with an increased concentration of NPs. However, contrary to the results of theoretical x-ray attenuation calculations, the experimental current output is higher for the lower-Z tantalum diodes than the bismuth oxide diodes, at the same concentration of NP loading. This result is likely due to the higher tantalum NP electrical conductivity, which increases charge transport through the semiconducting polymer, leading to increased diode conductivity.

  9. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution.

    PubMed

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6](3-) precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance.

  10. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution

    PubMed Central

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I.; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6]3− precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance. PMID:27025784

  11. Excitons in semiconducting superlattices, quantum wells, and ternary alloys

    SciTech Connect

    Sturge, M.D. ); Nahory, R.E.; Tamargo, M.C. )

    1991-08-15

    It is now possible to fabricate semiconducting layered structures with precisely defined layer thicknesses down to one monolayer (two atomic diameters). An example is the superlattice'' (SL) structure, in which two semiconductors with different band gaps are interleaved. The electronic properties of the SL are quite different from those of the constitutents and offer interesting new possibilities both in device design and in basic physics. This proposal aims to improve our understanding of optically excited states ( excitons'' and electron-hole plasmas'') in a particular class of these structures: the so-called Type 2 indirect'' SL's in which the electron and hole created by optical excitation are separated both in real and in momoentum space. Time-resolved tunable laser spectroscopy, with and without external perturbations such as magnetic field, electric field, and uniaxial stress, are used principally to study the following phenomena. 1. Exciton states in SLs with only a few atomic layers per period, for which the familiar effective mass model'' of semiconductor states breaks down. 2. The electron-hole plasma which forms when the excitation density is high. This plasma may be in a liquid state at low temperatures. In the short period superlattices are our primary concern, electrons and holes are spatially separated, leading to internal electric fields which might be expected to have a pronounced effect on the plasma properties.

  12. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    SciTech Connect

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-11

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  13. Uniformly spaced arrays of purely semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Falk, Abram; Kumar, Bharat; Tulevski, George; Farmer, Damon; Hannon, James; Han, Shu-Jen

    Patterning uniformly spaced arrays of carbon nanotubes (CNTs) is a key challenge for carbon electronics. Our group adopts a hybrid approach to meeting this goal. We use top-down lithography to pattern trenches on chips. We then use surface-selective chemical monolayers to facilitate the bottom-up assembly of solution-processed CNTs into these trenches. Previously, we showed large-scale integration of CNTs based on this approach, but modifications to this process have been needed in order to improve the yield and decrease the fraction of non-switching devices. Our latest results show a high degree of selectivity, alignment and yield of successfully placed CNTs at a 100 nm pitch. Electrical measurements confirm that these chemically placed CNTs are nearly 100% semiconducting and of similar quality to randomly dispersed ones. I will then discuss our strategies for increasing the CNT density and extending these results from chip- to wafer-scale electronics. email: alfalk@us.ibm.com.

  14. Semiconducting wafer form shaping with an electric discharge machine

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Tung

    1988-09-01

    Gallium can be used as a temporary glue for semiconducting wafer mounting. The good electric contact between the electrode, the gallium layer, and the semiconducting wafer makes the spark cutting and the semiconducting wafer form shaping much easier. After wafer spark cutting, the residual gallium can be easily removed by a cotton swab from the surface of the wafer in warm isopropyl alcohol (IPA). Also, in this report, improved circuitry of the electric discharge machine for easy and economical construction is described. Gallium arsenide wafers have been form shaped by the present method.

  15. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  16. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  17. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

    PubMed

    Qin, Xiaojun; Peng, Fei; Yang, Feng; He, Xiaohui; Huang, Huixin; Luo, Da; Yang, Juan; Wang, Sheng; Liu, Haichao; Peng, Lianmao; Li, Yan

    2014-02-12

    The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by inhibiting the formation of metallic SWNTs via oxidation. The so-produced ultralong s-SWNT arrays are immediately ready for building field effect transistors. PMID:24392872

  18. Novel metastable metallic and semiconducting germaniums

    PubMed Central

    Selli, Daniele; Baburin, Igor A.; Martoňák, Roman; Leoni, Stefano

    2013-01-01

    Group-IVa elements silicon and germanium are known for their semiconducting properties at room temperature, which are technologically critical. Metallicity and superconductivity are found at higher pressures only, Ge β-tin (tI4) being the first high-pressure metallic phase in the phase diagram. However, recent experiments suggest that metallicity in germanium is compatible with room conditions, calling for a rethinking of our understanding of its phase diagram. Missing structures can efficiently be identified based on structure prediction methods. By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase (mC16) with four-membered rings, less dense than diamond and compressible into β-tin phase (tI4) was found. Tetragonal bct-5 appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues. PMID:23492980

  19. Innate cation sensitivity in a semiconducting polymer.

    PubMed

    Althagafi, Talal M; Algarni, Saud A; Grell, Martin

    2016-09-01

    Water-gated organic thin film transistors (OTFTs) using the hole transporting semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), show an innate response of their threshold voltage to the addition of divalent metal cations to the gating water, without deliberately introducing an ion-sensitive component. A similar threshold response is shown for several divalent cations, but is absent for monovalent cations. Response is absent for transistors using the inorganic semiconductor ZnO, or the similar organic semiconductor poly(3-hexylthiophene) (rrP3HT), instead of PBTTT. We assign innate cation sensitivity to residues of the organometallic Pd(0) complex used as catalyst in PBTTT synthesis which bears strong resemblance to typical metal chelating agents. Organometallic Pd(0) residues are absent from ZnO, and also from rrP3HT which is polymerised with a different type of catalyst. However, when Pd(0) complex is deliberately added to rrP3HT casting solutions, resulting OTFTs also display threshold response to a divalent cation. PMID:27343580

  20. Photo-physics of P3HT blended with highly enriched metallic and semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Holt, Josh; Mistry, Kevin; Ferguson, Andrew; Blackburn, Jeff

    2010-03-01

    Single-walled carbon nanotubes (SWNTs) possess unique properties that may potentially benefit photovoltaic (PV) devices, including high carrier mobilities, convenient work functions, and tunable optical transitions that span most of the solar spectrum. However, significant polydispersity in both diameter and electronic structure have hindered the realization of efficient PV cells incorporating SWNTs. In this presentation, we report the use of advanced techniques to separate single-walled carbon nanotubes (SWNTs) created by laser vaporization into highly enriched semiconducting and metallic species. The enriched SWNTs are then blended with regioregular poly(3-hexylthiophene) (P3HT) to serve as a model electron donor/acceptor system, analogous to systems typically used in organic PV devices. We investigate the photo-physical properties of charge generation and transfer using primarily time-resolved microwave conductivity (TRMC) and photoluminescence excitation spectroscopy and discuss the disparities between metallic vs semiconducting SWNT acceptors.

  1. Third order optical non-linear (Z-scan), birefringence, photoluminescence, mechanical and etching studies on melaminium levulinate monohydrate (MLM) single crystal for optical device applications

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Anbalagan, G.

    2016-10-01

    Z-scan studies on the grown crystal was investigated by diode-pumped Nd; YAG laser. Nonlinear refractive index (n2) and third-order nonlinear optical susceptibility (χ3) values of MLM were found to be -1.0 × 10-8 cm2/W and 1.36 × 10-6 esu respectively. Powder X-ray diffraction analysis depicted that the crystal belongs to monoclinic system with space group P21/c. Birefringence study revealed the optical dispersion behavior of MLM crystal. Linear refractive index on (10-1) plane was measured by prism coupling technique and was estimated to be 1.4705. Hardness study was carried out along three different planes which exhibit hardness anisotropy of 41.11%. Meyer's index values of the grown crystal for the (10-1), (010) and (111) planes were found to be 2.39, 2.61 and 2.04 respectively. Etching studies on the prominent (10-1) growth plane was explained by two dimensional layer growth mechanisms. Photoluminescence study was performed on MLM crystal to explore its efficacy towards optical device fabrications.

  2. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    SciTech Connect

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-10-08

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

  3. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  4. Homo and heteroepitaxial growth and study of orientation-patterned GaP for nonlinear frequency conversion devices

    NASA Astrophysics Data System (ADS)

    Tassev, V. L.; Vangala, S.; Peterson, R.; Kimani, M.; Snure, M.; Markov, I.

    2016-03-01

    Frequency conversion in orientation-patterned quasi-phase matched materials is a leading approach for generating tunable mid- and long-wave coherent IR radiation for a wide variety of applications. A number of nonlinear optical materials are currently under intensive investigation. Due to their unique properties, chiefly wide IR transparency and high nonlinear susceptibility, GaAs and GaP are among the most promising. Compared to GaAs, GaP has the advantage of having higher thermal conductivity and significantly lower 2PA in the convenient pumping range of 1- 1.7 μm. HVPE growth of OPGaP, however, has encountered certain challenges: low quality and high price of commercially available GaP wafers; and strong parasitic nucleation during HVPE growth that reduces growth rate and aggravates layer quality, often leading to pattern overgrowth. Lessons learned from growing OPGaAs were not entirely helpful, leaving us to alternative solutions for both homoepitaxial growth and template preparation. We report repeatable one-step HVPE growth of up to 400 μm thick OPGaP with excellent domain fidelity deposited for first time on OPGaAs templates. The templates were prepared by wafer fusion bonding or MBE assisted polarity inversion technique. A close to equilibrium growth at such a large lattice mismatch (-3.6%) is itself noteworthy, especially when previously reported attempts (growth of OPZnSe on OPGaAs templates) at much smaller mismatch (+0.3%) have produced limited results. Combining the advantages of the two most promising materials, GaAs and GaP, is a solution that will accelerate the development of high power, tunable laser sources for the mid- and long-wave IR, and THz region.

  5. Transport studies of conducting, semiconducting and photoconducting star polymers

    NASA Astrophysics Data System (ADS)

    Ferguson, John Baker

    Star polymers are studied for their transport properties in the highly conducting state doped with NOPF6 and iodine, the undoped semiconducting state and the photoconducting state. Doped star polymers exhibit variable range hopping of charge carriers. Transport dimensionality and conductivity depend intricately on the processing conditions for doping and casting films. The highest conducting diffusion doped film (room temperature conductivity 50 S/cm) exhibits 2-dimensional variable range for all doping levels. Polymers doped in solution, then cast to form films have 1.4 dimensional variable range hopping for the highest conducting samples with 10 S/cm at room temperature. The hopping dimensionality varies as the conductivity decreases. The doped star polymers remain on the insulator side of the insulator metal transition with localized carriers as revealed with Kramer-Kronig analysis. Optical and near infrared absorbance and photoluminescence reveal the core of the star polymers exist in a solid state solution of the arms with similar absorbance and luminescence for both solution and films. The arms retain the optical properties of their linear analogs indicating the core and arms do not interact quantum mechanically to produce a new state. Excitons created by absorption in the wider band gap cores rapidly migrate to the arms. Photoconductive time of flight mobility measurements reveal an almost field independent mobility at room temperature. This is due to a unique cancellation of on diagonal and off diagonal disorder in the Bassler disorder formalism. The cores introduce heterogeneous regions with a net lower mobility predicted by correlated disorder models. Space charge limited current reveals trap densities several orders of magnitude higher than the carrier density. Photovoltaic performance of star polymer and fullerene blend devices with both 20 nm and 100 nm thick layers are investigated. The thin devices have low open circuit voltages due to space charge

  6. Excitons in semiconducting superlattices, quantum wells, and ternary alloys

    SciTech Connect

    Sturge, M.D. . Dept. of Physics); Nahory, R.E.; Tamargo, M.C. )

    1992-06-01

    Semiconducting layered structures can now be fabricated with precisely defined layer thicknesses down to one monolayer. An example is the superlattice'' (SL) structure, in which to semiconductors with different band gaps are interleaved. The electronic and optical properties of the SL are quite different from those of the constitutents and offer interesting new possibilities both in device design and in basic physics. This proposal aims to improve our understanding of optically excited states in SL's, particularly in the so-called Type 2 indirect'' SL's in which in electron and hole created by optical excitation are separated both in real and in momentum space. We study these structures by time-resolved tunable laser spectroscopy, with and without external perturbations such as magnetic field, electric field, and uniaxial stress. In SLs with only a few atomic layers per period the familiar effective mass model'' of semiconductor states breaks down. We have made precise optical experiments on well-characterized material to test current first principles'' calculations of the band structure. Our work under this grant has shown that the material we are using is of sufficiently high quality to test the theoretical predictions. Comparison of theory and experiment provides a new and sensitive probe of the interface quality on a fine scale. Statistical analysis of the temperature dependence of the exciton decay dynamics provides complementary information. From a careful study of the exciton spectra of the recently discovered mixed type 1- type 2 CdTe/CdZnTe SLs we have obtained the band offset at the CdTe/CdZnTe interface to unprecedented accuracy.

  7. Graphene Based Reversible Nano-Switch/Sensor Schottky Diode (NANOSSSD) Device

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A. (Inventor); Theofylaktos, Onoufrios (Inventor); Pinto, Nicholas J. (Inventor); Mueller, Carl H. (Inventor); Santos, Javier (Inventor); Meador, Michael A. (Inventor)

    2015-01-01

    A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one layer of graphene formed on the electrode. The at least one layer of graphene provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.

  8. Room-temperature nonlinear transport phenomena in low-dimensional Ni-Nb-Zr-H glassy alloys and its device

    SciTech Connect

    Fukuhara, Mikio; Yoshida, Hajime

    2014-05-15

    We report the room-temperature switching and Coulomb blockade effects in three–terminal glassy alloy field effect transistor (GAFET), using the millimeter sized glassy alloy. By applying dc and ac voltages to a gate electrode, GAFET can be switched from a metallic conducting state to an insulating state with Coulomb oscillation at a period of 14 μV at room temperature. The transistor showed the three-dimensional Coulomb diamond structure. The fabrication of a low-energy controllable device throws a new light on cluster electronics without wiring.

  9. Optimization of thermoelectric performance in semiconducting polymers for understanding charge transport and flexible thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Glaudell, Anne; Chabinyc, Michael

    2014-03-01

    Organic electronic materials have been widely considered for a variety of energy conversion applications, from photovoltaics to LEDs. Only very recently have organic materials been considered for thermoelectric applications - converting between temperature gradients and electrical potential. The intrinsic disorder in semiconducting polymers leads to an inherently low thermal conductivity, a key parameter in thermoelectric performance. The ability to solution deposit on flexible substrates opens up niche applications including personal cooling and conformal devices. Here work is presented on the electrical conductivity and thermopower of thin film semiconducting polymers, including P3HT and PBTTT-C14. Thermoelectric properties are explored over a wide range of conductivities, from nearly insulating to beyond 100 S/cm, enabled by employing different doping mechanisms, including molecular charge-transfer doping with F4TCNQ and vapor doping with a fluoroalkyl trichlorosilane (FTS). Temperature-dependent measurements suggest competing charge transport mechanisms, likely due to the mixed ordered/disordered character of these polymers. These results show promise for organic materials for thermoelectric applications, and recent results on thin film devices will also be presented.

  10. Identifiying signatures of photothermal current in a double-gated semiconducting nanotube

    NASA Astrophysics Data System (ADS)

    Buchs, G.; Bagiante, S.; Steele, G. A.

    2014-09-01

    The remarkable electrical and optical properties of single-walled carbon nanotubes have allowed for engineering device prototypes showing great potential for applications such as photodectors and solar cells. However, any path towards industrial maturity requires a detailed understanding of the fundamental mechanisms governing the process of photocurrent generation. Here we present scanning photocurrent microscopy measurements on a double-gated suspended semiconducting single-walled carbon nanotube and show that both photovoltaic and photothermal mechanisms are relevant for the interpretation of the photocurrent. We find that the dominant or non-dominant character of one or the other processes depends on the doping profile, and that the magnitude of each contribution is strongly influenced by the series resistance from the band alignment with the metal contacts. These results provide new insight into the interpretation of features in scanning photocurrent microscopy and lay the foundation for the understanding of optoelectronic devices made from single-walled carbon nanotubes.

  11. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Comfort, Everett; Lee, Ji Ung

    2016-06-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.

  12. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    PubMed Central

    2016-01-01

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure–property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers. PMID:27444189

  13. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes.

    PubMed

    Comfort, Everett; Lee, Ji Ung

    2016-01-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range. PMID:27339272

  14. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors.

    PubMed

    Nielsen, Christian B; Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Bandiello, Enrico; Niazi, Muhammad R; Hanifi, David A; Sessolo, Michele; Amassian, Aram; Malliaras, George G; Rivnay, Jonathan; McCulloch, Iain

    2016-08-17

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers. PMID:27444189

  15. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors.

    PubMed

    Nielsen, Christian B; Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Bandiello, Enrico; Niazi, Muhammad R; Hanifi, David A; Sessolo, Michele; Amassian, Aram; Malliaras, George G; Rivnay, Jonathan; McCulloch, Iain

    2016-08-17

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers.

  16. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

    PubMed Central

    Comfort, Everett; Lee, Ji Ung

    2016-01-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range. PMID:27339272

  17. Recent advances in organic semiconducting materials

    NASA Astrophysics Data System (ADS)

    Ostroverkhova, Oksana

    2011-10-01

    Organic semiconductors have attracted attention due to their low cost, easy fabrication, and tunable properties. Applications of organic materials in thin-film transistors, solar cells, light-emitting diodes, sensors, and many other devices have been actively explored. Recent advances in organic synthesis, material processing, and device fabrication led to significant improvements in (opto)electronic device performance. However, a number of challenges remain. These range from lack of understanding of basic physics of intermolecular interactions that determine optical and electronic properties of organic materials to difficulties in controlling film morphology and stability. In this presentation, current state of the field will be reviewed and recent results related to charge carrier and exciton dynamics in organic thin films will be presented.[4pt] In collaboration with Whitney Shepherd, Mark Kendrick, Andrew Platt, Oregon State University; Marsha Loth and John Anthony, University of Kentucky.

  18. Scattering attributes of one-dimensional semiconducting oxide nanomaterials individually probed for varying light-matter interaction angles

    NASA Astrophysics Data System (ADS)

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Hahm, Jong-in

    2015-10-01

    We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO2, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of the technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.

  19. Scattering attributes of one-dimensional semiconducting oxide nanomaterials individually probed for varying light-matter interaction angles

    SciTech Connect

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Hahm, Jong-in

    2015-10-12

    We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO{sub 2}, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of the technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.

  20. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chmeliov, Jevgenij; Narkeliunas, Jonas; Graham, Matt W.; Fleming, Graham R.; Valkunas, Leonas

    2016-01-01

    We present a thorough analysis of one- and two-color transient absorption measurements performed on single- and double-walled semiconducting carbon nanotubes. By combining the currently existing models describing exciton-exciton annihilation--the coherent and the diffusion-limited ones--we are able to simultaneously reproduce excitation kinetics following both E11 and E22 pump conditions. Our simulations revealed the fundamental photophysical behavior of one-dimensional coherent excitons and non-trivial excitation relaxation pathways. In particular, we found that after non-linear annihilation a doubly-excited exciton relaxes directly to its E11 state bypassing the intermediate E22 manifold, so that after excitation resonant with the E11 transition, the E22 state remains unpopulated. A quantitative explanation for the observed much faster excitation kinetics probed at E22 manifold, comparing to those probed at the E11 band, is also provided.

  1. Orienting semi-conducting π-conjugated polymers.

    PubMed

    Brinkmann, Martin; Hartmann, Lucia; Biniek, Laure; Tremel, Kim; Kayunkid, Navaphun

    2014-01-01

    The present review focuses on the recent progress made in thin film orientation of semi-conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3-alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi-conducting polymers can generate a large palette of semi-crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.

  2. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  3. Thiofluorographene-hydrophilic graphene derivative with semiconducting and genosensing properties.

    PubMed

    Urbanová, Veronika; Holá, Kateřina; Bourlinos, Athanasios B; Čépe, Klára; Ambrosi, Adriano; Loo, Adeline Huiling; Pumera, Martin; Karlický, František; Otyepka, Michal; Zbořil, Radek

    2015-04-01

    We present the first example of covalent chemistry on fluorographene, enabling the attachment of -SH groups through nucleophilic substitution of fluorine in a polar solvent. The resulting thiographene-like, 2D derivative is hydrophilic with semiconducting properties and bandgap between 1 and 2 eV depending on F/SH ratio. Thiofluorographene is applied in DNA biosensing by electrochemical impedance spectroscopy.

  4. Semiconducting materials for photoelectrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Sivula, Kevin; van de Krol, Roel

    2016-02-01

    To achieve a sustainable society with an energy mix primarily based on solar energy, we need methods of storing energy from sunlight as chemical fuels. Photoelectrochemical (PEC) devices offer the promise of solar fuel production through artificial photosynthesis. Although the idea of a carbon-neutral energy economy powered by such ‘artificial leaves’ is intriguing, viable PEC energy conversion on a global scale requires the development of devices that are highly efficient, stable and simple in design. In this Review, recently developed semiconductor materials for the direct conversion of light into fuels are scrutinized with respect to their atomic constitution, electronic structure and potential for practical performance as photoelectrodes in PEC cells. The processes of light absorption, charge separation and transport, and suitable energetics for energy conversion in PEC devices are emphasized. Both the advantageous and unfavourable aspects of multinary oxides, oxynitrides, chalcogenides, classic semiconductors and carbon-based semiconductors are critically considered on the basis of their experimentally demonstrated performance and predicted properties.

  5. Controlling semiconducting and insulating states of SnO2 reversibly by stress and voltage.

    PubMed

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2012-08-28

    By applying mechanical stress (by bending a flexible substrate) and an appropriate voltage, the conductance of a single-crystal SnO(2) microrod on a flexible substrate can be tuned in a reversible and nonvolatile manner. The creation and elimination of lattice defects controlled by strain and electrical healing is the origin of this novel transition. A SnO(2) microrod changes continually from its normal semiconducting state to an insulating state by bending the flexible substrate. The insulating state is maintained even after straightening the substrate. Interestingly, by applying an appropriate voltage, the defects are electrically healed and the insulating state reverts to the original semiconducting state. The structural changes in the SnO(2) microrod observed in the Raman spectra are consistent with the nonvolatile property of the transport. This flexible SnO(2) device with the reversible and nonvolatile modification of electrical properties is expected to lead to a better understanding of the mechanism of defect creation and elimination and has potential application in novel flexible strain sensors and switches.

  6. Evaluation of polarization rotation in the scattering responses from individual semiconducting oxide nanorods

    PubMed Central

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Monahan, Brian; Hahm, Jong-in

    2016-01-01

    We investigate the interaction of visible light with the solid matters of semiconducting oxide nanorods (NRs) of zinc oxide (ZnO), indium tin oxide (ITO), and zinc tin oxide (ZTO) at the single nanomaterial level. We subsequently identify an intriguing, material-dependent phenomenon of optical rotation in the electric field oscillation direction of the scattered light by systematically controlling the wavelength and polarization direction of the incident light, the NR tilt angle, and the analyzer angle. This polarization rotation effect in the scattered light is repeatedly observed from the chemically pure and highly crystalline ZnO NRs, but absent on the chemically doped NR variants of ITO and ZTO under all measurement circumstances. We further elucidate that the phenomenon of polarization rotation detected from single ZnO NRs is affected by the NR tilt angle, while the phenomenon itself occurs irrespective of the wavelength and incident polarization direction of the visible light. Combined with the widespread optical and optoelectronic use of the semiconducting oxide nanomaterials, these efforts may provide much warranted fundamental bases to tailor material-specific, single nanomaterial-driven, optically modulating functionalities which, in turn, can be beneficial for the realization of high-performance integrated photonic circuits and miniaturized bio-optical sensing devices. PMID:27158560

  7. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide.

    PubMed

    Nayak, Avinash P; Bhattacharyya, Swastibrata; Zhu, Jie; Liu, Jin; Wu, Xiang; Pandey, Tribhuwan; Jin, Changqing; Singh, Abhishek K; Akinwande, Deji; Lin, Jung-Fu

    2014-01-01

    Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at ~19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressure-tuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.

  8. Evaluation of polarization rotation in the scattering responses from individual semiconducting oxide nanorods

    NASA Astrophysics Data System (ADS)

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Monahan, Brian; Hahm, Jong-in

    2016-04-01

    We investigate the interaction of visible light with the solid matters of semiconducting oxide nanorods (NRs) of zinc oxide (ZnO), indium tin oxide (ITO), and zinc tin oxide (ZTO) at the single nanomaterial level. We subsequently identify an intriguing, material-dependent phenomenon of optical rotation in the electric field oscillation direction of the scattered light by systematically controlling the wavelength and polarization direction of the incident light, the NR tilt angle, and the analyzer angle. This polarization rotation effect in the scattered light is repeatedly observed from the chemically pure and highly crystalline ZnO NRs, but absent on the chemically doped NR variants of ITO and ZTO under all measurement circumstances. We further elucidate that the phenomenon of polarization rotation detected from single ZnO NRs is affected by the NR tilt angle, while the phenomenon itself occurs irrespective of the wavelength and incident polarization direction of the visible light. Combined with the widespread optical and optoelectronic use of the semiconducting oxide nanomaterials, these efforts may provide much warranted fundamental bases to tailor material-specific, single nanomaterial-driven, optically modulating functionalities which, in turn, can be beneficial for the realization of high-performance integrated photonic circuits and miniaturized bio-optical sensing devices.

  9. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  10. Semiconducting boron carbide thin films: Structure, processing, and diode applications

    NASA Astrophysics Data System (ADS)

    Bao, Ruqiang

    The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic

  11. The detection of terahertz waves by semimetallic and by semiconducting materials

    NASA Astrophysics Data System (ADS)

    Gouider, F.; Nachtwei, G.; Brüne, C.; Buhmann, H.; Vasilyev, Yu. B.; Salman, M.; Könemann, J.; Buckle, P. D.

    2011-01-01

    We present a survey of photoresponse (PR) measurements of various devices containing quantum wells (QWs) of HgTe of various widths dQW and of InSb. By varying dQW for HgTe, the material properties of the QW material change from semiconducting to semimetallic as dQW is increased above a value of about 6nm. We have studied the PR of devices made from CdxHg1-xTe/HgTe/CdxHg1-xTe wafers with values of the QW width in the range of 6 nm≤dQW≤21 nm. Only for samples with semimetallic HgTe QWs, a measurable PR could be detected. However, our investigations of samples made from AlxIn1-xSb/InSb/AlxIn1-xSb wafers gave evidence that a measurable PR also can appear from devices with a semiconducting QW. Both cyclotron-resonant (CR) and nonresonant (bolometric, BO) interaction mechanisms can contribute to the PR signal. Whereas the CR contribution is dominant in AlxIn1-xSb/InSb/AlxIn1-xSb samples, in CdxHg1-xTe/HgTe/CdxHg1-xTe samples the behavior is more complex. In a sample with dQW=8 nm, the PR is clearly dominated by the BO contribution. In the PR of another sample of dQW=12 nm, both contributions (BO and CR) are present. The sample of dQW=21 nm shows a PR with not clearly separable BO and CR contributions.

  12. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods.

    PubMed

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-28

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-[triple bond, length as m-dash]) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click

  13. Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers.

    PubMed

    Kawashima, Kazuaki; Fukuhara, Tomohiro; Suda, Yousuke; Suzuki, Yasuhito; Koganezawa, Tomoyuki; Yoshida, Hiroyuki; Ohkita, Hideo; Osaka, Itaru; Takimiya, Kazuo

    2016-08-17

    The development of semiconducting polymers is imperative to improve the performance of polymer-based solar cells (PSCs). In this study, new semiconducting polymers based on naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NTz), PNTz4TF2 and PNTz4TF4, having 3,3'-difluoro-2,2'-bithiophene and 3,3',4,4'-tetrafluoro-2,2'-bithiophene, respectively, are designed and synthesized. These polymers possess a deeper HOMO energy level than their counterpart, PNTz4T, which results in higher open-circuit voltages in solar cells. This concequently reduces the photon energy loss that is one of the most important issues surrounding PSCs. The PNTz4TF4 cell exhibits up to 6.5% power conversion efficiency (PCE), whereas the PNTz4TF2 cell demonstrates outstanding device performance with as high as 10.5% PCE, which is quite high for PSCs. We further discuss the performances of the PSCs based on these polymers by correlating the charge generation and recombination dynamics with the polymer structure and ordering structure. We believe that the results provide new insights into the design of semiconducting polymers and that there is still much room for improvement of PSC efficiency. PMID:27448181

  14. Comparison of Gas Sensors Based on Oxygen Plasma-Treated Carbon Nanotube Network Films with Different Semiconducting Contents

    NASA Astrophysics Data System (ADS)

    Ham, Seung Woo; Hong, Hyun Pyo; Kim, Jin Woong; Kim, Jong Hyun; Kim, Ki Bum; Park, Chan Won; Min, Nam Ki

    2015-05-01

    We report on the effect of oxygen plasma treatment on the performance of single-wall carbon nanotube (SWCNT) NH3 gas sensors with different semiconducting contents (66% and 90% semiconducting SWCNTs). The performance of chemical sensors based on SWCNT networks depends on the concentration of semiconducting SWCNTs (s-SWCNTs), whose conductance can be significantly modulated by the absorbed molecules and the surface functionalization. After oxygen plasma treatment, the 66% s-SWCNT sample showed an increase in sensitivity from 0.0275%/ppm to 0.1525%/ppm (5.5 times), while the 90% s-SWCNT device demonstrated an increase in sensitivity from 0.1184%/ppm to 1.5707%/ppm (13 times). These results correspond to improvements in sensitivity of 57 times and 10 times compared with pristine and plasma-treated 66% s-SWCNT samples, respectively. In addition, the plasma-treated sensors exhibited much faster response and recovery times than the pristine one. The large improvement in performance was explained by the presence of oxygen-containing functional groups and the sp2-sp3 structure change of SWCNTs, which changes the binding energy while increasing the uptake of polar molecules such as NH3.

  15. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  16. PREFACE: 18th Microscopy of Semiconducting Materials Conference (MSM XVIII)

    NASA Astrophysics Data System (ADS)

    Walther, T.; Hutchison, John L.

    2013-11-01

    YRM logo This volume contains invited and contributed papers from the 18th international conference on 'Microscopy of Semiconducting Materials' held at St Catherine's College, University of Oxford, on 7-11 April 2013. The meeting was organised under the auspices of the Royal Microscopical Society and supported by the Institute of Physics as well as the Materials Research Society of the USA. This conference series deals with recent advances in semiconductor studies carried out by all forms of microscopy, with an emphasis on electron microscopy and scanning probe microscopy with high spatial resolution. This time the meeting was attended by 109 delegates from 17 countries world-wide. We were welcomed by Professor Sir Peter Hirsch, who noted that this was the first of these conferences where Professor Tony Cullis was unable to attend, owing to ill-health. During the meeting a card containing greetings from many of Tony's friends and colleagues was signed, and duly sent to Tony afterwards. As semiconductor devices shrink further new routes for device processing and characterisation need to be developed, and, for the latter, methods that offer sub-nanometre spatial resolution are particularly valuable. The various forms of imaging, diffraction and spectroscopy available in modern microscopes are powerful tools for studying the microstructure, electronic structure, chemistry and also electric fields in semiconducting materials. Recent advances in instrumentation, from lens aberration correction in both TEM and STEM instruments, to the development of a wide range of scanning probe techniques, as well as new methods of signal quantification have been presented at this conference. Two topics that have at this meeting again highlighted the interesting contributions of aberration corrected transmission electron microscopy were: contrast quantification of annular dark-field STEM images in terms of chemical composition (Z-contrast), sample thickness and strain, and the study of

  17. Molecular dynamics simulations for the study of optical properties in conjugated semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Wildman, Jack; Denis, Jean-Christophe; Repiščák, Peter; Paterson, Martin J.; Galbraith, Ian

    Conformational disorder of conjugated polymers strongly influences their optical and electronic properties. Molecular Dynamics (MD) simulations can provide a quantitative understanding of these effects. Given the ever-expanding range of molecules with potential for device applications, it is critical to systematically establish accurate MD parameters for such simulations. We present an experimentally verified, general and optimised procedure, based on a computationally inexpensive methodology for generating the required MD parameters for conjugated molecules. By combining a large sample (~1000) of MD generated conformations with DFT calculations for the resulting electronic states we can explore the influence of conformational disorder on the optical properties. Using this scheme, we determine the effect of conformational variation on both linear and two-photon absorption spectra in a number of different conjugated semiconducting oligomers. Our results indicate that, while there exists significant inhomogeneous broadening in the linear absorption, there is only a weak conformational influence on the two-photon absorption spectrum.

  18. Superconducting proximity effect in superconductor / semiconducting-carbon-nanotube / superconductor junctions.

    NASA Astrophysics Data System (ADS)

    Barbara, Paola

    2005-03-01

    We measure the proximity effect in devices made of two superconducting electrodes bridged by a 3-micrometer long semiconducting carbon nanotube. The electrodes are made of a Pd/Nb bilayer and the junctions are fabricated by using standard photolithography [1]. The superconducting proximity effect manifests itself with a peak in the low-bias differential conductance due to Andreev reflection at the superconductor/carbon nanotube interfaces. Application of a gate voltage allows the transparency of the junction to be tuned from high (Andreev reflection) to low (tunneling) [2]. We have studied the temperature dependence of the features in each regime. This work is supported by the NSF (DMR-0239721) and by the Research Corporation. [1] A. Tselev, K. Hatton, M. S. Fuhrer, M. Paranjape and P. Barbara, Nanotechnology 15, 1475 (2004). [2] A. F. Morpurgo, J. Kong, C. M. Marcus, and H. Dai, Science 286, 263 (1999).

  19. Novel semiconducting polymers: Synthesis, characterization, and their application in organic electronics

    NASA Astrophysics Data System (ADS)

    Hubijar, Emir

    Conjugated polymers have attracted considerable attention as semiconducting materials in recent years due to their versatile electronic and optoelectronic applications. The main promise of conjugated polymers is not just attaining or exceeding the level of performance of silicon technologies but also producing electronic devices at a lower cost and enabling completely new device functionalities such as light weight, large surface area, mechanical flexibility, and optical transparency. Due to their broad potential, conjugated polymers have been incorporated in the wide range of applications, including polymer light-emitting diodes (LEDs), organic field-effect transistors (OFETs), and polymer solar cells (PSCs). Chapter 1 provides general information on conjugated polymers utilized in polymer light-emitting diodes (LEDs), polymer solar cells (PSCs) and organic field effect transistors (OFETs). It also includes brief description and schematic diagrams for each device configuration. Chapter 2 describes the synthesis, characterization and electronic properties of a novel symmetrical sulfone-substituted polyphenylene vinylene (SO 2EH-PPV) for applications in light-emitting devices. The sulfonyl functional group was directly attached to the polymer's backbone to increase the electron affinities of the polymer. The polymer was incorporated into a single layer PLED devices with the configuration of (ITO/ PEDOT:PSS/SO2EH-PPV polymer/Al). Chapter 3 focuses on the synthesis and color tuning of novel poly (fluorenevinylene-co-sulfonylphenylenevinylene) based copolymers for application in light-emitting diodes. New electroluminescent Poly(fluorenevinylene)-co-(sulfonylphenylenevinylene) random copolymers with different monomer feed ratios (PFV-SO2EH 10 and PFV-SO2EH 50) were synthesized via palladium-catalyzed Stille coupling reaction. Single layer stable PLED devices with the configuration of (ITO/PEDOT:PSS/PFV-SO 2EH 10 & PFV-SO2EH 50 polymer/Al) were fabricated exhibiting a

  20. Transport properties in semiconducting NbS{sub 2} nanoflakes

    SciTech Connect

    Huang, Y. H.; Chen, R. S. Ho, C. H.; Peng, C. C.; Huang, Y. S.

    2014-09-01

    The electronic transport properties in individual niobium disulphide (NbS{sub 2}) nanoflakes mechanically exfoliated from the bulk crystal with three rhombohedral (3R) structure grown by chemical vapor transport were investigated. It is found that the conductivity values of the single-crystalline nanoflakes are approximately two orders of magnitude lower than that of their bulk counterparts. Temperature-dependent conductivity measurements show that the 3R-NbS{sub 2} nanoflakes exhibit semiconducting transport behavior, which is also different from the metallic character in the bulk crystals. In addition, the noncontinuous conductivity variations were observed at the temperature below 180 K for both the nanoflakes and the bulks, which is attributed to the probable charge density wave transition. The photoconductivities in the semiconducting nanoflakes were also observed under the excitation at 532 nm wavelength. The probable mechanisms resulting in the different transport behaviors between the NbS{sub 2} nanostructure and bulk were discussed.

  1. An alternative approach to charge transport in semiconducting electrodes

    NASA Technical Reports Server (NTRS)

    Thomchick, J.; Buoncristiani, A. M.

    1980-01-01

    The excess-carrier charge transport through the space-charge region of a semiconducting electrode is analyzed by a technique known as the flux method. In this approach reflection and transmission coefficients appropriate for a sheet of uniform semiconducting material describe its transport properties. A review is presented of the flux method showing that the results for a semiconductor electrode reduce in a limiting case to those previously found by Gaertner if the depletion layer is treated as a perfectly transmitting medium in which scattering and recombination are ignored. Then, in the framework of the flux method the depletion layer is considered more realistically by explicitly taking into account scattering and recombination processes which occur in this region.

  2. Morphology control in biphasic hybrid systems of semiconducting materials.

    PubMed

    Mathias, Florian; Fokina, Ana; Landfester, Katharina; Tremel, Wolfgang; Schmid, Friederike; Char, Kookheon; Zentel, Rudolf

    2015-06-01

    Simple blends of inorganic nanocrystals and organic (semiconducting) polymers usually lead to macroscopic segregation. Thus, such blends typically exhibit inferior properties than expected. To overcome the problem of segregation, polymer coated nanocrystals (nanocomposites) have been developed. Such nanocomposites are highly miscible within the polymer matrix. In this Review, a summary of synthetic approaches to achieve stable nanocomposites in a semiconducting polymer matrix is presented. Furthermore, a theoretical background as well as an overview concerning morphology control of inorganic NCs in polymer matrices are provided. In addition, the morphologic behavior of highly anisotropic nanoparticles (i.e. liquid crystalline phase formation of nanorod-composites) and branched nanoparticles (spatial orientation of tetrapods) is described. Finally, the morphology requirements for the application of inorganic/organic hybrid systems in light emitting diodes and solar cells are discussed, and potential solutions to achieve the required morphologies are provided. PMID:25737161

  3. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    NASA Astrophysics Data System (ADS)

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by

  4. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    PubMed Central

    2016-01-01

    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006

  5. Thermoelectric transport phenomena in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Cornett, Jane

    The efficiencies of state-of-the-art thermoelectric devices made from bulk materials remain too low for widespread application. Early predictions by Hicks and Dresselhaus indicated that one potential route for improving the thermoelectric properties of materials was through nanostructuring. This predicted improvement was due to two effects: an increase in the thermoelectric power factor and a decrease in the lattice thermal conductivity. In this thesis, new models are developed for calculation of the thermoelectric transport properties of nanostructures. The results of these models are in line with what has been seen experimentally in the field of nanostructured thermoelectrics: the power factor of nanostructures falls below the bulk value for sizes accessible by current experimental techniques. While this is demonstrated first for a particular system (cylindrical InSb nanowires), this result is shown to hold true regardless of the dimensionality of the system, the material of interest or the temperature. Using the analytical forms of the transport properties of nanostructured systems, we derive universal scaling relations for the power factor which further point to the fundamental and general nature of this result. Calculations done for nanostructured systems in which the scattering time is a function of carrier energy indicate that the introduction of nanoscale grain boundaries can lead to improvements in the power factor. We present experimental methods for the fabrication and characterization of porous bismuth-antimony-telluride (Bi2-xSbxTe3 ) thin films using a templated deposition technique. Preliminary results from this experimental work indicate that the nanostructured morphology of the templates used for the deposition of porous films limits diffusion during grain growth, and thus the crystal structure of these porous films differs from that of films deposited on dense substrates. For fundamental investigation of the effects of porosity on thermoelectric

  6. Optics and Optoelectronics of Two-dimensional Semiconducting Monolayers and Heterostructures

    NASA Astrophysics Data System (ADS)

    Ross, Jason Solomon

    Until recently, the physics of truly two-dimensional (2D) excitons could only be explored theoretically. Following the discovery of graphene, many 2D materials were quickly identified and isolated, one system being the semiconducting Group VI-B transition metal dichalcogenides (TMDs). These semiconductors are the first air-stable materials that are atomically thin (three atomics thick), and yet can be produced in arbitrarily large lateral sheets. They have a direct band gap in which confinement leads to large spatial overlap of electrons and holes resulting in strongly coupled excitonic transitions that dominate light-matter interactions. The direct band-gap of monolayer TMDs occurs at the corners of the hexagonal Brillouin zone, referred to as the K valleys. Entirely unique to these materials, excitons in adjacent K valleys selectively couple to light of opposite circular polarization, i.e. the K (K') valley is selective to right (left) circularly polarized photons. This property offers the possible realization of novel devices that will manipulate the valley index, known as valleytronics. Further, creating a stacked heterostructure (HS) of two TMD monolayers of different molecular species can exhibit type-II band alignment leading to the first atomically sharp built-in p-n junction and a bright interlayer exciton with long lifetimes. Being flat 2D sheets, it is easy to couple these materials to nearby systems such as microfabricated electrodes and photonic crystal cavities allowing for unique modulation and device schemes. Here, I employ both optical and electronic techniques to study the unique physics of 2D excitons in TMDs as well as demonstrate some of their first optoelectronic and valleytronic devices. The most notable achievement is perhaps the first demonstrations of both atomically thin and 2D heterostructure light emitting diodes and photovoltaic devices. Other breakthroughs include the first demonstration of exciton charging tunability in a 2D system

  7. Wafer-Scale Monolayer Films of Semiconducting Metal Dichalcogenides for High-Performance Electronics

    NASA Astrophysics Data System (ADS)

    Xie, Saien; Kang, Kibum; Huang, Lujie; Han, Yimo; Huang, Pinshane; Mak, Kin Fai; Kim, Cheol-Joo; Muller, David; Park, Jiwoong

    2015-03-01

    Two-dimensional semiconducting transition metal dichalcogenides (TMDs) have shown their potential in electronics, optoelectronic and valleytronis. However, large-scale growth methods reported to date have only produced materials with limited structural and electrical uniformity, hindering further technological applications. Here we present a 4-inch scale growth of continuous monolayer molybdenum disulfide (MoS2) and tungsten disulfide (WS2) films that show excellent structural and electrical uniformity over the entire wafer using metal-organic chemical vapor deposition. The resulting monolayer films show high mobility of 30 cm2/Vs at room temperature, as well as the phonon-limited transport for MoS2, regardless of the channel length and device location. They allow for the batch fabrication of monolayer MoS2 field effect transistors with a 99% yield, which display spatially-uniform n-type transistor operation with a high on/off ratio. We further demonstrate the multi-level growth and fabrication of vertically-stacked monolayer MoS2 films and devices, which could enable the development of novel three-dimensional circuitry and device integration.

  8. Electronic structure and quantum transport properties of metallic and semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Simbeck, Adam J.

    The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired electronic characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the electronic and quantum transport properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the electronic and transport characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of electronic and transport trends, but also in engineering the electronic structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum transport properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. Non-equilibrium Green's function based transport calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is

  9. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.

    PubMed

    Zhao, Weijie; Ribeiro, Ricardo Mendes; Eda, Goki

    2015-01-20

    CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the

  10. Modeling and signal analysis of semiconducting B(5)C neutron detectors

    NASA Astrophysics Data System (ADS)

    Harken, Andrew D.

    Neutron detectors are needed for a myriad of applications ranging from military uses to power generation monitors to medical radiation therapy. Recently, a class of semiconducting boron carbide (B5C)/silicon heterojunction diodes were demonstrated to detect thermal neutrons.[1] The B5C-based devices have advantageous features of requiring low operating voltage, low power, are robust and extremely thin while maintaining detection efficiency. A simple model was developed for the analysis of the neutron capture output spectrum from the detectors, which allowed the comparison of several differing styles of planar geometry detectors. The model was also utilized to obtain the functional dependence of the device efficiencies, capture product spectral features, and the capture product energy deposition on capture layer thickness. An all-B5C device construction was determined by the model to be the most efficient form of a B5C-based detector, which reaches nearly 100% detection efficiency with a low probability of false positives. This model showed agreement with output from a full-physics simulation package, GEANT4, and experimental neutron detection spectra from a B5C/Si device. The signals generated in a B5C/Si heterojunction diode during neutron and alpha particle detection experiments were analyzed through fitting of the output current pulses and through capture output spectra. The output current pulse analysis confirmed charge generation and collection from both materials in the diode and demonstrated the suitability of the B5C material for use in an all-semiconducting B5C neutron detector. The experimental output spectra were analyzed and determined to be lower in detected capture product energy than expected, but retained the spectral features that allowed analysis of the detection results. The development of the model and the results from the particle detection experiments show great promise for the future development of B5C neutron detectors. [1]B. W. Robertson, S

  11. Unsymmetrical squaraines for nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)

    1996-01-01

    Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.

  12. From linear mechanics to nonlinear mechanics

    NASA Technical Reports Server (NTRS)

    Loeb, Julian

    1955-01-01

    Consideration is given to the techniques used in telecommunication where a nonlinear system (the modulator) results in a linear transposition of a signal. It is then shown that a similar method permits linearization of electromechanical devices or nonlinear mechanical devices. A sweep function plays the same role as the carrier wave in radio-electricity. The linearizations of certain nonlinear functionals are presented.

  13. Spin glass in semiconducting KFe1.05Ag0.88Te2 single crystals

    DOE PAGESBeta

    Ryu, H.; Lei, H.; Klobes, B.; Warren, J. B.; Hermann, R. P.; Petrovic, C.

    2015-05-26

    We report discovery of KFe1.05Ag0.88Te2 single crystals with semiconducting spin glass ground state. Composition and structure analysis suggest nearly stoichiometric I4/mmm space group but allow for the existence of vacancies, absent in long range semiconducting antiferromagnet KFe1.05Ag0.88Te2. The subtle change in stoichometry in Fe/Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  14. Electroexplosive device

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J. (Inventor)

    1978-01-01

    An electroexplosive device is presented which employs a header having contact pins hermetically sealed with glass passing through from a connector end of the header to a cavity filled with a shunt layer of a new nonlinear resistive composition and a heat-sink layer of a new dielectric composition having good thermal conductivity and capacity. The nonlinear resistive layer and the heat-sink layer are prepared from materials by mixing with a low temperature polymerizing resin. The resin is dissolved in a suitable solvent and later evaporated. The resultant solid composite is ground into a powder, press formed into the header and cured (polymerized) at about 250 to 300 F.

  15. Crystal Growth of II-VI Semiconducting Alloys by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Su, Ching-Hua; Cobb, Sharon D.; Scripa, Rosalia A.; Sha, Yi-Gao

    1999-01-01

    This research study is investigating the effects of a microgravity environment during the crystal growth of selected II-VI semiconducting alloys on their compositional, metallurgical, electrical and optical properties. The on-going work includes both Bridgman-Stockbarger and solvent growth methods, as well as growth in a magnetic field. The materials investigated are II-VI, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se, where x is between 0 and 1 inclusive, with particular emphasis on x-values appropriate for infrared detection and imaging in the 5 to 30 micron wavelength region. Wide separation between the liquidus and solidus of the phase diagrams with consequent segregation during solidification and problems associated with the high volatility of one of the components (Hg), make the preparation of homogeneous, high-quality, bulk crystals of the alloys an extremely difficult nearly an impossible task in a gravitational environment. The three-fold objectives of the on-going investigation are as follows: (1) To determine the relative contributions of gravitationally-driven fluid flows to the compositional redistribution observed during the unidirectional crystal growth of selected semiconducting solid solution alloys having large separation between the liquidus and solidus of the constitutional phase diagram; (2) To ascertain the potential role of irregular fluid flows and hydrostatic pressure effects in generation of extended crystal defects and second-phase inclusions in the crystals; and, (3) To obtain a limited amount of "high quality" materials needed for bulk crystal property characterizations and for the fabrication of various device structures needed to establish ultimate material performance limits. The flight portion of the study was to be accomplished by performing growth experiments using the Crystal Growth Furnace (CGF) manifested to fly on various Spacelab missions.

  16. Process for separating metallic from semiconducting single-walled carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  17. Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Urabe, Yasuko; Nishide, Daisuke; Kataura, Hiromichi

    2009-12-01

    We have developed a novel method to separate metallic and semiconducting single-wall carbon nanotubes (SWCNTs) with high purities using agarose gel. When an SWCNTs/sodium dodecyl sulfate (SDS) dispersion was applied to a column containing agarose gel beads, semiconducting SWCNTs were trapped by the beads, while metallic SWCNTs passed through the column. After the semiconducting SWCNTs adsorbed to the beads were eluted with sodium deoxycholate solution, the column could be used for repeated separation. Because this continuous, repeatable separation method is applicable to a low-cost, large-scale process, it should enable the industrial production of metallic and semiconducting SWCNTs.

  18. Encapsulation of Semiconducting Polymers in Vault Protein Cages

    SciTech Connect

    Ng, B.C.; Yu, M.; Gopal, A.; Rome, L.H.; Monbouquette, H.G.; Tolbert, S.H.

    2009-05-22

    We demonstrate that a semiconducting polymer [poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene), MPS-PPV] can be encapsulated inside recombinant, self-assembling protein nanocapsules called 'vaults'. Polymer incorporation into these nanosized protein cages, found naturally at {approx}10,000 copies per human cell, was confirmed by fluorescence spectroscopy and small-angle X-ray scattering. Although vault cellular functions and gating mechanisms remain unknown, their large internal volume and natural prevalence within the human body suggests they could be used as carriers for therapeutics and medical imaging reagents. This study provides the groundwork for the use of vaults in encapsulation and delivery applications.

  19. Silicon germanium semiconductive alloy and method of fabricating same

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2008-01-01

    A silicon germanium (SiGe) semiconductive alloy is grown on a substrate of single crystalline Al.sub.2O.sub.3. A {111} crystal plane of a cubic diamond structure SiGe is grown on the substrate's {0001} C-plane such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium.

  20. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  1. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.

    PubMed

    Kang, Kibum; Xie, Saien; Huang, Lujie; Han, Yimo; Huang, Pinshane Y; Mak, Kin Fai; Kim, Cheol-Joo; Muller, David; Park, Jiwoong

    2015-04-30

    The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three

  2. Electrical device fabrication from nanotube formations

    DOEpatents

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  3. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.

    PubMed

    Itkis, Mikhail E; Pekker, Aron; Tian, Xiaojuan; Bekyarova, Elena; Haddon, Robert C

    2015-08-18

    Single-walled carbon nanotube (SWNT) thin films provide a unique platform for the development of electronic and photonic devices because they combine the advantages of the outstanding physical properties of individual SWNTs with the capabilities of large area thin film manufacturing and patterning technologies. Flexible SWNT thin film based field-effect transistors, sensors, detectors, photovoltaic cells, and light emitting diodes have been already demonstrated, and SWNT thin film transparent, conductive coatings for large area displays and smart windows are under development. While chirally pure SWNTs are not yet commercially available, the marketing of semiconducting (SC) and metallic (MT) SWNTs has facilitated progress toward applications by making available materials of consistent electronic structure. Nevertheless the electrical transport properties of networks of separated SWNTs are inferior to those of individual SWNTs. In particular, for semiconducting SWNTs, which are the subject of this Account, the electrical transport drastically differs from the behavior of traditional semiconductors: for example, the bandgap of germanium (E = 0.66 eV) roughly matches that of individual SC-SWNTs of diameter 1.5 nm, but in the range 300-100 K, the intrinsic carrier concentration in Ge decreases by more than 10 orders of magnitude while the conductivity of a typical SC-SWNT network decreases by less than a factor of 4. Clearly this weak modulation of the conductivity hinders the application of SC-SWNT films as field effect transistors and photodetectors, and it is the purpose of this Account to analyze the mechanism of the electrical transport leading to the unusually weak temperature dependence of the electrical conductivity of such networks. Extrinsic factors such as the contribution of residual amounts of MT-SWNTs arising from incomplete separation and doping of SWNTs are evaluated. However, the observed temperature dependence of the conductivity indicates the

  4. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.

    PubMed

    Itkis, Mikhail E; Pekker, Aron; Tian, Xiaojuan; Bekyarova, Elena; Haddon, Robert C

    2015-08-18

    Single-walled carbon nanotube (SWNT) thin films provide a unique platform for the development of electronic and photonic devices because they combine the advantages of the outstanding physical properties of individual SWNTs with the capabilities of large area thin film manufacturing and patterning technologies. Flexible SWNT thin film based field-effect transistors, sensors, detectors, photovoltaic cells, and light emitting diodes have been already demonstrated, and SWNT thin film transparent, conductive coatings for large area displays and smart windows are under development. While chirally pure SWNTs are not yet commercially available, the marketing of semiconducting (SC) and metallic (MT) SWNTs has facilitated progress toward applications by making available materials of consistent electronic structure. Nevertheless the electrical transport properties of networks of separated SWNTs are inferior to those of individual SWNTs. In particular, for semiconducting SWNTs, which are the subject of this Account, the electrical transport drastically differs from the behavior of traditional semiconductors: for example, the bandgap of germanium (E = 0.66 eV) roughly matches that of individual SC-SWNTs of diameter 1.5 nm, but in the range 300-100 K, the intrinsic carrier concentration in Ge decreases by more than 10 orders of magnitude while the conductivity of a typical SC-SWNT network decreases by less than a factor of 4. Clearly this weak modulation of the conductivity hinders the application of SC-SWNT films as field effect transistors and photodetectors, and it is the purpose of this Account to analyze the mechanism of the electrical transport leading to the unusually weak temperature dependence of the electrical conductivity of such networks. Extrinsic factors such as the contribution of residual amounts of MT-SWNTs arising from incomplete separation and doping of SWNTs are evaluated. However, the observed temperature dependence of the conductivity indicates the

  5. Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients

    SciTech Connect

    Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki

    2011-09-15

    In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.

  6. Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus.

    PubMed

    Ryder, Christopher R; Wood, Joshua D; Wells, Spencer A; Hersam, Mark C

    2016-04-26

    Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) and black phosphorus (BP) have beneficial electronic, optical, and physical properties at the few-layer limit. As atomically thin materials, 2D TMDCs and BP are highly sensitive to their environment and chemical modification, resulting in a strong dependence of their properties on substrate effects, intrinsic defects, and extrinsic adsorbates. Furthermore, the integration of 2D semiconductors into electronic and optoelectronic devices introduces unique challenges at metal-semiconductor and dielectric-semiconductor interfaces. Here, we review emerging efforts to understand and exploit chemical effects to influence the properties of 2D TMDCs and BP. In some cases, surface chemistry leads to significant degradation, thus necessitating the development of robust passivation schemes. On the other hand, appropriately designed chemical modification can be used to beneficially tailor electronic properties, such as controlling doping levels and charge carrier concentrations. Overall, chemical methods allow substantial tunability of the properties of 2D TMDCs and BP, thereby enabling significant future opportunities to optimize performance for device applications. PMID:27018800

  7. Synthesis and characterization of organic semiconducting polymers containing dithienylfluorenone for use in organic photovoltaic cells.

    PubMed

    Byun, Yun-Sun; Kim, Ji-Hoon; Park, Jong Baek; Hwang, Do-Hoon

    2014-08-01

    2,7-Bis(5-bromo-4-hexylthiophen-2-yl)-9H-fluoren-9-one (DTFO) was synthesized as a new electron-accepting material in semiconducting polymers for use in photovoltaic devices. The synthesized DTFO was polymerized with two different electron-donating counter monomers: 2,7-dibromo-9,9-dioctyl-9H-fluorene (DOF) and 2,6-bis(trimethyltin)-4,8-di(2-ethylhexyloxyl)benzo [1,2-b:4,5-b']dithiophene (BDT). Two alternating copolymers, poly(DTFO-alt-DOF) and poly(DTFO-alt-BDT), were synthesized through the Suzuki and Stille coupling polymerizations, respectively. The synthesized polymers exhibited good solubility in common solvents and show good thermal stability up to 350 °C. The optical band gap energies of poly(DTFO-alt-DOF) and poly(DTFO-alt-BDT) were determined to be 2.44 and 2.23 eV, respectively. The positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the polymers were determined by cyclic voltammetry (CV). One of these devices showed a power conversion efficiency of 0.50%, with an open-circuit voltage of 0.67 V, a short-circuit current of 2.34 mA/cm2, and a fill factor of 0.30 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2).

  8. Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus.

    PubMed

    Ryder, Christopher R; Wood, Joshua D; Wells, Spencer A; Hersam, Mark C

    2016-04-26

    Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) and black phosphorus (BP) have beneficial electronic, optical, and physical properties at the few-layer limit. As atomically thin materials, 2D TMDCs and BP are highly sensitive to their environment and chemical modification, resulting in a strong dependence of their properties on substrate effects, intrinsic defects, and extrinsic adsorbates. Furthermore, the integration of 2D semiconductors into electronic and optoelectronic devices introduces unique challenges at metal-semiconductor and dielectric-semiconductor interfaces. Here, we review emerging efforts to understand and exploit chemical effects to influence the properties of 2D TMDCs and BP. In some cases, surface chemistry leads to significant degradation, thus necessitating the development of robust passivation schemes. On the other hand, appropriately designed chemical modification can be used to beneficially tailor electronic properties, such as controlling doping levels and charge carrier concentrations. Overall, chemical methods allow substantial tunability of the properties of 2D TMDCs and BP, thereby enabling significant future opportunities to optimize performance for device applications.

  9. Ultrahigh responsivity of optically active, semiconducting asymmetric nano-channel diodes

    NASA Astrophysics Data System (ADS)

    Akbas, Y.; Stern, A.; Zhang, L. Q.; Alimi, Y.; Song, A. M.; Iñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Wicks, G. W.; Sobolewski, Roman

    2015-10-01

    We present our research on the fabrication and optical characterization of novel semiconducting asymmetric nano-channel diodes (ANCDs). We focus on optical properties of ANCDs and demonstrate that they can be operated as very sensitive, single-photon-level, visible-light photodetectors. Our test devices consisted of 1.2-μm-long, ∼200- to 300-nm-wide channels that were etched in an InGaAs/InAlAs quantum-well hetero structure with a twodimensional electron gas layer. The ANCD I-V curves were collected by measuring the transport current both in the dark and under 800-nm-wavelength, continuous-wave-light laser illumination. In all of our devices, the impact of the light illumination was very clear, and there was a substantial photocurrent, even for incident optical power as low as 1 nW. The magnitude of the optical responsivity in ANCDs with the conducting nano-channel increased linearly with a decrease in optical power over many orders of magnitude, reaching a value of almost 10,000 A/W at 1-nW excitation.

  10. Strain engineering in semiconducting two-dimensional crystals.

    PubMed

    Roldán, Rafael; Castellanos-Gomez, Andrés; Cappelluti, Emmanuele; Guinea, Francisco

    2015-08-12

    One of the fascinating properties of the new families of two-dimensional crystals is their high stretchability and the possibility to use external strain to manipulate, in a controlled manner, their optical and electronic properties. Strain engineering, understood as the field that study how the physical properties of materials can be tuned by controlling the elastic strain fields applied to it, has a perfect platform for its implementation in the atomically thin semiconducting materials. The object of this review is to give an overview of the recent progress to control the optical and electronics properties of 2D crystals, by means of strain engineering. We will concentrate on semiconducting layered materials, with especial emphasis in transition metal dichalcogenides (MoS2, WS2, MoSe2 and WSe2). The effect of strain in other atomically thin materials like black phosphorus, silicene, etc, is also considered. The benefits of strain engineering in 2D crystals for applications in nanoelectronics and optoelectronics will be revised, and the open problems in the field will be discussed. PMID:26199038

  11. Semi-conducting carbon nanotube as variable capacitor

    NASA Astrophysics Data System (ADS)

    Ozmaian, M.; Naghdabadi, R.

    2013-12-01

    This paper proposes a novel, one-part, variable capacitor, using semi-conducting carbon nanotube (CNT). This variable capacitor works based on the change in the electronic structure of CNTs under applied voltage and deformations. Positive and negative charges are stored at both ends of a non-zero band gap nanotube which works as metallic electrodes in parallel plate capacitors. Also the neutral strip in the middle acts as the dielectric part of a conventional capacitor under the influence of an external electric field. Mechanical strains on carbon nanotube change its band gap energy and thus the length of neutral strip and charged regions. The lengths of these parts are primarily dependent on the nanotube chirality, deformation mode and applied voltage. This way, different parts of a conventional cantilever, parallel plate or bridge capacitor are reduced to a one part semi-conducting CNT capacitor. Analytical calculations based on classical electrostatics and density of states (DOS) relations are employed to investigate the effect of CNTs geometry, applied voltage and deformations on capacitive features. The proposed CNT-variable-capacitor can be useful for nano-electromechanical systems (NEMS), including displacement measurement sensors and tunable capacitor in integrated circuits.

  12. Nonlinear mill control.

    PubMed

    Martin, G; McGarel, S

    2001-01-01

    A mill is a mechanical device that grinds mined or processed material into small particles. The process is known to display significant deadtime, and, more notably, severe nonlinear behavior. Over the past 25 years attempts at continuous mill control have met varying degrees of failure, mainly due to model mismatch caused by changes in the mill process gains. This paper describes an on-line control application on a closed-circuit cement mill that uses nonlinear model predictive control technology. The nonlinear gains for the control model are calculated on-line from a neural network model of the process.

  13. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous.

    PubMed

    Tan, Yang; Guo, Zhinan; Ma, Linan; Zhang, Han; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-02-01

    Owing to their unique properties, graphene-like two dimensional semiconducting materials, including Tungsten Disulfide (WS2) and Black Phosphorous (BP), have attracted increasing interest from basic research to practical applications. Herein, we demonstrated the ultrafast nonlinear saturable absorption response of WS2 and BP films in the waveguide structure. Through fabricating WS2 and BP films by evaporating the solutions on glass wafers. Saturable absorber films were attached onto the end-facet of the waveguide, which therefore constitutes a resonant cavity for the waveguide laser. Under a pump laser at 810 nm, we could obtain a stable Q-switched operation in the waveguide structure. This work indicated the significant potential of WS2 and BP for the ultrafast waveguide laser.

  14. Excellent nonlinearity of a selection device based on anti-series connected Zener diodes for ultrahigh-density bipolar RRAM arrays.

    PubMed

    Li, Yingtao; Li, Rongrong; Fu, Liping; Gao, Xiaoping; Wang, Yang; Tao, Chunlan

    2015-10-23

    A crossbar array is usually used for the high-density application of a resistive random access memory (RRAM) device. However, the cross-talk interference limits the increase in the integration density. In this paper, anti-series connected Zener diodes as a selection device are proposed for bipolar RRAM arrays. Simulation results show that, by using the anti-series connected Zener diodes as a selection device, the readout margin is sufficiently improved compared to that obtained without a selection device or with anti-parallel connected diodes as the selection device. The maximum size of the crossbar arrays with anti-series connected Zener diodes as a selection device over 1 TB is estimated by theoretical simulation. In addition, the feasibility of using the anti-series connected Zener diodes as a selection device for bipolar RRAM is demonstrated experimentally. These results indicate that anti-series connected Zener diodes as a selection device opens up great opportunities to realize ultrahigh-density bipolar RRAM arrays.

  15. Exploring the influence of carboxylic acids on nonlinear optical (NLO) and dielectric properties of KDP crystal for applications of NLO facilitated photonic devices

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, G. G.; Hakeem, A.; Shirsat, M. D.; Hussaini, S. S.

    2015-08-01

    The aim of present investigation is to assess the impact of oxalic acid (OA) and maleic acid (MA) on nonlinearity (second and third order) and dielectric behavior of potassium dihydrogen phosphate (KDP) crystal by means of SHG efficiency test, Z-scan analysis and dielectric studies respectively. The enhancement in SHG efficiency of OA and MA doped KDP crystal has been confirmed by means of Kurtz-Perry powder test technique. The close and open aperture Z-scan technique has been employed to study the nature and origin of improved third order NLO behavior of doped KDP crystals at 632.8 nm. The magnitude of third order nonlinear susceptibility (χ3), nonlinear refraction (n2), nonlinear absorption coefficient (β) and figure of merit (FOM) of doped KDP crystals has been calculated using the Z-scan transmittance data to explore the suitability of crystals for distinct laser assisted applications. The dielectric constant and dielectric loss of pure, OA and MA doped KDP crystals were measured at different temperatures by means of dielectric studies.

  16. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    DOEpatents

    Wang, Zhong L.; Xu, Sheng

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  17. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  18. Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation.

    PubMed

    Ghorai, Arup; Midya, Anupam; Maiti, Rishi; Ray, Samit K

    2016-10-14

    Lithium halide assisted high yield synthesis of few layers of 2H phase semiconducting WS2 in organic solvents is reported. A group of lithium halides (LiCl, LiBr and LiI) has been employed for the first time to intercalate WS2 by using Li, followed by mild sonication to exfoliate in dispersive polar solvents. In contrast to the n-butyllithium (n-BuLi) assisted exfoliation method, which yields only the metallic 1T phase on prolonged reaction (3-7 days) at higher temperatures, the proposed exfoliation method produces only semiconducting 2H WS2 in a much shorter time (5 minute sonication). A very high yield of 19 mg ml(-1) has been obtained using LiI as an exfoliating agent due to its lower lattice energy compared to other alkali halides and the smaller size of the cation. Detailed microscopy and spectroscopic characterization reveals exfoliation of few layered WS2 with stoichiometric composition. Absorption and emission characteristics of the 2D WS2 layer exhibit a characteristic band edge and quantum confined transitions. As a proof-of-concept, we have successfully demonstrated photodetector devices comprising solution proccessed p-WS2/n-Si heterojunctions, which behave as diodes with a high rectification ratio (>10(2)) exhibiting a broad band photoresponse over the entire visible region. PMID:27560159

  19. Design of Semiconducting Tetrahedral Mn 1 ₋ x Zn x O Alloys and Their Application to Solar Water Splitting

    DOE PAGESBeta

    Peng, Haowei; Ndione, Paul F.; Ginley, David S.; Zakutayev, Andriy; Lany, Stephan

    2015-05-18

    Transition metal oxides play important roles as contact and electrode materials, but their use as active layers in solar energy conversion requires achieving semiconducting properties akin to those of conventional semiconductors like Si or GaAs. In particular, efficient bipolar carrier transport is a challenge in these materials. Based on the prediction that a tetrahedral polymorph of MnO should have such desirable semiconducting properties, and the possibility to overcome thermodynamic solubility limits by nonequilibrium thin-film growth, we exploit both structure-property and composition-structure relationships to design and realize novel wurtzite-structure Mn₁₋xZnxO alloys. At Zn compositions above x ≈ 0.3, thin films ofmore » these alloys assume the tetrahedral wurtzite structure instead of the octahedral rocksalt structure of MnO, thereby enabling semiconductor properties that are unique among transition metal oxides, i.e., a band gap within the visible spectrum, a band-transport mechanism for both electron and hole carriers, electron doping, and a band lineup suitable for solar hydrogen generation. A proof of principle is provided by initial photo-electrocatalytic device measurements, corroborating, in particular, the predicted favorable hole-transport properties of these alloys.« less

  20. Laser damage threshold and nonlinear optical studies on guanidinium L - monohydrogen tartrate (GuHT) single crystal for NLO device applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Murugakoothan, P.

    2015-06-01

    An organic NLO material guanidinium l - monohydrogen tartrate (GuHT) was grown by the slow evaporation technique using water as a solvent. The GuHT crystal belongs to orthorhombic system with noncentrosymmetric space group P212121. The morphology of the GuHT crystal was studied. The laser induced surface damage threshold behaviour of the GuHT crystal was analyzed in different planes. The second harmonic generation (SHG) effective nonlinearity was confirmed by Kurtz and Perry powder technique.

  1. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  2. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; Lee, Eui-Sup; Miller, Elisa M.; Ihly, Rachelle; Wesenberg, Devin; Mistry, Kevin S.; Guillot, Sarah L.; Zink, Barry L.; Kim, Yong-Hyun; Blackburn, Jeffrey L.; Ferguson, Andrew J.

    2016-04-01

    Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m-1 K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. These findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.

  3. Semiconductivity in YBa2 - xSrxCu3Oy

    NASA Astrophysics Data System (ADS)

    Uluǧ, A.; Uluǧ, B.; Şener, E.

    1996-08-01

    Structural and electrical properties of YBa2-xSrxCu3Oy prepared under ambient oxygen pressure were systematically investigated for 0≤x≤2.0. Samples with high Sr contents, x≥1.7, showed semiconductive properties with an activation energy of ˜150 meV at high temperature, T≥80 K. At low temperatures, T≤80 K, activation energy dropped to ˜3.00 and ˜0.85 meV for x=1.7-1.8 and x=1.9-2.0, respectively. It is argued that YSr2Cu3Oy is likely to have a tetragonal structure and that the disorder introduced by Sr substitution affects electrical conduction, which involves charge hopping between the CuO chains at high Sr contents.

  4. Nanoscale semiconducting silicon as a nutritional food additive

    NASA Astrophysics Data System (ADS)

    Canham, L. T.

    2007-05-01

    Very high surface area silicon powders can be realized by high energy milling or electrochemical etching techniques. Such nanoscale silicon structures, whilst biodegradable in the human gastrointestinal tract, are shown to be remarkably stable in most foodstuffs and beverages. The potential for using silicon to improve the shelf life and bioavailability of specific nutrients in functional foods is highlighted. Published drug delivery data implies that the nanoentrapment of hydrophobic nutrients will significantly improve their dissolution kinetics, through a combined effect of nanostructuring and solid state modification. Nutrients loaded to date include vitamins, fish oils, lycopene and coenzyme Q10. In addition, there is growing published evidence that optimized release of orthosilicic acid, the biodegradation product of semiconducting silicon in the gut, offers beneficial effects with regard bone health. The utility of nanoscale silicon in the nutritional field shows early promise and is worthy of much further study.

  5. Encapsulation of Semiconducting Polymers in Vault Protein Cages

    PubMed Central

    Ng, Benny C.; Yu, Marcella; Gopal, Ajaykumar; Rome, Leonard H.; Monbouquette, Harold G.; Tolbert, Sarah H.

    2009-01-01

    We demonstrate that a semiconducting polymer [poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene), MPS-PPV] can be encapsulated inside recombinant, self-assembling protein nanocapsules called “vaults”. Polymer incorporation into these nano-sized protein cages, found naturally at ~10,000 copies per human cell, was confirmed by fluorescent spectroscopy and small-angle X-ray scattering (SAXS). Although vault cellular functions and gating mechanism remain unknown, their large internal volume and natural prevalence within the human body suggests they could be used as carriers for therapeutics and medical imaging reagents. This study provides the groundwork for the use of vaults in encapsulation and delivery applications. PMID:18803422

  6. Quantum capacitance modifies interionic interactions in semiconducting nanopores

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain

    2016-02-01

    Nanopores made with low-dimensional semiconducting materials, such as carbon nanotubes and graphene slit pores, are used in supercapacitors. For modelling purposes, it is often assumed that such pores screen ion-ion interactions like metallic pores, i.e. that screening leads to an exponential decay of the interaction potential with ion separation. By introducing a quantum capacitance that accounts for the density of states in the material, we show that ion-ion interactions in carbon nanotubes and graphene slit pores actually decay algebraically with ion separation. This result suggests a new avenue of capacitance optimization based on tuning the electronic structure of a pore: a marked enhancement in capacitance might be achieved by developing nanopores made with metallic materials or bulk semimetallic materials.

  7. Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons.

    PubMed

    Lyu, Yan; Xie, Chen; Chechetka, Svetlana A; Miyako, Eijiro; Pu, Kanyi

    2016-07-27

    Optogenetics provides powerful means for precise control of neuronal activity; however, the requirement of transgenesis and the incapability to extend the neuron excitation window into the deep-tissue-penetrating near-infrared (NIR) region partially limit its application. We herein report a potential alternative approach to optogenetics using semiconducting polymer nanobioconjugates (SPNsbc) as the photothermal nanomodulator to control the thermosensitive ion channels in neurons. SPNsbc are designed to efficiently absorb the NIR light at 808 nm and have a photothermal conversion efficiency higher than that of gold nanorods. By virtue of the fast heating capability in conjunction with the precise targeting to the thermosensitive ion channel, SPNsbc can specifically and rapidly activate the intracellular Ca(2+) influx of neuronal cells in a reversible and safe manner. Our study provides an organic nanoparticle based strategy that eliminates the need for genetic transfection to remotely regulate cellular machinery. PMID:27404507

  8. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; Lee, Eui-Sup; Miller, Elisa M.; Ihly, Rachelle; Wesenberg, Devin; Mistry, Kevin S.; Guillot, Sarah L.; Zink, Barry L.; Kim, Yong-Hyun; Blackburn, Jeffrey L.; Ferguson, Andrew J.

    2016-04-01

    Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m‑1 K‑2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. These findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.

  9. BaMn2Sb2: A New Semiconducting Ferromagnet

    NASA Astrophysics Data System (ADS)

    Li, Jianneng; Stadler, S.; Karki, A.; Xiong, Y.; Jin, R.

    2012-02-01

    We have grown high-quality single crystals of BaMn2Sb2, which possesses the ThCr2Si2 structure as determined by X-ray powder diffraction technique. Magnetization measurements indicate that BaMn2Fe2 is ferromagnetic below TC = 580K. On the other hand, the temperature dependence of electrical resistivity shows semiconducting behavior, which can be described by thermally-activated resistivity formula with thermal activation energy about 0.25 eV . While the Hall coefficient has positive sign between 2 and 300 K, the Seebeck Coefficient undergoes sign change from positive at high temperatures to negative at low temperatures, reaching -260 μV/K at 70 K. The implication will be discussed.

  10. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  11. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

    DOE PAGESBeta

    Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; Lee, Eui -Sup; Miller, Elisa M.; Ihly, Rachelle; Wesenberg, Devin; Mistry, Kevin S.; Guillot, Sarah L.; Zink, Barry L.; et al

    2016-04-04

    Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m-1 K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate thatmore » phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. As a result, these findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.« less

  12. A semiconducting organic radical cationic host-guest complex.

    PubMed

    Fahrenbach, Albert C; Sampath, Srinivasan; Late, Dattatray J; Barnes, Jonathan C; Kleinman, Samuel L; Valley, Nicholas; Hartlieb, Karel J; Liu, Zhichang; Dravid, Vinayak P; Schatz, George C; Van Duyne, Richard P; Stoddart, J Fraser

    2012-11-27

    The self-assembly and solid-state semiconducting properties of single crystals of a trisradical tricationic complex composed of the diradical dicationic cyclobis(paraquat-p-phenylene) (CBPQT(2(•+))) ring and methyl viologen radical cation (MV(•+)) are reported. An organic field effect transistor incorporating single crystals of the CBPQT(2(•+))⊂MV(•+) complex was constructed using lithographic techniques on a silicon substrate and shown to exhibit p-type semiconductivity with a mobility of 0.05 cm(2) V(-1) s(-1). The morphology of the crystals on the silicon substrate was characterized using scanning electron microscopy which revealed that the complexes self-assemble into "molecular wires" observable by the naked-eye as millimeter long crystalline needles. The nature of the recognition processes driving this self-assembly, radical-radical interactions between bipyridinium radical cations (BIPY(•+)), was further investigated by resonance Raman spectroscopy in conjunction with theoretical investigations of the vibrational modes, and was supported by X-ray structural analyses of the complex and its free components in both their radical cationic and dicationic redox states. These spectroscopic investigations demonstrate that the bond order of the BIPY(•+) radical cationic units of host and guest components is not changed upon complexation, an observation which relates to its conductivity in the solid-state. We envision the modularity inherent in this kind of host-guest complexation could be harnessed to construct a library of custom-made electronic organic materials tailored to fit the specific needs of a given electronic application.

  13. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review.

    PubMed

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles. PMID:27088655

  14. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review

    NASA Astrophysics Data System (ADS)

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  15. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review.

    PubMed

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  16. Semiconducting boron carbides with better charge extraction through the addition of pyridine moieties

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Dong, Bin; Peterson, George; Silva, Joseph P.; Wilson, Ethiyal R.; Sky Driver, M.; Jun, Young-Si; Stucky, Galen D.; Knight, Sean; Hofmann, Tino; Han, Zhong-Kang; Shao, Nan; Gao, Yi; Mei, Wai-Ning; Nastasi, Michael; Dowben, Peter A.; Kelber, Jeffry A.

    2016-09-01

    The plasma-enhanced chemical vapor (PECVD) co-deposition of pyridine and 1,2 dicarbadodecaborane, 1,2-B10C2H12 (orthocarborane) results in semiconducting boron carbide composite films with a significantly better charge extraction than plasma-enhanced chemical vapor deposited semiconducting boron carbide synthesized from orthocarborane alone. The PECVD pyridine/orthocarborane based semiconducting boron carbide composites, with pyridine/orthocarborane ratios ~3:1 or 9:1 exhibit indirect band gaps of 1.8 eV or 1.6 eV, respectively. These energies are less than the corresponding exciton energies of 2.0 eV–2.1 eV. The capacitance/voltage and current/voltage measurements indicate the hole carrier lifetimes for PECVD pyridine/orthocarborane based semiconducting boron carbide composites (3:1) films of ~350 µs compared to values of  ⩽35 µs for the PECVD semiconducting boron carbide films fabricated without pyridine. The hole carrier lifetime values are significantly longer than the initial exciton decay times in the region of ~0.05 ns and 0.27 ns for PECVD semiconducting boron carbide films with and without pyridine, respectively, as suggested by the time-resolved photoluminescence. These data indicate enhanced electron–hole separation and charge carrier lifetimes in PECVD pyridine/orthocarborane based semiconducting boron carbide and are consistent with the results of zero bias neutron voltaic measurements indicating significantly enhanced charge collection efficiency.

  17. Semiconducting boron carbides with better charge extraction through the addition of pyridine moieties

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Dong, Bin; Peterson, George; Silva, Joseph P.; Wilson, Ethiyal R.; Sky Driver, M.; Jun, Young-Si; Stucky, Galen D.; Knight, Sean; Hofmann, Tino; Han, Zhong-Kang; Shao, Nan; Gao, Yi; Mei, Wai-Ning; Nastasi, Michael; Dowben, Peter A.; Kelber, Jeffry A.

    2016-09-01

    The plasma-enhanced chemical vapor (PECVD) co-deposition of pyridine and 1,2 dicarbadodecaborane, 1,2-B10C2H12 (orthocarborane) results in semiconducting boron carbide composite films with a significantly better charge extraction than plasma-enhanced chemical vapor deposited semiconducting boron carbide synthesized from orthocarborane alone. The PECVD pyridine/orthocarborane based semiconducting boron carbide composites, with pyridine/orthocarborane ratios ~3:1 or 9:1 exhibit indirect band gaps of 1.8 eV or 1.6 eV, respectively. These energies are less than the corresponding exciton energies of 2.0 eV-2.1 eV. The capacitance/voltage and current/voltage measurements indicate the hole carrier lifetimes for PECVD pyridine/orthocarborane based semiconducting boron carbide composites (3:1) films of ~350 µs compared to values of  ⩽35 µs for the PECVD semiconducting boron carbide films fabricated without pyridine. The hole carrier lifetime values are significantly longer than the initial exciton decay times in the region of ~0.05 ns and 0.27 ns for PECVD semiconducting boron carbide films with and without pyridine, respectively, as suggested by the time-resolved photoluminescence. These data indicate enhanced electron-hole separation and charge carrier lifetimes in PECVD pyridine/orthocarborane based semiconducting boron carbide and are consistent with the results of zero bias neutron voltaic measurements indicating significantly enhanced charge collection efficiency.

  18. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets.

    PubMed

    Schwarze, T; Waizner, J; Garst, M; Bauer, A; Stasinopoulos, I; Berger, H; Pfleiderer, C; Grundler, D

    2015-05-01

    Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics. The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions, promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds. Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics. PMID:25730395

  19. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials.

    PubMed

    Fathil, M F M; Md Arshad, M K; Ruslinda, A R; Nuzaihan M N, M; Gopinath, Subash C B; Adzhri, R; Hashim, U

    2016-09-01

    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond.

  20. Evaluation of metallic and semiconducting single-walled carbon nanotube characteristics.

    PubMed

    Wu, Bin; Geng, Dechao; Liu, Yunqi

    2011-05-01

    The nature of the mixed electronic type metallic (M-) and semiconducting (S-) single-walled carbon nanotubes (SWNTs) synthesized by current methods has posed a key challenge for the development of high performance SWNT-based electronic devices. The precise measurements of M- to S-SWNT ratio in as-grown or separated samples are of paramount importance for the controlled synthesis, separation and the realization of various applications. The objective of this review is to provide comprehensive overview of the progress achieved so far for measuring the M/S ratio both on individual and collective levels of SWNT states. We begin with a brief introduction of SWNT structures/properties and discussion of the problems and difficulties associated with precise measurement of the M/S ratio, and then introduce the principles for obtaining distinguished signals from M-and S-SWNTs. These techniques are classified into different groups based either on the single/ensemble detection of SWNT samples or on the principles of techniques themselves. We then present the M/S ratio evaluation results of these methods, with emphasis on scanning probe microscopy (SPM)-based detection techniques. Finally, the prospects of precise and large-scale measurement of M/S ratio in achieving controlled synthesis and understanding growth mechanism of SWNTs are discussed.

  1. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials.

    PubMed

    Fathil, M F M; Md Arshad, M K; Ruslinda, A R; Nuzaihan M N, M; Gopinath, Subash C B; Adzhri, R; Hashim, U

    2016-09-01

    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. PMID:27543013

  2. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films

    PubMed Central

    Taz, H.; Sakthivel, T.; Yamoah, N. K.; Carr, C.; Kumar, D.; Seal, S.; Kalyanaraman, R.

    2016-01-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10−4 Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe0 oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics. PMID:27298196

  3. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films

    NASA Astrophysics Data System (ADS)

    Taz, H.; Sakthivel, T.; Yamoah, N. K.; Carr, C.; Kumar, D.; Seal, S.; Kalyanaraman, R.

    2016-06-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10‑4 Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe0 oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics.

  4. Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly

    PubMed Central

    Kaur, Harneet; Yadav, Sandeep; Srivastava, Avanish. K.; Singh, Nidhi; Schneider, Jörg J.; Sinha, Om. P.; Agrawal, Ved V.; Srivastava, Ritu

    2016-01-01

    Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the best of our knowledge, a mixture of N-methyl-2-pyrrolidone and deoxygenated water is employed as a subphase in Langmuir-Blodgett trough for assembling the nanosheets followed by their deposition on substrates and studied its field-effect transistor characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 104 at room temperature in field-effect transistor devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications. PMID:27671093

  5. Critical Role of Processing on the Thermoelectric Performance of Doped Semiconducting Polymers

    NASA Astrophysics Data System (ADS)

    Patel, Shrayesh; Glaudell, Anne; Chabinyc, Michael

    The ability to convert excess waste heat into useable energy can significantly help meet the global energy demands. One may capture this waste heat through thermoelectrics devices. In a thermoelectric material, the charge carriers transport both electrical current and heat. Consequently, under a temperature difference (ΔT), a carrier concentration gradient results in a voltage (ΔV), which is related to the Seebeck coefficient, α = - Δ V/ ΔT. One of the challenges lies in finding materials that simultaneously have low thermal conductivity (κ) , high electrical conductivity (σ) , and high Seebeck coefficient (α) . Conjugated semiconducting polymers can potentially meet this demand due to their inherent low thermal conductivity and high electrical conductivity through sufficient doping. Here, we report on the critical role of thermal processing on the enhancement of thermoelectric properties of conjugated polymer thin films. These films were doping using three different mechanisms: acid (toluene sulfonic acid), charge transfer (F4TCNQ), and vapor (fluorinated-alkyl trichlorosilane). These thermoelectrics properties will be correlated to the structural and morphological properties of the doped thin-films through various synchrotron X-ray scattering techniques. Lastly, to further elucidate the charge transport mechanism driving the thermoelectric performance, we report on the temperature-dependent measurements of both the Seebeck coefficient and electrical conductivity.

  6. Many-body effects in semiconducting single-wall silicon nanotubes

    PubMed Central

    Wei, Wei

    2014-01-01

    Summary The electronic and optical properties of semiconducting silicon nanotubes (SiNTs) are studied by means of the many-body Green’s function method, i.e., GW approximation and Bethe–Salpeter equation. In these studied structures, i.e., (4,4), (6,6) and (10,0) SiNTs, self-energy effects are enhanced giving rise to large quasi-particle (QP) band gaps due to the confinement effect. The strong electron−electron (e−e) correlations broaden the band gaps of the studied SiNTs from 0.65, 0.28 and 0.05 eV at DFT level to 1.9, 1.22 and 0.79 eV at GW level. The Coulomb electron−hole (e−h) interactions significantly modify optical absorption properties obtained at noninteracting-particle level with the formation of bound excitons with considerable binding energies (of the order of 1 eV) assigned: the binding energies of the armchair (4,4), (6,6) and zigzag (10,0) SiNTs are 0.92, 1.1 and 0.6 eV, respectively. Results in this work are useful for understanding the physics and applications in silicon-based nanoscale device components. PMID:24455458

  7. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets.

    PubMed

    Schwarze, T; Waizner, J; Garst, M; Bauer, A; Stasinopoulos, I; Berger, H; Pfleiderer, C; Grundler, D

    2015-05-01

    Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics. The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions, promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds. Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics.

  8. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films.

    PubMed

    Taz, H; Sakthivel, T; Yamoah, N K; Carr, C; Kumar, D; Seal, S; Kalyanaraman, R

    2016-01-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10(-4) Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe(0) oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics. PMID:27298196

  9. Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly

    NASA Astrophysics Data System (ADS)

    Kaur, Harneet; Yadav, Sandeep; Srivastava, Avanish. K.; Singh, Nidhi; Schneider, Jörg J.; Sinha, Om. P.; Agrawal, Ved V.; Srivastava, Ritu

    2016-09-01

    Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the best of our knowledge, a mixture of N-methyl-2-pyrrolidone and deoxygenated water is employed as a subphase in Langmuir-Blodgett trough for assembling the nanosheets followed by their deposition on substrates and studied its field-effect transistor characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 104 at room temperature in field-effect transistor devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications.

  10. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.

    PubMed

    Engel, Michael; Small, Joshua P; Steiner, Mathias; Freitag, Marcus; Green, Alexander A; Hersam, Mark C; Avouris, Phaedon

    2008-12-23

    Thin film transistors (TFTs) are now poised to revolutionize the display, sensor, and flexible electronics markets. However, there is a limited choice of channel materials compatible with low-temperature processing. This has inhibited the fabrication of high electrical performance TFTs. Single-walled carbon nanotubes (CNTs) have very high mobilities and can be solution-processed, making thin film CNT-based TFTs a natural direction for exploration. The two main challenges facing CNT-TFTs are the difficulty of placing and aligning CNTs over large areas and low on/off current ratios due to admixture of metallic nanotubes. Here, we report the self-assembly and self-alignment of CNTs from solution into micron-wide strips that form regular arrays of dense and highly aligned CNT films covering the entire chip, which is ideally suitable for device fabrication. The films are formed from pre-separated, 99% purely semiconducting CNTs and, as a result, the CNT-TFTs exhibit simultaneously high drive currents and large on/off current ratios. Moreover, they deliver strong photocurrents and are also both photo- and electroluminescent.

  11. Long term experience with semi-conductive glaze high voltage post insulators

    SciTech Connect

    Baker, A.C.; Maney, J.W.; Szilagyi, Z. )

    1990-01-01

    Insulators using semi-conductive glaze have long been known for their superior contamination performance. Early glazes for this type however were not stable and successful use of semi-conductive glazed porcelain insulators was delayed many years until tin-antimony oxide glazes were developed. Service experience of eighteen years is now available for line and station post insulators with this type of glaze. Based on this experience, the aging characteristics of tin-antimony oxide semi-conductive glazes are described and quantified. Several different applications of these insulators are also described.

  12. Aligned crystalline semiconducting film on a glass substrate and method of making

    DOEpatents

    Findikoglu, Alp T.

    2010-08-24

    A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.

  13. Interfacial capacitance between a ferroelectric Fe3O4 thin film and a semiconducting Nb:SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Cho, Y.; Lippmaa, M.

    2015-01-01

    The interface between a ferroelectric Fe3O4 thin film and a semiconducting 0.05 wt. % Nb:SrTiO3 substrate was investigated by ferroelectric, pyroelectric, capacitance, transport, and nonlinear dielectric microscopy measurements. Ferroelectric polarization measurements showed that the magnetite films are ferroelectric with an onset temperature that coincides with the Verwey transition at 120 K and that the ferroelectric domains can be reversed by applying an electric field, but only if the films are grown on nondoped SrTiO3 substrates. Pyroelectric measurements and scanning nonlinear dielectric microscopy showed that a polar state is also present in Pd/Fe3O4/Nb:SrTiO3 heterostructures but the polarization could not be switched by applying an electric field. It is shown that the inability to switch the polarity of magnetite films grown on semiconducting Nb:SrTiO3 substrates is caused by the presence of a Schottky barrier that forms at low temperature at the Fe3O4/Nb:SrTiO3 interface. Systematic capacitance measurements were used to extract the film and interface layer capacitances and construct a quantitatively accurate equivalent circuit model for the Fe3O4/Nb:SrTiO3 heterostructures.

  14. Ultrafast Exciton Hopping Observed in Bare Semiconducting Carbon Nanotube Thin Films with Two-Dimensional White-Light Spectroscopy.

    PubMed

    Mehlenbacher, Randy D; Wang, Jialiang; Kearns, Nicholas M; Shea, Matthew J; Flach, Jessica T; McDonough, Thomas J; Wu, Meng-Yin; Arnold, Michael S; Zanni, Martin T

    2016-06-01

    We observe ultrafast energy transfer between bare carbon nanotubes in a thin film using two-dimensional (2D) white-light spectroscopy. Using aqueous two-phase separation, semiconducting carbon nanotubes are purified from their metallic counterparts and condensed into a 10 nm thin film with no residual surfactant. Cross peak intensities put the time scale for energy transfer at <60 fs, and 2D anisotropy measurements determine that energy transfer is most efficient between parallel nanotubes, thus favoring directional energy flow. Lifetimes are about 300 fs. Thus, these results are in sharp contrast to thin films prepared from nanotubes that are wrapped by polymers, which exhibit picosecond energy transfer and randomize the direction of energy flow. Ultrafast energy flow and directionality are exciting properties for next-generation photovoltaics, photodetectors, and other devices. PMID:27182690

  15. Novel Electrical and Optoelectronic Characterization Methods for Semiconducting Nanowires and Nanotubes

    NASA Astrophysics Data System (ADS)

    Katzenmeyer, Aaron Michael

    As technology journalist David Pogue recounted, "If everything we own had improved over the last 25 years as much as electronics have, the average family car would travel four times faster than the space shuttle; houses would cost 200 bucks." The electronics industry is one which, through Moore's Law, created a self-fulfilling prophecy of exponential advancement. This progress has made unforeseen technologies commonplace and revealed new physical understanding of the world in which we live. It is in keeping with these trends that the current work is motivated. This dissertation focuses on the advancement of electrical and optoelectronic characterization techniques suitable for understanding the underlying physics and applications of nanoscopic devices, in particular semiconducting nanowires and nanotubes. In this work an in situ measurement platform based on a field-emission scanning electron microscope fitted with an electrical nanoprobe is shown to be a robust instrument for determining fundamental aspects of nanowire systems (i.e. the dominant mode of carrier transport and the nature of the electrical contacts to the nanowire). The platform is used to fully classify two distinct systems. In one instance it is found that indium arsenide nanowires display space-charge-limited transport and are contacted Ohmically. In the other, gallium arsenide nanowires are found to sequentially show the trap-mediated transport regimes of Poole-Frenkel effect and phonon-assisted tunneling. The contacts in this system are resolved to be asymmetric -- one is Ohmic while the other is a Schottky barrier. Additionally scanning photocurrent microscopy is used to spatially resolve optoelectronic nanowire and nanotube devices. In core/shell gallium arsenide nanowire solar cell arrays it is shown that each individual nanowire functions as a standalone solar cell. Nanotube photodiodes are mapped by scanning photocurrent microscopy to confirm an optimal current collection scheme has been

  16. The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-01-01

    Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.

  17. Semiconducting YBaCuO microbolometers for uncooled broadband IR sensing

    NASA Astrophysics Data System (ADS)

    Almasri, Mahmoud F.; Celik-Butler, Zeynep; Butler, Donald P.; Yaradanakul, Alp; Yildiz, Ali

    2001-10-01

    This paper describes the modeling, design, fabrication and testing of advanced uncooled thermal detectors, based on semiconducting YBaCuO. The aim is to provide NASA with advanced broad-band infrared (IR) detectors to replace the current CERES (Clouds and the Earth's Radiant Energy System) hardware that utilizes three channels, each housing a 1.5 mm X 1.5 mm thermister bolometer with 1 X 4 array of detectors in each of the three channels, thus yielding a total of 12 channels. A double mirror structure is used to obtain uniform spectral response from 0.3-100 μm wavelength. Double absorbers are utilized to further flatten the spectral response and to enhance the absorption of infrared radiation. The devices were fabricated using a polyimide sacrificial layer to achieve thermal isolation of the detector. A low thermal conductivity to the substrate enables the detector to integrate the energy from the incident radiation. An air gap was created by ashing the polyimide sacrificial layer from underneath the thermometer. A passivation layer was used to protect YBaCuO during ashing process and maintain a relatively high temperature coefficient of resistance of around 2.8%. These devices have successfully demonstrated voltage responsivities over 103 V/W, detectivities above 108 cm Hz1/2/W, NEP per root Hertz bandwidth less than 4 X 10-10 W/Hz1/2 and thermal time constant less than 15 ms. Several specific designs were fabricated and tested. Relatively uniform response in the wavelength range of 0.6 to 15 μm was measured.

  18. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications.

    PubMed

    Wang, Chuan; Chien, Jun-Chau; Takei, Kuniharu; Takahashi, Toshitake; Nah, Junghyo; Niknejad, Ali M; Javey, Ali

    2012-03-14

    Solution-processed thin-films of semiconducting carbon nanotubes as the channel material for flexible electronics simultaneously offers high performance, low cost, and ambient stability, which significantly outruns the organic semiconductor materials. In this work, we report the use of semiconductor-enriched carbon nanotubes for high-performance integrated circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The as-obtained thin-film transistors (TFTs) exhibit highly uniform device performance with on-current and transconductance up to 15 μA/μm and 4 μS/μm. By performing capacitance-voltage measurements, the gate capacitance of the nanotube TFT is precisely extracted and the corresponding peak effective device mobility is evaluated to be around 50 cm(2)V(-1)s(-1). Using such devices, digital logic gates including inverters, NAND, and NOR gates with superior bending stability have been demonstrated. Moreover, radio frequency measurements show that cutoff frequency of 170 MHz can be achieved in devices with a relatively long channel length of 4 μm, which is sufficient for certain wireless communication applications. This proof-of-concept demonstration indicates that our platform can serve as a foundation for scalable, low-cost, high-performance flexible electronics.

  19. Below-gap excitation of semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soavi, G.; Grupp, A.; Budweg, A.; Scotognella, F.; Hefner, T.; Hertel, T.; Lanzani, G.; Leitenstorfer, A.; Cerullo, G.; Brida, D.

    2015-10-01

    We investigate the optoelectronic properties of the semiconducting (6,5) species of single-walled carbon nanotubes by measuring ultrafast transient transmission changes with 20 fs time resolution. We demonstrate that photons with energy below the lowest exciton resonance efficiently lead to linear excitation of electronic states. This finding challenges the established picture of a vanishing optical absorption below the fundamental excitonic resonance. Our result points towards below-gap electronic states as an intrinsic property of semiconducting nanotubes.

  20. Topological end states due to inhomogeneous strains in wrinkled semiconducting ribbons

    NASA Astrophysics Data System (ADS)

    Pandey, Sudhakar; Ortix, Carmine

    2016-05-01

    We show that curvature-induced inhomogeneous strain distributions in nanoscale buckled semiconducting ribbons lead to the existence of end states which are topologically protected by inversion symmetry. These end-state doublets, corresponding to the so-called Maue-Shockley states, are robust against weak disorder. By identifying and calculating the corresponding topological invariants, we further show that a buckled semiconducting ribbon undergoes topological phase transitions between trivial and nontrivial insulating phases by varying its real-space geometry.

  1. Violation of the condon approximation in semiconducting carbon nanotubes.

    PubMed

    Duque, Juan G; Chen, Hang; Swan, Anna K; Shreve, Andrew P; Kilina, Svetlana; Tretiak, Sergei; Tu, Xiaomin; Zheng, Ming; Doorn, Stephen K

    2011-06-28

    The Condon approximation is widely applied in molecular and condensed matter spectroscopy and states that electronic transition dipoles are independent of nuclear positions. This approximation is related to the Franck-Condon principle, which in its simplest form holds that electronic transitions are instantaneous on the time scale of nuclear motion. The Condon approximation leads to a long-held assumption in Raman spectroscopy of carbon nanotubes: intensities arising from resonance with incident and scattered photons are equal. Direct testing of this assumption has not been possible due to the lack of homogeneous populations of specific carbon nanotube chiralities. Here, we present the first complete Raman excitation profiles (REPs) for the nanotube G band for 10 pure semiconducting chiralities. In contrast to expectations, a strong asymmetry is observed in the REPs for all chiralities, with the scattered resonance always appearing weaker than the incident resonance. The observed behavior results from violation of the Condon approximation and originates in changes in the electronic transition dipole due to nuclear motion (non-Condon effect), as confirmed by our quantum chemical calculations. The agreement of our calculations with the experimental REP asymmetries and observed trends in family dependence indicates the behavior is intrinsic. PMID:21612303

  2. Reversible Photoswitching of Spiropyran-Conjugated Semiconducting Polymer Dots

    PubMed Central

    Chan, Yang-Hsiang; Gallina, Maria Elena; Zhang, Xuanjun; Wu, I-Che; Jin, Yuhui; Sun, Wei; Chiu, Daniel T.

    2012-01-01

    Semiconducting polymer dots (Pdots) recently have emerged as a new class of ultrabright fluorescent probes with promising applications in biological detection and imaging. We developed photoswitchable Pdots by conjugating photochromic spiropyran molecules onto poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1′-3}-thiadiazole)] (PFBT). The modulation of fluorescence was achieved by ultraviolet irradiation, which converted spiropyran into its visible-absorbing merocyanine form. The merocyanine efficiently quenched the fluorescence of PFBT via Förster resonance energy transfer (FRET). We then reversed the quenching by subsequent irradiation with visible light to get back the fluorescence of PFBT. This FRET-based photomodulation of Pdot fluorescence could be repeated multiple times. We next conjugated biomolecules onto the surface of these photoswitchable Pdots and demonstrated their specific cellular and subcellular labeling to different types of cells without any noticeable nonspecific binding. We anticipate these photoswitchable and biocompatible Pdots will be useful in developing bio-imaging techniques in the future. PMID:23033991

  3. Density functional investigation of epitaxial silicene on semiconducting substrates

    NASA Astrophysics Data System (ADS)

    Das, G. P.; Bhattacharya, A.; Bhattacharya, S.

    2013-03-01

    In spite of the uniqueness of carbon to form pristine fullerene, nanotube and graphene, there have been attempts to replicate these nanostructures with silicon. Most recently, the free-standing quasi-2D honeycomb structure of silicene has been predicted to be stable with linear band dispersion and Dirac cone feature similar to graphene. Epitaxial silicene on Ag(110) and on ZrB2(0001) substrates have already been reported. We have carried out first principles density functional investigation of the structural and electronic properties of silicene monolayer on various wurzite structured III-V and II-VI semiconducting substrates, with metal terminated (MT) as well as non-metal terminated (NMT) top surface. The binding energies of silicene on MT semiconductors are in the range 0.5 - 0.7 eV/atom and their behavior can be metallic, semi-metallic or even magnetic, depending on the choice of substrates. The silicene overlayer undergoes n-/p-type doping on MT/NMT semiconductor surface, depending upon the direction of the charge transfer.

  4. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  5. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  6. Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes.

    PubMed

    Tsai, Wei-Wen; Tevis, Ian D; Tayi, Alok S; Cui, Honggang; Stupp, Samuel I

    2010-11-18

    Conjugated organic molecules can be designed to self-assemble from solution into nanostructures for functions such as charge transport, light emission, or light harvesting. We report here the design and synthesis of a novel hairpin-shaped self-assembling molecule containing electronically active sexithiophene moieties. In several nonpolar organic solvents, such as toluene or chlorocyclohexane, this compound was found to form organogels composed of nanofibers with uniform diameters of 3.0 (±0.3) nm. NMR analysis and spectroscopic measurements revealed that the self-assembly is driven by π-π interactions of the sexithiophene moieties and hydrogen bonding among the amide groups at the head of the hairpin. Field effect transistors built with this molecule revealed p-type semiconducting behavior and higher hole mobilities when films were cast from solvents that promote self-assembly. We propose that hydrogen bonding and π-π stacking act synergistically to create ordered stacking of sexithiophene moieties, thus providing an efficient pathway for charge carriers within the nanowires. The nanostructures formed exhibit unusually broad absorbance in their UV-vis spectrum, which we attribute to the coexistence of both H and J aggregates from face-to-face π-π stacking of sexithiophene moieties and hierarchical bundling of the nanowires. The large absorption range associated with self-assembly of the hairpin molecules makes them potentially useful in light harvesting for energy applications. PMID:20698523

  7. Information-based screens for deep traps in semiconducting materials

    NASA Astrophysics Data System (ADS)

    Ferris, Kim; Shah, Kunal; Jones, Dumont

    2011-03-01

    The key to a successful materials search is the ability to suggest promising materials and a priori eliminate unfruitful inquiry. For semiconducting radiation detection materials, performance is characterized by several key properties; band gap, density, electron mobility, and carrier lifetime. The material's proclivity to form defects is critical, as even simple antisite and vacancy defects can be sufficiently deep to affect effective carrier lifetime and mobility. We have developed a new model for defect formation proclivity, leveraging prior defect models (van Vechten and Feichter) and our information-based work. Our approach is based upon classification of materials chemistry and properties consistent with high concentrations of particular defects (e.g. antisites and vacancies). One issue is that nearly any charged local defect can potentially form a deep trap, so the screen must cover different defect types. Second, the screening model for new materials cannot rely on generally unknown factors such as 3D crystal geometry. The resulting model is intended to provide design guidance on expected defect behavior for candidate detection materials for which there is little or no prior information. The authors gratefully acknowledge financial support from U.S. Department of Homeland Security under Contract No. HSHQDC-08-X-00872.

  8. Materials Discovery: Informatic Strategies for Semiconducting Radiation Detection Materials

    NASA Astrophysics Data System (ADS)

    Ferris, Kim; Jones, Dumont; Schultz, Brian

    2010-03-01

    Inorganic semiconducting materials used in gamma radiation detection applications are typically binary and ternary inorganic crystals. Performance metrics for these materials include band gap, relating to carrier concentration and thermal background current; density, relating to stopping power; and electron mobility, which limits electron transport and is typically the dominant information carrier. In this paper, we describe an information-based approach to the identification of new radiation detection materials, using the specific case of the II-VI semiconductors. Even for simple binary systems, the sheer number of potential materials considering the presence of crystal system polymorphs and higher order compositions is daunting. The key to a successful materials search is the ability to suggest promising materials and a priori eliminate unfruitful inquiry. The success of an informatics-based design program depends on the relation of materials-level properties to atomic-scale properties that change rationally with structure, and the ability to extract rules which define these mappings. A brief example of a property-level screen will be given to illustrate the materials development process. The authors gratefully acknowledge financial support from U.S. Department of Homeland Security under Contract No. HSHQDC-08-X-00872.

  9. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    SciTech Connect

    Hughes, Steven Michael

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  10. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    DOE PAGESBeta

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  11. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  12. Tunable Percolation in Semiconducting Binary Polymer Nanoparticle Glasses.

    PubMed

    Renna, Lawrence A; Bag, Monojit; Gehan, Timothy S; Han, Xu; Lahti, Paul M; Maroudas, Dimitrios; Venkataraman, D

    2016-03-10

    Binary polymer nanoparticle glasses provide opportunities to realize the facile assembly of disparate components, with control over nanoscale and mesoscale domains, for the development of functional materials. This work demonstrates that tunable electrical percolation can be achieved through semiconducting/insulating polymer nanoparticle glasses by varying the relative percentages of equal-sized nanoparticle constituents of the binary assembly. Using time-of-flight charge carrier mobility measurements and conducting atomic force microscopy, we show that these systems exhibit power law scaling percolation behavior with percolation thresholds of ∼24-30%. We develop a simple resistor network model, which can reproduce the experimental data, and can be used to predict percolation trends in binary polymer nanoparticle glasses. Finally, we analyze the cluster statistics of simulated binary nanoparticle glasses, and characterize them according to their predominant local motifs as (p(i), p(1-i))-connected networks that can be used as a supramolecular toolbox for rational material design based on polymer nanoparticles. PMID:26854924

  13. The influence of contact transparency on the superconducting proximity effect in thin semiconducting films

    NASA Astrophysics Data System (ADS)

    Vissers, Michael Robert

    The superconducting proximity effect allows for the introduction of pair correlations into otherwise normal metals provided that they are coupled through a sufficiently transparent junction. The influence of this proximity effect manifests itself by modifying both the normal layer sheet resistance in the proximity affected region, Rs, and the junction conductance across the N-S boundary, Gc. These two quantities are impossible to measure simultaneously with any single two terminal device even if it is a four point measurement. However, a new three terminal device structure allows us to make two independent four point voltage measurements, which permits the extraction of these two intrinsic aspects of the proximity effect when combined with simple Ohm's law modeling. Devices with completely in-situ junctions between niobium and heavily doped n-GaAs and n-InAs were fabricated via molecular beam epitaxy. In order to reduce the Schottky barrier, a graded and delta-doped InGaAs cap was inserted at the interface. Careful construction of the doping profile in the cap allows for extremely transparent junctions just prior to the onset of superconductivity, the most transparent Nb-GaAs junctions yet reported. The transparency of the junction can be evaluated by calculating the number of available quantum channels between the two different Fermi surfaces and using the Landauer formalism to determine the ideal junction conductance. Comparison to the experimental junction conductance permits the discovery of the fundamental transmission coefficient for transport across the N-S interface. If the semiconducting depth is small enough the presence of correlations in the semiconductor are observed. Samples with deeper depths exhibit no direct evidence of superconductivity inside the semiconductor. Samples consisting of doped InAs were also fabricated and measured. These samples exhibit almost perfect contact between the superconductor and the semiconductor and pair correlations are

  14. PREFACE: 17th International Conference on Microscopy of Semiconducting Materials 2011

    NASA Astrophysics Data System (ADS)

    Walther, T.; Midgley, P. A.

    2011-11-01

    This volume contains invited and contributed papers from the 17th international conference on 'Microscopy of Semiconducting Materials' held at Churchill College, University of Cambridge, on 4-7 April 2011. The meeting was organised under the auspices of the Institute of Physics and supported by the Royal Microscopical Society as well as the Materials Research Society of the USA. This conference series deals with recent advances in semiconductor studies carried out by all forms of microscopy, with an emphasis on electron microscopy and related techniques with high spatial resolution. This time the meeting was attended by 131 delegates from 25 countries world-wide, a record in terms of internationality. As semiconductor devices shrink further new routes of device processing and characterisation need to be developed, and, for the latter, methods that offer sub-nanometre spatial resolution are particularly valuable. The various forms of imaging, diffraction and spectroscopy available in modern microscopes are powerful tools for studying the microstructure, the electronic structure, the chemistry and also electric fields in semiconducting materials. Recent advances in instrumentation, from lens aberration correction in both TEM and STEM instruments, to the development of a wide range of scanning probe techniques, as well as new methods of signal quantification have been presented at this conference. Two examples of topics at this meeting that have attracted a number of interesting studies were: the correlation of microstructural, optical and chemical information at atomic resolution with nanometre-scale resolved maps of the local electrical fields in (In,Al)GaN based semiconductors and tomographic approaches to characterise ensembles of nanowires and stacks of processed layers in devices Figure 1 Figure 1. Opening lecture by Professor Sir Colin J Humphreys. Each manuscript submitted for publication in this proceedings volume has been independently reviewed and revised

  15. Transport and dielectric studies of metallic, semiconducting, and magnetic materials and devices

    NASA Astrophysics Data System (ADS)

    Vasic, Relja

    Several organic and inorganic systems of importance for fundamental physics and applications have been studied by magnetotransport, dielectric constant, and Raman spectroscopy techniques. At the beginning of my thesis work, I investigated three carbon based organic systems: carbon fibers, pentacene derivatives, and a nanomagnetic material ("V15"). In the latter stages of my dissertation, I used the techniques I had developed to explore the properties of two inorganic systems: NiFe nanopillars in a silicon matrix, and spin systems in multiferroic rare earth-transition metal oxides. The main activities and achievements of my thesis work are as follows: The carbon fibers were characterized by magnetotransport and Raman spectroscopy studies. I found that carbon fibers are promising as wires in molecular electronics and compatible with organic films. Preliminary results on simple films of melted pentacene derivatives connected with carbon fiber wires were a first step in the fabrication and characterization of pentacene field effect transistors (FET's). The work on the pentacene system resulted in a series of successful logic circuits based on field-effect transistors such as NOT (inverter), NOR, and NAND. The temperature-dependent mobility was described as thermally activated at low gate voltages, but at high gate voltages the mobility was enhanced due to shallow traps. The second system investigated was the organic nanomagnetic material, polyoxovanadate, K6[V15As6O42(H 2O)]˙8H2O (i.e. V15). The conductivity and the dielectric measurements at high and low temperatures respectively were used to determine electrical properties of this single magnet molecule system. The main accomplishments were the determination of the energy gap (0.2eV) and the identification of multiple dipole relaxation modes. Raman vibrational spectroscopy was used to correlate dielectric relaxation with the Raman intramolecular vibrations. An investigation was then carried out on NiFe nanopillars electrodeposited in nanoporous silicon templates (Si:P), studied with transport and dielectric methods in high magnetic fields. This system exhibited a frequency and temperature dependent dielectric response which followed a Debye relaxation mechanism. It was discovered that in high magnetic fields greater than 10 T, multiple relaxation structures emerged that were magnetic field direction dependent. It was realized that such a phenomena occurs in Si:P, and is not directly related to the NiFe nanostructure. Hence, a new magnetic field induced phenomenon in the dielectric response in Si was observed, which involves the effects of a magnetic field on an electric dipole. Here, the field induces a harmonic oscillator state from the zero field Debye-like relaxation behavior. The final work in the thesis project focused on the inorganic rare-earth transition metal oxide system HoMnO3 and related compounds. Dielectric measurements were used to characterize and map out the magnetic phase transitions in the doped ferroelectric series Ho1-xY xMnO3. The phase transitions involved complex rotations of the Mn spins. I found that the behavior of these spin rotations were highly dependent on magnetic field, magnetic field direction, and the degree of doping with the non-magnetic Y ion. Hence the magnetic field anisotropy study is an important step towards the understanding of magnetic and electric phase competition in the diluted 4 f system by the non-magnetic ion Yttrium (Y). From highly systematic measurements involving these parameters, I mapped out detailed phase diagrams for the Ho1-x YxMnO3 system which will be very useful for future theoretical work to describe the complex spin interactions involved.

  16. Crystal growth, perfection, linear and nonlinear optical, photoconductivity, dielectric, thermal and laser damage threshold properties of 4-methylimidazolium picrate: an interesting organic crystal for photonic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.

    2016-10-01

    The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.

  17. Synthesis and characterization of transition metal doped semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kaszpurenko, Jason Michael

    The abundance of semiconductors in everyday life has exploded because of their cheapness, ability to do massive calculations, harvest energy and more. For all their utility semiconductors used in calculations suffer because they need an auxiliary way to store the data they've calculated. Magnetic storage has traditionally been the answer to this problem but suffers from slower speeds. Since the 1960's a class of materials known as dilute magnetic semiconductors has tried to combine the advantages of semiconductors with the non-volatile storage properties found in magnets. Often the easiest way to make these materials is by doping semiconductors with transition metal ions. In this study I worked with PbS and ZnSe to create transition metal doped semiconducting nanostructures. The initial studies focus on the synthesis and characterization of PbS nanowires doped with Mn. The wires revealed high quality nanowires with uniform doping concentrations, both axially and radially, with atomic concentrations of 0.18 and 0.01 atomic %. The Mn didn't create any secondary phases and was substitutionally introduced. Zn1-xMn xSe nanostructures were grown with the hopes of achieving a higher Mn doping concentration where we succeeded in achieving dopant levels of x~0.3. To increase carrier concentrations, estimated to be~1016cm -3 for pure ZnSe samples, Al was doped with ZnSe and co-doped with Mn. ZnAlSe nanowires showed carrier concentration ~1019cm -3. Optical studies revealed hole traps with a characteristic time on the order of 1ms in ZnAlSe nanowire samples

  18. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  19. Hybrid free electron laser devices

    SciTech Connect

    Asgekar, Vivek; Dattoli, G.

    2007-03-15

    We consider hybrid free electron laser devices consisting of Cerenkov and undulator sections. We will show that they can in principle be used as segmented devices and also show the possibility of exploiting Cerenkov devices for the generation of nonlinear harmonic coherent power. We discuss both oscillator and amplifier schemes.

  20. Mesoporous semiconducting oxide thin films with nanocrystalline walls: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Frindell, Karen Lynne

    Mesoporous titania thin films were synthesized using a novel modified sol-gel method, which involves the inhibition of rapid condensative polymerization of hydrolyzed titanium alkoxide using concentrated acid solutions. Lamellar, 2D-hexagonal, and cubic mesostructures were created by varying the volume fraction of the structure-directing block copolymer in the precursor solution. A mesostructured cubic semiconducting framework made up of three-dimensionally arranged anatase nanocrystallites embedded in an amorphous titania matrix was obtained by heat treating the films. Interesting absorbance and photoluminescence properties were observed including a blue shifted band gap and well-defined photoluminescence peaks owing to the high surface area and unusual surface environment of the nanocrystallites present in the framework. Selected rare earth ions were included into the walls of the mesoporous titania thin films and excitation of the mesoporous titania in its band gap resulted in sensitized photoluminescence in the visible and near infrared regions of the spectrum. The energy transfer mechanism was determined in part by evaluating which rare earth ions exhibited photoluminescence via energy transfer. Mesoporous titania thin films were incorporated into several devices including a dye sensitized solar cell. The photocurrent, photovoltage and power conversion efficiency of several iterations of solar cell devices were tested. Electrochromic devices were also fabricated and tested using pure mesoporous titania films and those doped with cerium ions. Contrary to the behavior of non-porous Ce-TiO2 thin films, the addition of cerium to mesoporous titania films caused an increased electrochromic effect. The calcination temperature was varied to correlate the evolution of the structure of the titania thin films with optical and electrochemical properties. Electron microscopy, optical absorbance, photoluminescence, lithium insertion, chronoamperometry, and

  1. Porous silicon carbide (SiC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    A semiconductor device employs at least one layer of semiconducting porous silicon carbide (SiC). The porous SiC layer has a monocrystalline structure wherein the pore sizes, shapes, and spacing are determined by the processing conditions. In one embodiment, the semiconductor device is a p-n junction diode in which a layer of n-type SiC is positioned on a p-type layer of SiC, with the p-type layer positioned on a layer of silicon dioxide. Because of the UV luminescent properties of the semiconducting porous SiC layer, it may also be utilized for other devices such as LEDs and optoelectronic devices.

  2. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect

    Patel, Jayesh D.; Mighri, Frej; Ajji, Abdellah

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  3. A Study of Tunable Metamaterial Devices for the THz Region

    NASA Astrophysics Data System (ADS)

    Chikhi, N.; Di Gennaro, E.; Esposito, E.; Andreone, A.

    In order to cope with the "THz Gap", metamaterial based devices operating at about 1 THz have been designed to have a tunable response. We studied the electromagnetic behaviour of periodic structures consisting of different "unit cells" based on the concept of Split Ring Resonator (SRR). The devices response in the required frequency region is simulated using a commercial electromagnetic code. Different modulation mechanisms have been investigated, including the use of liquid crystals, MEMS, semiconducting substrates.

  4. Nonlinear interaction between single photons.

    PubMed

    Guerreiro, T; Martin, A; Sanguinetti, B; Pelc, J S; Langrock, C; Fejer, M M; Gisin, N; Zbinden, H; Sangouard, N; Thew, R T

    2014-10-24

    Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a fascinating challenge but also central to numerous advanced applications in quantum information science. Here we report the nonlinear interaction between two single photons. Each photon is generated in independent parametric down-conversion sources. They are subsequently combined in a nonlinear waveguide where they are converted into a single photon of higher energy by the process of sum-frequency generation. Our approach results in the direct generation of photon triplets. More generally, it highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at telecom wavelengths, it opens the way towards novel applications in quantum communication such as device-independent quantum key distribution.

  5. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  6. Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures.

    PubMed

    Choi, Sinho; Kim, Jieun; Hwang, Dae Yeon; Park, Hyungmin; Ryu, Jaegeon; Kwak, Sang Kyu; Park, Soojin

    2016-02-10

    One-dimensional metallic/semiconducting materials have demonstrated as building blocks for various potential applications. Here, we report on a unique synthesis technique for redox-responsive assembled carbon-sheathed metal/semiconducting nanowire heterostructures that does not require a metal catalyst. In our approach, germanium nanowires are grown by the reduction of germanium oxide particles and subsequent self-catalytic growth during the thermal decomposition of natural gas, and simultaneously, carbon sheath layers are uniformly coated on the nanowire surface. This process is a simple, reproducible, size-controllable, and cost-effective process whereby most metal oxides can be transformed into metallic/semiconducting nanowires. Furthermore, the germanium nanowires exhibit stable chemical/thermal stability and outstanding electrochemical performance including a capacity retention of ∼96% after 1200 cycles at the 0.5-1C rate as lithium-ion battery anode. PMID:26784743

  7. Understanding and improving the mechanical stability of semiconducting polymers for flexible and stretchable electronics

    NASA Astrophysics Data System (ADS)

    Printz, Adam David

    Polymeric semiconductors offer the promise of low-cost, printable, and mechanically robust electronic devices for use in outdoor, portable, and wearable applications such as organic photovoltaics, biosensors, and electronic skins. However, many organic semiconductors are unable to accommodate the mechanical stresses these applications require, and it is therefore important to understand the factors and parameters that govern the mechanical stability of these materials. Chapter 1 provides a gentle introduction to the electronic and mechanical properties relevant to flexible and stretchable organic semiconductor devices. The idea of inherent competition between electronic performance and mechanical robustness is explored. Chapter 2 investigates the inherent competition between good electronic performance and mechanical robustness in poly(3-alkylthiophene)s. A key finding is a critical alkyl side-chain length that allows for good electronic performance and mechanical compliance. Chapter 3 and Appendix A are further studies on the properties of poly(3-alkylthiophene)s with side-chains close to the critical length to gain better understanding of the transition from good electronic properties and poor mechanical properties to poor electronic properties and good mechanical properties. Chapter 4 and Appendix B detail the effects on mechanical and electronic properties of statistical incorporation of unlike monomer into a low-bandgap polymer backbone in an effort to disrupt aggregation and improve mechanical compliance. Chapter 5 explores how the extent of molecular mixing of polythiophenes and fullerenes---materials common in organic photovoltaics---affects their mechanical properties. Chapter 6 describes the invention of a new technique to determine the yield point of thin films. A dependence on the alkyl-side chain length is observed, as well as a critical film thickness below which the yield point increases substantially. In Chapter 7, the weakly interacting H

  8. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.

    PubMed

    Di Valentin, Cristiana; Pacchioni, Gianfranco

    2014-11-18

    CONSPECTUS: Very rarely do researchers use metal oxides in their pure and fully stoichiometric form. In most of the countless applications of these compounds, ranging from catalysis to electronic devices, metal oxides are either doped or defective because the most interesting chemical, electronic, optical, and magnetic properties arise when foreign components or defects are introduced in the lattice. Similarly, many metal oxides are diamagnetic materials and do not show a response to specific spectroscopies such as electron paramagnetic resonance (EPR) spectroscopy. However, doped or defective oxides may exhibit an interesting and informative paramagnetic behavior. Doped and defective metal oxides offer an expanding range of applications in contemporary condensed matter science; therefore researchers have devoted enormous effort to the understanding their physical and chemical properties. The interplay between experiment and computation is particularly useful in this field, and contemporary simulation techniques have achieved high accuracies with these materials. In this Account, we show how the direct comparison between spectroscopic experimental and computational data for some selected and relevant materials provides ways to understand and control these complex systems. We focus on the EPR properties and electronic transitions that arise from the presence of dopants and defects in bulk metal oxide materials. We analyze and compare the effect of nitrogen doping in TiO2 and ZnO (two semiconducting oxides) and MgO (a wide gap insulator) and examine the effect of oxygen deficiency in the semiconducting properties of TiO2-x, ZnO1-x, and WO3-x materials. We chose these systems because of their relevance in applications including photocatalysis, touch screens, electrodes in magnetic random access memories, and smart glasses. Density functional theory (DFT) provides the general computational framework used to illustrate the electronic structure of these systems. However

  9. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  10. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    SciTech Connect

    Selyukov, A. S. Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-04-15

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  11. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion.

    PubMed

    Araneo, Rodolfo; Falconi, Christian

    2013-07-01

    Quasi-1D piezoelectric nanostructures may offer unprecedented sensitivity for transducing minuscule input mechanical forces into high output voltages due to both scaling laws and increased piezoelectric coefficients. However, until now both theoretical and experimental studies have suggested that, for a given mechanical force, lateral bending of piezoelectric nanowires results in lower output electric potentials than vertical compression. Here we demonstrate that this result only applies to nanostructures with a constant cross-section. Moreover, though it is commonly believed that the output electric potential of a strained piezo-semiconductive device can only be reduced by the presence of free charges, we show that the output piezopotential of laterally bent tapered nanostructures, with typical doping levels and very small input forces, can be even increased up to two times by free charges.Our analyses confirm that, though not optimal for piezoelectric energy harvesting, lateral bending of tapered nanostructures with typical doping levels can be ideal for transducing tiny input mechanical forces into high and accessible piezopotentials. Our results provide guidelines for designing high-performance piezo-nano-devices for energy harvesting, mechanical sensing, piezotronics, piezo-phototronics, and piezo-controlled chemical reactions, among others.

  12. Nonlinear optics and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Chen, C. H.

    1990-08-01

    The author was invited by the Institute of Atomic and Molecular Sciences, Academia Sinica, in Taiwan to give six lectures on nonlinear optics. The participants included graduate students, postdoctoral fellows, research staff, and professors from several research organizations and universities. Extensive discussion followed each lecture. Since both the Photophysics Group at Oak Ridge National Laboratory (ORNL) and Institute of Atomic and Molecular Sciences in Taiwan have been actively participating in nonlinear optics research, the discussions are very beneficial to ORNL programs. The author also visited several laboratories at IAMS to exchange research ideas on nonlinear optics.

  13. Networks of nonlinear superconducting transmission line resonators

    NASA Astrophysics Data System (ADS)

    Leib, M.; Deppe, F.; Marx, A.; Gross, R.; Hartmann, M. J.

    2012-07-01

    We investigate a network of coupled superconducting transmission line resonators, each of them made nonlinear with a capacitively shunted Josephson junction coupling to the odd flux modes of the resonator. The resulting eigenmode spectrum shows anticrossings between the plasma mode of the shunted junction and the odd resonator modes. Notably, we find that the combined device can inherit the complete nonlinearity of the junction, allowing for a description as a harmonic oscillator with a Kerr nonlinearity. Using a dc SQUID instead of a single junction, the nonlinearity can be tuned between 10 kHz and 4 MHz while maintaining resonance frequencies of a few gigahertz for realistic device parameters. An array of such nonlinear resonators can be considered a scalable superconducting quantum simulator for a Bose-Hubbard Hamiltonian. The device would be capable of accessing the strongly correlated regime and be particularly well suited for investigating quantum many-body dynamics of interacting particles under the influence of drive and dissipation.

  14. Nonlinearity without superluminality

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2005-07-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schrödinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality.

  15. Nonlinearity without superluminality

    SciTech Connect

    Kent, Adrian

    2005-07-15

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schroedinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality.

  16. Optical computing and nonlinear materials; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988

    SciTech Connect

    Peyghambarian, N.

    1988-01-01

    Various papers on optical computing and nonlinear materials are presented. The general topics discussed include: optical computing architectures, optical switching with nonlinear etalons, nonlinear optical computing and interconnection, optoelectronic devices for computing, and new nonlinear materials for computing. Also examined are: semiconductor optical nonlinearities, GaAs and multiple quantum well optical nonlinearities, optical interconnects, and logic and symbolic computing.

  17. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Lei; Li, Taotao; Li, Chaowei; Ling, Lin; Zhang, Kai; Yao, Yagang

    2015-11-01

    For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, effective techniques for the growth of semiconducting SWNTs (s-SWNTs) with a specific diameter are still a great challenge. Herein, we report a facile strategy for the selective growth of narrow diameter distributed s-SWNTs using CoPt/CeO2 catalysts. The addition of Pt into a Co catalyst dramatically reduces the diameter distributions and even the chirality distributions of the as-grown SWNTs. Oxygen vacancies that are provided by mesoporous CeO2 are responsible for creating an oxidative environment to in situ etch metallic SWNTs (m-SWNTs). Atomic force microscope (AFM) and Raman spectroscopy characterizations indicate a narrow diameter distribution of 1.32 +/- 0.03 nm and the selective growth of s-SWNTs to 93%, respectively. In addition, electronic transport measurements also confirm that the Ion/Ioff ratio is mainly in the order of ~103. This work provides an effective strategy for the facile fabrication of narrow diameter distributed s-SWNTs, which will be beneficial to fundamental research and the broad application of SWNTs for future nanoelectronics.For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, effective techniques for the growth of semiconducting SWNTs (s-SWNTs) with a specific diameter are still a great challenge. Herein, we report a facile strategy for the selective growth of narrow diameter distributed s-SWNTs using CoPt/CeO2 catalysts. The addition of Pt into a Co catalyst dramatically reduces the diameter distributions and even the chirality distributions of the as-grown SWNTs. Oxygen vacancies that are provided by mesoporous CeO2 are responsible for creating an oxidative environment to in situ etch metallic SWNTs (m-SWNTs). Atomic force microscope (AFM) and Raman spectroscopy characterizations indicate a narrow diameter distribution of 1.32 +/- 0.03 nm and the selective growth of s-SWNTs to 93%, respectively. In addition

  18. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m

  19. Nonlinear Mode-Coupling in Nanomechanical Systems

    PubMed Central

    Matheny, M. H.; Villanueva, L. G.; Karabalin, R. B.; Sader, J. E.; Roukes, M. L.

    2013-01-01

    Understanding and controlling nonlinear coupling between vibrational modes is critical for the development of advanced nanomechanical devices; it has important implications for applications ranging from quantitative sensing to fundamental research. However, achieving accurate experimental characterization of nonlinearities in nanomechanical systems (NEMS) is problematic. Currently employed detection and actuation schemes themselves tend to be highly nonlinear, and this unrelated nonlinear response has been inadvertently convolved into many previous measurements. In this Letter we describe an experimental protocol and a highly linear transduction scheme, specifically designed for NEMS, that enables accurate, in situ characterization of device nonlinearities. By comparing predictions from Euler–Bernoulli theory for the intra- and intermodal nonlinearities of a doubly clamped beam, we assess the validity of our approach and find excellent agreement. PMID:23496001

  20. Nanowire structures and electrical devices

    DOEpatents

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  1. Study of organic-inorganic hetero-interfaces and electrical transport in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Wagner, Sean Robert

    As the electronics industry continues to evolve and move towards functional electronic devices with increasing complexity and functionality, it becomes important to explore materials outside the regime of conventional semiconductors. Organic semiconducting small molecules have received a large amount of attention due to their high degree of flexibility, the option to perform molecular synthesis to modify their electronic and magnetic properties, and their ability to organize into highly-ordered functionalized nanostructures and thin films. Being able to form complex nanostructures and thin films with molecular precision, while maintaining the ability to tune properties through modifications in the molecular chemistry could result in vast improvements in conventional device architectures. However, before this is realized, there still remains a significant lack of understanding regarding how these molecules interact with various substrate surfaces as well as their intermolecular interactions. The interplay between these interactions can produce drastic changes in the molecular orientation and ordering at the hetero-interface, which can affect the transport properties of the molecular thin film and ultimately modify the performance of the organic electronic device. This study first focuses on the growth dynamics, molecular ordering, and molecular orientation of metal phthalocyanine (MPc) molecules, particularly on Si, a substrate which is notoriously difficult to form an organized organic thin film on due to the surface dangling bonds. By deactivating these bonds, the formation of a highly ordered organic molecular thin film becomes possible. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, low-energy electron diffraction, and density functional theory calculations, the growth evolution of MPc molecules ( M = Zn, Cu, Co) from the single molecule level to multilayered films on the deactivated Si(111)-B surface is investigated. Initial tests are

  2. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  3. Direct attachment of DNA to semiconducting surfaces for biosensor applications.

    PubMed

    Fahrenkopf, Nicholas M; Shahedipour-Sandvik, Fatemeh; Tokranova, Natalya; Bergkvist, Magnus; Cady, Nathaniel C

    2010-11-01

    In this work we propose a novel method of immobilizing nucleic acids for field effect or high electron mobility transistor-based biosensors. The naturally occurring 5' terminal phosphate group on nucleic acids was used to coordinate with semiconductor and metal oxide surfaces. We demonstrate that DNA can be directly immobilized onto ZrO(2), AlGaN, GaN, and HfO(2) while retaining its ability to hybridize to target sequences with high specificity. By directly immobilizing the probe molecule to the sensor surface, as opposed to conventional crosslinking strategies, the number of steps in device fabrication is reduced. Furthermore, hybridization to target strands occurs closer to the sensor surface, which has the potential to increase device sensitivity by reducing the impact of the Debye screening length.

  4. Dislocations and Grain Boundaries in Semiconducting Rubrene Single-Crystals

    SciTech Connect

    Chapman,B.; Checco, A.; Pindak, R.; Siegrist, T.; Kloc, C.

    2006-01-01

    Assessing the fundamental limits of the charge carrier mobilities in organic semiconductors is important for the development of organic electronics. Although devices such as organic field effect transistors (OFETs), organic thin film transistors (OTFTs) and organic light emitting diodes (OLEDs) are already used in commercial applications, a complete understanding of the ultimate limitations of performance and stability in these devices is still lacking at this time. Crucial to the determination of electronic properties in organic semiconductors is the ability to grow ultra-pure, fully ordered molecular crystals for measurements of intrinsic charge transport. Likewise, sensitive tools are needed to evaluate crystalline quality. We present a high-resolution X-ray diffraction and X-ray topography analysis of single-crystals of rubrene that are of the quality being reported to show mobilities as high as amorphous silicon. We show that dislocations and grain boundaries, which may limit charge transfer, are prominent in these crystals.

  5. Direct attachment of DNA to semiconducting surfaces for biosensor applications.

    PubMed

    Fahrenkopf, Nicholas M; Shahedipour-Sandvik, Fatemeh; Tokranova, Natalya; Bergkvist, Magnus; Cady, Nathaniel C

    2010-11-01

    In this work we propose a novel method of immobilizing nucleic acids for field effect or high electron mobility transistor-based biosensors. The naturally occurring 5' terminal phosphate group on nucleic acids was used to coordinate with semiconductor and metal oxide surfaces. We demonstrate that DNA can be directly immobilized onto ZrO(2), AlGaN, GaN, and HfO(2) while retaining its ability to hybridize to target sequences with high specificity. By directly immobilizing the probe molecule to the sensor surface, as opposed to conventional crosslinking strategies, the number of steps in device fabrication is reduced. Furthermore, hybridization to target strands occurs closer to the sensor surface, which has the potential to increase device sensitivity by reducing the impact of the Debye screening length. PMID:20869405

  6. Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate

    NASA Astrophysics Data System (ADS)

    Schraml, K.; Spiegl, M.; Kammerlocher, M.; Bracher, G.; Bartl, J.; Campbell, T.; Finley, J. J.; Kaniber, M.

    2014-07-01

    We present the simulation, fabrication, and optical characterization of plasmonic gold bowtie nanoantennas on a semiconducting GaAs substrate as geometrical parameters such as size, feed gap, height, and polarization of the incident light are varied. The surface-plasmon resonance was probed using white light reflectivity on an array of nominally identical, 35-nm-thick gold antennas. To elucidate the influence of the semiconducting, high-refractive-index substrate, all experiments were compared using nominally identical structures on glass. Besides a linear shift of the surface-plasmon resonance from 1.08 to 1.58 eV when decreasing the triangle size from 170 to 100 nm on GaAs, we observed a global redshift by 0.25 ± 0.05 eV with respect to nominally identical structures on glass. By performing polarization-resolved measurements and comparing results with finite-difference time-domain simulations, we determined the near-field coupling between the two triangles composing the bowtie antenna to be ˜8 times stronger when the antenna is on a glass substrate compared to when it is on a GaAs substrate. The results obtained have strong relevance for the integration of lithographically defined plasmonic nanoantennas on semiconducting substrates and therefore for the development of novel optically active plasmonic-semiconducting nanostructures.

  7. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    PubMed Central

    Reis, Wieland G.; Weitz, R. Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105) and field-effect mobilities (17 cm2/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  8. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Weitz, R. Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-05-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105) and field-effect mobilities (17 cm2/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production.

  9. Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides

    PubMed Central

    Hahm, Jong-In

    2013-01-01

    Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optical, electrochemical, electrical, gravimetric, acoustic, and magnetic properties for signal transduction. This article reviews such biosensors that employ metallic and semiconducting oxides as active sensing elements to detect nucleic acids, proteins, cells, and a variety of important biomarkers, both in thin film and one-dimensional forms. Specific oxide materials (Mx Oy ) examined comprehensively in this article include M = Fe, Cu, Si, Zn, Sn, In. The derivatives of these oxide materials resulting from incorporation of dopants are examined as well. The crystalline structures and unique properties that may be exploited for various biosensing applications are discussed, and recent efforts investigating the feasibility of using these oxide materials in biosensor technology are described. Key biosensor characteristics resulting from reduced dimensionality are overviewed under the motif of planar and one-dimensional sensors. This article also provides insight into current challenges facing biosensor applications for metallic and semiconducting oxides. In addition, future outlook in this particular field as well as different impacts on biology and medicine are addressed. PMID:23627064

  10. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.

    PubMed

    Reis, Wieland G; Weitz, R Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (10(5)) and field-effect mobilities (17 cm(2)/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  11. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process.

    PubMed

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Kuznetsov, Oleksandr V; Krafcik, Karen L; Billups, W Edward; Hauge, Robert H; Léonard, François

    2013-03-15

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication.

  12. Nonlinear metamaterials for holography.

    PubMed

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency-the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  13. Nonlinear metamaterials for holography

    NASA Astrophysics Data System (ADS)

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-08-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.

  14. Nonlinear metamaterials for holography

    PubMed Central

    Almeida, Euclides; Bitton, Ora

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  15. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  16. Continuous control of the nonlinearity phase for harmonic generations.

    PubMed

    Li, Guixin; Chen, Shumei; Pholchai, Nitipat; Reineke, Bernhard; Wong, Polis Wing Han; Pun, Edwin Yue Bun; Cheah, Kok Wai; Zentgraf, Thomas; Zhang, Shuang

    2015-06-01

    The capability of locally engineering the nonlinear optical properties of media is crucial in nonlinear optics. Although poling is the most widely employed technique for achieving locally controlled nonlinearity, it leads only to a binary nonlinear state, which is equivalent to a discrete phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin-rotation coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability with continuously controllable phase. The continuous phase control over the local nonlinearity is demonstrated for second and third harmonic generation by using nonlinear metasurfaces consisting of nanoantennas of C3 and C4 rotational symmetries, respectively. The continuous phase engineering of the effective nonlinear polarizability enables complete control over the propagation of harmonic generation signals. Therefore, this method seamlessly combines the generation and manipulation of harmonic waves, paving the way for highly compact nonlinear nanophotonic devices. PMID:25849530

  17. Light emission from an ambipolar semiconducting polymer field-effect transistor

    NASA Astrophysics Data System (ADS)

    Swensen, James Sherman

    The successful demonstration of light emitting field-effect transistors (LEFETs) has been worked towards for years within the organic electronics community. The belief was held that if an ambipolar FET could be developed with high enough density of both electrons and holes within the channel region of an FET simultaneously, then recombination of those carriers would result in electroluminescence. The challenge to demonstrating such a device centered on the issue of electron transport; why was electron transport not observed for nearly all SCPs in a field-effect transistor? Use of a low dielectric constant material to passivate inorganic dielectrics in order to observe electron transport for semiconducting conjugated polymers in a field-effect transistor was verified. A different material, polypropylene-co-1-butene, was shown to passivate various inorganic insulators to eliminate or reduce trap states such that electron transport can be observed for SCPs. Another challenge to demonstrating an LEFET involved developing a method to deposit a low work function metal as either the source or the drain electrode in the FET structure. In this research, a process was developed in which an SCP FET can be fabricated inside of a nitrogen glove box where one electrode is a high work function metal and the other electrode is a low work function metal with the precision of photolithography using a silicon shadow mask and an angled evaporation technique. As a result, the SCP LED electrodes architecture was successfully transferred to an FET platform as the source and drain electrodes, which we "call two-color electrodes." In summary, by combining the passivation layer technology which allows for electron transport and the silicon shadow mask/angled evaporation technique which gives two color electrodes, ambipolar SCP LEFETs were demonstrated. Transport data show ambipolar behavior. Recombination of electrons and holes result in a narrow zone of light emission within the channel

  18. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.

    PubMed

    Wang, Yilei; Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2013-09-01

    Single-walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next-generation printed electronic transistor materials. However, large-scale solution-based parallel assembly of SWNTs to obtain high-performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution-based technique can achieve this. Herein a novel solution-based technique, the immersion-cum-shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s-SWNTs). By immersing an aminosilane-treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT-based field-effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 10(4) and mobility 46.5 cm(2) /Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm(2) and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large-scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large-area electronics.

  19. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  20. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness

  1. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Muckley, Eric S.; Nelson, Anthony J.; Jacobs, Christopher B.; Ivanov, Ilia N.

    2016-04-01

    Interaction between ultraviolet (UV) light and carbon nanotube (CNT) networks plays a central role in gas adsorption, sensor sensitivity, and stability of CNT-based electronic devices. To determine the effect of UV light on sorption kinetics and resistive gas/vapor response of different CNT networks, films of semiconducting single-wall nanotubes (s-SWNTs), metallic single-wall nanotubes, and multiwall nanotubes were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O2 and H2O, whereas resistance of s-SWNT networks decreases. UV irradiation decreases the resistance of metallic nanotube networks in the presence of O2 and H2O and increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. s-SWNT networks show evidence of delamination from the gold-plated quartz crystal microbalance crystal, possibly due to preferential adsorption of O2 and H2O on gold. UV irradiation increases the sensitivity of all CNT networks to O2 and H2O by an order of magnitude, which demonstrates the importance of UV light for enhancing response and lowering detection limits in CNT-based gas/vapor sensors.

  2. Semiconducting ZnSnN2 thin films for Si/ZnSnN2 p-n junctions

    NASA Astrophysics Data System (ADS)

    Qin, Ruifeng; Cao, Hongtao; Liang, Lingyan; Xie, Yufang; Zhuge, Fei; Zhang, Hongliang; Gao, Junhua; Javaid, Kashif; Liu, Caichi; Sun, Weizhong

    2016-04-01

    ZnSnN2 is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN2 films with a low electron concentration, in order to promote the applications of ZnSnN2 as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN2 films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN2 p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 1017 to 6.78 × 1017 cm-3 and from 0.37 to 2.07 cm2 V-1 s-1, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 103. The achievement of this ZnSnN2-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN2 material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.

  3. Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching.

    PubMed

    James, Teena; Kalinin, Yevgeniy V; Chan, Chih-Chieh; Randhawa, Jatinder S; Gaevski, Mikhail; Gracias, David H

    2012-07-11

    Nanopores with conical geometries have been found to rectify ionic current in electrolytes. While nanopores in semiconducting membranes are known to modulate ionic transport through gated modification of pore surface charge, the fabrication of conical nanopores in silicon (Si) has proven challenging. Here, we report the discovery that gold (Au) nanoparticle (NP)-assisted plasma etching results in the formation of conical etch profiles in Si. These conical profiles result due to enhanced Si etch rates in the vicinity of the Au NPs. We show that this process provides a convenient and versatile means to fabricate conical nanopores in Si membranes and crystals with variable pore-diameters and cone-angles. We investigated ionic transport through these pores and observed that rectification ratios could be enhanced by a factor of over 100 by voltage gating alone, and that these pores could function as ionic switches with high on-off ratios of approximately 260. Further, we demonstrate voltage gated control over protein transport, which is of importance in lab-on-a-chip devices and biomolecular separations.

  4. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field.

    PubMed

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-07-14

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm(2) V(-1) s(-1) and an on/off ratio of 10(6). We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.

  5. Effect of ozone exposure on the electrical characteristics of high-purity, large-diameter semiconducting carbon nanotubes.

    PubMed

    Gao, Jia; Loo, Yueh-Lin

    2014-06-14

    In this study, we have elucidated the interactions between ozone and carbon nanotubes by monitoring the characteristics of field-effect transistors based on polymer-sorted, large-diameter semiconducting carbon nanotubes. The drain-source current of these transistors initially increases with ozone exposure and then it progressively decreases with increasing exposure beyond 3 min. This non-monotonic dependence of the drain-source current can be ascribed to two competing processes. At short ozone exposure, p-doping of carbon nanotubes dominates; the drain-source current thus increases as a result of increasing hole concentration. This effect is most evidenced in a progressive threshold voltage shift towards positive voltages with increasing exposure to ozone. At extended ozone exposure, chemical oxidation of carbon nanotubes instead dominates. The drain-source current decreases as a result of decreasing hole mobility. This effect manifests itself in a monotonic decrease in the mobility of these devices as a function of ozone exposure. PMID:24760174

  6. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field.

    PubMed

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-07-14

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm(2) V(-1) s(-1) and an on/off ratio of 10(6). We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types. PMID:27315328

  7. Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites

    PubMed Central

    2011-01-01

    A series of hybrid cadmium salt/cationic surfactant layered nanocomposites containing different concentrations of cadmium sulphide was prepared by exchanging chloride by sulphide ions in the layered precursor CdXx(OH)y(CnTA)z in a solid phase/gas reaction, resulting in a series of layered species exhibiting stoichiometries corresponding to CdSvXx(OH)y(CnTA)z, constituted by two-dimensional CdCl2/CdS ultra-thin sheets sandwiched between two self-assembled surfactant layers. The electronic structure of CdS in the nanocomposite is similar to that of bulk, but showing the expected features of two-dimensional confinement of the semiconductor. The nanocomposite band gap is found to depend in a non-linear manner on both the length of the hydrocarbon chain of the surfactant and the concentration of the sulphide in the inorganic sheet. The products show photocatalytic activity at least similar and usually better than that of "bulk" CdS in a factor of two. PMID:21896162

  8. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    SciTech Connect

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  9. Evaluation of harmonic suppression devices

    SciTech Connect

    Tolbert, L.M.; Hollis, H.D.; Hale, P.S. Jr.

    1996-09-01

    An assessment has been conducted of five commercially available devices to determine their ability to provide clean sinusoidal voltage to nonlinear loads and to eliminate harmonic currents demanded by nonlinear loads. The devices tested were a passive series-shunt filter, a delta-wye isolation transformer, a ferroresonant magnetic synthesizer, an active power line conditioner, and an active injection mode filter. These devices were installed in existing Department of Energy facilities that had substantial non-linear loads which drew a significant harmonic current. These devices were then compared in the following categories: cancellation of harmonic currents, supply of nondistorted voltage, supply of regulated voltage, elimination of transients and impulses, efficiency, reliability, and cost.

  10. Semiconducting black phosphorus: synthesis, transport properties and electronic applications.

    PubMed

    Liu, Han; Du, Yuchen; Deng, Yexin; Ye, Peide D

    2015-05-01

    Phosphorus is one of the most abundant elements preserved in earth, and it comprises a fraction of ∼0.1% of the earth crust. In general, phosphorus has several allotropes, and the two most commonly seen allotropes, i.e. white and red phosphorus, are widely used in explosives and safety matches. In addition, black phosphorus, though rarely mentioned, is a layered semiconductor and has great potential in optical and electronic applications. Remarkably, this layered material can be reduced to one single atomic layer in the vertical direction owing to the van der Waals structure, and is known as phosphorene, in which the physical properties can be tremendously different from its bulk counterpart. In this review article, we trace back to the research history on black phosphorus of over 100 years from the synthesis to material properties, and extend the topic from black phosphorus to phosphorene. The physical and transport properties are highlighted for further applications in electronic and optoelectronics devices.

  11. [Nonlinear magnetohydrodynamics

    SciTech Connect

    Not Available

    1992-11-01

    Theoretical predictions were compared with available data from JET on the threshold unstable MHD activity in toroidal confinement devices. In particular, questions arising as to Hartmans number and the selection of a kinematic viscosity are discussed.

  12. Radio Frequency Tunable Oscillator Device Based on a SmB6 Microcrystal

    NASA Astrophysics Data System (ADS)

    Stern, Alex; Efimkin, Dmitry K.; Galitski, Victor; Fisk, Zachary; Xia, Jing

    2016-04-01

    Radio frequency tunable oscillators are vital electronic components for signal generation, characterization, and processing. They are often constructed with a resonant circuit and a "negative" resistor, such as a Gunn diode, involving complex structure and large footprints. Here we report that a piece of SmB6 , 100 μ m in size, works as a current-controlled oscillator in the 30 MHz frequency range. SmB6 is a strongly correlated Kondo insulator that was recently found to have a robust surface state likely to be protected by the topology of its electronics structure. We exploit its nonlinear dynamics, and demonstrate large ac voltage outputs with frequencies from 20 Hz to 30 MHz by adjusting a small dc bias current. The behaviors of these oscillators agree well with a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. With reduced crystal size we anticipate the device to work at higher frequencies, even in the THz regime. This type of oscillator might be realized in other materials with a metallic surface and a semiconducting bulk.

  13. Radio Frequency Tunable Oscillator Device Based on a SmB_{6} Microcrystal.

    PubMed

    Stern, Alex; Efimkin, Dmitry K; Galitski, Victor; Fisk, Zachary; Xia, Jing

    2016-04-22

    Radio frequency tunable oscillators are vital electronic components for signal generation, characterization, and processing. They are often constructed with a resonant circuit and a "negative" resistor, such as a Gunn diode, involving complex structure and large footprints. Here we report that a piece of SmB_{6}, 100  μm in size, works as a current-controlled oscillator in the 30 MHz frequency range. SmB_{6} is a strongly correlated Kondo insulator that was recently found to have a robust surface state likely to be protected by the topology of its electronics structure. We exploit its nonlinear dynamics, and demonstrate large ac voltage outputs with frequencies from 20 Hz to 30 MHz by adjusting a small dc bias current. The behaviors of these oscillators agree well with a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. With reduced crystal size we anticipate the device to work at higher frequencies, even in the THz regime. This type of oscillator might be realized in other materials with a metallic surface and a semiconducting bulk.

  14. Radio Frequency Tunable Oscillator Device Based on a SmB_{6} Microcrystal.

    PubMed

    Stern, Alex; Efimkin, Dmitry K; Galitski, Victor; Fisk, Zachary; Xia, Jing

    2016-04-22

    Radio frequency tunable oscillators are vital electronic components for signal generation, characterization, and processing. They are often constructed with a resonant circuit and a "negative" resistor, such as a Gunn diode, involving complex structure and large footprints. Here we report that a piece of SmB_{6}, 100  μm in size, works as a current-controlled oscillator in the 30 MHz frequency range. SmB_{6} is a strongly correlated Kondo insulator that was recently found to have a robust surface state likely to be protected by the topology of its electronics structure. We exploit its nonlinear dynamics, and demonstrate large ac voltage outputs with frequencies from 20 Hz to 30 MHz by adjusting a small dc bias current. The behaviors of these oscillators agree well with a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. With reduced crystal size we anticipate the device to work at higher frequencies, even in the THz regime. This type of oscillator might be realized in other materials with a metallic surface and a semiconducting bulk. PMID:27152816

  15. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  16. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  17. A semiconducting microporous framework of Cd6Ag4(SPh)16 clusters interlinked using rigid and conjugated bipyridines.

    PubMed

    Xu, Chao; Hedin, Niklas; Shi, Hua-Tian; Zhang, Qian-Feng

    2014-04-11

    Ternary supertetrahedral chalcogenolate clusters were interlinked with bipyridines into a microporous semiconducting framework with properties qualitatively different from those of the original clusters. Both the framework and the clusters were effective photocatalysts, and rapidly degraded the dye rhodamine B.

  18. Dielectrophoretic Assembly of Semiconducting Carbon Nanotubes Separated and Enriched by Spin Column Chromatography and Its Application to Gas Sensing

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Fujioka, Masahiro; Mai, Kaori; Watanabe, Hideaki; Martin, Yul; Suehiro, Junya

    2012-04-01

    The present authors have previously demonstrated the electrokinetic fabrication of a single-walled carbon nanotube (SWCNT) gas sensor by employing dielectrophoresis. Because this method employs mass-produced SWCNTs, it can realize cheaper and more flexible SWCNT gas sensor fabrication than that based on the on-site synthesis of SWCNTs. In this study, a new protocol was proposed and tested for the separation and enrichment of semiconducting SWCNTs, aiming to improve the SWCNT gas sensor sensitivity. The protocol employed a spin column filled with size-exclusion dextran-based gel beads as well as two surfactants (sodium dodecyl sulfate and sodium deoxycholate), which had different affinities to metallic and semiconducting SWCNTs. The separation and enrichment of the semiconducting SWCNTs were confirmed by measuring their optical and electrical properties. The CNT gas sensor fabricated using enriched semiconducting SWCNTs was highly sensitive to nitrogen dioxide (NO2) gas, - more sensitive by 10 times than that fabricated using the pristine SWCNT mixture.

  19. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.

    PubMed

    Vikramaditya, Talapunur; Sumithra, Kanakamma

    2014-03-15

    We investigate the binding of ammonia on intrinsic and substitutionally doped semiconducting single-walled carbon nanotubes (SWCNTs) on the side walls using density functional calculations. Ammonia is found to be weakly physisorbed on intrinsic semiconducting nanotubes while on substitutional doping with boron its affinity is enhanced considerably reflected with increase in binding energies and charge transfer. This is attributed to the strong chemical interaction between electron rich nitrogen of ammonia and electron deficient boron of the doped SWCNT. On doping, the density of states are changed compared to the intrinsic case and additional levels are formed near the Fermi level leading to overlap of levels with that of ammonia indicating charge transfer. The doped SWCNTs thus are expected to be a potential candidate for detecting ammonia.

  20. Photoelectric Property Modulation by Nanoconfinement in the Longitude Direction of Short Semiconducting Nanorods.

    PubMed

    Tang, Chaolong; Jiang, Chengming; Bi, Sheng; Song, Jinhui

    2016-05-01

    Photoelectric property change in half-dimensional (0.5D) semiconducting nanomaterials as a function of illumination light intensity and materials geometry has been systematically studied. Through two independent methods, conductive atomic force microscopy (C-AFM) direct current-voltage acquisition and scanning kelvin probe microscopy (SKPM) surface potential mapping, photoelectric property of 0.5D ZnO nanomaterial has been characterized with exceptional behaviors compared with bulk/micro/one-dimensional (1D) nanomaterial. A new model by considering surface effect, quantum effect, and illumination effect has been successfully built, which could more accurately predict the photoelectric characteristics of 0.5D semiconducting nanomaterials. The findings reported in this study could potentially impact three-dimensional (3D) photoelectronics.

  1. Three-Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties.

    PubMed

    Abécassis, Benjamin

    2016-03-01

    Self-assembly of colloidal nanoparticles into higher order superstructures is becoming an important topic in current research in nanoscience. More and more research efforts are being dedicated to the controlled processing of nanoparticle dispersions to yield complex architectures from these simple building blocks. This is due to the fact that collective effects can emerge from an assembly of organized nanoparticles. Semiconducting colloidal nanocrystals such as quantum dots are promising materials for a wide range of applications in optoelectronic photovoltaics. The fundamental interactions that dictate the self-assembly of semiconducting colloidal nanocrystals in apolar solvents are reviewed with a focus on 3D structures and basic shapes (spheres, rods, and platelets). Emergent collective properties and the effect of the self-assembly on the optical properties of the particles are also discussed.

  2. Photoelectric Property Modulation by Nanoconfinement in the Longitude Direction of Short Semiconducting Nanorods.

    PubMed

    Tang, Chaolong; Jiang, Chengming; Bi, Sheng; Song, Jinhui

    2016-05-01

    Photoelectric property change in half-dimensional (0.5D) semiconducting nanomaterials as a function of illumination light intensity and materials geometry has been systematically studied. Through two independent methods, conductive atomic force microscopy (C-AFM) direct current-voltage acquisition and scanning kelvin probe microscopy (SKPM) surface potential mapping, photoelectric property of 0.5D ZnO nanomaterial has been characterized with exceptional behaviors compared with bulk/micro/one-dimensional (1D) nanomaterial. A new model by considering surface effect, quantum effect, and illumination effect has been successfully built, which could more accurately predict the photoelectric characteristics of 0.5D semiconducting nanomaterials. The findings reported in this study could potentially impact three-dimensional (3D) photoelectronics. PMID:27057764

  3. Linear ac transport in graphene semiconducting nanosystem with normal-metal electrodes

    NASA Astrophysics Data System (ADS)

    Ye, En-Jia; Sun, Yun-Lei; Lan, Jin; Shi, Yi-Jian

    2016-03-01

    Linear ac transport properties are investigated in a graphene semiconducting nanosystem, with the effect of normal-metal electrodes taken into account. We use a tight-binding approach and ac transport theory to study the dc conductance and ac emittance in normal-metal/graphene (NG) and normal-metal/graphene/normal-metal (NGN) systems with armchair-edge graphene. We find that the resonant and semiconducting behaviors in NG and NGN systems are closely related to the spatial-resolved local density of states. Furthermore, features of the size-dependent emittances in the NGN system are investigated. The results suggest a positive correlation between the width and capacitive response, and the capacitive response is robust as the size of the system increases proportionally.

  4. Technique for Determining the Viscosity and Electrical Conductivity of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C. H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus for determining the viscosity and electrical conductivity of semiconducting liquids has been developed at NASA/MSFC. The apparatus is based on the transient torque technique and utilizes a 125 micrometer diameter quartz fiber as a torsion wire and a sensitive angular detector to measure the deflection angle of the crucible containing the liquid. A rotating flow is induced in the semiconducting melt by the application of a rotating magnetic field and measurement of the magnitude and transient behavior of the induced deflection angle allows the simultaneous determination of the viscosity and electrical conductivity of the melt. Measurements at room temperature and up to 900 C were made on high purity melts.

  5. Topological Crystalline Insulator in a New Bi Semiconducting Phase.

    PubMed

    Munoz, F; Vergniory, M G; Rauch, T; Henk, J; Chulkov, E V; Mertig, I; Botti, S; Marques, M A L; Romero, A H

    2016-02-24

    Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = -2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation.

  6. Semiconducting Graphene on Silicon from First-Principles Calculations.

    PubMed

    Dang, Xuejie; Dong, Huilong; Wang, Lu; Zhao, Yanfei; Guo, Zhenyu; Hou, Tingjun; Li, Youyong; Lee, Shuit-Tong

    2015-08-25

    Graphene is a semimetal with zero band gap, which makes it impossible to turn electric conduction off below a certain limit. Transformation of graphene into a semiconductor has attracted wide attention. Owing to compatibility with Si technology, graphene adsorbed on a Si substrate is particularly attractive for future applications. However, to date there is little theoretical work on band gap engineering in graphene and its integration with Si technology. Employing first-principles calculations, we study the electronic properties of monolayer and bilayer graphene adsorbed on clean and hydrogen (H)-passivated Si (111)/Si (100) surfaces. Our calculation shows that the interaction between monolayer graphene and a H-passivated Si surface is weak, with the band gap remaining negligible. For bilayer graphene adsorbed onto a H-passivated Si surface, the band gap opens up to 108 meV owing to asymmetry introduction. In contrast, the interaction between graphene and a clean Si surface is strong, leading to formation of chemical bonds and a large band gap of 272 meV. Our results provide guidance for device designs based on integrating graphene with Si technology.

  7. Topological Crystalline Insulator in a New Bi Semiconducting Phase.

    PubMed

    Munoz, F; Vergniory, M G; Rauch, T; Henk, J; Chulkov, E V; Mertig, I; Botti, S; Marques, M A L; Romero, A H

    2016-01-01

    Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = -2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation. PMID:26905601

  8. Structural Analysis of Semiconducting Polymers Exposed to High Energy Radiation

    NASA Astrophysics Data System (ADS)

    Ahmadi Vaselabadi, Saeed; Mahadevapuram, Nikhila; Shakarisaz, David; Strzalka, Joseph; Ruchhoeft, Paul; Stein, Gila

    2015-03-01

    Semicrystalline polymers are used in low-cost electronics such as solar cells, thin film transistors, and light-emitting diodes. Their optoelectronic performance in these devices is partly dictated by molecular ordering and nanoscale structure, where the latter is particularly difficult to control. We used atom-beam radiation to crosslink the polymer poly(3-hexylthiophene) into nanoscale and microscale patterns. Ionizing radiation sources generate intermolecular cross-links that render the polymer insoluble in organic solvents. Grazing-incidence Wide-angle X-ray Scattering (GIWAXS) was used to investigate the effects of irradiation on molecular ordering of poly(3-hexylthiophene). We found that crosslinking will disrupt intermolecular ordering (reduce crystallinity and crystalline grain sizes). We also found that X-ray exposure during the WAXS measurements can induce the crosslinking through a similar mechanism, and we propose a simple method to test for the damage caused by these measurements. As an example, we find that poly (3-hexylthiophene) has measurable cross-links after 20 sec exposure to 7.35 keV radiation with flux of 1 *1011 photons/sec at an incident angle of 0.5° .

  9. Topological Crystalline Insulator in a New Bi Semiconducting Phase

    PubMed Central

    Munoz, F.; Vergniory, M. G.; Rauch, T.; Henk, J.; Chulkov, E. V.; Mertig, I.; Botti, S.; Marques, M. A. L.; Romero, A. H.

    2016-01-01

    Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = −2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation. PMID:26905601

  10. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  11. Topological Crystalline Insulator in a New Bi Semiconducting Phase

    NASA Astrophysics Data System (ADS)

    Munoz, F.; Vergniory, M. G.; Rauch, T.; Henk, J.; Chulkov, E. V.; Mertig, I.; Botti, S.; Marques, M. A. L.; Romero, A. H.

    2016-02-01

    Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = -2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation.

  12. Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells.

    PubMed

    Yan, Liang; You, Wei

    2013-08-27

    We systematically investigated GaAs/polymer hybrid solar cells in a simple planar junction, aiming to fundamentally understand the function of semiconducting polymers in GaAs/polymer-based heterojunction solar cells. A library of semiconducting polymers with different band gaps and energy levels were evaluated in GaAs/polymer planar heterojunctions. The optimized thickness of the active polymer layer was discovered to be ultrathin (~10 nm). Further, the open-circuit voltage (Voc) of such GaAs/polymer planar heterojunctions was fixed around 0.6 V, regardless of the HOMO energy level of the polymer employed. On the basis of this evidence and others, we conclude that n-type GaAs/polymer planar heterojunctions are not type II heterojunctions as originally assumed. Instead, n-type GaAs forms a Schottky barrier with its corresponding anode, while the semiconducting polymer of appropriate energy levels can function as hole transport layer and/or electron blocking layer. Additionally, we discover that both GaAs surface passivation and thermal annealing can improve the performance of GaAs/polymer hybrid solar cells.

  13. Assembling semiconducting molecules by covalent attachment to a lamellar crystalline polymer substrate

    PubMed Central

    Machatschek, Rainhard; Ortmann, Patrick; Reiter, Renate; Mecking, Stefan

    2016-01-01

    Summary We have investigated the potential of polymers containing precisely spaced side-branches for thin film applications, particularly in the context of organic electronics. Upon crystallization, the side-branches were excluded from the crystalline core of a lamellar crystal. Thus, the surfaces of these crystals were covered by side-branches. By using carboxyl groups as side-branches, which allow for chemical reactions, we could functionalize the crystal with semiconducting molecules. Here, we compare properties of crystals differing in size: small nanocrystals and large single crystals. By assembling nanocrystals on a Langmuir trough, large areas could be covered by monolayers consisting of randomly arranged nanocrystals. Alternatively, we used a method based on local supersaturation to grow large area single crystals of the precisely side-branched polymer from solution. Attachment of the semiconducting molecules to the lamellar surface of large single crystals was possible, however, only after an appropriate annealing procedure. As a function of the duration of the grafting process, the morphology of the resulting layer of semiconducting molecules changed from patchy to compact. PMID:27335767

  14. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors.

    PubMed

    Schiessl, Stefan P; Fröhlich, Nils; Held, Martin; Gannott, Florentina; Schweiger, Manuel; Forster, Michael; Scherf, Ullrich; Zaumseil, Jana

    2015-01-14

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm(2)·V(-1)·s(-1), low ohmic contact resistance, steep subthreshold swings (0.12-0.14 V/dec) and high on/off ratios (10(6)) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  15. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  16. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; George, M. A.; McCarty, P.

    1999-01-01

    As a high temperature wide-band-gap (3.3 eV at room temperature) semiconductor, ZnO has been used for many applications such as wave-guides, solar cells, and surface acoustic wave devices, Since ZnO has a 60 meV excitonic binding energy that makes it possible to produce excitonic lasing at room temperature, a recent surge of interest is to synthesize ZnO films for UV/blue/green laser diodes. These applications require films with a smooth surface, good crystal quality, and low defect density. Thus, homoepitaxial film growth is the best choice. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystal substrates grown by the hydrothermal method are mechanically polished and annealed in air for four hours before the films are deposited. The annealing temperature-dependence on ZnO substrate morphology and electrical properties is investigated. Films are synthesized by off-axis reactive sputtering deposition. This produces films that have very smooth surfaces with roughness less than or equal to 5 nm on a 5 microns x 5 microns area. The full width at half maximum of film theta rocking curves measured by the x-ray diffraction is slightly larger than that of the crystal substrate. Films are also characterized by measuring resistivity, optical transmittance, and photoluminescence. The properties of ZnO films grown on (0001) ZnO and (0001) sapphire substrates will also be compared and discussed.

  17. Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.

    2014-05-01

    The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects

  18. Radiation Effects in GMR Devices

    NASA Astrophysics Data System (ADS)

    Carroll, Turhan; Parks, S. C.; Hauser, A.; Robinette, C.; Lucy, J.; Pelekhov, D.; Hammel, P. C.; Yang, F. Y.; Johnston-Halperin, E.; Talnagi, J.; Blue, T.; Mathis, J. P.

    2010-03-01

    Current information technology relies heavily on magnetic materials via GMR read heads and magnetic random access memory (MRAM). The presumption is that these materials are radiation hard with respect to both photons and particles, potentially indicating utility for nuclear energy and space based applications. However, to date there are few detailed studies of magnetism in GMR devices in radioactive environments. This work explores the effects of gamma ray and neutron irradiation on GMR multilayers. The layer structure used in this experiment is Py/Cu/Py/FeMn/Ge. To study the effects of radiation three probes of magnetization, VSM, MR, and MOKE, are correlated pre and post radiation. We present characterization of the devices for multiple device geometries and doses up to 50Mrad for gamma rays and a minimum fast flux of (En>0.5MeV) of 6.3E12 nv for neutrons, both of which are well above the failure threshold for radiation-hard semiconducting devices.

  19. Photochromic, electrochromic, photoelectrochromic and photovoltaic devices

    DOEpatents

    Kostecki, Robert; McLarnon, Frank R.

    2000-01-01

    A light activated photoelectrochromic device is formed of a two-component system formed of a photoactive charge carrier generating material and electrochromic material (plus an elecrolyte). Light interacts with a semiconductive material to generate hole-electron charge carriers which cause a redox reaction in the electrochromic material. One device is formed of hydrated nickel oxide as the electrochromic layer and polycrystalline titanium dioxide as the charge generating material. The materials may be formed as discrete layers or mixed together. Because of the direct charge transfer between the layers, a circuit to apply a voltage to drive the electrochromic reaction is not required, although one can be used to enhance the reaction. The hydrated nickel oxide-titanium dioxide materials can also be used to form a photovoltaic device for generating electricity.

  20. Nonlinear Terahertz Absorption of Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2016-04-13

    Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing. PMID:26978242

  1. H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes.

    PubMed

    Pochorovski, Igor; Wang, Huiliang; Feldblyum, Jeremy I; Zhang, Xiaodong; Antaris, Alexander L; Bao, Zhenan

    2015-04-01

    Semiconducting, single-walled carbon nanotubes (SWNTs) are promising candidates for applications in thin-film transistors, solar cells, and biological imaging. To harness their full potential, however, it is necessary to separate the semiconducting from the metallic SWNTs present in the as-synthesized SWNT mixture. While various polymers are able to selectively disperse semiconducting SWNTs, the subsequent removal of the polymer is challenging. However, many applications require semiconducting SWNTs in their pure form. Toward this goal, we have designed a 2-ureido-6[1H]-pyrimidinone (UPy)-based H-bonded supramolecular polymer that can selectively disperse semiconducting SWNTs. The dispersion purity is inversely related to the dispersion yield. In contrast to conventional polymers, the polymer described herein was shown to disassemble into monomeric units upon addition of an H-bond-disrupting agent, enabling isolation of dispersant-free, semiconducting SWNTs. PMID:25815604

  2. Integration of High-Purity Carbon Nanotube Solution into Electronic Devices

    NASA Astrophysics Data System (ADS)

    Tulevski, George; IBM TJ Watson Reserach Center Team

    Due to their exceptional electronic properties, carbon nanotubes (cnt) are leading candidates to be employed as channel materials in future nanoelectronic devices. A key bottleneck to realizing device integration is the sorting of carbon nanotubes, namely the isolation of high-purity, semiconducting cnt solutions. This talk will describe our efforts in using polymer-based sorting methods to isolate high-density and high-purity semiconducting cnt solutions. We explore the dependence of starting material and polymer to cnt ratio on the effectiveness of the separation. We confirm optically and electrically that the semiconducting purity is >99.99% through several thousand individual device measurements. In addition to single-cnt devices, thin-film transistors were also fabricated and tested. Due to the high purity of the solutions, device switching (~105 ION/IOFF) was observed at channel lengths below the percolation threshold (<500 nm). Operating below the percolation threshold allows for devices with much higher current densities and effective mobilities as transport is now the result of direct transport as opposed to hopping between cnts.

  3. Excitons in semiconducting superlattices, quantum wells, and ternary alloys. Progress report, September 15, 1991--May 31, 1992

    SciTech Connect

    Sturge, M.D.; Nahory, R.E.; Tamargo, M.C.

    1992-06-01

    Semiconducting layered structures can now be fabricated with precisely defined layer thicknesses down to one monolayer. An example is the ``superlattice`` (SL) structure, in which to semiconductors with different band gaps are interleaved. The electronic and optical properties of the SL are quite different from those of the constitutents and offer interesting new possibilities both in device design and in basic physics. This proposal aims to improve our understanding of optically excited states in SL`s, particularly in the so-called ``Type 2 indirect`` SL`s in which in electron and hole created by optical excitation are separated both in real and in momentum space. We study these structures by time-resolved tunable laser spectroscopy, with and without external perturbations such as magnetic field, electric field, and uniaxial stress. In SLs with only a few atomic layers per period the familiar ``effective mass model`` of semiconductor states breaks down. We have made precise optical experiments on well-characterized material to test current ``first principles`` calculations of the band structure. Our work under this grant has shown that the material we are using is of sufficiently high quality to test the theoretical predictions. Comparison of theory and experiment provides a new and sensitive probe of the interface quality on a fine scale. Statistical analysis of the temperature dependence of the exciton decay dynamics provides complementary information. From a careful study of the exciton spectra of the recently discovered mixed type 1- type 2 CdTe/CdZnTe SLs we have obtained the band offset at the CdTe/CdZnTe interface to unprecedented accuracy.

  4. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-01

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN. PMID:24722065

  5. Nonlinear multiferroic phase shifters for microwave frequencies

    SciTech Connect

    Ustinov, Alexey B.; Kalinikos, Boris A.; Srinivasan, G.

    2014-02-03

    A nonlinear microwave phase shifter based on a planar multiferroic composite has been studied. The multiferroic structure is fabricated in the form of a bilayer consisting of yttrium iron garnet and barium strontium titanate. The principle of operation of the device is based on the linear and nonlinear control of the phase shift of the hybrid spin-electromagnetic waves propagating in the bilayer. The linear control is realized with magnetic and electric fields. The nonlinear control is provided by the input power of microwave signal. The device showed a nonlinear phase shift up to 250°, electric field induced phase shift up to 330°, and magnetic field induced phase shift of more than 180°.

  6. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  7. Light emitting ceramic device and method for fabricating the same

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  8. Semiconductor ferroelectric compositions and their use in photovoltaic devices

    DOEpatents

    Rappe, Andrew M; Davies, Peter K; Spanier, Jonathan E; Grinberg, Ilya; West, Don Vincent

    2016-11-01

    Disclosed herein are ferroelectric perovskites characterized as having a band gap, Egap, of less than 2.5 eV. Also disclosed are compounds comprising a solid solution of KNbO3 and BaNi1/2Nb1/2O3-delta, wherein delta is in the range of from 0 to about 1. The specification also discloses photovoltaic devices comprising one or more solar absorbing layers, wherein at least one of the solar absorbing layers comprises a semiconducting ferroelectric layer. Finally, this patent application provides solar cell, comprising: a heterojunction of n- and p-type semiconductors characterized as comprising an interface layer disposed between the n- and p-type semiconductors, the interface layer comprising a semiconducting ferroelectric absorber layer capable of enhancing light absorption and carrier separation.

  9. Broadly tunable quasi-phase-matching in nonlinear metamaterials

    SciTech Connect

    Rose, Alec; Smith, David R.

    2011-07-15

    The ability to tune the quasi-phase-matching (QPM) frequency is a highly desirable though lacking feature of many nonlinear devices. To this end, we consider QPM in a special class of active nonlinear metamaterials (MMs), whose properties can be controlled postfabrication. By application of a tunable, periodic perturbation in the linear susceptibility (magnetic or electric) of a MM, a single nonlinear device can be constructed to operate over an exceedingly broad bandwidth. We propose a nonlinear MM for QPM second-order harmonic generation at terahertz frequencies, predicted to have a tunable bandwidth of over 100%.

  10. Two spatially separated phases in semiconducting Rb0.8Fe1.5S2

    DOE PAGESBeta

    Wang, Meng; Tian, Wei; Valdivia, P.; Chi, Songxue; Bourret-Courchesne, E.; Dai, Pengcheng; Birgeneau, R. J.

    2014-09-26

    We report neutron scattering and transport measurements on semiconducting Rb0.8Fe1.5S2, a compound isostructural and isoelectronic to the well-studied A0.8FeySe2(A = K, Rb, Cs, Tl/K) superconducting systems. Both resistivity and DC susceptibility measurements reveal a magnetic phase transition at T = 275 K. Neutron diffraction studies show that the 275 K transition originates from a phase with rhombic iron vacancy order which exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In addition, the stripe antiferromagnetic phase interdigitates mesoscopically with an ubiquitous phase with √5 x√5 iron vacancy order. This phase has a magnetic transition at TN = 425 K andmore » an iron vacancy order-disorder transition at TS = 600 K. These two different structural phases are closely similar to those observed in the isomorphous Se materials. Based on the close similarities of the in-plane antiferromagnetic structures, moments sizes, and ordering temperatures in semiconducting Rb0.8Fe1.5S2 and K0.81Fe1.58Se2, we argue that the in-plane antiferromagnetic order arises from strong coupling between local moments. Superconductivity, previously observed in the A0.8FeySe2₋ zSz system, is absent in A0.8Fe1.5S2, which has a semiconducting ground state. We discuss the implied relationship between stripe and block antiferromagnetism and superconductivity in these materials as well as a strategy for further investigation.« less

  11. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2016-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1 – 1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01 % – 1 % of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the upcoming Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  12. Structural and transport properties of metallic and semiconducting Sb{sub 2}Te{sub 3} alloy

    SciTech Connect

    Das, Diptasikha; Malik, K.; Bandyopadhyay, S.; Banerjee, S.; Banerjee, Aritra; Dhara, S.

    2015-06-24

    Metallic and semiconducting Sb{sub 2}Te{sub 3} alloys have been synthesized by controlling the cooling rate in the solid state reaction method. Temperature dependent resistivity is measured down to 10 K for the identification of metallic and semiconducting phases. Structural studies are performed by both X-ray diffraction (XRD) and Raman spectroscopic analyses. XRD study confirms single phase nature of polycrystalline alloys in the detectable limit. Raman spectroscopy is used to understand the vibration properties of Sb{sub 2}Te{sub 3} crystals. Widening of full width at half maxima of the highest intense peak in the XRD analysis indicates higher amount of defects in the semiconducting phase than that in the metallic one. Raman study indicates presence of impurity phases in the semiconducting Sb{sub 2}Te{sub 3}. The resistivity of semiconducting Sb{sub 2}Te{sub 3} sample is higher than that of metallic one, which corroborates with the XRD and Raman analyses.

  13. Exploring a Lead-free Semiconducting Hybrid Ferroelectric with a Zero-Dimensional Perovskite-like Structure.

    PubMed

    Sun, Zhihua; Zeb, Aurang; Liu, Sijie; Ji, Chengmin; Khan, Tariq; Li, Lina; Hong, Maochun; Luo, Junhua

    2016-09-19

    Perovskite lead halides (CH3 NH3 PbI3 ) have recently taken a promising position in photovoltaics and optoelectronics because of remarkable semiconducting properties and possible ferroelectricity. However, the potential toxicity of lead arouses great environmental concern for widespread application. A new chemically tailored lead-free semiconducting hybrid ferroelectric is reported, N-methylpyrrolidinium)3 Sb2 Br9 (1), which consists of a zero-dimensional (0-D) perovskite-like anionic framework connected by corner- sharing SbBr6 coordinated octahedra. It presents a large ferroelectric spontaneous polarization of approximately 7.6 μC cm(-2) , as well as notable semiconducting properties, including positive temperature-dependent conductivity and ultraviolet-sensitive photoconductivity. Theoretical analysis of electronic structure and energy gap discloses a dominant contribution of the 0-D perovskite-like structure to the semiconducting properties of the material. This finding throws light on the rational design of new perovskite-like hybrids, especially lead-free semiconducting ferroelectrics.

  14. Electrical transport in amorphous semiconducting AlMgB14 films

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, G.; Shinar, J.; Wang, N. L.; Cook, B. A.; Anderegg, J. W.; Constant, A. P.; Russell, A. M.; Snyder, J. E.

    2004-08-01

    The electrical transport properties of semiconducting AlMgB14 films deposited at room temperature and 573K are reported in this letter. The as-deposited films are amorphous, and they exhibit high n-type electrical conductivity, which is believed to stem from the conduction electrons donated by Al, Mg, and/or Fe impurities in these films. The film deposited at 573K is less conductive than the room-temperature-deposited film. This is attributed to the nature of donor or trap states in the band gap related to the different deposition temperatures.

  15. The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Moore, Thomas E.

    1992-01-01

    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions.

  16. Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition

    NASA Astrophysics Data System (ADS)

    Kakiuchida, Hiroshi; Jin, Ping; Nakao, Setsuo; Tazawa, Masato

    2007-02-01

    The optical constants of vanadium dioxide (VO2) films were determined at visible and near-infrared wavelengths at various temperatures during a semiconductive-metallic phase transition by ellipsometric analysis with Lorentz-oscillator formulae. The reversible changes in optical constants against temperature due to thermochromism were observed at around 70 °C. The wavelength dispersions of the optical constants were well expressed by the sum of three oscillators and their oscillating energies were attributed to photon-excited transitions. The variation in band structure during the phase transition was monitored, and the relationship between the band structure and optical properties was discussed.

  17. Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing

    NASA Astrophysics Data System (ADS)

    Rea, Ilaria; Terracciano, Monica; Chandrasekaran, Soundarrajan; Voelcker, Nicolas H.; Dardano, Principia; Martucci, Nicola M.; Lamberti, Annalisa; De Stefano, Luca

    2016-09-01

    Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence emission from the resulting silicon diatoms and, at the same time, to allow the immobilization of biological probes, namely proteins and antibodies, via silanization. We demonstrate that light emission from semiconductive silicon diatoms can be used for antibody-antigen recognition, endorsing this material as optoelectronic transducer.

  18. Tunable many-body interactions in semiconducting graphene: Giant excitonic effect and strong optical absorption

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc; Wu, Zhigang

    2015-07-01

    Electronic and optical properties of graphene depend strongly on many-body interactions. Employing the highly accurate many-body perturbation approach based on Green's functions, we find a large renormalization over independent particle methods of the fundamental band gaps of semiconducting graphene structures with periodic defects. Additionally, their exciton binding energies are larger than 0.4 eV, suggesting significantly strengthened electron-electron and electron-hole interactions. Their absorption spectra show two strong peaks whose positions are sensitive to the defect fraction and distribution. The strong near-edge optical absorption and excellent tunability make these two-dimensional materials promising for optoelectronic applications.

  19. Switching behavior of semiconducting carbon nanotubes under an external electric field

    NASA Astrophysics Data System (ADS)

    Rochefort, Alain; Di Ventra, Massimiliano; Avouris, Phaedon

    2001-04-01

    We investigate theoretically the switching characteristics of semiconducting carbon nanotubes connected to gold electrodes under an external (gate) electric field. We find that the external introduction of holes is necessary to account for the experimental observations. We identify metal-induced gap states (MIGS) at the contacts and find that the MIGS of an undoped tube would not significantly affect the switching behavior, even for very short tube lengths. We also explore the miniaturization limits of nanotube transistors, and, on the basis of their switching ratio, we conclude that transistors with channels as short as 50 Å would have adequate switching characteristics.

  20. Synthesis and structural characterization of vertical ferromagnetic MnAs/semiconducting InAs heterojunction nanowires

    NASA Astrophysics Data System (ADS)

    Kodaira, Ryutaro; Hara, Shinjiro; Kabamoto, Kyohei; Fujimagari, Hiromu

    2016-07-01

    The purpose of this study is to synthesize vertical ferromagnetic/semiconducting heterojunction nanowires by combing the catalyst-free selective-area growth of InAs nanowires and the endotaxial nanoclustering of MnAs and to structurally and magnetically characterize them. MnAs penetrates the InAs nanowires to form nanoclusters. The surface migration length of manganese adatoms on the nanowires, which is estimated to be 600 nm at 580 °C, is a key to the successful fabrication of vertical MnAs/InAs heterojunction nanowires with atomically abrupt heterointerfaces.

  1. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    SciTech Connect

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-15

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  2. Step-edge faceting and local metallization of a single-wall semiconducting carbon nanotube

    NASA Astrophysics Data System (ADS)

    Clair, Sylvain; Kim, Yousoo; Kawai, Maki

    2011-10-01

    The adsorption of a single-wall carbon nanotube on a well-defined metal surface produces substantial mutual interaction that can lead to strong effects both on the nanotube and on the substrate side. We report two kinds of step faceting on Au(111) and Cu(111). We observed local metallization of a semiconducting nanotube induced by the deformation pressure of crossing a step edge on Cu(111). The origin of this effect is discussed. Our results illustrate the complexity and the large number of situations encountered for the nanotube-on-metal system.

  3. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  4. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  5. Transient Torque Technique for Viscosity and Electrical Conductivity Determination of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.

  6. Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing.

    PubMed

    Rea, Ilaria; Terracciano, Monica; Chandrasekaran, Soundarrajan; Voelcker, Nicolas H; Dardano, Principia; Martucci, Nicola M; Lamberti, Annalisa; De Stefano, Luca

    2016-12-01

    Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence emission from the resulting silicon diatoms and, at the same time, to allow the immobilization of biological probes, namely proteins and antibodies, via silanization. We demonstrate that light emission from semiconductive silicon diatoms can be used for antibody-antigen recognition, endorsing this material as optoelectronic transducer. PMID:27637897

  7. Nonlinear dynamics enabled systems design and control

    NASA Astrophysics Data System (ADS)

    Lacarbonara, Walter

    2012-08-01

    There is a growing interest towards design of high-performance structures and devices by seeking ways to exploit advantageously different nonlinearities at different scales rather than constraining operations to avoid nonlinear phenomena. Tools of robust nonlinear modeling and analysis are shown to be turned into design tools for achieving high levels of vibration control authority and synthesis of engineered systems and materials. A brief overview of methods and results on active resonance cancellation and passive nonlinear hysteretic vibration absorbers is illustrated. Recent results on the diffused hysteresis exhibited at the nano-microscale in nanocomposites due to the powerful nonlinear stick-slip mechanism exhibited by carbon nanotubes dispersed in a hosting matrix are discussed. The optimization of the main microstructural parameters is shown to lead to unprecedented levels of damping capacity in next-generation nanostructured materials tailored for wide-band vibrational energy dissipation.

  8. [Nonlinear magnetohydrodynamics

    SciTech Connect

    Not Available

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.

  9. Optical nonlinearity of HBI in different solvents

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Ma, Lina; Geng, Yaohui; Zhang, Siwen; Wang, Zhe; Cheng, Xiaoman

    2014-04-01

    2-(2'-Hydroxyphenyl) benzimidazole (HBI) is one kind of organic molecules featuring excited-state proton transfer (ESPT). The nonlinear optical properties of 2-(2'-hydroxyphenyl) benzimidazole (HBI) in different polar solvents were investigated by means of Z-scan technique under the excitation of the 1064 nm picoseconds laser pulse. The experimental results show that the nonlinear refractive indices decrease with the enhancement of the polarity of the solvent. The nonlinear refractive indices sensitive to the solvent polarity allow them to be widely used for the optoelectronic devices.

  10. Vibration control using nonlinear damped coupling

    NASA Astrophysics Data System (ADS)

    Ghandchi Tehrani, Maryam; Gattulli, Vincenzo

    2016-09-01

    In this paper, a dynamical system, which consists of two linear mechanical oscillators, coupled with a nonlinear damping device is considered. First, the dynamic equations are derived, then, an analytical method such as harmonic balance method, is applied to obtain the response to a harmonic base excitation. The response of the system depends on the excitation characteristics. A parametric study is carried out based on different base excitation amplitudes, frequencies, and different nonlinear damping values and the response of the system is fully described. For validation, time domain simulations are carried out to obtain the nonlinear response of the coupled system.

  11. Defect characterization and stress analysis by white beam synchrotron X-ray topography in single crystal semiconducting materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Vishwanath

    Semiconductor devices are becoming increasingly more complex as the number of transistors increases in the same Integrated Circuit (IC) area. Due to the complexity in design; processing and packaging of the device plays a crucial role in the IC fabrication. Package induced residual stress are not only detrimental to device performance but can also lead to device failure. We propose a non-destructive method to determine the complete stress state at each point on a packaged Silicon device. Surface and edge defect created as a result of various manufacturing steps were characterized using different techniques, primarily X-ray diffraction topography, optical microscopy, SEM and TEM. Residual stress plays an important role in the performance and lifetime of single crystal device material. Here we present a novel technique using white beam synchrotron X-ray diffraction reticulography, Stress Mapping and Analysis via Ray Tracing (SMART) in order to determine residual stress level at an array of points over the entire crystal area. This method has a unique advantage compared with other stress measurement technique in that it can evaluate all six components of the stress tensor. The underlying experimental technique is based on white beam synchrotron X-ray diffraction topography and ray tracing. An array of X-ray micro-beam is illuminated on the single crystal sample and multiple reflections (reticulographs) are recorded simultaneously on a photographic film. Crystallographic plane normal vector at the location of each micro-beam in the crystal is calculated. The variation of the plane normal vector direction is due to residual strain (both sheer and dilatational) present in the crystal. By considering three different diffracting planes and corresponding reticulograph a complete state of stress is calculated. Principle, applications and limitations are discussed. White beam synchrotron reticulography is used in reflection geometry to evaluate complete residual stress tensor

  12. NOVEL SIGNAL PROCESSING WITH NONLINEAR TRANSMISSION LINES

    SciTech Connect

    D. REAGOR; ET AL

    2000-08-01

    Nonlinear dielectrics offer uniquely strong and tunable nonlinearities that make them attractive for current devices (for example, frequency-agile microwave filters) and for future signal-processing technologies. The goal of this project is to understand pulse propagation on nonlinear coplanar waveguide prototype devices. We have performed time-domain and frequency-domain experimental studies of simple waveguide structures and pursued a theoretical understanding of the propagation of signals on these nonlinear waveguides. To realistically assess the potential applications, we used a time-domain measurement and analysis technique developed during this project to perform a broadband electrodynamics characterization in terms of nonlinear, dispersive, and dissipative effects. We completed a comprehensive study of coplanar waveguides made from high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric single-crystal SrTiO{sub 3} substrates. By using parameters determined from small-signal (linear) transmission characteristics of the waveguides, we develop a model equation that successfully predicts and describes large-signal (nonlinear) behavior.

  13. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  14. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers.

    PubMed

    Wang, Wei; Hwang, Sun Kak; Kim, Kang Lib; Lee, Ju Han; Cho, Suk Man; Park, Cheolmin

    2015-05-27

    The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.

  15. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    SciTech Connect

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  16. Self-Trapping of Charge Carriers in Semiconducting Carbon Nanotubes: Structural Analysis.

    PubMed

    Adamska, Lyudmyla; Nazin, George V; Doorn, Stephen K; Tretiak, Sergei

    2015-10-01

    The spatial extent of charged electronic states in semiconducting carbon nanotubes with indices (6,5) and (7,6) was evaluated using density functional theory. It was observed that electrons and holes self-trap along the nanotube axis on length scales of about 4 and 8 nm, respectively, which localize cations and anions on comparable length scales. Self-trapping is accompanied by local structural distortions showing periodic bond-length alternation. The average lengthening (shortening) of the bonds for anions (cations) is expected to shift the G-mode frequency to lower (higher) values. The smaller-diameter nanotube has reduced structural relaxation due to higher carbon-carbon bond strain. The reorganization energy due to charge-induced deformations in both nanotubes is found to be in the 30-60 meV range. Our results represent the first theoretical simulation of self-trapping of charge carriers in semiconducting nanotubes, and agree with available experimental data. PMID:26722885

  17. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    SciTech Connect

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  18. Active Control of Protein and Ionic Transport through Semiconducting Conical Nanopores

    NASA Astrophysics Data System (ADS)

    James, Teena; Kalinin, Yevgeniy; Chan, Chih-Chieh; Randhawa, Jatinder; Gaevski, Mikhail; Gracias, David

    2013-03-01

    Nanopores with conical geometries have been found to rectify ionic current in electrolytes. While nanopores in semiconducting membranes offer the ability to modulate ionic transport, the fabrication of conical nanopores in silicon has proven challenging. Here, we report the discovery that Au nanoparticle-assisted plasma etching results in the formation of conical etch profiles in Si. We show that this process provides a versatile means to fabricate nanopores on Si substrates with variable pore-diameters and cone-angles. When in contact with aqueous electrolyte solution (pH>3), the nanopore was found to exhibit negative surface charge due to de-protonation of the Si-OH surface groups. The rectification ratio of ionic current through the pore was thus found to be variable by altering the pH, owing to the amphoteric nature of Si-OH surface groups (pKa 6.9) and was also dependent on the ionic strengths, agreeing with the theoretical predictions based on Poisson -Nernst -Planck equation. We demonstrate that these semiconducting conical nanopores can function as ionic switches with high on-off ratios, by varying Si surface charge through voltage gating. Further, we demonstrate voltage gated control over protein translocation through these pores.

  19. Half-cell potentials of semiconductive simple binary sulphides in aqueous solution

    USGS Publications Warehouse

    Sato, M.

    1966-01-01

    Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.

  20. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.

    PubMed

    Li, Shisheng; Liu, Chang; Hou, Peng-Xiang; Sun, Dong-Ming; Cheng, Hui-Ming

    2012-11-27

    Selective removal of metallic single-walled carbon nanotubes (SWCNTs) and consequent enrichment of semiconducting SWCNTs were achieved through an efficient carbothermic reaction with a NiO thin film at a relatively low temperature of 350 °C. All-SWCNT field effect transistors (FETs) were fabricated with the aid of a patterned NiO mask, in which the as-grown SWCNTs behaving as source/drain electrodes and the remaining semiconducting SWCNTs that survive in the carbothermic reaction as a channel material. The all-SWCNT FETs demonstrate improved current ON/OFF ratios of ∼10(3).

  1. Theory and design of nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Rose, Alec Daniel

    If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers

  2. Structural optimization for nonlinear dynamic response.

    PubMed

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  3. Materials growth and characterization of thermoelectric and resistive switching devices

    NASA Astrophysics Data System (ADS)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of

  4. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  5. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  6. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  7. Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.

    PubMed

    In, Chihun; Kim, Hyeon-Don; Min, Bumki; Choi, Hyunyong

    2016-02-17

    The first experimental demonstration of nonlinear terahertz difference-frequency generation in a hybrid graphene metadevice is reported. Decades of research have revealed that terahertz-wave generation is impossible in single-layer graphene. This limitation is overcome and nonlinear terahertz generation by ultra-short optical pulse injection is demonstrated. This device is an essential step toward atomically thin, nonlinear terahertz optoelectronic components. PMID:26639550

  8. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  9. Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers.

    PubMed

    Deria, Pravas; Von Bargen, Christopher D; Olivier, Jean-Hubert; Kumbhar, Amar S; Saven, Jeffery G; Therien, Michael J

    2013-10-30

    We establish the requisite design for aryleneethynylene polymers that give rise to single-handed helical wrapping of single-walled carbon nanotubes (SWNTs). Highly charged semiconducting polymers that utilize either an (R)- or (S)-1,1'-bi-2-naphthol component in their respective conjugated backbones manifest HRTEM and AFM images of single-chain-wrapped SWNTs that reveal significant preferences for the anticipated helical wrapping handedness; statistical analysis of these images, however, indicates that ∼20% of the helical structures are formed with the "unexpected" handedness. CD spectroscopic data, coupled with TDDFT-based computational studies that correlate the spectral signatures of semiconducting polymer-wrapped SWNT assemblies with the structural properties of the chiral 1,1'-binaphthyl unit, suggest strongly that two distinct binaphthalene SWNT binding modes, cisoid-facial and cisoid-side, are possible for these polymers, with the latter mode responsible for inversion of helical chirality and the population of polymer-SWNT superstructures that feature the unexpected polymer helical wrapping chirality at the nanotube surface. Analogous aryleneethynylene polymers were synthesized that feature a 2,2'-(1,3-benzyloxy)-bridged (b)-1,1'-bi-2-naphthol unit: this 1,1'-bi-2-naphthol derivative is characterized by a bridging 2,2'-1,3 benzyloxy tether that restricts the torsional angle between the two naphthalene subunits along its C1-C1' chirality axis to larger, oblique angles that facilitate more extensive van der Waals contact of the naphthyl subunits with the nanotube. Similar microscopic, spectroscopic, and computational studies determine that chiral polymers based on conformationally restricted transoid binaphthyl units direct preferential facial binding of the polymer with the SWNT and thereby guarantee helically wrapped polymer-nanotube superstructures of fixed helical chirality. Molecular dynamics simulations provide an integrated picture tying together the

  10. Two-wavelength operation of the nonlinear fiber loop mirror.

    PubMed

    Blow, K J; Doran, N J; Nayar, B K; Nelson, B P

    1990-02-15

    We describe the two-wavelength operation of the nonlinear fiber loop mirror. In this mode of operation a high-power signal at one wavelength switches a low-power signal at another wavelength. This device is investigated both theoretically and experimentally. The experimental results show that the nonlinear loop mirror performs as an optical modulator that consists of all-fiber components.

  11. Noise in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2009-08-01

    List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  12. Nonlinear Submodels Of Orthogonal Linear Models

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.

    1973-01-01

    It is the purpose of this paper to suggest the orthogonal analysis of variance as a device for simplifying either the analytic or iterative problem of finding LS (least squares) estimates for the parameters of particular nonlinear models. (Author/RK)

  13. Nonlinear Circuit Concepts -- An Elementary Experiment.

    ERIC Educational Resources Information Center

    Matolyak, J.; And Others

    1983-01-01

    Describes equipment and procedures for an experiment using diodes to introduce non-linear electronic devices in a freshman physics laboratory. The experiment involves calculation and plotting of the characteristic-curve and load-line to predict the operating point and compare prediction to experimentally determined values. Background information…

  14. La 1-x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties.

    PubMed

    Culebras, Mario; Torán, Raquel; Gómez, Clara M; Cantarero, Andrés

    2014-01-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content. PMID:25206315

  15. Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications.

    PubMed

    Islam, Ahmad E; Rogers, John A; Alam, Muhammad A

    2015-12-22

    High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements.

  16. Green function solution of the Boltzmann transport equation for semiconducting thin film with rough boundaries

    NASA Astrophysics Data System (ADS)

    Ketenoğlu, D.; Ünal, B.

    2012-08-01

    In this study the Green function solution of the Boltzmann transport equation on semiconducting thin film with irregular walls has been applied for the first time. The effects of electron scattering caused by these irregularities on the electrical conductivity have been investigated. First of all by using coordinate transformations, the irregularities on the walls have been transferred into the volume and in this way the both surfaces have been brought into flat forms. By taking two models, Gaussian and exponential, for random potential energy term contained in the transformed Hamiltonian as the perturbation, the resistivity results have been calculated and compared with the ones obtained from the methods widely known in the literature. The Boltzmann transport equation has been solved in relaxation time approximation for the irregular walled system in the case of no magnetic field.

  17. Half-metallic ferromagnetism in Cr-doped semiconducting Ge-chalcogenide: Density functional approach

    SciTech Connect

    Saini, Hardev S.; Singh, Mukhtiyar; Thakur, Jyoti; Kashyap, Manish K.

    2014-04-24

    A supercell approach has been used to calculate the electronic and magnetic properties of Cr-doped Ge chalcogenide, Ge{sub 1−x}Cr{sub x}Te (x = 0.25 and 0.125). The calculations have been performed using full potential Linear Augmented Plane Wave (FPLAPW) method within generalized gradient approximation (GGA) as exchange-correlation (XC) potential. The calculated results show that the doping of Cr induces the 100% spin polarization at Fermi level (EF) and showed the robust half metallic ferromagnetism in this compound. Thus, the compound at both dopant concentrations behave as dilute magnetic semiconductor (DMS) showing metallic property in majority and semiconducting for minority spin channels which is best suited for spintronic applications. The total magnetic moments of this compound are mainly due to Cr-d states present at E{sup F} with negligible contribution from electronic states of other atoms.

  18. Semiconducting properties of amorphous GaZnSnO thin film based on combinatorial electronic structures

    SciTech Connect

    Kim, B. K.; Park, J. S.; Kim, D. H.; Chung, K. B.

    2014-05-05

    Semiconducting properties and electronic structures of amorphous GaZnSnO (GZTO) thin films are investigated with respect to metal cationic composition. An increase of the cationic Sn ratio resulted in an increase of the carrier concentration and a decrease of the mobility of the films. Combinatorial analysis revealed that the electrical characteristics of GZTO films are strongly correlated to changes in electronic structure. The increase in carrier concentration is related to the generation of vacancies by the changes of oxygen coordination around the cationic metal and the shallow band edge state below the conduction band. On the other hand, the decrease of mobility can be explained by the deep band edge state, and the difference between the experimental conduction band and simulated conduction band by the combinatorial electronic structure based on the chemical composition.

  19. Vacuum-field Rabi splitting in semiconducting core-shell microsphere

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi; Kaneno, Toshikazu; Ishihara, Hajime

    2006-04-01

    The optical properties of a semiconducting core-shell microsphere are studied theoretically. Exciton states confined in the shell region strongly and selectively couple with the whispering gallery modes (WGMs), resulting in a large well-defined vacuum-field Rabi splitting in the optical spectra. The spectral shape is discussed in detail by decomposing the scattering cross section into exciton, background, and their interference contributions. If the thickness of the shell is sufficiently small, the Rabi splitting is proportional to the square root of the shell volume and the normalized intensity of the WGM at the shell region. Further, it is found that the WGM with smaller angular momentum results in a larger Rabi splitting.

  20. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films.

    PubMed

    Kim, D J; Connell, J G; Seo, S S A; Gruverman, A

    2016-04-15

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. PMID:26933770

  1. A photodegradable hexaaza-pentacene molecule for selective dispersion of large-diameter semiconducting carbon nanotubes.

    PubMed

    Han, Jie; Ji, Qiyan; Li, Hongbo; Li, Gang; Qiu, Song; Li, Hai-Bei; Zhang, Qichun; Jin, Hehua; Li, Qingwen; Zhang, Jin

    2016-06-01

    Harvesting high-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with removable dispersants remains a challenge. In this work, we demonstrate that small heteroacene derivatives may serve as promising selective dispersants for sorting s-SWCNTs. A rich N "doped" and thiophene-substituted hexaazapentacene molecule, denoted as 4HP, was found to be more favorable for high-purity s-SWCNTs with large diameters. Importantly, 4HP is photodegradable under 365 nm or blue light, which enables a simple deposition approach for the formation of clean s-SWCNT networks. The as-fabricated thin film transistors show excellent performance with a charge-mobility of 30-80 cm(2) V(-1) s(-1) and an on-off ratio of 10(4)-10(6). PMID:27230421

  2. First-principles calculations of semiconducting TiMgN2

    NASA Astrophysics Data System (ADS)

    Irokawa, Yoshihiro; Usami, Mamoru

    2016-09-01

    We investigated semiconducting TiMgN2 by a density functional approach. As a result, we found that the L11 structure was more stable than the L10 and CH structures. The band gap of L11 TiMgN2 calculated using the generalized gradient approximation was 0.27 eV, indicating an indirect band gap. Here, we show that a N vacancy introduces a donor level, but Ti and Mg vacancies introduce an acceptor level, suggesting the possibility of obtaining either n- or p-type semiconductors by introducing a specific vacancy. Since L11 TiMgN2 is a layered structure, it could be epitaxially grown by layer-by-layer deposition.

  3. Genetically improved monolayer-forming tobacco mosaic viruses to generate nanostructured semiconducting bio/inorganic hybrids.

    PubMed

    Atanasova, Petia; Stitz, Nina; Sanctis, Shawn; Maurer, Johannes H M; Hoffmann, Rudolf C; Eiben, Sabine; Jeske, Holger; Schneider, Jörg J; Bill, Joachim

    2015-04-01

    The genetically determined design of structured functional bio/inorganic materials was investigated by applying a convective assembly approach. Wildtype tobacco mosaic virus (wt TMV) as well as several TMV mutants were organized on substrates over macroscopic-length scales. Depending on the virus type, the self-organization behavior showed pronounced differences in the surface arrangement under the same convective assembly conditions. Additionally, under varying assembly parameters, the virus particles generated structures encompassing morphologies emerging from single micrometer long fibers aligned parallel to the triple-contact line through disordered but dense films to smooth and uniform monolayers. Monolayers with diverse packing densities were used as templates to form TMV/ZnO hybrid materials. The semiconducting properties can be directly designed and tuned by the variation of the template architecture which are reflected in the transistor performance. PMID:25768914

  4. Near valence-band electronic properties of semiconducting β -Ga2O3 (100) single crystals

    NASA Astrophysics Data System (ADS)

    Navarro-Quezada, A.; Alamé, S.; Esser, N.; Furthmüller, J.; Bechstedt, F.; Galazka, Z.; Skuridina, D.; Vogt, P.

    2015-11-01

    β -Ga2O3 is a transparent wide-band-gap semiconductor that has attracted considerable interest in recent years due to its suitable electrical conductivity and transparency in the ultraviolet spectral region. In this work we investigate the electronic properties of the near valence-band-edge region for semiconducting β -Ga2O3 (100) bulk single crystals using core-level photoelectron spectroscopy and ab initio theory within the framework of density functional theory and the GW approach. We find good agreement between the experimental results and the theoretical calculations. This is explained by the hybridization of the Ga 3 d and O 2 s states, similar as for In2O3 .

  5. High Magnetoresistance in Fully Epitaxial Magnetic Tunnel Junctions with a Semiconducting GaOx Tunnel Barrier

    NASA Astrophysics Data System (ADS)

    Matsuo, Norihiro; Doko, Naoki; Takada, Tetsuro; Saito, Hidekazu; Yuasa, Shinji

    2016-09-01

    We fabricate magnetic tunnel junctions with fully epitaxial Fe (001 )/GaOx(001 )/Fe (001 ) structure, where the GaOx is a wide band-gap semiconductor with a cubic spinel-type crystal structure. Tunneling magnetoresistance ratios up to 92% (125%) are observed at room temperature (20 K), which evidently indicates the existence of a spin-polarized coherent tunneling. The observed MR ratio is the highest among the reported magnetic tunnel junctions with a semiconducting tunnel barrier and ferromagnetic metal electrodes. Such a single-crystalline semiconductor tunnel barrier that shows a high MR ratio is an essential building block for a vertical-type spin field-effect transistor.

  6. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion.

  7. Tunable spin-polaron state in a singly clamped semiconducting carbon nanotube

    NASA Astrophysics Data System (ADS)

    Pistolesi, F.; Shekhter, R.

    2015-07-01

    We consider a semiconducting carbon nanotube (CNT) lying on a ferromagnetic insulating substrate with one end passing the substrate and suspended over a metallic gate. We assume that the polarized substrate induces an exchange interaction acting as a local magnetic field for the electrons in the nonsuspended CNT side. Generalizing the approach of I. Snyman and Yu.V. Nazarov [Phys. Rev. Lett. 108, 076805 (2012), 10.1103/PhysRevLett.108.076805], we show that one can generate electrostatically a tunable spin-polarized polaronic state localized at the bending end of the CNT. We argue that at low temperatures manipulation and detection of the localized quantum spin state are possible.

  8. Semiconducting properties of amorphous GaZnSnO thin film based on combinatorial electronic structures

    NASA Astrophysics Data System (ADS)

    Kim, B. K.; Park, J. S.; Kim, D. H.; Chung, K. B.

    2014-05-01

    Semiconducting properties and electronic structures of amorphous GaZnSnO (GZTO) thin films are investigated with respect to metal cationic composition. An increase of the cationic Sn ratio resulted in an increase of the carrier concentration and a decrease of the mobility of the films. Combinatorial analysis revealed that the electrical characteristics of GZTO films are strongly correlated to changes in electronic structure. The increase in carrier concentration is related to the generation of vacancies by the changes of oxygen coordination around the cationic metal and the shallow band edge state below the conduction band. On the other hand, the decrease of mobility can be explained by the deep band edge state, and the difference between the experimental conduction band and simulated conduction band by the combinatorial electronic structure based on the chemical composition.

  9. Itinerant magnetism in doped semiconducting β-FeSi₂ and CrSi₂.

    PubMed

    Singh, David J; Parker, David

    2013-12-17

    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi₂ and CrSi₂ at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds.

  10. Preparation and crystal structure of the semiconducting compound Sn 4.2Si 9P 16

    NASA Astrophysics Data System (ADS)

    Pivan, Jean-Yves; Guerin, Roland; Padiou, Jean; Sergent, Marcel

    1988-09-01

    The phosphide Sn 4.2Si 9P 16 has been grown as single crystals using tin as a flux. The unit cell is rhombohedral, space group R3, with a = 9.504(2) Å, α = 111.00(2)°, and Z = 1. The X-ray structure was solved from three-dimensional single-crystal counter data and refined down the final R indices 0.027 and 0.033 for 854 independent reflections. It consists of |SiP 4| tetrahedra linked together by common apices which generate a tridimensional framework into which tin atoms, in a distorted tetrahedral phosphorus coordination, are inserted. This new compound was found to be semiconducting with a band gap of 0.2 eV.

  11. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.

    PubMed

    Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun

    2016-03-01

    We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si.

  12. Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene

    NASA Astrophysics Data System (ADS)

    Frenzel, A. J.; Lui, C. H.; Shin, Y. C.; Kong, J.; Gedik, N.

    2014-08-01

    We investigate the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations can be accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Notably, we observe nonmonotonic fluence dependence of the photoconductivity at low carrier density. This behavior reveals the nonmonotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

  13. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  14. Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications.

    PubMed

    Islam, Ahmad E; Rogers, John A; Alam, Muhammad A

    2015-12-22

    High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. PMID:26540144

  15. Semiconducting Polymer Nanoparticles as Photoacoustic Molecular Imaging Probes in Living Mice

    PubMed Central

    Pu, Kanyi; Shuhendler, Adam J.; Jokerst, Jesse V.; Mei, Jianguo; Gambhir, Sanjiv S.; Bao, Zhenan; Rao, Jianghong

    2014-01-01

    Photoacoustic (PA) imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, PA molecular imaging probes have to be developed. Herein we introduce near infrared (NIR) light absorbing semiconducting polymer nanoparticles (SPNs) as a new class of contrast agents for PA molecular imaging. SPNs can produce stronger signal than commonly used single-wall carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph node PA mapping in living mice at a low systematic injection mass. Furthermore, SPNs possess high structural flexibility, narrow PA spectral profiles, and strong resistance to photodegradation and oxidation, which enables development of the first NIR ratiometric PA probe for in vivo real-time imaging of reactive oxygen species—vital chemical mediators of many diseases. These results demonstrate SPNs an ideal nanoplatform for developing PA molecular probes. PMID:24463363

  16. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  17. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  18. Fabrication of Multilayer Barrier Layer Capacitors with Semiconducting (Ba, Sr)TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Itoh, Tatsuhiko; Tashiro, Shinjiro; Igarashi, Hideji

    1993-09-01

    Multilayer barrier layer capacitors were successfully fabricated by utilizing potential barriers at grain boundaries of semiconducting (Ba,Sr)TiO3 ceramics in the temperature region above the Curie point of -140°C. A small amount of Mn improved the dissipation factor and temperature dependence of permittivity in the temperature region from -30°C to 100°C. Multilayer barrier layer capacitors were composed of 10 layers having 80-μm thickness per layer. Resistivity above 1010 Ω\\cdotcm was attained at room temperature, and relative permittivities above 5500 and dissipation factors less than 2% were obtained in the temperature region from -30°C to 100°C.

  19. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.

    PubMed

    Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun

    2016-03-01

    We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si. PMID:27455748

  20. Strongly Anisotropic Ballistic Magnetoresistance in Compact Three-Dimensional Semiconducting Nanoarchitectures

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Hao; van den Brink, Jeroen; Ortix, Carmine

    2014-11-01

    We establish theoretically that in nonmagnetic semiconducting bilayer or multilayer thin film systems rolled up into compact quasi-one-dimensional nanoarchitectures, the ballistic magnetoresistance is very anisotropic: conductances depend strongly on the direction of an externally applied magnetic field. This phenomenon originates from the curved open geometry of rolled-up nanotubes, which leads to a tunability of the number of quasi-one-dimensional magnetic subbands crossing the Fermi energy. The experimental significance of this phenomenon is illustrated by a sizable anisotropy that scales with the inverse of the winding number, and persists up to a critical temperature that can be strongly enhanced by increasing the strength of the external magnetic field or the characteristic radius of curvature, and can reach room temperature.

  1. Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials

    SciTech Connect

    Wang, Kangpeng; Ju, Yongfeng; He, Jin; Zhang, Long E-mail: lzhang@siom.ac.cn; Wang, Jun E-mail: lzhang@siom.ac.cn; Chen, Yu; Blau, Werner J.

    2014-01-13

    Laser propagation in a tandem structure comprising carbon nanotubes and phthalocyanines is studied by Z-scan method. Due to the different mechanisms of the two materials, the laser beam can be attenuated with different absorptivities, by changing the sequence of light passing through each material. Numerical simulations considering the effect of path length and the change of nonlinear coefficient within each material are conducted for understanding the distribution of laser intensity in the tandem system and hence, fitting of the asymmetric Z-scan curves. The results are helpful for the design of nonlinear optical devices comprising multiple nonlinear materials and mechanisms.

  2. Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308

    SciTech Connect

    van Hest, M.; Ginley, D.

    2013-06-01

    Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

  3. Semiconducting polymer encapsulated mesoporous silica particles with conjugated Europium complexes: toward enhanced luminescence under aqueous conditions.

    PubMed

    Zhang, Jixi; Prabhakar, Neeraj; Näreoja, Tuomas; Rosenholm, Jessica M

    2014-01-01

    Immobilization of lanthanide organic complexes in meso-organized hybrid materials for luminescence applications have attracted immense interest due to the possibility of controlled segregation at the nanoscopic level for novel optical properties. Aimed at enhancing the luminescence intensity and stability of the hybrid materials in aqueous media, we developed polyvinylpyrrolidone (PVP) stabilized, semiconducting polymer (poly(9-vinylcarbazole), PVK) encapsulated mesoporous silica hybrid particles grafted with Europium(III) complexes. Monosilylated β-diketonate ligands (1-(2-naphthoyl)-3,3,3-trifluoroacetonate, NTA) were first co-condensed in the mesoporous silica particles as pendent groups for bridging and anchoring the lanthanide complexes, resulting in particles with an mean diameter of ∼ 450 nm and a bimodal pore size distribution centered at 3.5 and 5.3 nm. PVK was encapsulated on the resulted particles by a solvent-induced surface precipitation process, in order to seal the mesopores and protect Europium ions from luminescence quenching by producing a hydrophobic environment. The obtained polymer encapsulated MSN-EuLC@PVK-PVP particles exhibit significantly higher intrinsic quantum yield (Φ(Ln) = 39%) and longer lifetime (τ(obs) = 0.51 ms), as compared with those without polymer encapsulation. Most importantly, a high luminescence stability was realized when MSN-EuLC@PVK-PVP particles were dispersed in various aqueous media, showing no noticeable quenching effect. The beneficial features and positive attributes of both mesoporous silica and semiconducting polymers as lanthanide-complex host were merged in a single hybrid carrier, opening up the possibility of using these hybrid luminescent materials under complex aqueous conditions such as biological/physiological environments.

  4. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation.

    PubMed

    Baek, Gahyun; Kim, Jaai; Cho, Kyungjin; Bae, Hyokwan; Lee, Changsoo

    2015-12-01

    The effect of biostimulation with ferric oxides, semiconductive ferric oxyhydroxide, and conductive magnetite on the anaerobic digestion of dairy wastewater was examined in a batch mode. The reactors supplemented with ferric oxyhydroxide (R2) and magnetite (R3) showed significantly enhanced biomethanation performance compared with the control (R1). The removal of chemical oxygen demand (COD) after 30 days was 31.9, 59.3, and 82.5% in R1, R2, and R3, respectively. The consumed COD was almost fully recovered as biogas in R2 and R3, while only 79% was recovered in R1. The total energy production as biogas was accordingly 32.2, 71.0, and 97.7 kJ in R1, R2, and R3, respectively. The reactors also differed in the acid formation profile with more propionate and butyrate found in R1 and more acetate found in R3. The enhanced biomethanation seems to be associated with variations in the bacterial community structure supposedly induced by the ferric oxides added. In contrast, no evident variation was observed in the archaeal community structure among the reactors. The potential electric syntrophy formed between Methanosaeta concilii-like methanogens and electroactive iron-reducing bacteria, particularly Trichococcus, was likely responsible for the enhanced performance. The stimulated growth of fermentative iron reducers may also have contributed by altering the metabolic characteristics of the bacterial communities to produce more favorable acidogenic products for methanogenesis. The overall results suggest the potential of biostimulation with (semi)conductive ferric oxides to enhance the rate and efficiency of the biomethanation of organic wastes. This seems to be potentially attractive, as increasing attention is being paid to the energy self-sufficiency of waste/wastewater treatment processes today. PMID:26272096

  5. Spin-orbital coupling effect on the power factor in semiconducting transition-metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Wang, Jian-Li

    2016-09-01

    The electronic structures and thermoelectric properties of semiconducting transition-metal dichalcogenide monolayers {{MX}}2 (M = Zr, Hf, Mo, W and Pt; X = S, Se and Te) are investigated by combining first-principles and Boltzmann transport theory, including spin-orbital coupling (SOC). It is found that the gap decrease increases from S to Te in each cation group when the SOC is opened. The spin-orbital splitting has the same trend with the gap reducing. The calculated results show that SOC has a noteworthy detrimental effect on the p-type power factor, while it has a negligible influence in n-type doping except for the W cation group, which can be understood by considering the effects of SOC on the valence and conduction bands. For {{WX}}2 (X = S, Se and Te), SOC leads to an observable enhanced power factor in n-type doping, which can be explained by SOC-induced band degeneracy, namely the bands converge. Among all of the cation groups, the Pt cation group shows the highest Seebeck coefficient, which leads to the best power factor, if we assume that the scattering time is fixed. The calculated results show that {{MS}}2 (M = Zr, Hf, Mo, W and Pt) have the best p-type power factor of all the cation groups, and that {{MSe}}2 (M = Zr and Hf), {{WS}}2 and {{MTe}}2 (M = Mo and Pt) have a more excellent n-type power factor in their respective cation group. Therefore, these results may be useful for further theoretical prediction or experimental research of excellent thermoelectric materials from semiconducting transition-metal dichalcogenide monolayers.

  6. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility.

    PubMed

    Luo, Chan; Kyaw, Aung Ko Ko; Perez, Louis A; Patel, Shrayesh; Wang, Ming; Grimm, Bruno; Bazan, Guillermo C; Kramer, Edward J; Heeger, Alan J

    2014-05-14

    Solution processable semiconducting polymers with excellent film forming capacity and mechanical flexibility are considered among the most progressive alternatives to conventional inorganic semiconductors. However, the random packing of polymer chains and the disorder of the polymer matrix typically result in low charge transport mobilities (10(-5)-10(-2) cm(2) V(-1) s(-1)). These low mobilities compromise their performance and development. Here, we present a strategy, by utilizing capillary action, to mediate polymer chain self-assembly and unidirectional alignment on nanogrooved substrates. We designed a sandwich tunnel system separated by functionalized glass spacers to induce capillary action for controlling the polymer nanostructure, crystallinity, and charge transport. Using capillary action, we demonstrate saturation mobilities with average values of 21.3 and 18.5 cm(2) V(-1 )s(-1) on two different semiconducting polymers at a transistor channel length of 80 μm. These values are limited by the source-drain contact resistance, Rc. Using a longer channel length of 140 μm where the contact resistance is less important, we measured μh = 36.3 cm(2) v(-1) s(-1). Extrapolating to infinite channel length where Rc is unimportant, the intrinsic mobility for poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (Mn = 140 kDa) at this degree of chain alignment and structural order is μh ≈ 47 cm(2 )v(-1) s(-1). Our results create a promising pathway toward high performance, solution processable, and low-cost organic electronics. PMID:24712578

  7. Spin–orbital coupling effect on the power factor in semiconducting transition-metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Wang, Jian-Li

    2016-09-01

    The electronic structures and thermoelectric properties of semiconducting transition-metal dichalcogenide monolayers {{MX}}2 (M = Zr, Hf, Mo, W and Pt; X = S, Se and Te) are investigated by combining first-principles and Boltzmann transport theory, including spin–orbital coupling (SOC). It is found that the gap decrease increases from S to Te in each cation group when the SOC is opened. The spin–orbital splitting has the same trend with the gap reducing. The calculated results show that SOC has a noteworthy detrimental effect on the p-type power factor, while it has a negligible influence in n-type doping except for the W cation group, which can be understood by considering the effects of SOC on the valence and conduction bands. For {{WX}}2 (X = S, Se and Te), SOC leads to an observable enhanced power factor in n-type doping, which can be explained by SOC-induced band degeneracy, namely the bands converge. Among all of the cation groups, the Pt cation group shows the highest Seebeck coefficient, which leads to the best power factor, if we assume that the scattering time is fixed. The calculated results show that {{MS}}2 (M = Zr, Hf, Mo, W and Pt) have the best p-type power factor of all the cation groups, and that {{MSe}}2 (M = Zr and Hf), {{WS}}2 and {{MTe}}2 (M = Mo and Pt) have a more excellent n-type power factor in their respective cation group. Therefore, these results may be useful for further theoretical prediction or experimental research of excellent thermoelectric materials from semiconducting transition-metal dichalcogenide monolayers.

  8. Quantitative study of the enhancement of bulk nonlinearities in metamaterials

    SciTech Connect

    Rose, Alec; Larouche, Stephane; Smith, David R.

    2011-11-15

    Artificially structured metamaterials offer a means to enhance the weak optical nonlinearities of natural materials. The enhancement results from the inhomogeneous nature of the metamaterial unit cell, over which the local field distribution can likewise be strongly inhomogeneous, with highly localized and concentrated field regions. We investigate the nonlinear enhancement effect in metamaterials through a numerical study of four nonlinear metamaterial designs comprising arrays of metallic structures embedded in nonlinear dielectrics and operating around 10 THz. Through full-wave simulations and by employing an extended version of the transfer-matrix-based nonlinear parameter retrieval method, we confirm and quantify the enhanced nonlinearities, showing bulk quadratic nonlinear properties that are up to two orders of magnitude larger, and cubic nonlinear properties that are up to four orders of magnitude larger than the bulk nonlinear dielectric alone. Furthermore, the proposed nonlinear metamaterials support a variety of configurable nonlinear properties and regimes, including electric, magnetic, broadband, and low loss, depending on the particular geometry chosen. Finally, we use the retrieved parameters in a coupled-mode theory to predict the optimal crystal lengths and conversion efficiencies of these structures, displaying the possibility of efficient and subwavelength nonlinear devices based on metamaterials.

  9. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    NASA Astrophysics Data System (ADS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-10-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices.

  10. A nonlinear oscillator

    SciTech Connect

    Tomlin, R.

    1990-01-27

    A nonlinear oscillator design was imported from Cornell modified, and built for the purpose of simulating the chaotic states of a forced pendulum. Similar circuits have been investigated in the recent nonlinear explosion.

  11. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  12. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  13. Sealing device

    DOEpatents

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  14. Writing simple RF electronic devices on paper with carbon nanotube ink

    NASA Astrophysics Data System (ADS)

    Dragoman, M.; Flahaut, E.; Dragoman, D.; Ahmad, M. Al; Plana, R.

    2009-09-01

    This paper shows that we can print on paper simple high-frequency electronic devices such as resistances, capacitances or inductances, with values that can be changed in a controllable manner by an applied dc voltage. This tunability is achieved with the help of an ink containing functionalized carbon nanotubes and water. After the water is evaporated from the paper, the nanotubes remain steadily imprinted on paper, showing a semiconducting behavior and tunable electrical properties.

  15. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    NASA Astrophysics Data System (ADS)

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan

    2016-08-01

    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  16. Spin glass in semiconducting KFe1.05Ag0.88Te2 single crystals

    SciTech Connect

    Ryu, H.; Lei, H.; Klobes, B.; Warren, J. B.; Hermann, R. P.; Petrovic, C.

    2015-05-26

    We report discovery of KFe1.05Ag0.88Te2 single crystals with semiconducting spin glass ground state. Composition and structure analysis suggest nearly stoichiometric I4/mmm space group but allow for the existence of vacancies, absent in long range semiconducting antiferromagnet KFe1.05Ag0.88Te2. The subtle change in stoichometry in Fe/Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  17. BRAKE DEVICE

    DOEpatents

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  18. Electrochromic devices

    DOEpatents

    Allemand, Pierre M.; Grimes, Randall F.; Ingle, Andrew R.; Cronin, John P.; Kennedy, Steve R.; Agrawal, Anoop; Boulton, Jonathan M.

    2001-01-01

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  19. A Novel Effective Approach for Solving Fractional Nonlinear PDEs

    PubMed Central

    Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi

    2014-01-01

    The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations. PMID:27419212

  20. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  1. Ultrafast Nonlinear Optics in the Tunneling Junction

    NASA Astrophysics Data System (ADS)

    Yarotski, Dmitry

    2014-03-01

    Coupling of the electromagnetic radiation to the tip-sample junction of a scanning tunneling microscope (STM) offers exciting opportunities in molecular adsorbate identification, high-resolution dopant profiling, studies of the molecular motion and detection of dynamic changes in the electronic structure of the materials. Microwave spectral region is of particular interest because it encompasses rotational, magnetic and other resonances of molecular and solid state systems. However, previous works have either used external microwave sources or generated microwave radiation by a nonlinear mixing of the outputs from two continuous-wave lasers in a tunneling junction. In both cases, the usable spectrum was limited to a single or few frequencies. On the other hand, the regular train of pulses from a mode-locked ultrafast laser has a spectrum which represents an optical frequency comb, with a series of narrow lines (modes) spaced by the pulse repetition frequency. Here, we will show that the nonlinear response of the tunneling junction of an STM to the field of ultrashort laser pulses results in an intermode mixing that produces microwave frequency comb (MFC) with harmonics up to n = 200 (14.85 GHz) on both semiconducting and metallic surfaces. The observed dependence of the microwave power on the harmonic number reveals adverse effects of the tunneling gap capacitance but also shows that the roll-off at higher microwave frequencies should be negligible within the tunneling junction itself leading to intrinsic MFC spread up to THz region. We also demonstrate that MFC generation on semiconductor surface might have the same origin as THz generation in a surface depletion field. Generation of the broadband microwave signals within the tunneling junction should reduce the extraneous effects and provide significantly higher coupling efficiency. With improved frequency response, the described MFC-STM may find broad range of applications in nanoscale characterization of

  2. Synthesis and device applications of graphitic nanomaterials

    NASA Astrophysics Data System (ADS)

    Umair, Ahmad

    This thesis is focused on two topics: (i) synthesis and characterization of bilayer graphene and pyrolytic carbon by atmospheric pressure chemical vapor deposition, and (ii) application of graphene in the fabrication of a buckyball memory device. Monolayer and bilayer graphene are semi-metal with zero bandgap. One can induce a bandgap in bilayer graphene by applying a gate voltage in the stacking direction. Thus, bandgap and Fermi level in bilayer graphene can be controlled simultaneously with a double-gate device, making it a useful material for future semiconducting applications. Controlled synthesis of bilayer graphene would be the first step to fabricate bilayer graphene based devices. In this context, we report a uniform and low-defect synthesis of bilayer graphene on evaporated nickel films. Ultra-fast cooling is employed to control the number of layers and sample uniformity. The process is self-limiting, which leads to bilayer graphene synthesis over a wide range of growth-time and precursor flow-rate. Pryolytic carbon is another important carbon nanomaterial, due to its diverse applications in electronic and biomedicalengineering. We employ chemical vapor deposition with ultra-fast cooling technique to synthesize pyrolytic carbon. Furthermore, we elucidate a method to calculate the in-plane crystal size by using Raman spectroscopy. Finally, the use of bilayer graphene in a write-once read-many memory device has been demonstrated. The device showed irreversible switching from low-resistance to high-resistance state, with hysteresis in the transport characteristics. The control sample showed random switching and hysteresis due to electromigration of metal atoms into the active material of the device. We attribute the reliability and performance of the reported device to the ultra-smooth graphene contacts, which additionally inhibits electromigration from the underlying metallic film. Moreover, the memory device showed excellent endurance and retention

  3. Skutterudite Compounds For Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander; Vandersande, Jan

    1996-01-01

    New semiconducting materials with p-type carrier mobility values much higher than state-of-art semiconductors discovered. Nine compounds, antimonides CoSb(sub3), RhSb(sub3), IrSb(sub3), arsenides CoAs(sub3), RhAs(sub3), IrAs(sub3), and phosphides CoP(sub3), RhP(sub3) and IrP(sub3), exhibit same skutterudite crystallographic structure and form solid solutions of general composition Co(1-x-y)RH(x)Ir(y)P(1-w-z)As(w)Sb(z). Materials exhibit high hole mobilities, high doping levels, and high electronic figures of merit. Some compositions show great potential for application to thermoelectric devices.

  4. Nonlinear behavior of three-terminal graphene junctions at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Wonjae; Pasanen, Pirjo; Riikonen, Juha; Lipsanen, Harri

    2012-03-01

    We demonstrate nonlinear behavior in three-terminal T-branch graphene devices at room temperature. A rectified nonlinear output at the center branch is observed when the device is biased by a push-pull configuration. Nonlinearity is assumed to arise from a difference in charge transfer through the metal-graphene contact barrier between two contacts. The sign of the rectification can be altered by changing the carrier type using the back-gate voltage.

  5. Photonic nonlinearities via quantum Zeno blockade.

    PubMed

    Sun, Yu-Zhu; Huang, Yu-Ping; Kumar, Prem

    2013-05-31

    Realizing optical-nonlinear effects at a single-photon level is a highly desirable but also extremely challenging task, because of both fundamental and practical difficulties. We present an avenue to surmounting these difficulties by exploiting quantum Zeno blockade in nonlinear optical systems. Considering specifically a lithium-niobate microresonator, we find that a deterministic phase gate can be realized between single photons with near-unity fidelity. Supported by established techniques for fabricating and operating such devices, our approach can provide an enabling tool for all-optical applications in both classical and quantum domains.

  6. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  7. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x

  8. Hierarchical Nanocomposites for Device Applications

    NASA Astrophysics Data System (ADS)

    Watkins, James

    We have outlined templating strategies for electronic and optical device fabrication that include self-assembly of well-ordered polymer/nanoparticle hybrids and nanoimprint lithography using novel materials sets. Using additive-driven self-assembly, for example, we demonstrate the formation of periodic nanocomposites with tunable magnetic and optical characteristics containing up to 70 wt. % of metal, metal oxide and/or semiconducting nanoparticles through phase specific interactions of the particles with either linear block copolymer or brush block copolymer (BBCP) templates. The BBCP templates provide direct access to large domain spacings for optical applications and spontaneous alignment within large volume elements. We have further developed highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index and a new imprinting process that allows direct printing of patterned 2-D and 3-D crystalline metal oxide films and composites with feature sizes of less than 100 nm. Applications in flexible electronics, light and energy management, and sensors and will be discussed.

  9. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOEpatents

    Findikoglu, Alp T.

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  10. Extremely nonlinear and switchable SQUID metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Jung, Philipp; Butz, Susanne; Ustinov, Alexey; Anlage, Steven

    2014-03-01

    We present experimental results on a superconducting metamaterial with remarkably nonlinear and switchable properties in the microwave range. The meta-atoms are RF Superconducting Quantum Interference Devices (SQUIDs), a superconducting loop interrupted by a single Josephson Junction. RF SQUIDs are similar to split-ring resonators except that the inductance is tunable due to the nonlinear Josephson inductance. This metamaterial has high tunability via DC magnetic field, temperature and applied RF power. Here we focus on the nonlinearity in our metamaterial due to the Josephson effect. The intermodulation measurements show a highly nonlinear response from the metamaterial. In an RF power dependence experiment we observed hysteretic behavior in transmission which indicates the metamaterial is a nonlinear multi-state system. As a result, we can control the transmission by switching between metastable states via manipulating the applied RF power. We also observe a unique self-induced transparency of meta-atoms in a certain applied RF power range. This extremely nonlinear metamaterial has potential application for next-generation digital RF receiver systems. This work is supported by the NSF-GOALI and OISE programs through grant # ECCS-1158644, and CNAM.

  11. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    DOE PAGESBeta

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. Inmore » conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  12. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.

  13. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    PubMed Central

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). PMID:25762067

  14. Monolithically integrated nonlinear interferometers for all-optical switching

    SciTech Connect

    Jahn, E.; Agrawal, N.; Ehrke, H.J.; Pieper, W.; Franke, D.; Fuerst, W.; Weinert, C.M.

    1996-12-31

    All-optical switching devices are expected to play an important role in future optical communication networks. For example, nonlinear interferometer (NLI) arrangements consisting of one or two semiconductor laser amplifiers (SLA) are very attractive. Here, the cross-phase modulation due to the gain-saturation nonlinearity of SLAs could be used for switching in time, space, and wavelength domains. The first of such devices was configured as a nonlinear Sagnac interferometer (NSI) by using an SLA in a fiber loop mirror (SLALOM) for time domain switching. So far, these devices have been assembled using discrete SLA components. Other arrangements like Mach-Zehnder interferometer (MZI) with SLAs provide additional flexibility but require their realization as integrated devices for stable operation. In this paper the authors report on the development of monolithically integrated NLIs for all-optical signal processing in high bit-rate optical time division multiplexing systems. Both NSI and MZI configurations are considered.

  15. Semiconducting polymer dots doped with europium complexes showing ultranarrow emission and long luminescence lifetime for time-gated cellular imaging.

    PubMed

    Sun, Wei; Yu, Jiangbo; Deng, Ruiping; Rong, Yu; Fujimoto, Bryant; Wu, Changfeng; Zhang, Hongjie; Chiu, Daniel T

    2013-10-18

    Bright dots: Semiconducting polymer dots (Pdots) doped with europium complexes possess line-like fluorescence emission, high quantum yield, and long fluorescence lifetime. The Pdots successfully labeled receptors on cells. The long fluorescence lifetime of the Pdots was used to distinguish them from other red fluorescence emitting nanoparticles, and improve the signal-to-noise ratio for time-gated cellular imaging. PVK=poly(9-vinylcarbazole).

  16. Semiconductive Nanotube Array Constructed from Giant [Pb(II)18I54(I2)9] Wheel Clusters.

    PubMed

    Wang, Guan-E; Xu, Gang; Liu, Bin-Wen; Wang, Ming-Sheng; Yao, Ming-Shui; Guo, Guo-Cong

    2016-01-11

    Crystalline nanotube array would create great opportunity for novel electrical application. Herein we report the first example of a metal halide based crystalline nanotube array which is constructed from an unprecedented giant [Pb(II)18I54(I2)9] wheel cluster, as determined by synchrotron X-ray diffraction. The electrical properties of the single crystal were studied and the present compound shows typical semiconductivity and highly anisotropic conductivity.

  17. Diamond nonlinear photonics

    NASA Astrophysics Data System (ADS)

    Hausmann, B. J. M.; Bulu, I.; Venkataraman, V.; Deotare, P.; Lončar, M.

    2014-05-01

    Despite progress towards integrated diamond photonics, studies of optical nonlinearities in diamond have been limited to Raman scattering in bulk samples. Diamond nonlinear photonics, however, could enable efficient, in situ frequency conversion of single photons emitted by diamond's colour centres, as well as stable and high-power frequency microcombs operating at new wavelengths. Both of these applications depend crucially on efficient four-wave mixing processes enabled by diamond's third-order nonlinearity. Here, we have realized a diamond nonlinear photonics platform by demonstrating optical parametric oscillation via four-wave mixing using single-crystal ultrahigh-quality-factor (1 × 106) diamond ring resonators operating at telecom wavelengths. Threshold powers as low as 20 mW are measured, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the first measurement of the nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.

  18. Nonlinear rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Day, W. B.

    1985-01-01

    The special nonlinearities of the Jeffcott equations in rotordynamics are examined. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot firing ground testing. Deadband, side force and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency is defined and used to develop the solutions of the nonlinear Jeffcott equations as asympotic expansions. This nonlinear natural frequency which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies. Numerical solutions are included for comparison with the analysis. Also, nonlinear frequency-response tables are made for a typical range of values.

  19. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres.

    PubMed

    Lin, Jin-Han; Patil, Ranjit A; Devan, Rupesh S; Liu, Zhe-An; Wang, Yi-Ping; Ho, Ching-Hwa; Liou, Yung; Ma, Yuan-Ron

    2014-11-10

    We utilized a thermal radiation method to synthesize semiconducting hollow ZnO nanoballoons and metal-semiconductor concentric solid Zn/ZnO nanospheres from metallic solid Zn nanospheres. The chemical properties, crystalline structures, and photoluminescence mechanisms for the metallic solid Zn nanospheres, semiconducting hollow ZnO nanoballoons, and metal-semiconductor concentric solid Zn/ZnO nanospheres are presented. The PL emissions of the metallic Zn solid nanospheres are mainly dependent on the electron transitions between the Fermi level (E(F)) and the 3d band, while those of the semiconducting hollow ZnO nanoballoons are ascribed to the near band edge (NBE) and deep level electron transitions. The PL emissions of the metal-semiconductor concentric solid Zn/ZnO nanospheres are attributed to the electron transitions across the metal-semiconductor junction, from the E(F) to the valence and 3d bands, and from the interface states to the valence band. All three nanostructures are excellent room-temperature light emitters.

  20. A very general rate expression for charge hopping in semiconducting polymers

    SciTech Connect

    Fornari, Rocco P.; Aragó, Juan; Troisi, Alessandro

    2015-05-14

    We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contain the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) a single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law.

  1. Surface electronic structure of nitrogen-doped semiconducting single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Ran Park, Young; Jae Ko, Min; Song, Yoon-Ho; Jin Lee, Cheol

    2013-10-01

    We investigated the effects of vacuum annealing on the surface electronic structure and the work function of single-walled carbon nanotubes (SWCNTs). We changed the doping type of semiconducting single-walled carbon nanotubes (semi-SWCNTs) from p-type to n-type, and investigated their optical properties. The HNO3 treated p-type SWCNT network was converted to n-type after vacuum annealing due to formation of C-N bond. The C 1s sp2 binding energy of the vacuum annealed semi-SWCNTs was shifted toward a higher binding energy about 0.42 eV, which indicates a raising Fermi level as much as 0.42 eV compared with the intrinsic semi-SWCNTs. In addition, the work function of the vacuum annealed semi-SWCNT was observed towards lower energies. It is considered that the C-N bonding of semi-SWCNTs creates a donor level near the bottom of the conduction band, thus raising the Fermi level. The ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy revealed that the increased binding energy of C 1s sp2 and the decreased work function of semi-SWCNTs are caused by n-type doping after vacuum annealing.

  2. Synthesis and Characterization of Co-doped ZnO Dilute Magnetic Semiconducting Nanorods

    NASA Astrophysics Data System (ADS)

    Das, N.; Khanra, S.; Bhamidipati, S.; Manivannan, K.; Kahol, P.; Ghosh, K.

    2012-02-01

    Transition-metal doped ZnO dilute magnetic semiconducting nanomaterials are considered as ideal systems for carrying out research in the field of spintronics as they can successfully combine magnetism and electronics in a single substance. ZnO is a wurtzite-type wide-bandgap semiconductor of the II-VI semiconductor group with band gap energy of 3.37 eV. Hydrothermal synthesis of undoped ZnO and Co-doped ZnO nanorods is carried out using aqueous solutions of Zn(NO3)2.6H2O, Co(C2H3OO)2.4 H2O, and using NH4OH as hydrolytic catalyst. Nanomaterials of different sizes and shapes were synthesized by varying the process parameters such as molarity (0.15M, 0.3M, 0.5M) and pH (8-11) of the precursors, growth temperature (130^oC), and annealing time during the hydrothermal Process. Structural, morphological, optical and magnetic properties are studied using various techniques such as XRD, SEM, UV-vis spectroscopy, and SQUID magnetometer. XRD and SEM studies reveal nanorods with hexagonal wurtzite structure with length in the range of 200 to 500 nm, and cross section in the range of 30 to 60 nm. Detailed structural, optical, and magnetic properties will be discussed in this presentation.

  3. Double Layer Charging for Conductivity Enhancement of Pure Metallic and Semiconducting Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mayo, Nathanael; Kuznetsov, Alexander; Zakhidov, Anvar

    2011-03-01

    Injecting high electronic charge densities can profoundly change the optical, electrical, and magnetic properties of materials. Evidence suggests a possibility of significantly improving conductivity of carbon nanotubes through double layer charge injection. Double layer charge injection can prove to be a powerful method when applied to carbon nanotubes because of theirs high surface area and chemical stability. Investigation has commenced on the effect of charging on various types of carbon nanotubes, specifically 99% purified single wall semiconducting and single wall metallic tubes. An electrical double layer is electrochemically introduced upon a sheet of carbon nanotubes via application of potential (up to +/- 5 volts) to a sample immersed in ionic-liquid-based electrolyte. Resistance of carbon nanotube as a function of applied charging voltage is recorded to determine the effects of charge injection. Results show that the electrical double layer considerably reduces the resistance across both samples. ESR/LFMA studies combined with low temperature magnetic and transport measurements are conducted to search for charge injection induced superconductivity in carbon nanotubes. Supported by AFOSR grant FA 9550-09-1-0384.

  4. Fluorescence dynamics and fine structure of dark excitons in semiconducting single-wall carbon nanotubes.

    PubMed

    Alfonsi, Jessica; Meneghetti, Moreno

    2012-06-27

    Exact diagonalization results are reported for the bright and dark exciton structure of semiconducting single-wall carbon nanotubes in the framework of the Hubbard model combined with a small crystal approach for several values of the correlation coupling strength U/t. Our findings, in the low-intermediate correlation regime (1.5 < U/t < 2.1), show the presence of dark states above and below the first bright exciton |B> and can account for reported experimental values of deep triplet states below |B> and of a K-momentum singlet dark exciton above this state. In order to fit the temporal profile of the photoluminescence (PL) decay, a bottleneck mechanism is considered involving a few dark states, with the respective energy gaps correspondingly obtained in the above-mentioned correlation range. We find that a kinetic model with one dark state above and two below |B> is able to recover the observed biexponential features of the PL behaviour with a reasonable set of parameters. Within this model we attribute the long tail of the PL to a delayed luminescence process of the bright state caused by the nearby calculated dark states.

  5. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Yuan, Yinyin; Chen, Zhigang; Hou, Junyu; Yang, Mei; Su, Yanli; Zhang, Yongyi; Li, Liang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang

    2015-07-01

    Surface-enhanced Raman spectroscopy (SERS) represents a very powerful tool for the identification of molecular species, but unfortunately it has been essentially restricted to noble metal supports (Au, Ag and Cu). While the application of semiconductor materials as SERS substrate would enormously widen the range of uses for this technique, the detection sensitivity has been much inferior and the achievable SERS enhancement was rather limited, thereby greatly limiting the practical applications. Here we report the employment of non-stoichiometric tungsten oxide nanostructure, sea urchin-like W18O49 nanowire, as the substrate material, to magnify the substrate-analyte molecule interaction, leading to significant magnifications in Raman spectroscopic signature. The enrichment of surface oxygen vacancy could bring additional enhancements. The detection limit concentration was as low as 10-7 M and the maximum enhancement factor was 3.4 × 105, in the rank of the highest sensitivity, to our best knowledge, among semiconducting materials, even comparable to noble metals without `hot spots'.

  6. A very general rate expression for charge hopping in semiconducting polymers.

    PubMed

    Fornari, Rocco P; Aragó, Juan; Troisi, Alessandro

    2015-05-14

    We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contain the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) a single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law. PMID:25978881

  7. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots.

    PubMed

    Li, Qiong; Sun, Kai; Chang, Kaiwen; Yu, Jiangbo; Chiu, Daniel T; Wu, Changfeng; Qin, Weiping

    2013-10-01

    We report a ratiometric fluorescent sensor based on semiconducting polymer dots chelated with terbium ions to detect bacterial spores in aqueous solution. Fluorescent polyfluorene (PFO) dots serve as a scaffold to coordinate with lanthanide ions that can be sensitized by calcium dipicolinate (CaDPA), an important biomarker of bacterial spores. The absorption band of PFO dots extends to deep UV region, allowing both the reference and the sensitizer can be excited with a single wavelength (~275 nm). The fluorescence of PFO remains constant as a reference, while the Tb(3+) ions exhibit enhanced luminescence upon binding with DPA. The sharp fluorescence peaks of β-phase PFO dots and the narrow-band emissions of Tb(3+) ions enable ratiometric and sensitive CaDPA detection with a linear response over nanomolar concentration and a detection limit of ~0.2 nM. The Pdots based sensor also show excellent selectivity to CaDPA over other aromatic ligands. Our results indicate that the Tb(3+) chelated Pdots sensor is promising for sensitive and rapid detection of bacterial spores.

  8. Tuning From Half-Metallic to Semiconducting Behavior in SiC Nanoribbons

    SciTech Connect

    Lopez-Benzanilla, Alejandro; Huang, Jingsong; Kent, Paul R; Sumpter, Bobby G

    2013-01-01

    Half-metallic nanoscale conductors, highly sought after for spintronic applications, are usually realized through metal elements, chemical doping, or external electric fields. By means of local and hybrid density functional theory calculations, we identify pristine zigzag silicon carbide nanoribbons (zSiC-NRs) with bare edges as a metal-free monolayered material that exhibits intrinsic half-metallic behavior without chemical doping or external electric field. Ab initio molecular dynamics simulations indicate that the half-metallicity is robust at room temperature. We also demonstrate that edge termination with O and S atoms transforms the zSiC-NRs into a full metal or a semiconducting material, respectively, due to the presence of O dimerization only on the Si edge and of S trimerization on both Si and C edges, the latter being driven by an unusual Peierls-like distortion along the functionalizing S atoms. The rich electronic properties displayed by zSiC-NRs may open new perspectives for spintronic applications using layered, metal-free, and light atom material.

  9. Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes on Substrate by Europium Oxide

    PubMed Central

    2010-01-01

    In this paper, we have demonstrated that europium oxide (Eu2O3) is a new type of active catalyst for single-walled carbon nanotubes (SWNTs) growth under suitable conditions. Both random SWNT networks and horizontally aligned SWNT arrays are efficiently grown on silicon wafers. The density of the SWNT arrays can be altered by the CVD conditions. This result further provides the experimental evidence that the efficient catalyst for SWNT growth is more size dependent than the catalysts themselves. Furthermore, the SWNTs from europium sesquioxides have compatibly higher quality than that from Fe/Mo catalyst. More importantly, over 80% of the nanotubes from Eu2O3 are semiconducting SWNTs (s-SWNTs), indicating the preferential growth of s-SWNTs from Eu2O3. This new finding could open a way for selective growth of s-SWNTs, which can be used as high-current nanoFETs and sensors. Moreover, the successful growth of SWNTs by Eu2O3 catalyst provides new experimental information for understanding the preferential growth of s-SWNTs from Eu2O3, which may be helpful for their controllable synthesis. PMID:21076709

  10. Magnetic field induced quantum dot brightening in liquid crystal synergized magnetic and semiconducting nanoparticle composite assemblies

    SciTech Connect

    Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; Ferri, Christopher; Quint, Makiko T.; Pandolfi, Ronald J.; Scheibner, Michael; Hirst, Linda S.; Ghosh, Sayantani

    2014-10-22

    The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small applied magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.

  11. Magnetic field induced quantum dot brightening in liquid crystal synergized magnetic and semiconducting nanoparticle composite assemblies

    DOE PAGESBeta

    Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; Ferri, Christopher; Quint, Makiko T.; Pandolfi, Ronald J.; Scheibner, Michael; Hirst, Linda S.; Ghosh, Sayantani

    2014-10-22

    The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small appliedmore » magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.« less

  12. Topologically induced semiconductivity in icosahedral Al-Pd-Re and its approximants

    NASA Astrophysics Data System (ADS)

    Krajčí, M.; Hafner, J.

    2007-01-01

    We demonstrate that the opening of a semiconducting band-gap in the electronic spectrum of the i-Al-Pd-Re quasicrystal and its approximants is due to the formation of a topological band-gap, in analogy to the band-gap found in the FeSi (B20) structure. In both systems we have identified a network of linear chains of alternating Si(Al) and transition-metal (TM) atoms extending along twofold symmetry directions. In i-Al-Pd-Re the chains of alternating Al and TM atoms extend from a center of the pseudo-Mackay (M) cluster over the surface of the Bergman cluster to the center of another neighboring M cluster. Substitutional Al/Pd defects and a fragmentation of the chains by phason defects lead to the formation of localized states in the band-gap. The band-gap of the real i-Al-Pd-Re quasicrystal is filled by localized states. The i-Al-Pd-Re quasicrystal thus behaves as a disordered semiconductor.

  13. Microstructure and optical characterizations of mechanosynthesized nanocrystalline semiconducting ZrTiO4 compound

    NASA Astrophysics Data System (ADS)

    Dutta, Hema; Nandy, Anshuman; Pradhan, S. K.

    2016-08-01

    A ZrO2-TiO2 solid solution is obtained by high energy ball milling of equimolar mixture of monoclinic (m) ZrO2 and anatase (a) TiO2. Nanocrystalline orthorhombic ZrTiO4 compound is initiated from the nucleation of TiO2-ZrO2 solid solution with isostructural s-TiO2 (srilankite) base after 30 min of milling. After 12 h of milling, 95 mol% non-stoichiometric ZrTiO4 phase is formed. Post-annealing of 12 h ball-milled powder mixture at 1073 K for 1 h in open air results in complete formation of stoichiometric ZrTiO4 compound. Microstructures of all powder mixtures milled for different durations have been characterized by Rietveld's structure and microstructure refinement method using X-ray powder diffraction data. HRTEM images of 12 h milled and annealed samples provide direct evidence of the results obtained from the Rietveld analysis. Optical bandgaps of ball milled and annealed ZrTiO4 compounds lie within the semiconducting region (~2.0 eV) and increases with increase in milling time.

  14. Control of charge transport in a semiconducting copolymer by solvent-induced long-range order

    NASA Astrophysics Data System (ADS)

    Luzio, Alessandro; Criante, Luigino; D'Innocenzo, Valerio; Caironi, Mario

    2013-12-01

    Recent reports on high-mobility organic field-effect transistors (FETs) based on donor-acceptor semiconducting co-polymers have indicated an apparently strong deviation from the paradigm, valid for a series of semi-crystalline polymers, which has been strictly correlating charges mobility to crystalline order. This poses a severe limit on the control of mobility and a fundamental question on the critical length scale which is dominating charge transport. Here we focus on a well-known model material for electron transport, a naphthalene-diimide based copolymer, and we demonstrate that mobility can be controlled over two orders of magnitude, with maximum saturation mobility exceeding 1 cm2/Vs at high gate voltages, by controlling the extent of orientational domains through a deposition process as simple as spin-coating. High mobility values can be achieved by adopting solvents inducing a higher amount of pre-aggregates in the solution, which through the interaction with the substrate, provide the polymer with liquid-crystalline like ordering properties.

  15. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling.

    PubMed

    Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David

    2015-05-15

    The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions.

  16. Energy transduction inside of amphiphilic vesicles: encapsulation of photochemically active semiconducting particles.

    PubMed

    Summers, David P; Noveron, Juan; Basa, Ranor C B

    2009-04-01

    Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the approximately 20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle. PMID:19259781

  17. Investigation of optimal hydrogen sensing performance in semiconducting carbon nanotube network transistors with palladium electrodes

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Lee, Dongil; Ahn, Jae-Hyuk; Yoon, Jinsu; Lee, Juhee; Jeon, Minsu; Kim, Dong Myong; Kim, Dae Hwan; Park, Inkyu; Choi, Yang-Kyu; Choi, Sung-Jin

    2015-11-01

    The work function of palladium (Pd) is known to be sensitive to hydrogen (H2) via the formation of a surface dipole layer or Pd hydride. One approach to detect such a change in the work function is based on the formation of a Schottky barrier between Pd and a semiconductor. Here, we demonstrate a H2 sensor operable at room temperature by assembling solution-processed, pre-separated semiconducting single-walled carbon nanotube (SWNT) network bridged by Pd source/drain (S/D) electrodes in a configuration of field-effect transistors (FETs) with a local back-gate electrode. To begin with, we observed that the H2 response of the fabricated SWNT FETs can be enhanced in the linear operating regime, where the change in the work function of the Pd S/D electrodes by H2 can be effectively detected. We also explore the H2 responses in various SWNT FETs with different physical dimensions to optimize the sensing performance.

  18. Semiconducting properties of zinc-doped cubic boron nitride thin films

    SciTech Connect

    Nose, K.; Yoshida, T.

    2007-09-15

    We have examined the electronic properties of zinc-doped cubic boron nitride (cBN) thin films prepared by sputter deposition. The electric conductivity of films deposited in pure Ar increased as the concentration of zinc dopant increased, and hole conduction was identified by the measurement of thermoelectric currents. It was also found that the conductivity increment in such films was accompanied by a linear increase in the B/(B+N) ratio. At the same time, no modification of the composition and the conductivity by incorporated zinc was observed when film growth took place in presence of nitrogen gas. The effect of the excess boron on the conductivity emerged only when films show semi-insulating behavior. These results suggest that Zn substitution for nitrogen causes high electric conductivity of cBN. The electric contact between Ti electrode and semiconducting cBN was examined by the transfer length method, and Ohmic conduction was observed in the Ti/cBN contact. The specific contact resistance was affected by the specific resistance of cBN films, and it was reduced from 10{sup 5} to 100 {omega} cm{sup 2} by increasing the concentration of incorporated Zn.

  19. Gate-tuned spin to charge conversion in semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Nagano, Hiroshi; Dushenko, Sergey; Ando, Yuichiro; Tsuda, Tetsuya; Kuwabata, Susumu; Takenobu, Taishi; Tanaka, Takeshi; Kataura, Hiromichi; Shinjo, Teruya; Shiraishi, Masashi

    Interconversion of spin and charge current is a hot topic in the molecular spintronics. It was achieved for the first time in a conducting conjugated polymer 1, and shortly followed by spin-charge conversion in graphene. However, control over carrier type has not been shown yet. In this study we focused on single-walled carbon nanotubes (SWNT). Spin injection into semiconductor from metal ferromagnet is challenging due to the presence of Schottky barrier and conductance mismatch problem. To bypass it, we used ionic liquid electric gate and ferrimagnetic insulator. We prepared SWNT layer on top of ferrimagnetic yttrium iron garnet substrate. Using spin pumping we successfully observed spin-charge conversion in metallic SWNT. As for a semiconducting SWNT, we applied a top gate using ionic liquid. The drain-source current vs. gate voltage dependence showed tuning of the Fermi level and changing of carrier type. Under gate voltage application we measured electromotive force induced by spin pumping. Detected voltage changed its sign together with carrier type. This is first evidence of spin-charge conversion in carbon nanotubes 2. 1 K. Ando et al., Nature Mater. 12, 622 (2013). 2 E. Shigematsu et al., submitted.

  20. Energy transduction inside of amphiphilic vesicles: encapsulation of photochemically active semiconducting particles.

    PubMed

    Summers, David P; Noveron, Juan; Basa, Ranor C B

    2009-04-01

    Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the approximately 20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.