Global non-linear effect of temperature on economic production
NASA Astrophysics Data System (ADS)
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Temperature-dependent nonlinear Hall effect in macroscopic Si-MOS antidot array
NASA Astrophysics Data System (ADS)
Kuntsevich, A. Yu.; Shupletsov, A. V.; Nunuparov, M. S.
2016-05-01
By measuring magnetoresistance and the Hall effect in a classically moderate perpendicular magnetic field in a Si-MOSFET-type macroscopic antidot array, we found a nonlinear with field, temperature- and density-dependent Hall resistivity. We argue that this nonlinearity originates from low mobility shells of the antidots with a strong temperature dependence of the resistivity and suggest a qualitative explanation of the phenomenon.
Experimental investigation of temperature influence on nonlinear effects in microstructured fibers
NASA Astrophysics Data System (ADS)
Holdynski, Z.; Jozwik, M.; Murawski, Michal; Ostrowski, L.; Mergo, P.; Nasilowski, T.
2015-12-01
In this paper we present possibilities of tuning spectrum of supercontinuum with the use of temperature change. Our study is based on the information about the role of dispersion characteristics in the process of nonlinear effects generation in nanosecond pulse regime. We obtain tunable spectrum effects in microstructured fiber and we show how to optimize its properties. Our experimental results showing nonlinear effects generation in fiber pumped in normal and anomalous dispersion regime enables to determine how the nonlinear effects depend on temperature changes. We show that even small changes of dispersion characteristic of microstructured fibers enable to obtain significant modification of generated spectra when four wave mixing is dominant effect. Controllable generation of tunable supercontinuum can be used in numbers of potential applications such as diagnostics and measurement systems.
Nonlinear interactive effects of priming and temperature on soil organic matter decomposition
NASA Astrophysics Data System (ADS)
Xu, Xingliang; Qiao, Na; Cheng, Weixin; Schaefer, Douglas
2015-04-01
Decomposition of soil organic matter (SOM) is sensitive to temperature and can cause positive feedbacks to climate. Priming, the stimulation of SOM mineralization induced by inputs of labile organic carbon (LOC), also affects SOM dynamics and stocks and consequently may trigger positive climate feedbacks3. Therefore, knowledge about how the interactions between priming and temperature affect SOM decomposition is central to understanding the terrestrial carbon cycle. Here we demonstrate that priming decreased with increasing temperature. Activation energy (Ea) for SOM decomposition nonlinearly responded to increasing temperature. SOM decomposition with higher LOC inputs showed higher Ea at low temperature, but lower Ea at higher temperature compared to low or no glucose inputs. Low LOC input reduced temperature sensitivity, while high LOC input strongly increased it. We conclude that priming caused by high LOC availability magnified the effect of increasing temperature on Ea at both the coolest and warmest temperatures while the effect of increasing temperature on Ea was reduced or absent at lower LOC availability. Therefore, greater LOC input via root exudates under future climate conditions (e.g. by elevated CO2 or prolonged growing season) may accelerate SOM decomposition in a non-linear fashion and cause positive feedbacks to atmospheric CO2. Key words: Activation energy, priming effect, temperature sensitivity
Effect of detector nonlinearity and image persistence on CARS derived temperatures.
Snelling, D R; Smallwood, G J; Parameswaran, T
1989-08-01
The image persistence of self-scanning photodiode arrays (IPDA) incorporating P-20 phosphor-based intensifiers is shown to make them unsuitable for single-pulse CARS temperature measurements in turbulent combustion. Correcting CARS flame spectra for the nonlinear response of the IPDA detectors increases CARS derived temperatures approximately 3-6%. This error is partially offset by correcting for the perturbations in the N(2) vibrational population resulting from stimulated Raman pumping. The effect of these population perturbations on CARS-derived temperatures is determined. CARS flame spectra obtained with uncorrelated pump beams that are corrected for IPDA nonlinearity and stimulated Raman pumping are shown to give temperatures in good agreement with combined thermocouple/sodium line-reversal measurements.
Effect of detector nonlinearity and image persistence on CARS derived temperatures
Snelling, D. R.; Smallwood, G. J.; Parameswaran, T.
1989-08-01
The image persistence of self-scanning photodiode arrays (IPDA) incorporating P-20 phosphor-based intensifiers is shown to make them unsuitable for single-plus CARS temperature measurements in turbulent combustion. Correcting CARS flame spectra for the nonlinear response of the IPDA detectors increases CARS derived temperatures /approx/3--6%. This error is partially offset by correcting for the perturbations in the N/sub 2/ vibrational population resulting from stimulated Raman pumping. The effect of these population perturbations on CARS-derived temperatures is determined. CARS flame spectra obtained with uncorrelated pump beams that are corrected for IPDA nonlinearity and stimulated Raman pumping are shown to give temperature in good agreement with combined thermocouple/sodium line-reversal measurements.
Finite-temperature Casimir effect in the presence of nonlinear dielectrics
Kheirandish, Fardin; Soltani, Morteza; Amooghorban, Ehsan
2011-03-15
Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature are calculated.
Jackson, E J; Coussios, C-C; Cleveland, R O
2014-06-21
Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
Ramler, D; Mitteroecker, P; Shama, L N S; Wegner, K M; Ahnelt, H
2014-03-01
Theoretical models predict that nonlinear environmental effects on the phenotype also affect developmental canalization, which in turn can influence the tempo and course of organismal evolution. Here, we used an oceanic population of threespine stickleback (Gasterosteus aculeatus) to investigate temperature-induced phenotypic plasticity of body size and shape using a paternal half-sibling, split-clutch experimental design and rearing offspring under three different temperature regimes (13, 17 and 21 °C). Body size and shape of 466 stickleback individuals were assessed by a set of 53 landmarks and analysed using geometric morphometric methods. At approximately 100 days, individuals differed significantly in both size and shape across the temperature groups. However, the temperature-induced differences between 13 and 17 °C (mainly comprising relative head and eye size) deviated considerably from those between 17 and 21 °C (involving the relative size of the ectocoracoid, the operculum and the ventral process of the pelvic girdle). Body size was largest at 17 °C. For both size and shape, phenotypic variance was significantly smaller at 17 °C than at 13 and 21 °C, indicating that development is most stable at the intermediate temperature matching the conditions encountered in the wild. Higher additive genetic variance at 13 and 21 °C indicates that the plastic response to temperature had a heritable basis. Understanding nonlinear effects of temperature on development and the underlying genetics are important for modelling evolution and for predicting outcomes of global warming, which can lead not only to shifts in average morphology but also to destabilization of development.
Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee
2017-01-01
Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger
Nonlinear plasmonics at high temperatures
NASA Astrophysics Data System (ADS)
Sivan, Yonatan; Chu, Shi-Wei
2017-01-01
We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.
Nonlinear plasmonics at high temperatures
NASA Astrophysics Data System (ADS)
Sivan, Yonatan; Chu, Shi-Wei
2016-10-01
We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.
Wu, Jinju; Cheng, Jian; Xu, Zhiwei; Zhao, Kefu; Zhao, Desheng; Xie, Mingyu; Yang, Huihui; Wen, Liying; Li, Kesheng; Su, Hong
2016-10-01
Hand, foot and mouth disease (HFMD) is one of the major infectious diseases among children and remains a health threat, especially among Asian countries. Many epidemiologic studies suggested significant association of air temperature and humidity with childhood HFMD; however, evidence on the temperature effects on childhood HFMD in temperate cities is limited, and the interactive effects of temperature and humidity have not been studied yet. Daily counts of HFMD in children younger than 15 years of age and daily meteorologic variables during 2010 to 2012 were obtained in Hefei, China. A distributed lag nonlinear model was applied to estimate the potential nonlinear association between temperature and childhood HFMD. The interactive effects between temperature and humidity on childhood HFMD were also investigated. Temperature rise was associated with higher risk of childhood HFMD. Within the incubation period of HFMD, temperature rise appeared to have the acute effects on childhood HFMD, and a 5°C increase of temperature at lag 0-6 days was associated with 24.8% (95% confidence interval: 11.94%-39.10%) increase of childhood HFMD. Females and children of 0-4 years of agewere more vulnerable to temperature rise. Notably, there were obvious combined effects between temperature and humidity on childhood HFMD-the risk of childhood HFMD elevated at higher temperature and humidity level. This study provides evidence that temperature and humidity may jointly affect childhood HFMD, and such interactive impact needs to be considered when evaluating the temperature-childhood HFMD relationship.
NASA Astrophysics Data System (ADS)
Eybpoosh, Matineh; Berges, Mario; Noh, Hae Young
2015-04-01
Ultrasonic guided-waves propagating in pipes with varying environmental and operational conditions (EOCs) are usually the results of complex superposition of multiple modes travelling in multiple paths. Among all of the components forming a complex guided-wave signal, the arrivals scattered by damage (so called scatter signal) are of importance for damage diagnosis purposes. This paper evaluates the potentials of nonlinear decomposition methods for extracting the scatter signal from a multi-modal signal recorded from a pipe under varying temperatures. Current approaches for extracting scatter signal can be categorized as (A) baseline subtraction methods, and (B) linear decomposition methods. In this paper, we first illustrate, experimentally, the challenges for applying these methods on multi-modal signals at varying temperatures. To better analyze the experimental results, the effects of temperature on multi-modal signals are simulated. The simulation results show that different wave modes may have significantly different sensitivities to temperature variations. This brings about challenges such as shape distortion and nonlinear relations between the signals recorded at different temperatures, which prevent the aforementioned methods to be extensible to wide range of temperatures. In this paper, we examine the potential of a nonlinear decomposition method, namely nonlinear principal component analysis (NLPCA), for removing the nonlinear relation between the components of a multi-modal guided-wave signal, and thus, extracting the scatter signal. Ultrasonic pitch-catch measurements from an aluminum pipe segment in a thermally controlled laboratory are used to evaluate the detection performance of the damage-sensitive features extracted by the proposed approach. It is observed that NLPCA can successfully remove nonlinear relations between the signal bases, hence extract scatter signal, for temperature variations up to 10℃, with detection accuracies above 99%.
Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai
2016-04-01
Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N = 18) or 15 km (N = 16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.
NASA Astrophysics Data System (ADS)
Liu, Hongbo; Yang, Xue
2015-11-01
The electrocaloric (EC) effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.
Cótica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, José A.
2015-02-14
It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.
Razavi, Bahar S; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2015-01-01
The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters V max and K m will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of V max and K m of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase) and hemicelluloses (xylanase) were analyzed in situ from 0 to 40°C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol(-1) corresponding to the Q 10 values of the enzyme activities of 1.4-1.9 (with V max - Q 10 1.0-2.5 and K m - Q 10 0.94-2.3). Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that, the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10-15°C and 25-30°C, which were less pronounced for xylanase. The nonlinearity between 10 and 15°C was explained by 30-80% increase in V max . At 25-30°C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of V max and K m to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15°C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10°C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be investigated for
High-temperature superconductor antennas - Utilization of low RF losses and of nonlinear effects
NASA Astrophysics Data System (ADS)
Chaloupka, H.
1992-08-01
Novel antenna structures based on the low radio frequency (RF) losses in epitaxial high temperature superconductor (HTS) thin films are discussed. Antenna structures under consideration include (1) electrically small and superdirective antennas and (2) high directive mm-wave arrays. The geometric size of antennas with radiation pattern characterized by a low order of spherical harmonics can be considerably reduced without efficiency degradation. The limit in size reduction can be determined by the required frequency bandwidth. Particular attention is given to experimental results for electrically small microstrip HTS antennas including H-antenna and a novel meander antenna; a novel frequency-selective antenna system; and implementation of HTS switches that takes advantage of the nonlinear HTS properties and may replace semiconductor switches in antenna systems.
Nonlinear Peltier effect in semiconductors
NASA Astrophysics Data System (ADS)
Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali
2007-09-01
Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.
Maharaj, S. K.; Bharuthram, R.; Pillay, S. R.; Singh, S. V.; Reddy, R. V.; Lakhina, G. S.
2008-09-07
In view of the observations of parallel (to Earth's magnetic field) spiky electric field structures by the FAST satellite, a theoretical study is conducted using a dusty plasma model comprising Boltzmann distributed hot and cool ions, Boltzmann electrons and a negatively charged cold dust fluid to investigate the existence of similar low frequency nonlinear electrostatic waves in a dusty plasma which could have a similar appearance as the observed waveforms. Charge separation effects are incorporated into our model by the inclusion of Poisson's equation as opposed to assuming quasineutrality. The system of nonlinear equations is then numerically solved. The resulting electric field structure is examined as a function of various plasma parameters such as Mach number, driving electric field amplitude, bulk dust drift speed, particle densities and particle temperatures.
Nonlinear temperature effects on multifractal complexity of metabolic rate of mice
Bogdanovich, Jose M.; Bozinovic, Francisco
2016-01-01
Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2), in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA), finding that r(VO2) fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 102 s), either monofractal or weak multifractal dynamics are observed depending on whether Ta < 15 °C or Ta > 15 °C respectively. For larger time scales, r(VO2) fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q), showing that the infinite number of exponents h(q) can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2) time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system. PMID:27781179
Nonlinear temperature effects on multifractal complexity of metabolic rate of mice.
Labra, Fabio A; Bogdanovich, Jose M; Bozinovic, Francisco
2016-01-01
Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2), in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA), finding that r(VO2) fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 10(2) s), either monofractal or weak multifractal dynamics are observed depending on whether Ta < 15 °C or Ta > 15 °C respectively. For larger time scales, r(VO2) fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q), showing that the infinite number of exponents h(q) can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2) time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system.
NASA Astrophysics Data System (ADS)
Schroer, Carsten F. E.; Heuer, Andreas
2015-12-01
In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.
Schroer, Carsten F. E.; Heuer, Andreas
2015-12-14
In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.
Nonlinear electrodynamics of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Zutic, Igor
We investigate the effects of nonlinear electrodynamics in unconventional superconductors. These effects can serve as fingerprints to identify the symmetry of the superconducting pairing state and to provide information about the unknown pairing mechanism in High Temperature Superconductors (HTSC). In the Meissner regime, at low temperatures, a nonlinear magnetic response arises from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero. This can be used to perform "node spectroscopy", that is, as a sensitive bulk probe to locate the angular position of those lines. We first compute the nonlinear magnetic moment as a function of applied field and geometry, assuming d-wave pairing and anisotropic penetration depth, for realistic finite sample. Our novel, numerically implemented, perturbative procedure exploits the small ratio of the penetration depths to the sample size and substantially reduces the computational work required. We next generalize these considerations to other candidates for the energy gap and to perform node spectroscopy. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+s and s+id). We finally extend our findings to the case of low frequency harmonic magnetic field. The nonlinear magnetic response for various physical quantities generates higher harmonics of the frequency of the applied field. We discuss how examination of the field and angular dependences of these harmonics allows determination of the structure of the energy gap. We show how to distinguish nodes from small minima ("quasinodes"). Gaps with nodal lines give rise to universal power law field dependences for the nonlinear magnetic moment and torque. They both have separable temporal
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
Temperature modes for nonlinear Gaussian beams.
Myers, Matthew R; Soneson, Joshua E
2009-07-01
In assessing the influence of nonlinear acoustic propagation on thermal bioeffects, approximate methods for quickly estimating the temperature rise as operational parameters are varied can be very useful. This paper provides a formula for the transient temperature rise associated with nonlinear propagation of Gaussian beams. The pressure amplitudes for the Gaussian modes can be obtained rapidly using a method previously published for simulating nonlinear propagation of Gaussian beams. The temperature-mode series shows that the nth temperature mode generated by nonlinear propagation, when normalized by the fundamental, is weaker than the nth heat-rate mode (also normalized by the fundamental in the heat-rate series) by a factor of log(n)/n, where n is the mode number. Predictions of temperature rise and thermal dose were found to be in close agreement with full, finite-difference calculations of the pressure fields, temperature rise, and thermal dose. Applications to non-Gaussian beams were made by fitting the main lobe of the significant modes to Gaussian functions.
NASA Astrophysics Data System (ADS)
Liu, Xin; Zou, LiLi; Liu, Chenglin; Zhang, Zhi-Hai; Yuan, Jian-Hui
2016-03-01
In the present work, the effects of hydrostatic pressure, temperature, and magnetic field on the nonlinear optical rectification (OR) and second-harmonic generation (SHG) in asymmetrical Gaussian potential quantum well (QW) have been investigated theoretically. Here, the expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. Simultaneously, the energy eigenvalues and their corresponding eigenfunctions have been obtained by using the finite difference method. The energy eigenvalues and the shape of the confined potential are modulated by the hydrostatic pressure, temperature, and magnetic field. So the results of a number of numerical experiments indicate that the nonlinear OR and SHG strongly depends on the hydrostatic pressure, temperature, and magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.
NASA Astrophysics Data System (ADS)
Bhattacharya, Anand; Goldman, Allen M.
1998-03-01
The presence of nodes or minima in the energy gap of high temperature superconductors should give rise to a nonlinear response in the Meissner regime to an applied magnetic field. A gap with a symmetry lower than the underlying Fermi surface should give rise to a transverse component in this response, the angular dependance of which should reflect the underlying symmetry of the order parameter. We shall present our latest data on samples of YBCO, compare the measurements with numerical calculations footnote I. Zutic and O.T. Valls PRB Vol.54 No.21 p 15500, and discuss the implications for the superconducting order parameter.
Nonlinear radiative transfer in high temperature plasmas
NASA Astrophysics Data System (ADS)
Soloviev, Vadim Y.
2017-10-01
An approximation to the nonlinear radiative transfer equation is considered in the context of magnetohydrodynamics. This approximation retains nonlinear terms which are responsible for the Compton plasma heating in addition to the radiation cooling. The effect is studied numerically. In particular, the Kelvin-Helmholtz instability and the Dai-Woodward case are modeled. It is shown that radiation-plasma coupling results in damping of small scale instabilities and alters the shock wave structure.
Nonlinear polariton effects in naphthalene
Stevenson, S.H.
1985-01-01
Resonant second harmonic generation (SHG) and two-photon excited emission (TPE) were studied in pure, strain-free crystals of naphthalene at frequencies near that of the (0,0) a-exciton in order to probe the relationship between the two signals and to investigate the effect of polariton states on second order nonlinearities in molecular crystals. The strong coupling of the 31473 cm/sup -1/ exciton in naphthalene to the photon field dictates the second-order nonlinear behavior of naphthalene crystals at frequencies near half-resonance. The dynamics of polaritons produced coherently via nonlinear interactions is shown to deviate in a controllable way from the dynamics of the one-photon polaritons produced in a linear experiment. The nature of the excitation remains principally that of an exciton. The necessity of using a strong coupling model to explain orientational dispersion and intensity and lineshape behavior is established. The experimental angular frequency dispersion of the SHG and TPE signals are fit to theoretical polariton dispersion curves. The orientation of the naphthalene optical indicatrix at 31475 cm/sup -1/ is shown to be very nearly the same as that reported for visible light. The temperature dependences of the SHG and TPE signal intensities are successfully predicted from the polariton fusion model by inclusion of temporal damping in the fusion rate expression. The shapes of the SHG and TPE profiles are compared to shapes predicted from the semi-classical theory.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas
2017-03-01
We study the profiles of electro-optic effect (EOE) and third-order nonlinear optical susceptibility (TONOS) of impurity doped GaAs quantum dots (QDs) under the combined influence of hydrostatic pressure (HP) and temperature (T) taking into account the presence of Gaussian white noise. Noise has been introduced to the system additively and multiplicatively. The doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is elegantly reflected through prominent change of peak shift (blue/red) and variation of peak height (increase/ıdecrease) of above nonlinear optical (NLO) properties as temperature and pressure are varied over a range. Interestingly, all such changes subtly depend on mode of application (additive/multiplicative) of noise. The noteworthy influence of the interplay between noise strength and its mode of application on the said NLO properties has also been critically scrutinized. The findings highlight remarkable role played by noise in tuning above NLO properties of doped QD system under the prominent presence of both hydrostatic pressure and temperature.
A nonlinear high temperature fracture mechanics basis for strainrange partitioning
NASA Technical Reports Server (NTRS)
Kitamura, Takayuki; Halford, Gary R.
1989-01-01
A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction.
Resonance-Enhanced Nonlinear Optical Effects
NASA Astrophysics Data System (ADS)
Sun, Xuan
Nonlinear optical processes, which manifest as many interesting phenomena such as nonlinear wave mixing, optical rectification, intensity-dependent refractive index change, harmonic generation, etc., have found very broad applications. Unfortunately, most optical media exhibit rather weak optical nonlinearities and a majority of nonlinear optical processes have to rely on substantial optical powers to support nonlinear wave interactions, which becomes a major challenge for nonlinear photonic application. This thesis is devoted to exploring enhanced nonlinear optical phenomena, by taking advantage of a certain type of resonance to enhance the nonlinear wave interactions. For this purpose, we employed both natural atomic resonances via electron transition and engineered optical resonances in micro/nanophotonic device structures, for different applications. These two types of resonances, although distinctive in their physical natures, both are able to significantly increase the strength and elongate the time of optical wave interactions, thus leading to dramatic enhancement of nonlinear optical effects. On one hand, we utilized unique energy-level structures in alkali vapor plasmas to dramatically enhance the electron tunneling ionization process and to produce significant resonance-enhanced four-wave mixing for efficient terahertz (THz) wave generation that is crucial for long-wave application. On the other hand, we utilized the enhancement offered by high-Q optical resonances inside microresonators to produce significant photothermal backaction to dramatically suppress the fundamental temperature fluctuations of microresonators, which is essential for sensing and metrology applications. With such cavity-resonance enhancement, we revealed a new regime of nonlinear optical oscillation dynamics in lithium niobate microresonators that results from unique competition between the thermo-optic nonlinear effect and the photorefractive effect, which is inaccessible to
Seposo, Xerxes T; Dang, Tran Ngoc; Honda, Yasushi
2015-06-16
The effect of temperature on the risk of mortality has been described in numerous studies of category-specific (e.g., cause-, sex-, age-, and season-specific) mortality in temperate and subtropical countries, with consistent findings of U-, V-, and J-shaped exposure-response functions. In this study, we analyzed the relationship between temperature and mortality in Manila City (Philippines), during 2006-2010 to identify the potential susceptible populations. We collected daily all-cause and cause-specific death counts from the Philippine Statistics Authority-National Statistics Office and the meteorological variables were collected from the Philippine Atmospheric Geophysical and Astronomical Services Administration. Temperature-mortality relationships were modeled using Poisson regression combined with distributed lag nonlinear models, and were used to perform cause-, sex-, age-, and season-specific analyses. The minimum mortality temperature was 30 °C, and increased risks of mortality were observed per 1 °C increase among elderly persons (RR: 1.53, 95% CI: 1.31-1.80), women (RR: 1.47, 95% CI: 1.27-1.69), and for respiratory causes of death (RR: 1.52, 95% CI: 1.23-1.88). Seasonal effect modification was found to greatly affect the risks in the lower temperature range. Thus, the temperature-mortality relationship in Manila City exhibited an increased risk of mortality among elderly persons, women, and for respiratory-causes, with inherent effect modification in the season-specific analysis. The findings of this study may facilitate the development of public health policies to reduce the effects of air temperature on mortality, especially for these high-risk groups.
Nonlinear integrated Sachs-Wolfe effect
NASA Astrophysics Data System (ADS)
Cooray, Asantha
2002-04-01
We discuss the nonlinear extension to the integrated Sachs-Wolfe effect (ISW) resulting from the divergence of the large scale structure momentum density field. The nonlinear ISW effect leads to an increase in the total ISW contribution by roughly two orders of magnitude at l~1000. This increase, however, is still below the cosmic variance limit of the primary anisotropies; at further small angular scales, secondary effects such as gravitational lensing and the kinetic Sunyaev-Zel'dovich effect dominate the nonlinear ISW power spectrum. We show that this second-order nonlinear ISW contribution is effectively the same as the contribution previously described as a lensing effect due to the transverse motion of gravitational lenses and well known as the Kaiser-Stebbins effect in the context of cosmic strings. Because of geometrical considerations, there is no significant three-point correlation function, or bispectrum, between the linear ISW effect and its nonlinear extension. The nonlinear ISW contribution can potentially be used as a probe of the transverse velocity of dark matter halos such as galaxy clusters. Because of the small contribution to temperature fluctuations, of the order of a few tenths of microkelvins, however, extracting useful measurements on velocities will be challenging.
Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...
Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...
Nonlinear analysis of bonded joints with thermal effects
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Herakovich, C. T.
1977-01-01
Nonlinear results are presented for adhesive bonded joints. It is shown that adhesive nonlinearities are only significant in the predicted adhesive shear stresses. Adherend nonlinearities and temperature dependent properties are shown to have little effect upon the adhesive stress predictions under mechanical and thermal loadings.
Role of temperature on nonlinear cardiac dynamics
NASA Astrophysics Data System (ADS)
Fenton, Flavio H.; Gizzi, Alessio; Cherubini, Christian; Pomella, Nicola; Filippi, Simonetta
2013-04-01
Thermal effects affecting spatiotemporal behavior of cardiac tissue are discussed by relating temperature variations to proarrhythmic dynamics in the heart. By introducing a thermoelectric coupling in a minimal model of cardiac tissue, we are able to reproduce experimentally measured dynamics obtained simultaneously from epicardial and endocardial canine right ventricles at different temperatures. A quantitative description of emergent proarrhythmic properties of restitution, conduction velocity, and alternans regimes as a function of temperature is presented. Complex discordant alternans patterns that enhance tissue dispersion consisting of one wave front and three wave backs are described in both simulations and experiments. Possible implications for model generalization are finally discussed.
Nonlinear effects in Thomson backscattering
NASA Astrophysics Data System (ADS)
Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.
2013-03-01
We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.
Nonlinear Constitutive Relations for High Temperature Application, 1984
NASA Technical Reports Server (NTRS)
1985-01-01
Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.
NASA Astrophysics Data System (ADS)
Anandrao, K. Sanjay; Gupta, R. K.; Ramchandran, P.; Venkateswara Rao, G.
2014-03-01
The effect of temperature-dependent material properties on the geometric nonlinear flexural response and thermal postbuckling behavior of shear flexible Functionally Graded Material (FGM) beams is investigated under various thermal and thermo-mechanical environments. The important aspects of the thermal and thermo-mechanical bending and thermal post-buckling of FGM beams are studied. The temperature variation across the thickness is obtained analytically and the finite element method (FEM) is used to predict the transverse deflections and stresses in the flexural analysis and the load-deflection paths for the thermal postbuckling analysis. The through thickness continuous variation of the material properties of the FGM beams is considered using the standard power law distribution. The von-Karman-type strain-displacement relations are used to account for the moderately large deflections. The FGM beams, with the classical hinged and clamped boundary conditions, are analyzed considering the axially immovable ends. The numerical results are provided to clearly bring out the importance of including the temperature dependency of the material properties to evaluate the realistic flexural response and thermal postbuckling behavior of the FGM beams subjected to thermal and thermo-mechanical loadings.
Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2017-06-01
We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.
Muggeo, V M; Hajat, S
2009-09-01
Exposure to ambient temperature can affect mortality levels for days or weeks following exposure, making modelling such effects in regression analysis of daily time-series data complex. We propose a new approach involving a multi-lag segmented approximation to account for the non-linear effect of temperature and the use of two different penalized spline bases to model the distributed lag of both heat and cold exposure. Compared with standard splines, the novel penalized framework is more flexible at short lags where change in coefficients is greatest, and selection of the maximum lag appears substantially less important in determining the overall pattern of the effect. Applying the approach to daily mortality in Santiago (Chile) and Palermo (Italy), we observed a heat effect that was mostly immediate and followed by negative estimates consistent with short-term mortality displacement (harvesting). Cold effects were mostly positively sustained and more evenly distributed across the 60-day analysis period: in Santiago we estimated an overall increase in deaths of 2.36% (95% CI 0.26% to 4.51%) in the 65+ age group associated with every 1 degrees C decrease below the cold threshold, and an increase of 1.11% (0.09% to 2.14%) per 1 degrees C for Palermo. Heat effects for Palermo were much larger than for Santiago, and less harvesting of heat deaths was evident. The estimated heat thresholds were higher in Palermo than in Santiago. Our approach provides a flexible and precise method to quantify health effects of both heat and cold exposure at individual lags and to model the overall pattern of the delayed effect.
NASA Astrophysics Data System (ADS)
Liss, Alexander
Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate
Nonlinear Impact of Temperature on Mortality in France
NASA Astrophysics Data System (ADS)
Zhang, A. T.
2016-12-01
Anthropogenic climate change is posing unprecedented challenges to human welfare, yet there is much uncertainty about the cost of its impact. Accurate quantification of the social cost of carbon is crucial for designing effective climate policies that reduce emissions and mitigate the adverse impact of global warming, and human health is an important component of the calculation. Despite a growing body of literature documenting the relationship between temperature and mortality in the U.S., similar results using nationwide data have not been clearly established in other countries. Using random monthly variations in temperature for over a decade, this paper finds a statistically significant nonlinear relationship between monthly mortality rate and daily temperature in France between 1998 and 2012. Extremely hot days are associated with significantly higher mortality rates: One additional day with a mean temperature above 30°C, relative to a day in the 12°C to 15°C range, leads to 10 extra all-age, all-gender monthly deaths per 100,000. The effect of cold temperatures is milder: An extremely cold day with an average temperature from -9 °C to -6 °C increases all-age, all-gender mortality rate by about 1.2 per 100,000 each month. There is also notable heterogeneity in the observed nonlinear relationship across age groups and gender, in which males and the elderly are generally more susceptible to extreme temperatures than females and the young. This highlights that children and youth may be well protected through adaptive behaviors, such as spending more time indoors in temperature-controlled rooms and staying hydrated. Compared to studies done in the U.S., extremely hot days >30°C leads to considerably more deaths in France. Preliminary evidence suggests that there has been very limited adaptation despite two prominent heat waves in 2003 and 2006, although further analysis of electricity consumption and air conditioning usage is needed to ascertain the extent to
Möller, Johannes; Schroer, Martin A.; Erlkamp, Mirko; Grobelny, Sebastian; Paulus, Michael; Tiemeyer, Sebastian; Wirkert, Florian J.; Tolan, Metin; Winter, Roland
2012-01-01
Understanding the intermolecular interaction potential, V(r), of proteins under the influence of temperature, pressure, and salt concentration is essential for understanding protein aggregation, crystallization, and protein phase behavior in general. Here, we report small-angle x-ray scattering studies on dense lysozyme solutions of high ionic strength as a function of temperature and pressure. We show that the interaction potential changes in a nonlinear fashion over a wide range of temperatures, salt, and protein concentrations. Neither temperature nor protein and salt concentration lead to marked changes in the pressure dependence of V(r), indicating that changes of the water structure dominate the pressure dependence of the intermolecular forces. Furthermore, by analysis of the temperature, pressure, and ionic strength dependence of the normalized second virial coefficient, b2, we show that the interaction can be fine-tuned by pressure, which can be used to optimize b2 values for controlled protein crystallization. PMID:22713580
Nonlinear effects in quantum dissipation
NASA Astrophysics Data System (ADS)
Vitali, David; Grigolini, Paolo
1990-12-01
We study a two-level system linearly interacting with a set of quantum-mechanical oscillators, referred to as the ``bath.'' This system is formally equivalent to a magnetic dipole, with spin 1/2, precessing with the Larmor frequency ω0 around a fixed magnetic field along the z axis and undergoing the influence of a fluctuating field along the x axis. These bath fluctuations are not independent of the state of the spin, and the crucial problem to be studied in this paper is precisely how to take the reaction field, i.e., the influence of the bath on the system, into account. We find a general result based on neglecting a contribution to the reaction field proportional to σx(t)-<σx(t)>, where the angle brackets denote averaging on both the spin and the bath space, with a density matrix corresponding to the spin polarized along the x axis. We show that under the special condition that the spin does not significantly depart from its initial state, our general result turns out to coincide with the noninteracting-blip approximation (NBA) of Leggett and co-workers [Rev. Mod. Phys. 59, 1 (1987)]. When we make the assumption that both quantum and thermal fluctuations of the bath can be neglected and that the time scale of the bath is virtually zero (adiabatic assumption), our general result turns out to coincide with the prediction of the discrete nonlinear Schrödinger equation (DNSE) of Davydov and Kislukha [Phys. Status Solidi B 59, 465 (1973)] and Davydov $[-Biology and Quantum Mechanics (Pergamon, Oxford, 1982)] in the two-sites case. This means that the nonlinear effects proven by Kenkre and co-workers [Phys. Rev. B 34, 4959 (1986); 35, 1473 (1987)] to accompany a significant departure of the spin from the initial state are lost by the NBA. On the other hand, our approach provides a rigorous evaluation of the effects of the oscillator fluctuations on the predictions of the DNSE. It is shown that the quantum fluctuations might have a significant role also in the
Prediction of nonlinear soil effects
Hartzell, S.; Bonilla, L.F.; Williams, R.A.
2004-01-01
Mathematical models of soil nonlinearity in common use and recently developed nonlinear codes compared to investigate the range of their predictions. We consider equivalent linear formulations with and without frequency-dependent moduli and damping ratios and nonlinear formulations for total and effective stress. Average velocity profiles to 150 m depth with midrange National Earthquake Hazards Reduction Program site classifications (B, BC, C, D, and E) in the top 30 m are used to compare the response of a wide range of site conditions from rock to soft soil. Nonlinear soil models are compared using the amplification spectrum, calculated as the ratio of surface ground motion to the input motion at the base of the velocity profile. Peak input motions from 0.1g to 0.9g are considered. For site class B, no significant differences exist between the models considered in this article. For site classes BC and C, differences are small at low input motions (0.1g to 0.2g), but become significant at higher input levels. For site classes D and E the overdamping of frequencies above about 4 Hz by the equivalent linear solution with frequency-independent parameters is apparent for the entire range of input motions considered. The equivalent linear formulation with frequency-dependent moduli and damping ratios under damps relative to the nonlinear models considered for site class C with larger input motions and most input levels for site classes D and E. At larger input motions the underdamping for site classes D and E is not as severe as the overdamping with the frequency-independent formulation, but there are still significant differences in the time domain. A nonlinear formulation is recommended for site classes D and E and for site classes BC and C with input motions greater than a few tenths of the acceleration of gravity. The type of nonlinear formulation to use is driven by considerations of the importance of water content and the availability of laboratory soils data. Our
Temperature dependence of nonlinear optical phenomena in silica glasses
NASA Astrophysics Data System (ADS)
Mikami, K.; Motokoshi, S.; Fujita, M.; Jitsuno, T.; Murakami, M.
2010-11-01
A linear increase of the laser-induced damage thresholds in silica glasses with decreasing the temperature was reported in this conference at last year. Various nonlinear phenomena should be generated in silica glasses besides the damage in high intensity. Temperature dependences of the nonlinear refractive indices and the SBS (stimulated Brillouin scattering) thresholds in silica glasses at temperature 173 K to 473 K were measured with single-mode Q-switched Nd:YAG laser at fundamental wavelength. As the result, the nonlinear refractive indices increased with decreasing temperature. Because the change was not enough to explain the temperature dependence of laser-induced damage thresholds, the temperature dependence of nonlinear refractive indices would be negligible on laser-induced damage thresholds. On the other hand, the SBS thresholds also increased with decreasing temperature. This result means that acoustic phonons arise easily at high temperature. Probably, the SBS phenomenon is one of reasons for temperature dependence of laser-induced damage thresholds.
Influence of a nonlinear reference temperature profile on oscillatory Bénard-Marangoni convection.
Dondlinger, M; Colinet, P; Dauby, P C
2003-12-01
We analyze oscillatory instabilities in a fluid layer of infinite horizontal extent, heated from above or cooled from below, taking into account the nonlinearity of the reference temperature profile during the transient state of heat conduction. The linear stability analysis shows that a nonlinear reference temperature profile can have a strong effect on the system, either stabilizing or destabilizing, depending on the relative importance of buoyancy and surface tension forces. For the nonlinear analysis we use a Galerkin-Eckhaus method leading to a finite set of amplitude equations. In the two-dimensional (2D) case, we show the solution of these amplitude equations are standing waves.
Nonlinear temperature dependent failure analysis of finite width composite laminates
NASA Technical Reports Server (NTRS)
Nagarkar, A. P.; Herakovich, C. T.
1979-01-01
A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.
Nonlinear acoustic properties of vibrating wires at very low temperatures
Koenig, R.; Esquinazi, P.; Pobell, F. )
1993-01-01
The authors have investigated the acoustic properties of superconducting NbTi and Ta wires in vacuum at 1 mK[le]T[le]1 K and at a few kHz. The temperature dependence of the acoustic properties of the wires is similar to that found in amorphous materials: a maximum in the sound velocity and a plateau in the dissipation at temperatures above it. In addition, they have observed a strong influence of the acoustic power on the measured properties in agreement with recent measurements on amorphous SiO[sub 2]. This strain dependence can be interpreted by a modification of the tunneling model as a change of population S of the two-level system energy states in non-crystalline materials. They can explain the strain-dependent anomalies as the superposition of three nonlinear effects: the change of population of the tunneling systems energy states, self-heating of the wire, and a nonlinear restoring force. These effects have a strong influence on the lineshape of the resonance curve. In addition, they have investigated the behavior of vibrating wires in liquid [sup 3]He and liquid [sup 3]He-[sup 4]He solutions at T<100 mK. They can show that in superfluid [sup 3]He-B at T<0.2 mK or in solutions of [sup 3]He in [sup 4]He with a small concentration of [sup 3]He it is impossible to use a vibrating wire as a viscometer without having exact information about its intrinsic properties. 32 refs., 12 figs., 1 tab.
A Nonlinear Viscoelastic Model for Ceramics at High Temperatures
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.
2002-01-01
High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.
NASA Astrophysics Data System (ADS)
Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair
Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.
Breakdown of nonlinear elasticity in amorphous solids at finite temperatures
NASA Astrophysics Data System (ADS)
Procaccia, Itamar; Rainone, Corrado; Shor, Carmel A. B. Z.; Singh, Murari
2016-06-01
It is known [H. G. E. Hentschel et al., Phys. Rev. E 83, 061101 (2011), 10.1103/PhysRevE.83.061101] that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus, which exists, none of the higher order coefficients exist in the thermodynamic limit. Here we show that the same phenomenon persists up to temperatures comparable to that of the glass transition. The zero-temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.
Nonlinear absorbance effects in bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Rayfield, George W.
1991-03-01
Bacteriorhodopsin (BR) is a protein found in the cell membrane wall of Halobacterium halobium and serves as a light-activated proton pump (i.e., the protein converts light energy into chemical energy). The chromophore (retinal) responsible for light absorption is located within a pocket of the opsin and is bound via a Schiff base to a lysine residue in the amino acid sequence. When BR is illuminated by a laser light flash, transient changes occur in the visible absorption spectrum of the protein -- i.e., the material is photochromic. The optical absorption changes are characterized by a series of photointermediates, with characteristic rise and fall times that range from less than a picosecond to more then 10 milliseconds. This photochromic property of BR makes it a useful material for optical devices. With an aim toward developing an optical switch for the Army, we are studying the transient absorption of nanosecond light pulses from a dye laser in the spectral region in which the absorbance of BR increases as light intensity increases. This nonlinear effect is wavelength-dependent and becomes a bleach in a different spectral window. The nonlinear absorption change is reversible.
Linear and nonlinear responses to middle latitude surface temperature anomalies
NASA Technical Reports Server (NTRS)
Roads, John O.
1989-01-01
Nonlinear responses to fixed and seasonally varying surface temperature anomalies in a two-level hemispheric time-dependent coupled atmosphere-surface mixed layer model are described. Linear stationary models that are equivalent to the nonlinear time-dependent model are used to analyze these responses. A model linearized around the climatological zonal state of the time dependent model and forced by anomalous surface temperatures does not provide a reasonable estimate for the anomalous reponses, which are considerably underestimated. Better responses are obtained when the anomalous stationary nonlinear eddy fluxes are included in a model linearized around the full climatology. However, this latter model is overly sensitive, and anomalous responses are a small residual balance to the forcing by the surface temperature anomalies and the anomalous transient eddy fluxes. To better understand these linear responses, an eigenanalysis of the climatological state is performed. Seasonal anomalies appear to be dominated by one characteristic pattern near resonance which can be associated with a slowly growing coupled atmosphere-ocean instability.
Cutoff nonlinearities in the low-temperature vibrations of glasses and crystals
NASA Astrophysics Data System (ADS)
Mizuno, Hideyuki; Silbert, Leonardo E.; Sperl, Matthias; Mossa, Stefano; Barrat, Jean-Louis
2016-04-01
We present a computer simulation study of glassy and crystalline states using the standard Lennard-Jones interaction potential that is truncated at a finite cutoff distance, as is typical of many computer simulations. We demonstrate that the discontinuity at the cutoff distance in the first derivative of the potential (corresponding to the interparticle force) leads to the appearance of cutoff nonlinearities. These cutoff nonlinearities persist into the very-low-temperature regime thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic approximation for many eigenmodes, particularly for low-frequency vibrational modes. Furthermore, while expansion nonlinearities which are due to higher order terms in the Taylor expansion of the interaction potential are usually ignored at low temperatures and show up as the temperature increases, cutoff nonlinearities can become most significant at the lowest temperatures. Anharmonic effects readily show up in the elastic moduli which not only depend on the eigenfrequencies, but are crucially sensitive to the eigenvectors of the normal modes. In contrast, those observables that rely mainly on static structural information or just the eigenfrequencies, such as the vibrational density of states, total potential energy, and specific heat, show negligible dependence on the presence of the cutoff. Similar aspects of nonlinear behavior have recently been reported in model granular materials, where the constituent particles interact through finite-range, purely repulsive potentials. These nonlinearities have been ascribed to the nature of the sudden cutoff at contact in the force law. As a consequence, we demonstrate that cutoff nonlinearities emerge as a general feature of ordered and disordered solid state systems interacting through truncated potentials.
Nonlinearity effects on the directed momentum current.
Zhao, Wen-Lei; Fu, Li-Bin; Liu, Jie
2014-08-01
We investigate the quantum transport dynamics governed by the nonlinear Schrödinger equation with a periodically-δ-kicking potential and discover the emergence of a directed current in momentum space. With the increase of nonlinearity, we find strikingly that the momentum current decreases, reverses, and finally vanishes, indicating that the quantum transport can be effectively manipulated through adjusting the nonlinearity. The underlying dynamic mechanism is uncovered and some important implications are addressed.
Cimmelli, V. A.; Rogolino, P.; Sellitto, A.
2016-04-15
A general two temperature nonlinear thermodynamic model to describe thermoelectric effects is introduced. Its compatibility with the second law of thermodynamics is investigated. We specialize the model in the framework of thermomass theory and estimate the maximum efficiency of a one-dimensional thermoelectric generator.
NASA Astrophysics Data System (ADS)
Deng, Mingcong; Bi, Shuhui
2010-09-01
In this article, operator-based robust nonlinear control system design for multi-input multi-output (MIMO) plants with unknown coupling effects is considered. That is, by using operator-based robust nonlinear control design, coupling effects existing in the MIMO nonlinear plants can be decoupled based on a feedback design and robust right coprime factorisation approach, the coupling effects caused by controllers and plant outputs can be stabilised by using definition of Lipschitz operator and contraction mapping theorem, and output tracking performance can be realised by a tracking design scheme. Finally, a simulation example about temperature control process of 3-input/3-output aluminum plate is given to support the theoretical analysis.
Piezoelectric nonlinear nanomechanical temperature and acceleration insensitive clocks
NASA Astrophysics Data System (ADS)
Tazzoli, A.; Piazza, G.; Rinaldi, M.; Segovia, J.; Cassella, C.; Otis, B.; Shi, J.; Turner, K.; Burgner, C.; McNaul, K.; Bail, D.; Felmetsger, V.
2012-06-01
This work presents the development of high frequency mechanical oscillators based on non-linear laterally vibrating aluminum nitride (AlN) piezoelectric resonators. Our efforts are focused on harnessing non-linear dynamics in resonant mechanical devices to devise frequency sources operating around 1 GHz and capable of outperforming state-of-the-art oscillators in terms of phase noise and size. To this extent, we have identified the thermal and mechanical origin of non-linearities in micro and nanomechanical AlN resonators and developed a theory that describes the optimal operating point for non-linear oscillators. Based on these considerations, we have devised 1 GHz oscillators that exhibit phase noise of < -90 dBc/Hz at 1 kHz offset and < -160 dBc/Hz at 10 MHz offset. In order to attain thermally stable oscillators showing few ppm shifts from - 40 to + 85 °C, we have implemented an embedded ovenization technique that consumes only few mW of power. By means of simple microfabrication techniques, we have included a serpentine heater in the body of the resonator and exploited it to heat it and monitor its temperature without degrading its electromechanical performance. The ovenized devices have resulted in high frequency stability with just few ppm of shift over the temperature range of interest. Finally, few of these oscillators were tested according to military standards for acceleration sensitivity and exhibited a frequency sensitivity lower than 30 ppb/G. These ultra stable oscillators with low jitter and phase noise will ultimately benefit military as well as commercial communication systems.
Noninvasive tissue temperature estimation using nonlinear ultrasound harmonics
NASA Astrophysics Data System (ADS)
Maraghechi, Borna; Kolios, Michael C.; Tavakkoli, Jahan
2017-03-01
Non-invasive tissue temperature estimation is important in thermal therapies for having an efficient treatment. A noninvasive ultrasonic technique for monitoring tissue temperature changes is proposed based on the changes in the harmonics of ultrasound backscatter as a function of temperature. The backscattered pressure amplitudes of the fundamental frequency (p1), the second (p2) and the third (p3) harmonics generated by nonlinear ultrasound propagation and the ratios of the second and the third harmonics over the fundamental frequency (p2/p1 and p3/p1) were investigated as a function of temperature. The acoustic harmonics were generated and detected with a commercial high frequency ultrasound imaging system in pulse-echo mode. The experiments were performed on tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The temperature was increased from 26°C to 46°C in increments of 2°C. The average values of p1, p2, p3, p2/p1, p3/p1 increased by 14%, 50%, 117%, 37% and 92% for the gel phantoms, and for the tissue samples increased by 29%, 50%, 170%, 10% and 109%, respectively. The results indicate that the harmonic amplitudes and their ratios are highly sensitive to propagation medium's temperature and could potentially be used for noninvasive ultrasound thermometry.
Weakly nonlinear ion waves in striated electron temperatures
NASA Astrophysics Data System (ADS)
Guio, P.; Pécseli, H. L.
2016-04-01
The existence of low-frequency waveguide modes of electrostatic ion acoustic waves is demonstrated in magnetized plasmas for cases where the electron temperature is striated along magnetic field lines. For low frequencies, the temperature striation acts as waveguide that supports a trapped mode. For conditions where the ion cyclotron frequency is below the ion plasma frequency we find a dispersion relation having also a radiative frequency band, where waves can escape from the striation. Arguments for the formation and propagation of an equivalent of electrostatic shocks are presented and demonstrated numerically for these conditions. The shock represents here a balance between an external energy input maintained by ion injection and a dissipation mechanism in the form of energy leakage of the harmonics generated by nonlinear wave steepening. This is a reversible form for energy loss that can replace the time-irreversible losses in a standard Burgers equation.
Barnett, Adrian G; Pan, Xiaochuan; Yu, Weiwei; Tong, Shilu
2011-01-01
Background: Although interest in assessing the impacts of temperature on mortality has increased, few studies have used a case-crossover design to examine nonlinear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature–mortality relationship in China or on what temperature measure is the best predictor of mortality. Objectives: Our objectives were to use a distributed lag nonlinear model (DLNM) as a part of case-crossover design to examine the nonlinear and distributed lag effects of temperature on mortality in Tianjin, China and to explore which temperature measure is the best predictor of mortality. Methods: We applied the DLNM to a case-crossover design to assess the nonlinear and delayed effects of temperatures (maximum, mean, and minimum) on deaths (nonaccidental, cardiopulmonary, cardiovascular, and respiratory). Results: A U-shaped relationship was found consistently between temperature and mortality. Cold effects (i.e., significantly increased mortality associated with low temperatures) were delayed by 3 days and persisted for 10 days. Hot effects (i.e., significantly increased mortality associated with high temperatures) were acute and lasted for 3 days and were followed by mortality displacement for nonaccidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions: In Tianjin, extreme cold and hot temperatures increased the risk of mortality. The effects of cold last longer than the effects of heat. Combining the DLNM and the case-crossover design allows the case-crossover design to flexibly estimate the nonlinear and delayed effects of temperature (or air pollution) while controlling for season. PMID:21827978
GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA
Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr
2011-01-20
The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.
Studies of nonlinear electrodynamics of high-temperature superconductors
Lam, Quan-Chiu H.
1991-08-01
Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities' dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.
Studies of nonlinear electrodynamics of high-temperature superconductors
Lam, Quan-Chiu H.
1991-08-01
Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities` dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double_prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.
Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc
2013-11-01
This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown.
Nonlinear dielectric effect in supercritical diethyl ether
NASA Astrophysics Data System (ADS)
Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Martinez-Garcia, Julio Cesar
2014-09-01
Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (TC) and ψ ≈ 0.6 remote from TC. This can be linked to the emergence of the mean-field behavior in the immediate vicinity of TC, contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.
Nonlinear thermokinetic phenomena due to the Seebeck effect.
Sugioka, Hideyuki
2014-07-22
We propose a novel mechanism to produce nonlinear thermokinetic vortex flows around a circular cylinder with ideally high thermal conductivity in an electrolyte. That is, the nonlinear thermokinetic slip velocity, which is proportional to the square of the temperature gradient [∇(T)0(2)], is derived based on the electrolyte Seebeck effect, heat conduction equation, and Helmholtz–Smoluchowski formula. Different from conventional linear thermokinetic theory, our theory predicts that the inversion of the temperature gradient does not change the direction of the thermokinetic flows and thus a Janus particle using this phenomenon can move to the both hotter and colder regions in a temperature gradient field by changing the direction of its dielectric end. Our findings bridge the gap between the electro- and thermo-kinetic phenomena and provide an integrated physical viewpoint for the interface science.
Nonlinear dielectric effects in liquids: a guided tour
NASA Astrophysics Data System (ADS)
Richert, Ranko
2017-09-01
Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye’s initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.
Low temperature elastic constants and nonlinear acoustic response in rocks and complex materials
Darling, T. W.; Ulrich, T. J.; Johnson, P. A.; Tencate, J. A.
2001-01-01
The 'P-M Space' model of Guyer and McCall has some success in describing the large nonlinear effects ('slow dynamics') observed by Johnson et al. in rocks. The model uses elements which couple classical nonlinear elasticity with hysteretic components. The actual processes and scales corresponding to the model elements are not yet defined, however it is reasonable to seek energy scales by studying the low-temperature dependence of the elastic constants. We have measured qualitative elastic properties of basalt and Berea sandstone from room temperature down to 4 K using Resonant Ultrasound Spectroscopy (RUS). A simple elastic solid should show a monotonic increase in the elastic constants as temperature decreases. The basalt samples show this gross behavior but the sandstone shows a very unexpected anomalous regime between 40 K and 200 K where the elastic constants decrease with decreasing temperature. Both rocks show temperature-dependent structure in both the modulus and internal friction, and also significant hysteresis, indicating history and rate-dependent properties. This data provides insight into the time and energy scales of dynamical effects observed in sandstones.
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Nucera, Claudio; Lanza di Scalea, Francesco
2014-11-01
Modern rail construction uses continuous-welded rail (CWR). The presence of very few joints leads to an increasing concern due to the large longitudinal loads caused by restrained thermal expansion and contraction, following seasonal temperature variations. The knowledge of the current state of thermal stress in the rail or, equivalently, the rail neutral temperature (corresponding to zero net longitudinal force) is a key need within the railroad transportation community in order to properly schedule slow-order mandates and prevent derailments. This paper presents a nondestructive diagnostic system for measurement of the neutral temperature in CWR based on nonlinear ultrasonic guided waves. The theoretical part of the study involved the development of a constitutive model in order to explain the origin of nonlinear effects arising in complex waveguides under constrained thermal expansion. A numerical framework has been implemented to predict internal resonance conditions of nonlinear waves in complex waveguides. This theoretical/numerical phase has led to the development of an experimental prototype (Rail-NT) that was tested both in the laboratory and in the field. The results of these experimental tests are also summarized.
Nonlinear photovoltaic effect in Sillenite photorefractive crystals
NASA Astrophysics Data System (ADS)
de Oliveira, Ivan; Capovilla, Danilo Augusto; Moura, André L.; Timóteo, Varese S.; Carvalho, Jesiel F.; Frejlich, Jaime
2017-04-01
We report on the presence of photovoltaic effect in some Sillenite photorefractive crystals and compare their behavior with that of the well known photovoltaic LiNbO3:Fe crystal. Nonlinear photovoltaic behavior of these Sillenites are also reported here for the first time and explained by the presence of shallow along with deep photovoltaic centers.
Nonlinear peltier effect in quantum point contacts
NASA Astrophysics Data System (ADS)
Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi
1998-11-01
A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.
Rotational Doppler effect in nonlinear optics
NASA Astrophysics Data System (ADS)
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
NASA Technical Reports Server (NTRS)
Hopkins, D. A.
1984-01-01
A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.
Nonlinear effects in modulated quantum optomechanics
NASA Astrophysics Data System (ADS)
Yin, Tai-Shuang; Lü, Xin-You; Zheng, Li-Li; Wang, Mei; Li, Sha; Wu, Ying
2017-05-01
The nonlinear quantum regime is crucial for implementing interesting quantum effects, which have wide applications in modern quantum science. Here we propose an effective method to reach the nonlinear quantum regime in a modulated optomechanical system (OMS), which is originally in the weak-coupling regime. The mechanical spring constant and optomechanical interaction are modulated periodically. This leads to the result that the resonant optomechanical interaction can be effectively enhanced into the single-photon strong-coupling regime by the modulation-induced mechanical parametric amplification. Moreover, the amplified phonon noise can be suppressed completely by introducing a squeezed vacuum reservoir, which ultimately leads to the realization of photon blockade in a weakly coupled OMS. The reached nonlinear quantum regime also allows us to engineer the nonclassical states (e.g., Schrödinger cat states) of the cavity field, which are robust against the phonon noise. This work offers an alternative approach to enhance the quantum nonlinearity of an OMS, which should expand the applications of cavity optomechanics in the quantum realm.
Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
Divall, S A; Humphrey, V F
2000-03-01
Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.
The Effect of Aggregation in Nonlinear Regression.
1984-04-01
This truncation is the source of the nonlinearity in the model (1.1). Physically, the intercept a represents baseload con- sumption, such as for...BIAS b FOR 75 AGGREGATE DATA SETS FIT TO THE ENERGY MODEL Bias Smoothing Error Standard Error A A Parameter e b = E(8 - 63) e - e s.e.(e BASELOAD a...s.e. ) e BASELOAD a -0.037 -0.30 1.35 (Th/cu-d) HEAT RATE 6 0.0033 0.44 0.224 (Th/cu-OFd) REFERENCE TEMPERATURE T -0.28 -0.25 64.1 (OF) NORMALIZED
Controllable spatiotemporal nonlinear effects in multimode fibres
NASA Astrophysics Data System (ADS)
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2015-05-01
Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.
Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode
NASA Astrophysics Data System (ADS)
Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.
2004-11-01
It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).
Nonlinear effects in photorefractive crystals
NASA Astrophysics Data System (ADS)
Erbschloe, Donald R.
Photorefractive crystals are materials whose index of refraction is altered under illumination by light. These crystals are both photoconductive and electrooptic. When a nonuniform light intensity pattern is present in the material, photocarriers are generated and redistributed, creating space charge electric fields which change the refractive index locally. These crystals are ideal media for real time holography, and applications include wave amplification, image processing, phase conjugation, and laser beam steering for optical interconnects. This thesis investigates many novel aspects of the photorefractive effect. A study of nonreciprocal behavior identifies a new important consideration in the theory of two-wave mixing between counterpropagating beams-namely the presence of a photocurrent, or frequency detuning between the beams results in a spatially varying beam coupling. A numerical treatment of these important cases provides the first systematic theoretical assessment the control of nonreciprocal transmission and phase shift in lithium niobate, a representative photorefractive crystal. A comparison between crystal types suggests candidates for nonreciprocal applications such as an optical diode.
Nonlinear Effects in Photorefractive Crystals.
NASA Astrophysics Data System (ADS)
Erbschloe, Donald Ross
1988-12-01
Available from UMI in association with The British Library. Requires signed TDF. Photorefractive crystals are materials whose index of refraction is altered under illumination by light. These crystals are both photoconductive and electrooptic. When a nonuniform light intensity pattern is present in the material, photocarriers are generated and redistributed, creating space charge electrical fields which change the refractive index locally. These crystals are ideal media for real-time holography, and applications include wave amplification, image processing, phase conjugation, and laser beam steering for optical interconnects. This thesis investigates many novel aspects of the photorefractive effect. A study of nonreciprocal behaviour identifies a new important consideration in the theory of two-wave mixing between counterpropagating beams--namely the presence of a photocurrent, or frequency detuning between the beams results in a spatially varying beam coupling. A numerical treatment of these important cases provides the first systematic theoretical assessment of the control of nonreciprocal transmission and phase shift in lithium niobate, a representative protorefractive crystal. A comparison between crystal types suggests candidates for nonreciprocal applications such as an optical diode. A study of bismuth silicon oxide, Bi_ {12}SiO_{20} , as the active gain medium in an oscillator reveals a novel feature, the presence of a light intensity threshold. For one crystal sample no oscillation occurred for incident intensities less than 0.8 mW/cm^2. A surprising new result is the appearance of higher diffracted orders in a crystal sample with a small wedge angle (0.036 ^circ) due to wave mixing between an incident beam and its first codirectional multiple reflection. Several applications for this new means of obtaining beam interaction are discussed--including the study of the photorefractive coupling for very large grating spacings, the investigation of transient
Dynamical effects of overparametrization in nonlinear models
NASA Astrophysics Data System (ADS)
Aguirre, Luis Antonio; Billings, S. A.
1995-01-01
This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.
Effect of cubic aeroelastic nonlinearities on flutter
NASA Astrophysics Data System (ADS)
Berci, M.
2017-07-01
The effect of cubic aero-structural nonlinearities on aeroelastic flutter instability is here investigated. Focusing on the unstable flutter mode, the exact amplitude and frequency of the arising limit cycle oscillations are determined analytically. Both harmonic balance and multiple scales methods are adopted and perfect agreement of the explicit results is demonstrated, for the case of small perturbations of the aircraft speed in the neighborhood of the flutter instability.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
E. A. Belli; Hammett, G. W.; Dorland, W.
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Nonlinear effects in varactor-tuned resonators.
Everard, Jeremy; Zhou, Liang
2006-05-01
This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.
NASA Astrophysics Data System (ADS)
Shao, Xuefei; Fu, Yiming; Chen, Yang
2015-05-01
Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.
Nonlinear Talbot effect of rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-03-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Ranking scientific publications: the effect of nonlinearity
NASA Astrophysics Data System (ADS)
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru
2014-10-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Ranking scientific publications: the effect of nonlinearity.
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru
2014-10-17
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Ranking scientific publications: the effect of nonlinearity
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru
2014-01-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected. PMID:25322852
Nonlinear optical effects in organic microstructures
NASA Astrophysics Data System (ADS)
Novikov, Vladimir B.; Mamonov, Evgeniy A.; Kopylov, Denis A.; Mitetelo, Nikolai V.; Venkatakrishnarao, D.; Narayana, YSLV; Chandrasekar, R.; Murzina, Tatiana V.
2017-05-01
Organic microstructures attract much attention due to their unique properties originating from the design of their shape and optical parameters. In this work we discuss the linear, second- and third-order nonlinear optical effects in arrays and in individual organic microstructures composed by self-assembling technique and formed randomly on top of a solid substrate. The structures under study consist of micro-spheres, -hemispheres or -frustums made of red laser dye and reveal an intense fluorescence (FL) in the visible spectral range. Importantly, that due to a high value of the refractive index and confined geometry, such micro-structures support the excitation of whispering gallery modes (WGM), which brings about strong and spectrally-selected light localization. We show that an amplification of the nonlinear optical effects is observed for these structures as compared to a homogeneous dye film of similar composition. The obtained data are in agreement with the results of the FDTD calculations performed for the structures of different dimensions. Perspectives of application of such type of organic nonlinear microresonators in optical devices are discussed.
Effective Temperature of Mutations
NASA Astrophysics Data System (ADS)
Derényi, Imre; Szöllősi, Gergely J.
2015-02-01
Biological macromolecules experience two seemingly very different types of noise acting on different time scales: (i) point mutations corresponding to changes in molecular sequence and (ii) thermal fluctuations. Examining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins, we show that the effects of single point mutations are statistically indistinguishable from those of an increase in temperature by a few tens of kelvins. The existence of such an effective mutational temperature establishes a quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.
Effect of chromatic dispersion on nonlinear phase noise.
Green, A G; Mitra, P P; Wegener, L G L
2003-12-15
We consider the combined effects of amplified spontaneous emission noise, optical Kerr nonlinearity, and chromatic dispersion on phase noise in an optical communication system. The effect of amplified spontaneous emission noise and Kerr nonlinearity were considered previously by Gordon and Mollenauer [Opt. Lett. 15, 1351 (1990)], and the effect of nonlinearity was found to be severe. We investigate the effect of chromatic dispersion on phase noise and show that it can either enhance or suppress the nonlinear noise amplification. For large absolute values of dispersion the nonlinear effect is suppressed, and the phase noise is reduced to its linear value. For a range of negative values of dispersion, however, nonlinear phase noise is enhanced and exhibits a maximum related to the modulation instability found in amplitude fluctuations. Nonlinear phase noise is quenched by these effects even in dispersion-compensated systems; the degree of suppression is sensitively dependent on the dispersion map. We demonstrate these results analytically with a simple linearized model.
Modelling of nonlinear effects in microstructured fibres
NASA Astrophysics Data System (ADS)
Biancalana, Fabio
In this thesis we study various nonlinear effects related to the existence of Solitons ajid Solitary Waves in solid-core Photonic Crystal Fibres (PCFs), Tapered Fibres (TFs) and Hollow-Core Photonic Crystal Fibres (HC-PCFs), collectively known as Microstructured Fibres. The influence of the strongly modified Group Velocity Dispersion (GVD) characteristics of solid-core PCFs on nonlinear parametric processes such as Modulational Instability (MI) and Four-Wave Mixing (FWM) Instability is analysed in detail. Scalar instabilities are treated rigorously using the full Maxwell Wave Equation, while vector instabilities are studied using coupled Generalised Nonlinear Schrodinger Equations (GNLSE). The strong modifications of the GVD due to the waveguide contribution of the microstructured cladding in solid-core PCFs and TFs compared to standard telecommunications fibres allow the existence of unconventional far-detuned instability regions, the properties of which are treated in detail. This thesis also presents complete analytical calculations of the amplitude of Resonant Radiation emitted by optical solitons in solid-core PCFs, due to the presence of Higher-Order Dispersion (HOD) terms, using two different but complementary approaches, which we call the 'adiabatic method' and the 'Green function method'. These calculations on Resonant Radiation serve as a solid basis for the precise understanding of the dynamics of Supercontinuum Generations in highly nonlinear solid-core PCFs and TFs, which we obtain by the use of Cross-Correlation Frequency Resolved Optical Gating (XFROG) spectrograms to visualise the behaviour of the system 'soliton + radiation'. The resonant nonlinear interaction between light and molecules of matter in a HC- PCF filled with Raman-active gases has been analysed in the framework of the full Maxwell-Bloch equations. We have discovered the existence of two different species of multi-frequency soliton, depending on whether the frequency difference of the
Nonlinear effects in photothermal-optical-beam-deflection imaging
NASA Astrophysics Data System (ADS)
Wetsel, G. C., Jr.; Spicer, J. B.
1986-09-01
Nonlinear phenomena have been observed during photothermal-optical-beam-deflection imaging experiments on samples of both high-purity aluminum and aluminum alloys. Evidence for nonlinear optical and thermal effects have been measured. Theoretical models have been developed as aids in understanding the different contrast mechanisms observed in linear and nonlinear photothermal images.
Yoon, Seok-Hyun Kim, Mi-Yang
2016-06-13
Temperature dependence of the dielectric nonlinearity was investigated for the BaTiO{sub 3} multilayer ceramic capacitor. The decrease in temperature caused a significant increase in the degree of dielectric nonlinearity. The Preisach analysis shows that such effect corresponds to a decrease in reversible and a significant increase in irreversible domain wall contribution to polarization. The magnitude of spontaneous polarization (P{sub S}) was increased with decreasing temperature. It can be associated with phase transition from pseudo-cubic to monoclinic and its resultant change in the polar direction, which was observed through transmission electron microscopy. These results demonstrate that the increase in P{sub S} with the decrease in temperature inhibits domain wall motion in low driving field as it is anticipated to increase the degree of intergranular constraints during domain wall motion. But it results in a more steep increase in the dielectric constants beyond the threshold field where domain wall motion can occur.
Crystal growth in fluid flow: Nonlinear response effects
NASA Astrophysics Data System (ADS)
Peng, H. L.; Herlach, D. M.; Voigtmann, Th.
2017-08-01
We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
LRO Diviner Nonlinear Response and Opposition Effect Corrections
NASA Astrophysics Data System (ADS)
Gyalay, S.; Aye, K. M.; Paige, D. A.
2016-12-01
Aboard the Lunar Reconnaissance Orbiter, the Diviner Lunar Radiometer Experiment measures thermal radiation to determine the brightness temperature of the lunar surface. As with the Mars Climate Sounder (upon which Diviner is based), we use pre-flight calibration data to correct for the nonlinear response in Diviner's detectors, which in-turn accounts for much of the detector non-uniformity within channels. Furthermore, channels 8 and 9 exhibit unexpectedly high brightness temperatures close to the equator around midday, with even higher brightness temperatures when observing lunar highlands as opposed to maria. Unexpectedly high brightness temperatures around midday at the equator is reminiscent of the opposition effect known to exist on the Moon at low phase angles in Visual to Near Infra-Red (VNIR) wavelengths. Diviner channel 2 data (which detects solar radiation reflected by the Moon) shows this opposition effect, which is more pronounced in the highlands than the maria. We interpret a correlation we observe between channel 2 detected radiance and channel 8 and 9 brightness temperature as due to incomplete blocking of reflected solar radiation. This leads us to an opposition effect correction for Diviner channels 8 and 9 dependent on Diviner's solar channel data. Whether this is a direct leak of VNIR light upon the detectors, or solar heating of blocking filters, which then radiate infrared radiation upon the detectors, is yet to be determined. We can use the nonlinearity and opposition effect corrections to recharacterize the spectral emissivity of the lunar regolith, which we can then compare to laboratory spectra.
NASA Astrophysics Data System (ADS)
Sydora, Richard D.
2000-10-01
Plasma physical systems which consist of mixtures of low frequency electrostatic fluctuations and magnetic perturbations or islands exhibit anomalous transport and are important in explaining the behavior of magnetically confined laboratory and space plasmas. Only recently it has become possible to simulate the nonlinear growth and saturation dynamics of micro- and mesoscale magnetic islands in three dimensions using particle simulations with realistic parameters. Magnetic island evolution is studied in the presence of density and temperature gradients in the collisionless and weakly collisional regimes using nonlinear electromagnetic gyrokinetic particle-in-cell simulations with drift kinetic electrons in 3D slab geometry. Electron-ion collisions are incorporated into the simulation model via Monte Carlo methods in order to consider the weakly collisional regime. Results are presented on the fluctuation dynamics and transport from overlapping of spatially separated (skin-depth sized) islands and mesoscopic (several ion gyroradii sized) isolated islands. Small-scale drift magnetic islands are shown to spontaneously develop in the sheared magnetic field equilibrium depending on the critical electron temperature gradient. Anomalous transport in the overlapping island case is shown to occur in a rapid and burst-like manner with quasiperiodic behavior. Also, it is found that under certain conditions sheared zonal flows and zonal fields appear which partially regulate the transport. A measure of the anomalous electron viscosity is made along with the mean parallel electric field. A discussion of these various effects in the context of a generalized Ohm's law will be presented.
Chung, Hoi Sung; Tokmakoff, Andrei
2008-07-01
Transient thermal unfolding of ubiquitin is investigated using nonlinear infrared spectroscopy after a nanosecond laser temperature jump (T-jump). The abrupt change in the unfolding free energy surface and the ns time resolution allow us to observe a fast response on ns to micros time-scales, which we attribute to downhill unfolding, before a cross-over to ms kinetics. The downhill unfolding by a sub-population of folded proteins is induced through a shift of the barrier toward the native state. By adjusting the T-jump width, the effect of the initial (T(i)) and final (T(f)) temperature on the unfolding dynamics can be separated. From the amplitude of the fast downhill unfolding, the fractional population prepared at the unfolding transition state is obtained. This population increases with both T(i) and with T(f). A two-state kinetic analysis of the ms refolding provides thermodynamic information about the barrier height. By a combination of the fast and slow unfolding and folding parameters, a quasi-two-state kinetic analysis is performed to calculate the time-dependent population changes of the folded state. This calculation coincides with the experimentally obtained population changes at low temperature but deviations are found in the T-jump from 67 to 78 degrees C. Using temperature-dependent barrier height changes, a temperature Phi value analysis is performed. The result shows a decreasing trend of Phi(T) with temperature, which indicates an increase of the heterogeneity of the transition state. We conclude that ubiquitin unfolds along a well-defined pathway at low temperature which expands with increasing temperature to include multiple routes.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, C. G.
2009-04-01
We compare nonlinear stresses and temperatures for adiabatic-shear flows, using up to 262 144 particles, with those from corresponding homogeneous and inhomogeneous flows. Two varieties of kinetic temperature tensors are compared to the configurational temperatures. This comparison of temperatures led us to two findings beyond our original goal of analyzing shear algorithms. First, we found an improved form for local instantaneous velocity fluctuations, as calculated with smooth-particle weighting functions. Second, we came upon the previously unrecognized contribution of rotation to the configurational temperature.
Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material
NASA Astrophysics Data System (ADS)
Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong
2013-04-01
The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.
NASA Astrophysics Data System (ADS)
Gilormini, P.; Chevalier, L.; Régnier, G.
2011-01-01
Using suitable constitutive equations, numerical simulation allows predicting the properties of transparencies that are thermoformed near their glass transition temperature. Such equations are presented, which describe the nonlinear viscoelastic behavior of poly(methyl methacrylate) at large deformations near glass transition. The simulation of the thermoforming of a transparency at constant and uniform temperature is performed and compared with experimental results.
Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects
NASA Astrophysics Data System (ADS)
Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young
2016-08-01
The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.
NASA Astrophysics Data System (ADS)
Deng, Jiechun; Xu, Haiming; Zhang, Leying
2016-05-01
Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.
Alabastri, Alessandro; Tuccio, Salvatore; Giugni, Andrea; Toma, Andrea; Liberale, Carlo; Das, Gobind; De Angelis, Francesco; Di Fabrizio, Enzo; Zaccaria, Remo Proietti
2013-01-01
In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. PMID:28788366
a Nonlinear Model for Relativistic Electrons at Positive Temperature
NASA Astrophysics Data System (ADS)
Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert
We study the relativistic electron-positron field at positive temperature in the Hartree-Fock approximation. We consider both the case with and without exchange terms, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, Séré and Solovej where the case of zero temperature was considered.
NASA Astrophysics Data System (ADS)
Awasthi, Anjali; Awasthi, Aashees
2017-06-01
The acoustic non-linearity parameter (B/A) for binary mixtures of 2-chloroethanol with 2-dimethylethanolamine (2-DMAE) and 2-diethylethanolamine (2-DEAE) are evaluated using Tong Dong, Beyer and Beyer-Tong Dong coefficients at varying concentrations and temperatures ranging from 293.15 to 313.15 K. The nonlinearity parameter is used to calculate various molecular properties such as internal pressure, cohesive energy density, Van der waals' constant, distance of closest approach, diffusion coefficient and rotational correlation time. Additionally, the intermediate quantities like temperature and pressure derivatives of sound velocity and phase shift parameter as a function of temperature are also deduced. The extent of intermolecular interactions, anharmonicity and structural configuration of the binaries under investigation are discussed in terms of excess non-linearity parameter (B/A)E.
Liu, Xiaozhou; Gong, Xiufen; Yin, Chang; Li, Junlun; Zhang, Dong
2008-03-01
A method for noninvasively imaging temperature would assist the development of hyperthermia. In this study, the relationships between the acoustic nonlinearity parameters and the temperatures in porcine fat and liver were obtained. The temperature elevations induced by ultrasound irradiation of porcine fat and liver were then derived inversely from acoustic nonlinearity parameter imaging. These temperature elevations were compared with theoretical predictions and with those measured by a thermocouple. The temperature elevations at the focus in the fat and liver samples measured via a thermocouple were 21.1 +/- 0.8 degrees C and 15.7 +/- 0.6 degrees C, respectively, which coincided with those obtained by acoustic nonlinearity parameter imaging (22.0 +/- 1.4 degrees C in fat and 16.9 +/- 1.1 degrees C in liver). These may be compared with the theoretical predictions of elevations of 24.0 degrees C in fat and 19.7 degrees C in liver. The results of this study show that acoustic nonlinearity imaging may be a novel method for temperature evaluation in hyperthermia. (E-mail: xzliu@nju.edu.cn).
Current-induced nonlinear magnetoelectric effects in strontium hexaferrite
NASA Astrophysics Data System (ADS)
Zavislyak, I. V.; Popov, M. A.; Srinivasan, G.
2016-12-01
We report on the observation of nonlinear magnetoelectric effects at room temperature due to a dc current in the ferrimagnetic M -type strontium hexaferrite platelets. Utilizing microwave measurement techniques and data on the shift in magnetic mode frequencies, it was found that a dc current along the hexagonal c axis resulted in a significant decrease in the saturation magnetization and an increase in the uniaxial magnetocrystalline anisotropy field. These changes in the magnetic order parameters were directly proportional to the square of applied electric field and were found to be much higher than variations due to Joule heating. A phenomenological theory that takes into account the current-induced magnetobielectric (MBE) effects is proposed. Expressions for coupling coefficients for MBE effects have been obtained and have been calculated from the variations in magnetic order parameters. The electric field E (or current) tuning of the magnetic modes in Sr M reported here is orders of magnitude stronger than strain mediated E tuning of magnetic resonance in hexaferrite-ferroelectric composites. The nonlinear magnetoelectric effects in hexaferrite, therefore, open up an avenue for the realization of E -tunable broadband microwave and millimeter wave ferrite signal processing devices such as resonators and filters.
Rapid assessment of nonlinear optical propagation effects in dielectrics.
del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J
2015-01-07
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Imprint of non-linear effects on HI intensity mapping on large scales
NASA Astrophysics Data System (ADS)
Umeh, Obinna
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Temperature Sensing Using Linear and Nonlinear Resistive Fluidic Components
1978-06-01
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) CONTENTS Page 1. INTRODUCTION 5 2. DESIGN CONCEPTS 5 2.1 Flow through Capillary 5 2.2...Comparison between test results and theoretical prediction of sensor outputs versus T2 12 1. INTRODUCTION Temperature sensing using fluidic...DRSMI-RBD ATTN DRDMI-TGC, WILLIAM GRIFFITH ATTN DRDMI-TGC, J. C. DUNAWAY ATTN DRCPM-TOE, FRED J. CHEPLEN COMMANDER USA MOBILITY EQUIPMENT R&D CENTER
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.
Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng
2011-11-29
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.
Gorkovenko, A. I.; Plekhanov, A. I.; Simanchuk, A. E.; Yakimanskiy, A. V.; Nosova, G. I.; Solovskaya, N. A.; Smirnov, N. N.
2014-12-14
Detailed investigations of the quadratic nonlinear response of a series of new polyimides with covalently attached chromophore DR13 are performed by the Maker fringes method in the range of fundamental wavelength from 850 to 1450 nm. Polymer films with thickness of 100–400 nm were spin-coated on glass substrates and corona poled. For these materials, the maximum values of the second harmonic generation coefficients d{sub 33} are 80–120 pm/V. A red shift of the nonlinear response dispersion with respect to the linear absorption spectrum was observed for the DR13 chromophore. The temperature dependences of linear absorption and nonlinear coefficients d{sub 33} for studied structures are observed. It was found that the temperature changes of the absorption spectra lead to appreciable contribution to the value of the nonlinear coefficient d{sub 33}. The demonstrated high temperature stability (up to 120 °C) of chromophore-containing polyimide thin films makes it possible to eliminate the degradation of their nonlinear optical properties in the future applications of such structures.
The effect of system nonlinearities on system noise statistics
NASA Technical Reports Server (NTRS)
Robinson, L. H., Jr.
1971-01-01
The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.
Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Hu, Y.
1991-01-01
In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.
Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Hu, Y.
1991-01-01
In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.
Ultrafast excitonic room temperature nonlinearity in neutron irradiated quantum wells
Ten, S.; Williams, J.G.; Guerreiro, P.T.; Khitrova, G.; Peyghambarian, N.
1997-01-01
Sharp room temperature exciton features and complete recovery of the excitonic absorption with 21 ps time constant are demonstrated in neutron irradiated (Ga,Al)As/GaAs multiple quantum wells. Carrier lifetime reduction is consistent with the EL2 midgap defect which is efficiently generated by fast neutrons. Influence of gamma rays accompanying neutron irradiation is discussed. Neutron irradiation provides a straightforward way to control carrier lifetime in semiconductor heterostructures with minor deterioration of their excitonic properties. {copyright} {ital 1997 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Song, Pengchao
Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.
2012-01-01
In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles. PMID:22520273
NASA Astrophysics Data System (ADS)
Mahmood, T.; Iqbal, Z.; Ahmed, J.; Shahzad, A.; Khan, M.
The steady 2D nano Sisko fluid flow and heat transfer, represented by incompressible nano Sisko fluid constitutive model, over a nonlinear stretching surface are investigated in this article. The governing non-linear boundary layer equations of an incompressible nano Sisko fluid are transformed into the non-linear ordinary differential equations by mean of suitable transformations. The coupled nonlinear ordinary differential equations are then solved by using a numerical scheme namely bvp4c in MATLAB. Effects of thermophoresis, Brownian motion, magnetic and radiation parameters are assessed carefully through plots for temperature and concentration profiles. In addition, the local Nusselt and Sherwood numbers for several values of physical parameters are tabulated and examined for various values of power law index n. The analysis reveals that the temperature profile is an increasing function of magnetic field, radiation parameter, thermophoresis and Brownian motion parameters. Additionally, it reveals that the concentration boundary layer thickness enhances with magnetic filed and diminishes with radiation parameters.
Hady, Fekry M; Ibrahim, Fouad S; Abdel-Gaied, Sahar M; Eid, Mohamed R
2012-04-22
In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles.
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
NASA Astrophysics Data System (ADS)
Nafari, F.; Ghoranneviss, M.
2016-08-01
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
Nafari, F.; Ghoranneviss, M.
2016-08-15
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.
NASA Astrophysics Data System (ADS)
Fiedler, Lars; Newman, Stuart; Bakan, Stephan
2005-09-01
The nonlinearity of a mercury cadmium telluride photoconductive detector, an integral part of a modified commercial interferometer used for airborne research, has been analyzed and evaluated against a number of correction schemes. A high-quality blackbody with accurate temperature control has been used as a stable and well-characterized radiation source. The detector nonlinearity was established as a function of scene temperature between 194 and 263 K. Second- and third-order corrections to the measured interferogram have been tested by analyzing the measured signal both within and outside the spectral response region of the detector. A combined correction scheme is proposed that best represents the real nonlinear response of the detector.
An alternative approach to characterize nonlinear site effects
Zhang, R.R.; Hartzell, S.; Liang, J.; Hu, Y.
2005-01-01
This paper examines the rationale of a method of nonstationary processing and analysis, referred to as the Hilbert-Huang transform (HHT), for its application to a recording-based approach in quantifying influences of soil nonlinearity in site response. In particular, this paper first summarizes symptoms of soil nonlinearity shown in earthquake recordings, reviews the Fourier-based approach to characterizing nonlinearity, and offers justifications for the HHT in addressing nonlinearity issues. This study then uses the HHT method to analyze synthetic data and recordings from the 1964 Niigata and 2001 Nisqually earthquakes. In doing so, the HHT-based site response is defined as the ratio of marginal Hilbert amplitude spectra, alternative to the Fourier-based response that is the ratio of Fourier amplitude spectra. With the Fourier-based approach in studies of site response as a reference, this study shows that the alternative HHT-based approach is effective in characterizing soil nonlinearity and nonlinear site response.
A Novel Effective Approach for Solving Fractional Nonlinear PDEs
Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi
2014-01-01
The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations. PMID:27419212
A Novel Effective Approach for Solving Fractional Nonlinear PDEs.
Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi
2014-01-01
The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations.
Nonlinear dynamics of homeothermic temperature control in skunk cabbage, Symplocarpus foetidus
NASA Astrophysics Data System (ADS)
Ito, Takanori; Ito, Kikukatsu
2005-11-01
Certain primitive plants undergo orchestrated temperature control during flowering. Skunk cabbage, Symplocarpus foetidus, has been demonstrated to maintain an internal temperature of around 20 °C even when the ambient temperature drops below freezing. However, it is not clear whether a unique algorithm controls the homeothermic behavior of S. foetidus, or whether such an algorithm might exhibit linear or nonlinear thermoregulatory dynamics. Here we report the underlying dynamics of temperature control in S. foetidus using nonlinear forecasting, attractor and correlation dimension analyses. It was shown that thermoregulation in S. foetidus was governed by low-dimensional chaotic dynamics, the geometry of which showed a strange attractor named the “Zazen attractor.” Our data suggest that the chaotic thermoregulation in S. foetidus is inherent and that it is an adaptive response to the natural environment.
The Effect of Nonlinearities on Flexible Structures
1990-02-19
34Nonstationary Response of a Nonlinear System to Nonperiodic Parametric Excitations with Varying Frequency". 3. Ph.D. - Samir J. Serhan , 1989 "Response of...and Serhan , S. J., "Response Statistics of Nonlinear Systems to Combined Deterministic and Random Excitations," International Journal of Non-Linear...at the ASCE Engineering Mechanics Division Specialty Conference, VPI&SU, Blacksburg, VA, May 23-25, 1988. 28 15. Nayfeh, A. H. and Serhan , S., "The
Nonlinear effects in new magnetic pickup coils for JET
Quercia, A.; Pomaro, N.; Visone, C.
2006-10-15
In the framework of the JET magnetic diagnostic enhancement, a set of pickup coils (UC subsystem) wound on metallic Inconel registered 600 former was manufactured. For cross-validation purposes, two different calibration methods were used. A discrepancy in the range of 3% was observed, which can be explained when considering the dependence of the calibration coefficients on the field strength, which in turn is mostly due to the nonlinear behavior of the Inconel former. For this reason a specimen of Inconel was analyzed by means of a magnetometer, which showed a nonlinear and hysteretic behavior occurring at low field level (below 5 mT). The calibration coefficients are also measured at low field (0.1-2 mT) and so are affected by such peculiar ferromagnetic behavior. Moreover, the ferromagnetic behavior might be sensitive to mechanical and thermal treatments performed during probe manufacturing and testing. Therefore the achievable accuracy for the calibration of coils wound on Inconel formers is limited by the following effects: (i) the field level in operation can be completely different from the field used in the calibration procedure; (ii) measurements of the magnetic properties on Inconel specimens cannot be extrapolated to the former, because of unpredictable effects of mechanical and thermal treatments made on the coil; (iii) residual magnetization; and (iv) temperature variations during operation.
Nonlinear Analysis for High-temperature Composites: Turbine Blades/vanes
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1984-01-01
An integrated approach to nonlinear analysis of high-temperature composites in turbine blade/vane applications is presented. The overall strategy of this approach and the key elements comprising this approach are summarized. Preliminary results for a tungsten-fiber-reinforced superalloy (TFRS) composite are discussed.
NASA Astrophysics Data System (ADS)
Golev, I. M.; Sergeev, A. V.; Kalyadin, O. V.
2017-01-01
The nonlinear characteristics of high-temperature superconductors of the Bi-Sr-Ca-Cu-O system have been experimentally investigated in the temperature range of the superconducting transition under the influence of a harmonic alternating magnetic field. The effect of the generation of odd harmonics in the signal of response to a harmonic alternating magnetic field for multiphase high-temperature superconductors containing regions with different values of the critical temperature in their bulk has been observed for the first time. The mechanism of harmonic generation in a superconductor in the resistive state, which is associated with the switch effect, i.e., with the redistribution of eddy current density between the local regions of the superconductor, has been considered.
Effects of nonlinear propagation in ultrasound contrast agent imaging.
Tang, Meng-Xing; Kamiyama, Naohisa; Eckersley, Robert J
2010-03-01
This paper investigates two types of nonlinear propagation and their effects on image intensity and contrast-to-tissue ratio (CTR) in contrast ultrasound images. Previous studies have shown that nonlinear propagation can occur when ultrasound travels through tissue and microbubble clouds, making tissue farther down the acoustic path appear brighter in pulse inversion (PI) images, thus reducing CTR. In this study, the effect of nonlinear propagation through tissue or microbubbles on PI image intensity and CTR are compared at low mechanical index. A combination of simulation and experiment with SonoVue microbubbles were performed using a microbubble dynamics model, a laboratory ultrasound system and a clinical prototype scanner. The results show that, close to the bubble resonance frequency, nonlinear propagation through a bubble cloud of a few centimeter thickness with a modest concentration (1:10000 dilution of SonoVue microbubbles) is much more significant than through tissue-mimicking material. Consequently, CTR in regions distal to the imaging probe is greatly reduced for nonlinear propagation through the bubble cloud, with as much as a 12-dB reduction compared with nonlinear propagation through tissue-mimicking material. Both types of nonlinear propagation cause only a small change in bubble PI signals at the bubble resonance frequency. When the driving frequency increases beyond bubble resonance, nonlinear propagation through bubbles is greatly reduced in absolute values. However because of a greater reduction in nonlinear scattering from bubbles at higher frequencies, the corresponding CTR is much lower than that at bubble resonance frequency.
Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
Can we detect a nonlinear response to temperature in European plant phenology?
NASA Astrophysics Data System (ADS)
Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette
2016-10-01
Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.
The effect of nonlinear traveling waves on rotating machinery
NASA Astrophysics Data System (ADS)
Jauregui-Correa, Juan Carlos
2013-08-01
The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.
A Nonlinear Mixed Effects Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2009-01-01
The nonlinear mixed effects model for continuous repeated measures data has become an increasingly popular and versatile tool for investigating nonlinear longitudinal change in observed variables. In practice, for each individual subject, multiple measurements are obtained on a single response variable over time or condition. This structure can be…
A Nonlinear Mixed Effects Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2009-01-01
The nonlinear mixed effects model for continuous repeated measures data has become an increasingly popular and versatile tool for investigating nonlinear longitudinal change in observed variables. In practice, for each individual subject, multiple measurements are obtained on a single response variable over time or condition. This structure can be…
EFFECTS OF NONLINEAR TERMS IN THE WIGGLER MAGNETS AT DAPHINE
Raimondi, Pantaleo
2002-08-20
Analysis of the experimental observations and comparison with magnetic measurements have pointed out relevant nonlinear terms in the DAPHINE wigglers and in the ''C'' corrector magnets. Different optics configurations aimed at reducing the impact of nonlinear terms have been studied and their effects on the collider performances are presented.
Approach to Eliminate Couplant-Effect in Acoustic Nonlinearity Measurements
Sun, L.; Kulkarni, S. S.; Achenbach, J. D.; Krishnaswamy, S.
2006-03-06
An approach to eliminate couplant-effect in acoustic nonlinearity measurements for fatigued components is proposed in this paper. Measurements are performed on a fatigued steel 4340 specimen using both the conventional and proposed techniques. It is observed that the coefficients of variation of the nonlinearity parameter obtained using the proposed technique is approximately half of that obtained using the conventional technique.
Nonlinear Temperature Dependent Failure Analysis of Finite Width Composite Laminates.
1979-12-01
tangent modulii obtained by Ramberg-Osgood parameters. It is shown that a’ring stresses and stresses due to tensile loading are significant as edge ... effect in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is
Nonlinear effects on composite laminate thermal expansion
NASA Technical Reports Server (NTRS)
Hashin, Z.; Rosen, B. W.; Pipes, R. B.
1979-01-01
Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.
NASA Astrophysics Data System (ADS)
Obrist, D.; Agnan, Y.; Hedge, C.; Moore, C. W.; Helmig, D.; Hueber, J.; Paxton, D.
2016-12-01
deposition of mercury to arctic ecosystems was the main source for soil accumulation. In conclusion, these results indicate a highly heterogeneous pattern of soil trace gas dynamics in tundra soils, with strong changes in diffusivity imposed by freeze-thaw cycles and strong and non-linear responses of trace gas dynamics to soil temperatures.
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2016-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523
Nonlinear absorption in Au films: Role of thermal effects
NASA Astrophysics Data System (ADS)
Rotenberg, Nir; Bristow, A. D.; Pfeiffer, Markus; Betz, Markus; van Driel, H. M.
2007-04-01
The effective nonlinear optical absorption coefficient βeff is measured for 20-nm -thick Au films at 630nm as a function of pulse width. The z -scan measurements show that βeff increases from 6.8×10-7 to 6.7×10-5cmW-1 as the pulse width is varied from 0.1to5.8ps . To help interpret this ˜100× increase, differential transmission and reflectivity measurements are performed using 775nm pump and 630nm probe pulses. All experiments are simulated with a two-temperature model for electrons and lattice. The pulse width dependence of βeff is consistent with thermal smearing of d -band to conduction-band transitions, with βeff arising from changes in the linear (Imχ(1)) absorption coefficient.
NASA Astrophysics Data System (ADS)
Palmer, Paul I.; Barnett, J. J.; Eyre, J. R.; Healy, S. B.
2000-07-01
An optimal estimation inverse method is presented which can be used to retrieve simultaneously vertical profiles of temperature and specific humidity, in addition to surface pressure, from satellite-to-satellite radio occultation observations of the Earth's atmosphere. The method is a nonlinear, maximum a posteriori technique which can accommodate most aspects of the real radio occultation problem and is found to be stable and to converge rapidly in most cases. The optimal estimation inverse method has two distinct advantages over the analytic inverse method in that it accounts for some of the effects of horizontal gradients and is able to retrieve optimally temperature and humidity simultaneously from the observations. It is also able to account for observation noise and other sources of error. Combined, these advantages ensure a realistic retrieval of atmospheric quantities. A complete error analysis emerges naturally from the optimal estimation theory, allowing a full characterization of the solution. Using this analysis, a quality control scheme is implemented which allows anomalous retrieval conditions to be recognized and removed, thus preventing gross retrieval errors. The inverse method presented in this paper has been implemented for bending angle measurements derived from GPS/MET radio occultation observations of the Earth. Preliminary results from simulated data suggest that these observations have the potential to improve numerical weather prediction model analyses significantly throughout their vertical range.
Edward A. Startsev; Ronald C. Davidson; Hong Qin
2002-05-07
In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.
NASA Astrophysics Data System (ADS)
Yang, Houwen; Wang, Bo; Wang, Junhua; Li, Xiaofang; Liu, Zhaojun; Cheng, Wenyong
2017-03-01
We demonstrated an ultraviolet laser at 355 nm using a type-I and a type-II phase-matching nonlinear optical crystal of LiB3O5 (LBO). A method of adjusting temperature for compensation is presented. The crystal temperature is controlled by proportional integral derivative (PID) thermal controllers with a ±0.01 °C resolution. The value of wave vector mismatch, distance of light propagation in nonlinear crystals, effective nonlinear coefficient, theoretical analysis and calculation of conversion efficiency versus temperature are discussed. The experimental results show that the average output power of the 355 nm laser is 1.24 W with the pump power of 13.33 W, when the repetition frequency is 15 kHz. The pulse duration is 9.8 ns, and the beam quality factors are of Mx2 = 1.8, My2 = 1.7. The conversion efficiency from 808 nm to 355 nm laser is 9.3%, which nearly reaches the optimum value reported so far and is limited by the wavelength mismatch between the pumping and absorbing lasers. The 355 nm output power instability of the laser device is 0.45% in 2 h. A compact no-water-cooling ultraviolet laser with high stability and high efficiency is obtained.
Higher-order nonlinear effects in a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects
NASA Astrophysics Data System (ADS)
Tai, Tamin; Ghamsari, B. G.; Bieler, T.; Anlage, Steven M.
2015-10-01
The performance of niobium-based superconducting radio frequency (SRF) particle-accelerator cavities can be sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, a wide-bandwidth microwave microscope with localized and strong RF magnetic fields is developed by integrating a magnetic write head into the near-field microwave microscope to enable mapping of the local electrodynamic response in the multi-GHz frequency regime at cryogenic temperatures. This magnetic writer demonstrates a localized and strong RF magnetic field on bulk Nb surface with Bsurface>102 mT and submicron resolution. By measuring the nonlinear response of the superconductor, nonlinearity coming from the nanoscale weak-link Josephson junctions due to the contaminated surface in the cavity-fabrication process is demonstrated.
Nonlinear electrostatic waves in a magnetized dusty plasma with two-temperature ions
Maharaj, S. K.; Bharuthram, R.; Pillay, S. R.; Singh, S. V.; Reddy, R. V.; Lakhina, G. S.
2008-09-07
Nonlinear low frequency electrostatic waves which arise from the coupling between two linear modes, viz., the dust-acoustic and dust-cyclotron waves, are studied in a magnetized dusty plasma comprising Boltzmann electrons, a negatively charged warm dust fluid, and two ion species of different temperatures with both species having isothermal Boltzmann distributions. The fluid equations for the dust are combined with the quasineutrality condition to obtain a single equation which governs the nonlinear evolution of the electric field for wave propagation oblique to an external magnetic field. The numerically obtained solutions for the electric field are found to have sinusoidal waveforms for small values of the initial driver electric field amplitudes and Mach numbers, whereas, spiky structures are found to be supported for larger values. Furthermore, the periods of the waveforms are found to depend on various plasma parameters such as hot and cool ion number densities and temperatures, dust drift speed and dust temperature.
NASA Astrophysics Data System (ADS)
Shaukat, Muzzamal I.; Masood, W.; Shah, H. A.; Iqbal, M. J.; Mirza, Arshad M.
2016-10-01
In the present investigation, linear and nonlinear electrostatic drift waves in the presence of trapped electrons with quantizing magnetic field and finite electron temperature effects in dense plasmas have been studied. The linear dispersion relation of the ion drift wave has been derived and it has been found that the Landau quantization and finite temperature effects significantly alter the linear propagation characteristics of the wave under consideration. Employing the Sagdeev potential approach, the formation of finite amplitude drift solitary structures has been investigated in the presence of a quantizing magnetic field for both fully and partially degenerate plasmas. Both compressive and rarefactive drift solitary structures have been obtained for different values of quantizing magnetic field and finite electron temperature effects. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs.
Enhancement of nonlinear effects using photonic crystals.
Soljacić, Marin; Joannopoulos, J D
2004-04-01
The quest for all-optical signal processing is generally deemed to be impractical because optical nonlinearities are usually weak. The emerging field of nonlinear photonic crystals seems destined to change this view dramatically. Theoretical considerations show that all-optical devices using photonic crystal designs promise to be smaller than the wavelength of light, and to operate with bandwidths that are very difficult to achieve electronically. When created in commonly used materials, these devices could operate at powers of only a few milliwatts. Moreover, if these designs are combined with materials and systems that support electromagnetically induced transparency, operation at single-photon power levels could be feasible.
NASA Astrophysics Data System (ADS)
Liu, T.; Wang, Z. X.; Hu, Z. Q.; Wei, L.; Li, J. Q.; Kishimoto, Y.
2016-10-01
Nonlinear multi-scale interactions between the tearing mode and the ion temperature gradient (ITG) mode are investigated by means of numerical simulations in a self-consistent 5-field Landau-fluid model. It is observed that there exists a threshold of magnetic island width in the nonlinear evolution of interaction, above which the ITG turbulence can enhance the island growth significantly. Dependence of the threshold on basic plasma parameters is deeply analyzed. It is found that the higher ion viscosity may raise the threshold through its effect on the E × B drift and the diamagnetic drift of electron density gradient in different ways, both of which play a synergetic role in determining the threshold. Moreover, the effects of plasma resistivity, gradient length of equilibrium current sheet as well as magnetic shear of field line on the threshold are discussed based on the analyses of the initial growth rate of islands.
NASA Astrophysics Data System (ADS)
Paul, S. N.; Chatterjee, A.; Paul, Indrani
2017-01-01
Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg-deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.
NASA Astrophysics Data System (ADS)
Mohamadou, A.; Tatsing, P. H.; Latchio Tiofack, C. G.; Tabi, C. B.; Kofane, T. C.
2014-11-01
We are motivated by recent studies in medium formed by two tunnel-coupled waveguides. One of the waveguides is manufactured from an ordinary dielectric, while the second has negative refraction. We present an investigation of the gain spectrum permitting modulation instability in the nonlinear optical coupler with a negative-index metamaterial channel whose non-linear response includes third- and fifth-order terms. The principal motivation for our analysis stems from the impact of the inevitable presence of the effective cubic-quintic nonlinearity. We emphasize the influence of higher order nonlinear terms, over the MI phenomena, and the outcome of its development achieved by using linear stability analysis. Gain spectrum investigation has been carried out for both anomalous and normal dispersion regime in the focusing and defocusing cases of nonlinearity and near-zero dispersion regime where higher order linear dispersive effects emerge. Our results show that the MI gain spectra consist of multiple spectral region which are symmetric to the zero point. Moreover, some spectra have a high cut-off frequency but a narrow spectral width, which is obviously beneficial to the generation of high-repetition-rate pulse trains.
Nonlinear effects associated with oblique whistler waves in space plasmas
NASA Astrophysics Data System (ADS)
Sharma, R. P.; Nandal, P.; Yadav, N.; Uma, R.
2016-10-01
In the present work, we have examined the nonlinear interaction of pump whistler wave and low frequency kinetic Alfvén wave (KAW) in three regions viz., solar wind, earth's radiation belt, and magnetopause. The modification in the background density leads to the introduction of nonlinearity. The nonlinear ponderomotive force is responsible for this change in density. Low frequency kinetic Alfvén wave is excited by the nonlinear ponderomotive force of pump whistler wave. A set of dimensionless equations characterizing the dynamics of whistler wave and low frequency KAW perturbed by whistler wave were developed. The coupled equations were then simulated numerically. The nonlinear effects related with the whistler wave were studied. The resulting localized structures and the magnetic turbulent spectra in various regions have been investigated.
NONLINEAR EFFECTS IN PARTICLE TRANSPORT IN STOCHASTIC MAGNETIC FIELDS
Vlad, M.; Spineanu, F.; Croitoru, A.
2015-12-10
Collisional particle transport in stochastic magnetic fields is studied using a semi-analytical method. The aim is to determine the influence of the nonlinear effects that occur in the magnetic field line random walk on particle transport. We show that particle transport coefficients can be strongly influenced by the magnetic line trapping. The conditions that correspond to these nonlinear regimes are determined. We also analyze the effects produced by the space variation of the large-scale magnetic field. We show that an average drift is generated by the gradient of the magnetic field, which strongly increases and reverses its orientation in the nonlinear regime.
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska
Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng
2011-01-01
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rajesh, Rekapalli; Padmavathi, B.
2015-02-01
Significant fluctuations have been observed in Indian temperatures during past century. In order to identify the statistical periodicities in the maximum and minimum temperature data of different Indian zones, we have spectrally and statistically analyzed the homogeneous regional temperature series from the Western Himalayas, the Northern West, the North Central, the North East (NE), the West Coast, the East Coast, and the Interior Peninsula for the period of 107 years spanning over 1901-2007 using the multitaper method (MTM) and singular spectrum analysis (SSA) methods. The first SSA reconstructed the principal component of all the data sets representing a nonlinear trend (indicating a monotonic rise in temperature probably due to greenhouse gases and other forcing) that varies from region to region. We have reconstructed the temperature time series using the second to tenth oscillatory principal components of all the eight regions and computed their power spectral density using MTM. Our analyses indicate that there is a strong spectral power in the period range of 2-7 years and 53 years, which are matched respectively with the known El Niño-Southern oscillation (ENSO) periods and ocean circulation cycles. Further, the spectral analysis also revealed a statistically significant but riven cycle in a period range of 9.8-13 years corresponding to the Schwabe cycle in all Indiaian maximum and minimum temperature records and almost all the zonal records except in the NE data. In some of the cases, the 22 year double sunspot (Hale cycle) cycle was also identified here. Invariably the splitting of spectral peaks corresponding to solar signal indicated nonlinear characteristics of the data and; therefore, even small variations in the solar output may help in catalyzing the coupled El Niño-atmospheric ENSO cycles by altering the solar heat input to the oceans. We, therefore, conclude that the Indian temperature variability is probably driven by the nonlinear coupling of
Effect of Nozzle Nonlinearities upon Nonlinear Stability of Liquid Propellant Rocket Motors
NASA Technical Reports Server (NTRS)
Padmanabhan, M. S.; Powell, E. A.; Zinn, B. T.
1975-01-01
A three dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite amplitude oscillatory flow inside the subsonic portion of a choked, slowly convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.
Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng
2013-03-25
The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.
Resonant nonlinear magneto-optical effects in atoms
NASA Astrophysics Data System (ADS)
Budker, D.; Gawlik, W.; Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Weis, A.
2002-11-01
The authors review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. They begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances. These effects are then contrasted with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultranarrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.
Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient
NASA Astrophysics Data System (ADS)
Sugimoto, N.
2015-10-01
This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.
NASA Astrophysics Data System (ADS)
Karavaev, F. G.; Uspenskii, B. A.; Chuprikov, N. L.
1980-05-01
Results obtained earlier in [1, 2] are used to calculate the nonlinear parameters of the helical instability of a semiconductor plasma that fills a half-space. It is found that in semiconductors with intrinsic or almost intrinsic conduction an “explosive” type of instability development occurs, this being due to the effect of the electric self-field of the wave.
Nonlinear phenomena in multiferroic nanocapacitor: Joule heating and electromechanical effects
Kim, Yunseok; Kumar, Amit; Tselev, Alexander; Kravchenko, Ivan I; Kalinin, Sergei V; Jesse, Stephen
2011-01-01
We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO3 thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO3 film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.
Nonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects.
Kim, Yunseok; Kumar, Amit; Tselev, Alexander; Kravchenko, Ivan I; Han, Hee; Vrejoiu, Ionela; Lee, Woo; Hesse, Dietrich; Alexe, Marin; Kalinin, Sergei V; Jesse, Stephen
2011-11-22
We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.
Non-linear effects in bunch compressor of TARLA
NASA Astrophysics Data System (ADS)
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel
2015-03-01
In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.
Can we detect a nonlinear response to temperature in European plant phenology?
Jochner, Susanne; Sparks, Tim H; Laube, Julia; Menzel, Annette
2016-10-01
Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C(-1) (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ∼14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.
Nonlinear interaction of a ferromagnet with a high-temperature superconductor
Kashurnikov, V. A. Maksimova, A. N.; Rudnev, I. A. Sotnikova, A. P.
2013-03-15
The interaction of an Abrikosov vertex with a ferromagnetic substrate is taken into account in the model of a layered high-temperature superconductor (HTSC). The magnetization reversal loops are calculated by the Monte Carlo method for various values of the magnetic moment of the substrate and at various temperatures. The nonlinearity of the interaction of the superconductor with the ferromagnet is demonstrated. The magnetization of HTSC films on magnetic and nonmagnetic substrates is measured. It is found that the ferromagnetism of the substrate strongly affects the shape and magnitude of the magnetization of the HTSC-substrate composite. Experimental data are found to correlate with the results of calculations.
Understanding and Prediction of Nonlinear Effects in Wave Propagation
2013-02-20
by a JONSWAP wave spectrum with a significant wave height of Hs = 4m, a peak period of Tp =8s and an enhancement parameter =3.0. The time...for public release; distribution is unlimited In ocean wave-field evolution, nonlinear effects affect the propagation velocity of each wave component...exceeding wave height and/or wave crest height probability functions for wide ranges of nonlinear spectrum parameters, which will enable the
Nonlinear geometric effects in mechanical bistable morphing structures.
Chen, Zi; Guo, Qiaohang; Majidi, Carmel; Chen, Wenzhe; Srolovitz, David J; Haataja, Mikko P
2012-09-14
Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the conditions for bistability, and extends the large deformation theory of plates and shells.
Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.
Gubaidullin, Amir A; Yakovenko, Anna V
2015-06-01
Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.
Non-Linear Effects in Knowledge Production
NASA Astrophysics Data System (ADS)
Purica, Ionut
2007-04-01
The generation of technological knowledge is paramount to our present development; the production of technological knowledge is governed by the same Cobb Douglas type model, with the means of research and the intelligence level replacing capital, respectively labor. We are exploring the basic behavior of present days' economies that are producing technological knowledge, along with the `usual' industrial production and determine a basic behavior that turns out to be a `Henon attractor'. Measures are introduced for the gain of technological knowledge and for the information of technological sequences that are based respectively on the underlying multi-valued modal logic of the technological research and on nonlinear thermodynamic considerations.
Nonlinear effects near the particle resonance
NASA Astrophysics Data System (ADS)
Palous, J.
1980-07-01
The nonlinear behavior of stellar orbits near the particle resonance is described. For the rotation speed of the spiral structure the value of 20 km/s per kpc is used which was derived elsewhere (Palous et al., 1977). This new value draws attention to the orbits approaching the corotation from the distant peripheries of the stellar system. These orbits exhibit near the damped particle resonance a leap-frogging motion. The maximum of the response density is near the points L1 and L2 and it is slightly shifted in the direction opposite to that of galactic rotation.
NASA Astrophysics Data System (ADS)
ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François
2016-12-01
The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Yost, William T.
1990-01-01
The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Yost, William T.
1990-01-01
The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.
NASA Astrophysics Data System (ADS)
Sinha, Raju; Karabiyik, Mustafa; Ahmadivand, Arash; Al-Amin, Chowdhury; Vabbina, Phani Kiran; Shur, Michael; Pala, Nezih
2016-03-01
We propose and investigate in detail a novel tunable, compact, room temperature terahertz (THz) emitter using individual microdisk resonators for both optical and THz waves with the capability of radiating THz field in 0.5-10 THz range with tuning frequency resolution of 0.05 THz. Enhanced THz generation is achieved by employing a nonlinear optical disk resonator with a high value of second-order nonlinearity ( χ (2)) in order to facilitate the difference-frequency generation (DFG) via nonlinear mixing with the choice of two appropriate input infrared optical waves. Efficient coupling of infrared waves from bus to the nonlinear disk is ensured by satisfying critical coupling condition. Phase matching condition for efficient DFG process is also met by employing modal phase matching technique. Our simulations show that THz output power can be reached up to milliwatt (mW) level with high optical to THz conversion efficiency. The proposed source is Silicon on Insulator (SoI) technology compatible enabling the monolithic integration with Si complementary metal-oxide-semiconductor (CMOS) electronics including plasmonic THz detectors.
Nonlinear effects at high flux-flow electric fields.
Huebener, R P
2009-06-24
Ohm's law with the linear relation between resistive voltage and electric current is strictly valid only in the limit of infinitesimally small voltages. On the other hand, at finite electric voltages nonlinearities in the electric resistance can develop due to the energy picked up by the charge carriers in the electric field. This can lead to important effects both in the case of semiconductors and of superconductors, where the energy rise of the charge carriers or the quasiparticles can become relatively large. In this paper we limit our discussion to the flux-flow voltage in the mixed state of a type-II superconductor. At sufficiently low temperatures the energy dependence of the quasiparticle density of states and, hence, of the quasiparticle scattering rate can cause distinct nonlinear effects in the flux-flow resistance. The recent advances in thin-film sample preparation provided new opportunities for observing nonlinear effects of the latter kind.
Effect of nonlinear absorption on self focusing of short laser pulse in a plasma
Kumar, Ashok
2012-06-15
Paraxial theory of self focusing of short pulse laser in a plasma under transient and saturating effects of nonlinearity and nonlinear absorption is developed. The absorption is averaged over the cross-section of the beam and is different for different time segments of the pulse. The electron temperature includes cumulative effect of previous history of temporal profile of pulse intensity, however, the ambipolar diffusion is taken to be faster than the heating time. The relaxation effect causes self-distortion of the pulse temporal profile where as the nonlinear absorption weakens self focusing. For the pulses of duration comparable to the electron ion collision time, the front part of the pulse gets defocused where as the latter part undergoes periodic self focusing.
Kinetic effects of Alfven wave nonlinearity. I - Ponderomotive density fluctuations
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1989-01-01
The Vlasov theory is used to study kinetic corrections to fluid descriptions of Alfven wave nonlinearity. The method is to obtain an expression for the second-order perturbed distribution function produced by a nonlinear Alfven wave. From this distribution function a kinetically correct expression is obtained for the plasma density perturbation associated with an envelope-modulated Alfven wave. This kinetic theory result differs substantially from the fluid expression when the plasma beta is greater than about 1, and the electron and ion temperatures are approximately equal. This result is of interest because density fluctuations are an observationally accessible indicator of wave nonlinearity in solar system Alfven waves. It also will assist in the determination of properties of Alfven waves in the interstellar medium. Finally, this analysis also yields a kinetically correct expression for u, the magnetic field-aligned component of the plasma fluid velocity.
Nonlinear Seebeck and Peltier effects in quantum point contacts
NASA Astrophysics Data System (ADS)
Çipilolu, M. A.; Turgut, S.; Tomak, M.
2004-09-01
The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters.
Linear and nonlinear Zeno effects in an optical coupler
Abdullaev, F. Kh.; Konotop, V. V.; Shchesnovich, V. S.
2011-04-15
It is shown that, in a simple coupler where one of the waveguides is subject to controlled losses of the electric field, it is possible to observe an optical analog of the linear and nonlinear quantum Zeno effects. The phenomenon consists in a counterintuitive enhancement of transparency of the coupler with an increase of the dissipation and represents an optical analog of the quantum Zeno effect. Experimental realization of the phenomenon based on the use of chalcogenide glasses is proposed. The system allows for observation of the crossover between the linear and nonlinear Zeno effects, as well as the effective manipulation of light transmission through the coupler.
Masood, W.; Rizvi, H.; Imtiaz, N.
2012-01-15
Nonlinear electrostatic waves in dissipative magnetized electron-ion (e-i) plasmas are investigated employing the two fluid model. In this regard, Zakharov Kuznetsov Burgers (ZKB) equation is derived using the small amplitude perturbation expansion method. It is observed that the nonthermal electron population, obliqueness, ion thermal effects, and kinematic viscosity significantly alter the structure of obliquely propagating nonlinear ion acoustic shock waves in dissipative e-i magnetoplasmas. It is observed that the system can admit both compressive and rarefactive shocks. The condition for the formation of both types of shocks is also given. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock structures in space environments where the nonthermal electrons have been observed by various satellite missions such as Voyager and Freja.
Yin, Fei; Zhang, Tao; Liu, Lei; Lv, Qiang; Li, Xiaosong
2016-01-01
Hand, foot and mouth disease (HFMD) has recently been recognized as a critical challenge to disease control and public health response in China. This study aimed to quantify the association between temperature and HFMD in Chengdu. Daily HFMD cases and meteorological variables in Chengdu between January 2010 and December 2013 were obtained to construct the time series. A distributed lag non-linear model was performed to investigate the temporal lagged association of daily temperature with age- and gender-specific HFMD. A total of 76,403 HFMD cases aged 0–14 years were reported in Chengdu during the study period, and a bimodal seasonal pattern was observed. The temperature-HFMD relationships were non-linear in all age and gender groups, with the first peak at 14.0–14.1 °C and the second peak at 23.1–23.2 °C. The high temperatures had acute and short-term effects and declined quickly over time, while the effects in low temperature ranges were persistent over longer lag periods. Males and children aged <1 year were more vulnerable to temperature variations. Temperature played an important role in HFMD incidence with non-linear and delayed effects. The success of HFMD intervention strategies could benefit from giving more consideration to local climatic conditions. PMID:27248051
Self-similar rogue waves and nonlinear tunneling effects in inhomogeneous nonlinear fiber optics
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhu, Yu-Jie; Jiang, Dong-Yang
2016-04-01
Analytical first- and second-order rogue wave solutions of the inhomogeneous modified nonlinear Schrödinger equation are presented by using similarity transformation. Then, by the proper choices of the inhomogeneous coefficients and free parameters, the controllable behaviors of the optical rogue waves are graphically discussed in the nonlinear fiber optics context. It is found that the width of the rogue wave can be tuned by adjusting the parameter ? and the locations of the rogue waves are linearly controlled by the parameter ?. The intensities of the rogue waves are influenced by the inhomogeneous linear gain/loss coefficient ? and parameter ?. The dispersion management function ? has effects on the periods and trajectories of the rogue waves and can induce maintenance (or annihilation) along ? direction. Interestingly, the composite rogue waves are revealed, the location of which is manipulated through changing the dispersion management function ?. Additionally, the nonlinear tunneling of those rogue waves is investigated as they propagate through a dispersion barrier (or well) and nonlinear barrier (or well).
Oates, D E; Park, S-H; Koren, G
2004-11-05
We present experimental evidence for the observation of the nonlinear Meissner effect in high-quality epitaxial yttrium barium copper oxide thin films by measuring their intermodulation distortion at microwave frequencies versus temperature. Most of the films measured show a characteristic increase in nonlinearity at low temperatures as predicted by the nonlinear Meissner effect. We could measure the nonlinear Meissner effect because intermodulation distortion measurements are an extremely sensitive method that can detect changes in the penetration depth of the order of 1 part in 10(5).
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
NASA Astrophysics Data System (ADS)
Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin
2014-04-01
This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.
Nonlinear Geometric Effects in Bioinspired Multistable Structures
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Chu, Kevin; Shillig, Steven; Li, Chi; Chen, Wenzhe; Taber, Larry; Holmes, Douglas
2013-03-01
Nature features many thin shell structures with spontaneous curvatures, where mechanical instabilities play important roles in the morphogenesis and functioning of the organisms. However, the large deformation and instability phenomena of shells due to geometric nonlinearity, which often arise in morphogenesis and nanofabrication, remain incompletely understood. Here, we create spontaneously curved shapes with pre-strains in tabletop experiments, and study their instabilities with a minimal theory based on linear elasticity. The development of such theoretical and experimental approaches will promote quantitative understanding of the morphogenesis of growing soft tissues, and meet the emergent needs of designing stretchable electronics, artificial muscles and bio-inspired robots. Zi Chen and Qiaohang Guo contributed equally. This work was supported by National Science Foundation of China (No. 11102040), American Academy of Mechanics Founder's Award, and Society in Science - Branco Weiss fellowship, administered by ETH.
Nonlinear Peltier effect and thermoconductance in nanowires
NASA Astrophysics Data System (ADS)
Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi
1999-10-01
A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed.
Non-linear conduction in LaCaMnO 3 thin films: interface tunneling effects
NASA Astrophysics Data System (ADS)
Amaral, V. S.; Araújo, J. P.; Lourenço, A. A. C. S.; Tavares, P. B.; Pogorelov, Yu. G.; Sousa, J. B.; Vieira, J. M.
2001-05-01
Non-linear resistivity in La 0.78Ca 0.25MnO 3 epitaxial thin films is studied using 2-contact dynamic measurements. Non-linear V- I is obtained below Tc (˜220 K). Evaporated gold or direct silver-paste contacts give similar results. d V/d I at high voltages (˜1 V) follows the usual four-point resistance results, but at lower voltages an additional contribution up to 2 orders of magnitude higher develops at low temperatures. These effects are associated with tunneling processes at the metal/manganite interface.
NASA Astrophysics Data System (ADS)
Hayashi, Neisei; Suzuki, Kohei; Set, Sze Yun; Yamashita, Shinji
2017-09-01
We measured the temperature dependence of the polarized guided acoustic-wave Brillouin scattering (GAWBS) spectrum using a highly nonlinear fiber. The temperature coefficient is 168 kHz/K, which is 1.7 times larger than that of small-core photonic crystal fibers. This result indicates that highly temperature-sensitive GAWBS-based sensing is feasible.
Multivariate multilevel nonlinear mixed effects models for timber yield predictions.
Hall, Daniel B; Clutter, Michael
2004-03-01
Nonlinear mixed effects models have become important tools for growth and yield modeling in forestry. To date, applications have concentrated on modeling single growth variables such as tree height or bole volume. Here, we propose multivariate multilevel nonlinear mixed effects models for describing several plot-level timber quantity characteristics simultaneously. We describe how such models can be used to produce future predictions of timber volume (yield). The class of models and methods of estimation and prediction are developed and then illustrated on data from a University of Georgia study of the effects of various site preparation methods on the growth of slash pine (Pinus elliottii Engelm.).
Study of nonlinear magneto-optic effects in BBO
NASA Astrophysics Data System (ADS)
Soubusta, Jan; Černoch, Antonín.; Hamrle, Jaroslav; Peřina, Jan; Postava, Kamil
2016-12-01
Nonlinear crystals are typically used when interaction of different frequencies of light is requested. In classical optics these nonlinear phenomena are used for second-harmonic generation, sum-frequency generation, optical parametric amplification and many other effects. In quantum optics, dealing with optical interaction on the level of individual photons, the most prominent process is spontaneous parametric down-conversion (SPDC),1 where the crystal is pumped by intensive laser light and the crystal can mediate the splitting of a pump photon to a photon pair. The two generated photons are typically called signal and idler. Influence of magnetic field on these nonlinear processes was not thoroughly tested yet. This topic deserves intensive study both from theoretical and experimental point of view, because the magnetic field can decrease the symmetry of the nonlinear crystal and so it may allow to use new types of phase-matching conditions. We started to test the SPDC process in BBO crystals. Nonlinear magneto-optic tensor of this material is not known and we can hardly predict it. According to our first theoretical derivations the efficiency of the nonlinear processes has to oscillate when rotating the magnetic-field orientation.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih
2015-01-01
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287
NASA Astrophysics Data System (ADS)
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih
2015-03-01
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.
The hysteresis-free negative capacitance field effect transistors using non-linear poly capacitance
NASA Astrophysics Data System (ADS)
Fan, S.-T.; Yan, J.-Y.; Lai, D.-C.; Liu, C. W.
2016-08-01
A gate structure design for negative capacitance field effect transistors (NCFETs) is proposed. The hysteresis loop in current-voltage performances is eliminated by the nonlinear C-V dependence of polysilicon in the gate dielectrics. Design considerations and optimizations to achieve the low SS and hysteresis-free transfer were elaborated. The effects of gate-to-source/drain overlap, channel length scaling, interface trap states and temperature impact on SS are also investigated.
The Effect of Nonlinearity on Topological States in Quasiperiodic Lattices
NASA Astrophysics Data System (ADS)
Vo, Phong; Lahini, Yoav
2014-03-01
The discovery of topological insulators has sparked considerable interest in the study of topological phases of matter. Recently, it has been shown that certain quasiperiodic systems are also topologically nontrivial. As topological states arise from a linear, non-interacting theory of solids, it is of interest to understand the effect of interactions on topological properties. In an extensive numerical study, we introduce nonlinearity into a 1-D quasiperiodic model to observe its effect on energy localization at the boundary due to topological edge states. We compare two different quasiperiodic modulations: one where the on-site potential is modulated at an incommensurate frequency (the diagonal Aubry-Andre model), and a second in which the hopping terms are modulated (off-diagonal model). We find that in the diagonal model, increasing the magnitude of nonlinearity delocalizes energy from the boundary. The strength of nonlinearity needed for delocalization depends on the eigenvalue of the linear edge state, the width of the gap in which it resides, and the sign of nonlinearity. In contrast, in the off-diagonal model, the effects of positive and negative nonlinearity are identical when only the edge lattice site is excited due to symmetry in the eigenvalue spectrum. We acknowledge financial support from the MIT's Undergraduate Research Opportunities Program (UROP)
Coriolis effects on nonlinear oscillations of rotating cylinders and rings
NASA Technical Reports Server (NTRS)
Padovan, J.
1976-01-01
The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.
Competition between the tensor light shift and nonlinear Zeeman effect
Chalupczak, W.; Wojciechowski, A.; Pustelny, S.; Gawlik, W.
2010-08-15
Many precision measurements (e.g., in spectroscopy, atomic clocks, quantum-information processing, etc.) suffer from systematic errors introduced by the light shift. In our experimental configuration, however, the tensor light shift plays a positive role enabling the observation of spectral features otherwise masked by the cancellation of the transition amplitudes and creating resonances at a frequency unperturbed either by laser power or beam inhomogeneity. These phenomena occur thanks to the special relation between the nonlinear Zeeman and light shift effects. The interplay between these two perturbations is systematically studied and the cancellation of the nonlinear Zeeman effect by the tensor light shift is demonstrated.
Kharkovskiy, A. I.; Shaldin, Yu. V.; Nizhankovskii, V. I.
2016-01-07
The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-like peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.
Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode
Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro
2015-05-15
We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇T{sub e}/T{sub e} strength exceeded 0.54 cm{sup −1}. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.
Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode
NASA Astrophysics Data System (ADS)
Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro
2015-05-01
We have observed that the disparate scale nonlinear interactions between the high-frequency (˜0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (˜kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇Te/Te strength exceeded 0.54 cm-1. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Quantum Effects in the Nonlinear Response of Graphene Plasmons.
Cox, Joel D; Silveiro, Iván; García de Abajo, F Javier
2016-02-23
The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.
Temperature effects in treatment wetlands.
Kadlec, R H; Reddy, K R
2001-01-01
Several biogeochemical processes that regulate the removal of nutrients in wetlands are affected by temperature, thus influencing the overall treatment efficiency. In this paper, the effects of temperature on carbon, nitrogen, and phosphorus cycling processes in treatment wetlands and their implications to water quality are discussed. Many environmental factors display annual cycles that mediate whole system performance. Water temperature is one of the important cyclic stimuli, but inlet flow rates and concentrations, and several features of the annual biogeochemical cycle, also can contribute to the observed patterns of nutrient and pollutant removal. Atmospheric influences, including rain, evapotranspiration, and water reaeration, also follow seasonal patterns. Processes regulating storages in wetlands are active throughout the year and can act as seasonal reservoirs of nutrients, carbon, and pollutants. Many individual wetland processes, such as microbially mediated reactions, are affected by temperature. Response was much greater to changes at the lower end of the temperature scale (< 15 degrees C) than at the optimal range (20 to 35 degrees C). Processes regulating organic matter decomposition are affected by temperature. Similarly, all nitrogen cycling reactions (mineralization, nitrification, and denitrification) are affected by temperature. The temperature coefficient (theta) varied from 1.05 to 1.37 for carbon and nitrogen cycling processes during isolated conditions. Phosphorus sorption reactions are least affected by temperature, with theta values of 1.03 to 1.12. Physical processes involved in the removal of particulate carbon, nitrogen, and phosphorus are not affected much by temperature. In contrast, observed wetland removals may have different temperature dependence. Design models are oversimplified because of limitations of data for calibration. The result of complex system behavior and the simple model is the need to interpret whole ecosystem data
Nonlinear elastic effects on permanent deformation due to large earthquakes
NASA Astrophysics Data System (ADS)
Bataille, Klaus; Contreras, Marcelo
2009-06-01
Large earthquakes generate significant deformations near fault zones, and it is known that under such conditions rocks do not behave linearly. This nonlinearity is generally assumed to be due to ductile processes, however, some nonlinear elastic behavior is possible as well, and this should have an effect on the ground deformation near fault zones which might be observable seismically or geodetically. We calculate the difference of the permanent displacement field, due to an earthquake, when we consider Hooke's law and a general nonlinear law. Under the simplified assumption that the nonlinear part of the constitutive law has a small effect, we use a perturbation approach and keep only the first term. This first term depends on Mo/r3, implying that for large Moments ( Mo) and small distances ( r), the seismic Moment (as obtained far away from the source and within the linear regime) will always be greater than the geodetic Moment (obtained within the nonlinear regime). This result is in principle against our intuition since seismic Moments relate to the rupture process of the main event, which normally takes place during minutes, while geodetic Moments relate to the rupture process of the main event plus foreshocks (if any), aftershocks and other slow afterslip processes, which normally occur during hours and days. Aftershocks normally share the same mechanism as the main event, increasing thus the total Moment of the sequence, therefore, geodetic Moment should intuitively be greater than the seismic Moment. Interestingly, this reasoning yields the opposite effect than what is observed for large earthquakes as the cases of the Chile 1960 ( Mw=9.5), Alaska 1964 ( Mw=9.2) and some evidence for the Sumatra 2005 ( Mw=9.3) as well as other smaller earthquakes. If the difference of geodetic and seismic Moments is a real phenomenon, it could be due to several factors. We suggest here that one of these factors, could be due to a nonlinear elastic effect.
Liang, Zhijiang; Lin, Yan; Ma, Yuanzhu; Zhang, Lei; Zhang, Xue; Li, Li; Zhang, Shaoqiang; Cheng, Yuli; Zhou, Xiaomei; Lin, Hualiang; Miao, Huazhang; Zhao, Qingguo
2016-08-08
A few studies have examined the association between ambient temperature and preterm birth (PTB), and the results have been inconsistent. This study explored the association between ambient temperature and PTB in Shenzhen, China. Data of daily singleton PTB, air pollution and meteorological variables from 2005 to 2011 were collected in Shenzhen. A distributed lag non-linear model (DLNM) was used to investigate the association of the low and high temperatures (1st, 5th, 95th, and 99th percentiles) with PTB. The median temperature was 24.5 °C and the 1st, 5th, 95th, and 99th percentiles of daily mean temperatures were 9, 12.5, 29.9 and 30.7 °C, respectively. The prevalence of singleton PTB was 5.61 % in Shenzhen. The association between temperature and PTB was not linear. There was an immediate positive association of low temperature (1st and 5th percentiles) and a negative association of high temperature (95th and 99th percentiles) with PTB. The effect of low temperature 9 °C (1st) on PTB on the current day was stronger than that of 12.5 °C (5th), with a relative risk (RR) of 1.54 (95 % CI: 1.36-1.75) and 1.49 (95 % CI: 1.35-1.63), respectively. The cumulative RR (up to 30 days) of 9 and 12.5 °C was 1.72 (95 % CI: 1.28-2.33) and 1.96 (95 % CI: 1.60-2.39), respectively. The cumulative effects (up to 30 days) of high temperature (95th and 99th percentiles) on PTB were 0.69 (95 % CI: 0.60-0.80) and 0.62 (95 % CI: 0.52-0.74), respectively. The cumulative effect (up to 30 days) of low temperatures on vaginal delivery PTB was lower than that of the cesarean section PTB with an RR of 1.58 (95 % CI: 1.12-2.22) and 1.93 (95 % CI: 1.21-3.08), respectively. This study suggests that low temperature might be a risk factor, while high temperature might be a protective factor of PTB in Shenzhen.
“Radiational tides” as nonlinear effects: bispectral interpretation
NASA Astrophysics Data System (ADS)
Marone, Eduardo
1996-07-01
In this work it is shown that “radiational tides” could be interpreted as nonlinear effects by using the results of nonlinear tidal analysis. A one-year record (1979) of hourly sea level data from Ingeniero White, Argentina (38°47‧S, 62°16‧W) was analysed using spectral and bispectral methodologies (Marone and Mesquita, I994), in order to separate linear from nonlinear effects. The results show the same pattern observed when 1980s hourly data were analysed in the cited work. The concept of “radiational tides” was introduced to explain the extra terms used to fit the astronomical tidal potential onto real tidal records (Munk and Cartwright, 1966). Originally, it had a mathematical reasoning based on a physical hypothesis. Later it was proposed that “radiational tides” are a nonlinear effect due to the linkage of linear tidal constituents (Godin, 1986). The original physical interpretation based upon local solar radiational inputs was unsuitable, because one can find “radiational tides” being more important in high latitudes than in tropical or subtropical regions. The current hypothesis in this way relates the “radiational tide” with some global or meso-scale radiational effects of the sun. Anyway, this explanation seems to be incomplete, because the different values of theS2 constituents for narrow ports show that local effects are important. Godin (1986) suggested that nonlinear second order interactions are the most reasonable explanation for the unexpected large values of some tidal constituents, especially in the semidiurnal band. Using the bispectral analysis of sea-level records it was possible to show that a remarkable nonlinear interaction exists besides the diurnal band and that energy is transferred to the semidiurnal band. This fact justifies the interpretation of “radiational tides” as mainly a quadratic frictional linkage between the diurnal constituents. The results suggest that the term “radiational tides” must be
The spin Hall effect as a probe of nonlinear spin fluctuations.
Wei, D H; Niimi, Y; Gu, B; Ziman, T; Maekawa, S; Otani, Y
2012-01-01
The spin Hall effect and its inverse have key roles in spintronic devices as they allow conversion of charge currents to and from spin currents. The conversion efficiency strongly depends on material details, such as the electronic band structure and the nature of impurities. Here we show an anomaly in the inverse spin Hall effect in weak ferromagnetic NiPd alloys near their Curie temperatures with a shape independent of material details, such as Ni concentrations. By extending Kondo's model for the anomalous Hall effect, we explain the observed anomaly as originating from the second-order nonlinear spin fluctuation of Ni moments. This brings to light an essential symmetry difference between the spin Hall effect and the anomalous Hall effect, which reflects the first-order nonlinear fluctuations of local moments. Our finding opens up a new application of the spin Hall effect, by which a minuscule magnetic moment can be detected.
Non-linear approach to the entrainment matrix of superfluid nucleon mixture at zero temperature
NASA Astrophysics Data System (ADS)
Leinson, Lev B.
2017-09-01
The superfluid drag effect, in hydrodynamics of pulsating neutron stars, is conventionally described with the aid of the entrainment matrix relating the mass currents with the velocities of superfluid flows in the system. Equations for the entrainment matrix of a superfluid mixture of neutrons and protons are derived with allowance for the strong dependence of the energy gaps on the velocities of superfluid flows. The calculations are carried out in the frame of the Fermi-liquid theory. The equations obtained are highly non-linear. Numerical solutions to the equations for some typical cases demonstrate that the components of the entrainment matrix possess a highly non-linear dependence on the velocities of the two superflows simultaneously. This effect, previously ignored, can greatly influence the dynamics of neutron stars.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Zeng, Z; Jin, L; Huo, Y
2010-05-01
Exact formulae for the elastic moduli of the nematic elastomers are obtained by the implicit function method based on somewhat general energy functions. The formulae indicate that both the moduli parallel and perpendicular to the director of the nematic elastomers are smaller than the modulus of the classical elastomers because of the mechanical-nematic coupling. Moreover, the moduli are generally anisotropic due to the biaxiality induced by stretching the nematic elastomers perpendicular to the director. Then we get the explicit analytical expressions of the parallel and perpendicular moduli by making use of the Landau-de Gennes free energy and the neo-classical elastic energy. Very different from the classical elastomers, they are both strongly nonlinear functions of the temperature in the nematic phase. Furthermore, their ratio, the degree of anisotropy, changes with the temperature as well. The results agree qualitatively with some experiments. Better quantitative agreement is obtained by some modifications of the constitutive relation of the elastic energy.
High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique.
Su, Z H; Gan, J; Yu, Q K; Zhang, Q H; Liu, Z H; Bao, J M
2013-04-01
A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.
The effect of non-linear propagation in jet noise
NASA Technical Reports Server (NTRS)
Gallagher, J. A.
1982-01-01
An experimental investigation of the nonlinear propagation effects which occur in the noise radiated from low and moderate Reynolds number supersonic jets has been performed. An array of three condenser microphones was used to measure the waveforms propagated by axisymmetric, cold model jets of Mach numbers 2.1 and 2.5. Relatively low Reynolds numbers were obtained by exhausting the jets into a low pressure anechoic test chamber. The results show that phenomena normally associated with nonlinear acoustic propagation, such as wave steepening, harmonic generation and wave merging, are measurable in the high speed model jets.
NASA Astrophysics Data System (ADS)
Itskovsky, M.
1999-08-01
Kinetics of a ferroelectric phase transition in thin ferroelectric layer (film), coated with metallic films [metal-ferroelectric-metal (MFM) system] and overheated with various heating rates through phase transition temperature by solar or laser irradiation impulse, is investigated. Dynamical nonlinear pyroelectric effect (pyroelectric current and polarization) as well as anomalies of dielectric permittivity and specific heat are calculated as functions of changing in time temperature for various heating rates. Conversion efficiency during heating of the MFM system (served as ferroelectric solar cell), operating due to the nonlinear pyroelectric effect in the ferroelectric phase transition region, ranges from a few percent for ferroelectrics of the triglycine sulphate (TGS) type to above 10% for the NaNO2 type ferroelectrics, reaching the order of efficiency of photovoltaic solar cell.
Haematite natural crystals: non-linear initial susceptibility at low temperature
NASA Astrophysics Data System (ADS)
Guerrero-Suarez, S.; Martín-Hernández, F.
2016-06-01
Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.
Effect of hydrogen bonds on optical nonlinearities of inorganic crystals
NASA Astrophysics Data System (ADS)
Xue, Dongfeng; Zhang, Siyuan
1999-03-01
This work probes the role of hydrogen bonds (such as O-H⋯O and N-H⋯O) in some inorganic nonlinear optical (NLO) crystals, such as HIO 3, NH 4H 2PO 4 (ADP), K[B 5O 6(OH) 4]·2H 2O (KB 5) and K 2La(NO 3) 5·2H 2O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals.
Study On Nonlinear effect In 2D Plastic Media
NASA Astrophysics Data System (ADS)
Wenjie, D.; Chen, X.
2011-12-01
Unlike the perfect elastic, homogeneous and isotropic model, the properties of real earth media are heterogeneous, plastic and anisotropic to a certain extend. To accurately simulate the strong ground motion in a basin, nonlinear or plastic effect should be considered in simulation. In this study, we use DRP/opt MacCormack non-staggered finite difference method to simulate 2D seismic wave propagation in anisotropic and plastic media. Compared with the traditional staggered grid FDM, this scheme is more accurate and more efficient. We focus on the nonlinear character of the sedimentary basin model. The preliminary ground motion results indicate that the energy of seismic wave has obvious nonlinear dissipation and irreversible deformations which is danger to buildings in the sedimentary basin.
The effect of nonlinearity on unstable zones of Mathieu equation
NASA Astrophysics Data System (ADS)
Saryazdi, M. Gh
2017-03-01
Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.
Spontaneous emission and nonlinear effects in photonic bandgap materials
NASA Astrophysics Data System (ADS)
Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.
1998-03-01
We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.
Two-temperature synthesis of non-linear optical compound CdGeAs2
NASA Astrophysics Data System (ADS)
Zhu, Chongqiang; Verozubova, G. A.; Mironov, Yuri P.; Lei, Zuotao; Song, Liangcheng; Ma, Tianhui; Okunev, A. O.; Yang, Chunhui
2016-12-01
In this work, we report on a new approach to synthesize large-scale nonlinear optical chalcopyrite compound CdGeAs2 (cadmium germanium arsenide), in which the arsenic (As) precursor and the mixture of the cadmium (Cd) and the germanium (Ge) were separated in two distinct temperature-defined zones of a furnace. Through probing the intermediate product prepared at pre-set temperature points of hot-zone area, it was revealed that the ternary compound CdGeAs2 was formed through chemical reactions among Cd3As2, CdAs2, GeAs, GeAs2 and Ge. A new intermediate crystalline compound, with determined crystal parameter c=0.9139 nm and unknown a parameter, was identified when the temperature of the mixture of Cd and Ge was set to 680 °C, which, however, disappeared when the temperature was set to 770 °C, yielding pure CdGeAs2 product. Most likely, the identified new intermediate compound has layered graphite-like structure. Moreover, we show that the described two-temperature synthesis method allows us to produce near 250 g CdGeAs2 product during one run in a horizontal furnace and 500 g in a tilted horizontal furnace with rotated reactor.
A study of temperature-related non-linearity at the metal-silicon interface
NASA Astrophysics Data System (ADS)
Gammon, P. M.; Donchev, E.; Pérez-Tomás, A.; Shah, V. A.; Pang, J. S.; Petrov, P. K.; Jennings, M. R.; Fisher, C. A.; Mawby, P. A.; Leadley, D. R.; McN. Alford, N.
2012-12-01
In this paper, we investigate the temperature dependencies of metal-semiconductor interfaces in an effort to better reproduce the current-voltage-temperature (IVT) characteristics of any Schottky diode, regardless of homogeneity. Four silicon Schottky diodes were fabricated for this work, each displaying different degrees of inhomogeneity; a relatively homogeneous NiV/Si diode, a Ti/Si and Cr/Si diode with double bumps at only the lowest temperatures, and a Nb/Si diode displaying extensive non-linearity. The 77-300 K IVT responses are modelled using a semi-automated implementation of Tung's electron transport model, and each of the diodes are well reproduced. However, in achieving this, it is revealed that each of the three key fitting parameters within the model display a significant temperature dependency. In analysing these dependencies, we reveal how a rise in thermal energy "activates" exponentially more interfacial patches, the activation rate being dependent on the carrier concentration at the patch saddle point (the patch's maximum barrier height), which in turn is linked to the relative homogeneity of each diode. Finally, in a review of Tung's model, problems in the divergence of the current paths at low temperature are explained to be inherent due to the simplification of an interface that will contain competing defects and inhomogeneities.
Non-linear effects in bunch compressor of TARLA
Yildiz, Hüseyin E-mail: huseyinyildiz@gazi.edu.tr; Aksoy, Avni; Arikan, Pervin
2016-03-25
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Effects of nonlinear ultrasound propagation on high intensity brain therapy.
Pinton, Gianmarco; Aubry, Jean-Francois; Fink, Mathias; Tanter, Mickael
2011-03-01
As an ultrasound wave propagates nonlinearly, energy is transferred to higher frequencies where it is more strongly attenuated. Compared to soft tissue, the skull has strongly heterogeneous material parameters. The authors characterize with experiments and establish a numerical method that can describe the effects of the skull on the nonlinear components of ultrasonic wave propagation for application to high intensity focused ultrasound (HIFU) therapy in the brain. The impact of nonlinear acoustic propagation on heat deposition and thermal dose delivery is quantified and compared to linear assumptions by coupling an acoustic simulation with a heating model for brain tissue. A degassed dessicated human skull was placed in a water tank and insonified at 1 MPa with 7 mm transducer from a custom array designed for HIFU treatment. Two dimensional scans were performed preceding and following propagation through the skull with a calibrated hydrophone. Data from the scan preceding the skull were used as an input to a three dimensional finite difference time domain (FDTD) simulation that calculates the effects of diffraction, density, attenuation with linear dependence on frequency via relaxation mechanisms, and second order nonlinearity. A measured representation of the skull was used to determine the skull's acoustic properties. The validated acoustic model was used to determine the loss due to nonlinear propagation and then coupled to a finite difference simulation of the bioheat equation for two focal configurations at 3 and 7.5 cm from the skull surface. Prior to propagation through the skull, the second harmonic component was 19 dB lower than the fundamental, and the third harmonic component was 37 dB lower. Following the skull, the second harmonic component was 35 dB lower and the third harmonic was 55 dB lower. The simulation is in agreement with the measurements to within 0.5 dB across the considered frequency range and shows good agreement across the two
Suvorova, Yu.V.; Alekseeva, S.I.
1995-03-01
A nonlinear model of an isotropic hereditary medium in a complex stressed state is considered. The task of the investigation is to introduce the temperature into the suggested model and test the latter on PTFE-3 material. The construction of the model is described. The experimental and computed data are compared for different temperatures and different relationships between the components of principal stresses.
NASA Astrophysics Data System (ADS)
Xu, Yingfeng; Ye, Lei; Dai, Zongliang; Xiao, Xiaotao; Wang, Shaojie
2017-08-01
The electrostatic gyrokinetic nonlinear turbulence code NLT, which is based on a numerical Lie-transform perturbation method, is developed. For improving the computational efficiency and avoiding the numerical instabilities, field-aligned coordinates and a Fourier filter are adopted in the NLT code. Nonlinear tests of the ion temperature gradient driven turbulence with adiabatic electrons are performed for verifying the NLT code by comparing with other gyrokinetic codes. The time evolution of the ion heat diffusivity and the relation between the ion heat diffusivity and the ion temperature gradient are compared in the nonlinear tests. Good agreements are achieved from the nonlinear benchmarks between the NLT code and other codes. The mode structures of the perturbed electric potential representing different phases have been simulated.
NASA Astrophysics Data System (ADS)
Zuev, Vladimir V.; Gerasimov, Vladislav V.; Pravdin, Vladimir L.; Pavlinskiy, Aleksei V.; Nakhtigalova, Daria P.
2017-01-01
Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval accuracy and number of calibration coefficients depend on the selected function. The commonly used calibration function (linear in reciprocal temperature 1/T with two calibration coefficients) ignores all types of broadening of individual PRR lines of atmospheric N2 and O2 molecules. However, the collisional (pressure) broadening dominates over other types of broadening of PRR lines in the troposphere and can differently affect the accuracy of tropospheric temperature measurements depending on the PRR lidar system. We recently derived the calibration function in the general analytical form that takes into account the collisional broadening of all N2 and O2 PRR lines (Gerasimov and Zuev, 2016). This general calibration function represents an infinite series and, therefore, cannot be directly used in the temperature retrieval algorithm. For this reason, its four simplest special cases (calibration functions nonlinear in 1/T with three calibration coefficients), two of which have not been suggested before, were considered and analyzed. All the special cases take the collisional PRR lines broadening into account in varying degrees and the best function among them was determined via simulation. In this paper, we use the special cases to retrieve tropospheric temperature from real PRR lidar data. The calibration function best suited for tropospheric temperature retrievals is determined from the comparative analysis of temperature uncertainties yielded by using these functions. The absolute and relative statistical uncertainties of temperature retrieval are given in an analytical form assuming Poisson statistics of photon counting. The vertical tropospheric temperature
Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John
2016-01-01
When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a
Temperature effects on airgun signatures
Langhammer, J.; Landroe, M. )
1993-08-01
Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to achieve a better understanding of the physical processes that influence an airgun signature. The source was a bolt airgun with a chamber volume of 1.6 cu. in. The pressure used was 100 bar and the gun depth was 0.5 m. The water temperature in the tank was varied between 5 C and 45 C. Near-field signatures were recorded at different water temperatures. Typical signature characteristics such as the primary-to-bubble ratio and the bubble time period increased with increasing water temperature. For comparison and in order to check whether this is valid for larger guns, computer modeling of airguns with chamber volumes of 1.6 and 40 cu. in. was performed. In modeling the same behavior of the signatures with increasing water temperature can be observed. The increase in the primary-to-bubble ratio and the bubble time period with increasing water temperature can be explained by an increased mass transfer across the bubble wall.
NASA Astrophysics Data System (ADS)
Pan, Z.; Morgan, S. H.; Henderson, D. O.; Park, S. Y.; Weeks, R. A.; Magruder, R. H.; Zuhr, R. A.
1995-10-01
We report the linear and nonlinear optical response of bismuth and antimony implanted fused silica with doses of 6 × 10 16 ions/cm 2. The nonlinear refractive index, n2, was measured using a Z-scan technique with a mode locked Ti:sapphire laser operating in 140 fs pulse duration at 770 nm wavelength. It is found that the nonlinear refractive index n2 of as-implanted samples is large, in the order of 10 -10 cm 2/W and the n2 value of Bi as-implanted sample is about 2.4 times lager than that of Sb as-implanted sample. The large n2 response is attributed to the presence of nanosized metal particles in the implanted layer observed by transmission electron microscopy. We also report the changes of linear and nonlinear optical response when implanted samples were subsequently annealed at temperatures from 500 to 1000 C in argon and oxygen atmospheres. The annealing effect on optical properties is found to be strongly dependent on the annealing atmospheres. Our results indicate that annealing treatment in O 2 affects the local environment of the implanted metal ions and hence the linear and nonlinear optical properties of the metal-dielectric composite. We suggest that a new phase of metal-oxygen-silicate was formed during annealing in O 2 atmosphere.
Dang, Tran Ngoc; Seposo, Xerxes T; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi
2016-01-01
Background The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). Results High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11-1.83; low temperature effect, RR=2.0, 95% CI=1.13-3.52), females (low temperature effect, RR=2.19, 95% CI=1.14-4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91-6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15-2.22; low temperature effect, RR=1.99, 95% CI=0.92-4.28). Conclusions In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City.
New non-linear photovoltaic effect in uniform bipolar semiconductor
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
NonLinear Effects in Photorefractive Crystals
1988-01-01
Polarisation of light is easily demonstrable and it appealed greatly to the most eminent popularizer of science in the 19th century, Micheal Faraday (1791...1867). In the 1840’s he conducted a series of experiments investigating the influence of electric and magnetic fields on light. He discovered the Faraday ...gyrator) and the devices invariably depend on a gyrotropic or Faraday rotation effect. NR phase shifts of up to 3600 are available 48 CHAPTER 3
Nonlinear and Non-ideal Effects on FRC Stability
E.V. Belova; R.C. Davidson; H. Ji; M. Yamada
2002-10-21
New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs in strongly kinetic and small-gyroradius, MHD-like regimes. The n = 1 tilt instability mechanism and stabilizing factors are investigated in detail including nonlinear and resonant particle effects, particle losses along the open field lines, and Hall stabilization. It is shown that the Hall effect determines the mode rotation and change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to the finite Larmor radius effects. Resonant particle effects are important in the large gyroradius regime regardless of the separatrix shape, and even in cases when a large fraction of the particle orbits are stochastic. Particle loss along the open field lines has a destabilizing effect on the tilt mode and contributes to the ion spin up in toroidal direction. The nonlinear evolution of unstable modes in both kinetic and small-gyroradius FRCs is shown to be considerably slower than that in MHD simulations. Our simulation results demonstrate that a combination of kinetic and nonlinear effects is a key for understanding the experimentally observed FRC stability properties.
Cosmological non-linearities as an effective fluid
Baumann, Daniel; Senatore, Leonardo; Zaldarriaga, Matias; Nicolis, Alberto E-mail: nicolis@phys.columbia.edu E-mail: matiasz@ias.edu
2012-07-01
The universe is smooth on large scales but very inhomogeneous on small scales. Why is the spacetime on large scales modeled to a good approximation by the Friedmann equations? Are we sure that small-scale non-linearities do not induce a large backreaction? Related to this, what is the effective theory that describes the universe on large scales? In this paper we make progress in addressing these questions. We show that the effective theory for the long-wavelength universe behaves as a viscous fluid coupled to gravity: integrating out short-wavelength perturbations renormalizes the homogeneous background and introduces dissipative dynamics into the evolution of long-wavelength perturbations. The effective fluid has small perturbations and is characterized by a few parameters like an equation of state, a sound speed and a viscosity parameter. These parameters can be matched to numerical simulations or fitted from observations. We find that the backreaction of small-scale non-linearities is very small, being suppressed by the large hierarchy between the scale of non-linearities and the horizon scale. The effective pressure of the fluid is always positive and much too small to significantly affect the background evolution. Moreover, we prove that virialized scales decouple completely from the large-scale dynamics, at all orders in the post-Newtonian expansion. We propose that our effective theory be used to formulate a well-defined and controlled alternative to conventional perturbation theory, and we discuss possible observational applications. Finally, our way of reformulating results in second-order perturbation theory in terms of a long-wavelength effective fluid provides the opportunity to understand non-linear effects in a simple and physically intuitive way.
Shear flow effects on the nonlinear evolution of thermal instabilities
Leboeuf, J.; Charlton, L.A.; Carreras, B.A. )
1993-08-01
In the weak radiation drive regime, the coupling between the thermal instability driven by impurity radiation and the self-consistent flow profile modification leads to a simple dynamical system that can be approximated by the Volterra--Lotka equations. In this system the shear flow acts as a predator and the temperature fluctuations act as prey. The solutions are oscillatory, and their behavior resembles that of edge-localized modes (ELM's). The solutions of the simplified model are compared with the three-dimensional and two-dimensional nonlinear numerical results for this instability.
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Cheng, K. S.; Pines, D.
1989-01-01
The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Cheng, K. S.; Pines, D.
1989-01-01
The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.
Dynamic nonlinear thermal optical effects in coupled ring resonators
NASA Astrophysics Data System (ADS)
Huang, Chenguang; Fan, Jiahua; Zhu, Lin
2012-09-01
We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple "shark fins" and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Spatial nonlinearities: Cascading effects in the earth system
Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, S.; Havstad, K. M.
2006-01-01
Nonlinear interactions and feedbacks associated with thresholds through time and across space are common features of biological, physical and materials systems. These spatial nonlinearities generate surprising behavior where dynamics at one scale cannot be easily predicted based on information obtained at finer or broader scales. These cascading effects often result in severe consequences for the environment and human welfare (i.e., catastrophes) that are expected to be particularly important under conditions of changes in climate and land use. In this chapter, we illustrate the usefulness of a general conceptual and mathematical framework for understanding and forecasting spatially nonlinear responses to global change. This framework includes cross-scale interactions, threshold behavior and feedback mechanisms. We focus on spatial nonlinearities produced by fine-scale processes that cascade through time and across space to influence broad spatial extents. Here we describe the spread of catastrophic events in the context of our cross-disciplinary framework using examples from biology (wildfires, desertification, infectious diseases) and engineering (structural failures) and discuss the consequences of applying these ideas to forecasting future dynamics under a changing global environment.
Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron
Satogata, Todd Jeffrey
1993-01-01
We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.
Effects of noise on the phase dynamics of nonlinear oscillators
NASA Astrophysics Data System (ADS)
Daffertshofer, A.
1998-07-01
Various properties of human rhythmic movements have been successfully modeled using nonlinear oscillators. However, despite some extensions towards stochastical differential equations, these models do not comprise different statistical features that can be explained by nondynamical statistics. For instance, one observes certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as ξ¨+ω20ξ=n(ξ,ξ˙)+q(ξ,ξ˙)Ψ(t), where the nonlinear function n(ξ,ξ˙) generates a limit cycle and Ψ(t) denotes colored noise that is multiplied via q(ξ,ξ˙). Nonlinear self-excited systems have been frequently investigated, particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the desired period correlation but predominantly results in phase diffusion. The system is extended in terms of forced oscillators in order to find a minimal model producing the required error correction.
Dissipative effects in nonlinear Klein-Gordon dynamics
NASA Astrophysics Data System (ADS)
Plastino, A. R.; Tsallis, C.
2016-03-01
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.
NASA Astrophysics Data System (ADS)
Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik
2017-01-01
In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection
Temperature Effect on the Development of Tropical Dragonfly Eggs.
Mendonça, F Z; Bernardy, J V; Oliveira, C E K; Oliveira, P B G; De Marco, P
2017-08-19
Physiological constraints in insects are related to several large-scale processes such as species distribution and thermal adaptation. Here, we fill an important gap in ecophysiology knowledge by accessing the relationship between temperature and embrionary development time in four dragonfly species. We evaluated two questions (1) what is the effect of temperature on the development time of Odonata eggs, and (2) considering a degree-day relationship, could a simple linear model describe the dependence of embrionary development time on temperature or it is better described by a more complex non-linear relation. Egg development time of Erythrodiplax fusca (Rambur), Micrathyria hesperis Ris, Perithemis mooma Kirby, and Miathyria simplex (Rambur) (Odonata: Libellulidae) were evaluated. We put the eggs at different temperatures (15, 20, 25, and 30°C) and counted the number of hatched larvae daily. A nonlinear response of the development to the temperature was found, differing from the expected pattern for standard degree-day analysis. Furthermore, we observed that there is a similar process in the development time and hatching synchronization between species, with all species presenting faster egg development at high temperatures. Species-specific differences are more evident at lower temperatures (15°C), with no egg development in M. simplex. Only E. fusca was relatively insensitive to temperature changes with similar hatching rates in all treatments.
Tang, Meng-Xing; Loughran, Jonathan; Stride, Eleanor; Zhang, Dong; Eckersley, Robert J
2011-03-01
Nonlinear propagation of ultrasound through microbubble populations can generate artifacts and reduce contrast to tissue ratio in ultrasound imaging. The existing propagation model, which underestimates harmonic generation by an order of magnitude, was revised by incorporating a nonlinear constitutive equation for the coating into the description of the microbubble dynamics. Significantly better agreement with experiments was obtained, indicating that coating nonlinearity represents an important contribution to nonlinear propagation of ultrasound in microbubble populations. The results were found to be sensitive to the parameters characterizing the coating nonlinearity and thus accurate measurement of these parameters is required for accurate quantitative predictions.
Modeling Temperature Data: An Illustration of the Use of Biplots in Nonlinear Modeling.
NASA Astrophysics Data System (ADS)
Tsianco, Michael C.; Ruben Gabriel, K.
1984-05-01
A strategy for exploring multivariate data and modeling is presented and illustrated on meteorological data. Its principal tool is the biplot two-dimensional display of data matrices and its three-dimensional analog. Application to temperature data is shown to lead to a nonlinear harmonic model which fits the data closely and has parameters with obvious physical interpretations. This may be useful for extrapolation in time as originally proposed by Brier and Meltesen, who previously analyzed these data. The strategy proposed in this paper has wide applications to multivariate data and could well be used by meteorologists for data exploration and for diagnosing models (not necessarily of the particular form used here) that would closely fit their data.
Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity
Easter, R.C.; Peters, L.K.
1993-01-01
This report discusses binary homogeneous nucleation involving H{sub 2}SO{sub 4} and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H{sub 2}SO{sub 4} vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H{sub 2}SO{sub 4}/H{sub 2}O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H{sub 2}SO{sub 4} vapor. Furthermore, the vapor pressure of H{sub 2}SO{sub 4} is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H{sub 2}SO{sub 4} vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
NASA Astrophysics Data System (ADS)
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.
Tanaka, Fumihiko; Koga, Tsuyoshi; Kaneda, Isamu; Winnik, Françoise M
2011-07-20
The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.
Nonlinear effects at the boundary of an electron plasma
NASA Astrophysics Data System (ADS)
Gradov, O. M.; Stenflo, L.; Shukla, P. K.
2003-05-01
Two solutions for nonlinear electron plasma waves propagating along a cold plasma boundary are reported. Thus, the nonlinear frequency shift caused by the harmonic generation as well as new localized nonlinear perturbations are found.
Temperature effect on acoustic plasmons
NASA Astrophysics Data System (ADS)
Silkin, V. M.; Nazarov, V. U.; Balassis, A.; Chernov, I. P.; Chulkov, E. V.
2016-10-01
The presence of several kinds of carriers at the Fermi surface results in interesting complex dielectric properties of the bulk Pd in the low-energy excitation range. A most spectacular manifestation of this is the presence of a collective electronic excitation characterized by a soundlike dispersion, termed acoustic plasmon (AP). Due to the characteristic dispersion reaching zero energy in the long-wavelength limit, the question of the thermal stability of the excitation spectrum arises. In this work we explore this problem investigating the thermal effect on the electronic excitation spectrum in this material, tracing how the AP properties vary with the temperature increase. The main effect consists in the gradual destruction of AP in the energy range corresponding to the temperature.
Finite Larmor radius effects in the nonlinear dynamics of collisionless magnetic reconnection
NASA Astrophysics Data System (ADS)
Del Sarto, D.; Marchetto, C.; Pegoraro, F.; Califano, F.
2011-03-01
We provide numerical evidence of the role of finite Larmor radius effects in the nonlinear dynamics of magnetic field line reconnection in high-temperature, strong guide field plasmas in a slab configuration, in the large Δ' regime. Both ion and electron temperature effects introduce internal energy variations related to mechanical compression terms in the energy balance, thus contributing to regularize the gradients of the ion density with respect to the cold regimes. For values of the Larmor radii that are not asymptotically small, the two temperature effects are no longer interchangeable, in contrast to what is expected from linear theory, and the differences are measurable in the numerical growth rates and in the nonlinear evolution of the density layers. We interpret such differences in terms of the change, due to ion temperature effects, of the Lagrangian advection of the 'plasma invariants' that are encountered in the cold-ion, warm-electron regime. The different roles of the ion and ion-sound Larmor radii in the reconnection dynamics near the X- and O-points are evidenced by means of a local quadratic expansion of the fields.
Enhanced nonlinear optical effects in organic frustum-shaped microresonators
NASA Astrophysics Data System (ADS)
Mamonov, Evgeniy A.; Novikov, Vladimir B.; Zhdanova, Karina D.; Mitetelo, Nikolai V.; Kolmychek, Irina A.; Venkatakrishnarao, Dasari; Narayana, Yemineni S. L. V.; Mohiddon, Mahamad A.; Chandrasekar, Rajadurai; Murzina, Tatyana V.
2017-03-01
We discuss photonic effects in arrays of frustum-shaped organic microstructures prepared from organic orange dye composed on a solid substrate by self-assembling technique. We demonstrate that such structures reveal strong amplification of second-order nonlinear optical response, including optical second harmonic generation (SHG) and two-photon fluorescence (TPF), as compared to that of a continuous film. This is associated with a strong light localization in microstructures composed of high refractive index material. The TPF and SHG power dependencies show that the observed effects are governed by high second-order nonlinearity of the dye damped by a strong absorption. FDTD calculations confirm that the mechanism of the light localization inside organic frustums can be in the form of whispering gallery modes excitation.
Low-Intensity Nonlinear Spectral Effects in Compton Scattering
Hartemann, F V; Albert, F; Siders, C W; Barty, C P
2010-02-23
Nonlinear effects are known to occur in Compton scattering light sources, when the laser normalized 4-potential, A = e{radical}-A{sub {mu}}A{sup {mu}}/m{sub 0}c approaches unity. In this letter, it is shown that nonlinear spectral features can appear at arbitrarily low values of A, if the fractional bandwidth of the laser pulse, {Delta}{phi}{sup -1}, is sufficiently small to satisfy A{sup 2} {Delta}{phi} {approx_equal} 1. A three dimensional analysis, based on a local plane-wave, slow-varying envelope approximation, enables the study of these effects for realistic interactions between an electron beam and a laser pulse, and their influence on high-precision Compton scattering light sources.
Temperature effects in photodynamic processes
NASA Astrophysics Data System (ADS)
Hovhannisyan, Vladimir A.; Avetisyan, Hasmik A.; Mathevosyan, Margarita B.; Elbakyan, Egishe G.
2005-04-01
Photodynamic activity of several dyes on Drosophila melanogaster at different temperatures (15-35°C) inside of test-tubes was investigated. Both phototoxic sensitizers (chlorin e6, methylene blue, etc. -group A) and non active compounds (hemoglobin, brilliant green, pyronine, etc.-group B) were used. Dyes of 10-5-10-3 M concentration were added to the food for drosophila 24 hours before irradiation. Solar radiation, narrow-band halogen lamps, LEDs and laser were used as a photo-stimulator. Irradiation parameters: I <= 45mW/cm2 and 0.2
NASA Astrophysics Data System (ADS)
Brun, C.; Crauste-Thibierge, C.; Ladieu, F.; L'Hôte, D.
2010-12-01
We present a detailed study of the heating effects in dielectric measurements carried out on a liquid. Such effects come from the dissipation of the electric power in the liquid and give contribution to the nonlinear third harmonics susceptibility χ _3, which depends on the frequency and temperature. This study is used to evaluate a possible "spurious" contribution to the recently measured nonlinear susceptibility of an archetypical glassforming liquid (glycerol). Those measurements have been shown to give a direct evaluation of the number of dynamically correlated molecules temperature dependence close to the glass transition temperature T_g ≈ 190 K [Crauste-Thibierge et al., Phys. Rev. Lett. 104, 165703 (2010)]. We show that the heating contribution is totally negligible (i) below 204 K at any frequency; (ii) for any temperature at the frequency where the third harmonics response χ _3 is maximum. Besides, this heating contribution does not scale as a function of f/f_{α }, with f_{α }(T) the relaxation frequency of the liquid. In the high frequency range, when f/f_{α } ≥ 1, we find that the heating contribution is damped because the dipoles cannot follow instantaneously the temperature modulation due to the heating phenomenon. An estimate of the magnitude of this damping is given.
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
Controlling ultrafast currents by the nonlinear photogalvanic effect
NASA Astrophysics Data System (ADS)
Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-12-01
We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.
Origin of the effective mobility in non-linear active micro-rheology
NASA Astrophysics Data System (ADS)
Santamaría-Holek, I.; Pérez-Madrid, A.
2016-10-01
The distinction between the damping coefficient and the effective non-linear mobility of driven particles in active micro-rheology of supercooled liquids is explained in terms of individual and collective dynamics. The effective mobility arises as a collective effect which gives insight into the energy landscape of the system. On the other hand, the damping coefficient is a constant that modulates the effect of external forces over the thermal energy which particles have at their disposition to perform Brownian motion. For long times, these thermal fluctuations become characterized in terms of an effective temperature that is a consequence of the dynamic coupling between kinetic and configurational degrees of freedom induced by the presence of the strong external force. The interplay between collective mobility and effective temperature allows to formulate a generalized Stokes-Einstein relation that may be used to determine the collective diffusion coefficient. The explicit relations we deduce reproduce simulation data remarkably well.
Nonlinear electric field effect on perpendicular magnetic anisotropy in Fe/MgO interfaces
NASA Astrophysics Data System (ADS)
Xiang, Qingyi; Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji
2017-10-01
The electric field effect on magnetic anisotropy was studied in an ultrathin Fe(0 0 1) monocrystalline layer sandwiched between Cr buffer and MgO tunnel barrier layers, mainly through post-annealing temperature and measurement temperature dependences. A large coefficient of the electric field effect of more than 200 fJ (Vm)‑1 was observed in the negative range of electric field, as well as an areal energy density of perpendicular magnetic anisotropy (PMA) of around 600 µJ m‑2. More interestingly, nonlinear behavior, giving rise to a local minimum around +100 mV nm‑1, was observed in the electric field dependence of magnetic anisotropy, being independent of the post-annealing and measurement temperatures. The insensitivity to both the interface conditions and the temperature of the system suggests that the nonlinear behavior is attributed to an intrinsic origin such as an inherent electronic structure in the Fe/MgO interface. The present study can contribute to the progress in theoretical studies, such as ab initio calculations, on the mechanism of the electric field effect on PMA.
Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime
NASA Astrophysics Data System (ADS)
Salavati-fard, T.; Vazifehshenas, T.
2014-12-01
We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field.
Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity
NASA Astrophysics Data System (ADS)
Christian, J. M.
2017-09-01
Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.
Effect of nonlinear instability on gravity-wave momentum transport
NASA Technical Reports Server (NTRS)
Dunkerton, Timothy J.
1987-01-01
This paper investigates the nonlinear instability of internal gravity waves and the effects of their nonlinear interaction on momentum flux, using simple theoretical and numerical models. From the result of an analysis of parametric instability of a two-dimensional internal gravity wave as discussed by Yeh and Liu (1981) and Klostermeyer (1982), a group trajectory length scale for a gravity wave packet was determined, expressed in terms of the dominant vertical wavelenght and the degree of convective saturation. It is shown that this analysis justifies the Eikonal saturation method for relatively transient packets, that are well below the saturation amplitude, propagating in a slowly varying mean flow. Conversely, linear theory fails for persistent disturbances and trasient wave packets near convective saturation.
Preliminary Evaluation of Nonlinear Effects on TCA Flutter
NASA Technical Reports Server (NTRS)
Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.
1998-01-01
The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.
Effects on non-linearities on aircraft poststall motion
Rohacs, J.; Thomasson, P.; Mosehilde, E.
1994-12-31
The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.
Effective potentials in nonlinear polycrystals and quadrature formulae.
Michel, Jean-Claude; Suquet, Pierre
2017-08-01
This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.
HTS-FCL EMTDC model considering nonlinear characteristics on fault current and temperature
NASA Astrophysics Data System (ADS)
Yoon, Jae-Young; Lee, Seung-Ryul
2010-06-01
One of the most serious problems of the KEPCO system is a higher fault current than the CB(Circuit breaker's SCC (Short Circuit Capacity). There are so many alternatives to reduce the higher fault current, such as the isolation of bus ties, enhancement of the CB's SCC, and the application of HVDC-BTB (Back to Back) or FCL (fault current limiter). However, these alternatives have drawbacks from the viewpoint of system stability and cost. As superconductivity technology has been developed, the resistive type (R-type) HTS-FCL (High Temperature Superconductor Fault Current Limiter) offers one of the important alternatives in terms of power loss and cost reduction in solving the fault current problem. To evaluate the accurate transient performance of R-type HTS-FCL, it is necessary for the dynamic simulation model to consider transient characteristics during the quenching and the recovery state. Against this background, this paper presents the new HTS-FCL EMTDC (Electro-Magnetic Transients including Direct Current) model considering the nonlinear characteristics on fault current and temperature.
Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.
Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa
2015-01-01
Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Temperature Stable Hall Effect Sensors
NASA Astrophysics Data System (ADS)
Partin, D. L.; Heremans, J. P.; Schroeder, T.; Thrush, C. M.; Flores, L. A.
2004-03-01
Magnetic field sensors are needed for high accuracy position, angle, force, strain, torque, and current flow measurements. Molecular beam epitaxy was used to grow tellurium-doped indium gallium antimonide thin films. Hall effect sensors made from these films have been studied for their magnetic sensitivity and thermal stability. For a range of alloy composition and n-type doping levels, high magnetic sensitivity from -40°C to +200°C was found with a resolution of better than +/- 0.5 percent over the entire temperature range.
Non-linear dielectric effect in the isotropic phase above the isotropic-cholesteric phase transition
NASA Astrophysics Data System (ADS)
Mukherjee, Prabir K.; Chakraborty, Sumanta; Rzoska, Sylwester J.
2011-11-01
Using the Landau-de Gennes theory, the temperature, pressure and frequency dependence of the non-linear effect in the isotropic phase above the isotropic-cholesteric phase transition is calculated. The influence of pressure on the isotropic-cholesteric phase transition is discussed by varying the coupling between the orientational order parameter and the macroscopic polarization of polar cholesterics. Comparing the results of the calculations with existing data, we finally conclude that the model provides a description of the isotropic-cholesteric transition that takes all experimentally known features of the unusual negative and positive pretransitional effect in the isotropic phase of the system into account in a qualitatively correct way.
Modeling and study of nonlinear effects in electrodynamic shakers
NASA Astrophysics Data System (ADS)
Saraswat, Abhishek; Tiwari, Nachiketa
2017-02-01
An electrodynamic shaker is inherently a nonlinear electro-mechanical system. In this work, we have developed a lumped parameter model for the entire electromechanical system, developed an approach to non-destructively determine these parameters, and predict the nonlinear response of the shaker. This predicted response has been validated using experimental data. Through such an approach, we have been able to accurately predict the resulting distortions in the response of the shaker and other nonlinear effects like DC offset in the displacement response. Our approach offers a key advantage vis-à-vis other approaches which rely on techniques involving Volterra Series expansions or techniques based on blackbox models like neural networks, which is that in our approach, apart from predicting the response of the shaker, the model parameters obtained have a physical significance and changes in the parameters can be directly mapped to modification in key design parameters of the shaker. The proposed approach is also advantageous in one more way: it requires measurement of only four parameters, voltage, current, displacement and acceleration for estimating shaker model parameters non-destructively. The proposed model can be used for the design of linearization controllers, prototype testing and simulation of new shaker designs as well as for performance prediction of shakers under testing conditions.
Cross-Validation for Nonlinear Mixed Effects Models
Colby, Emily; Bair, Eric
2013-01-01
Cross-validation is frequently used for model selection in a variety of applications. However, it is difficult to apply cross-validation to mixed effects models (including nonlinear mixed effects models or NLME models) due to the fact that cross-validation requires “out-of-sample” predictions of the outcome variable, which cannot be easily calculated when random effects are present. We describe two novel variants of cross-validation that can be applied to nonlinear mixed effects models. One variant, where out-of-sample predictions are based on post hoc estimates of the random effects, can be used to select the overall structural model. Another variant, where cross-validation seeks to minimize the estimated random effects rather than the estimated residuals, can be used to select covariates to include in the model. We show that these methods produce accurate results in a variety of simulated data sets and apply them to two publicly available population pharmacokinetic data sets. PMID:23532511
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Bulut, Hasan
2015-10-01
In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.
Nonlinear effects of stretch on the flame front propagation
Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.
2010-10-15
In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)
Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang
2015-01-01
Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447
Quantifying Temperature Effects on Fall Chinook Salmon
Jager, Yetta
2011-11-01
The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.
Nonlinearity and pixel shifting effects in HXRG infrared detectors
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Smith, R.; Rhodes, J.; Huff, E.
2017-04-01
We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the ``brighter-fatter'' effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.
Effects of Non-linear Terms and Fault Width on Pore Fluid Pressurization
NASA Astrophysics Data System (ADS)
Vredevoogd, M. A.; Oglesby, D. D.; Park, S. K.
2007-12-01
Faults generate heat due to friction while slipping in earthquakes. If there are pore fluids along the fault, they will be heated and expand. The pore fluids will have little effect on faults in high permeability settings, as they quickly escape. In a low permeability setting, the expanding pore fluids are not able to escape quickly, and thermal expansion of the fluids will increase the fluid pressure, lowering the effective normal stress (and thus frictional stress) along the fault. To investigate this process, we solve the non-linear equations presented in Mase and Smith (1985). These equations involve several non-linear terms that make it necessary to solve the equations iteratively. We have previously shown some results of this methodology for various permeability structures and slip rates. Here we focus on the importance of individual terms in the equations by running models with individual terms neglected. Among our results, we find that conduction significantly affects the temperature and pressure, while advection has a negligible effect on the solution. The implications may be important for researchers constructing simplified models of the pore fluid pressurization process. We also look at the effect of fault width (the width of the area that is shearing and producing heat). In particular, we are interested in the effects of the fault width on the maximum temperature reached, as well as the total amount of frictional heat generated. While a wider fault will tend to have a lower peak temperature because of the distributed slip, it can also result in a larger overall heat generation, because the average temperature over the fault width can be higher than for a narrow fault with a higher, but narrower temperature peak. In contrast, while the narrow faults initially have the highest pressures, the wider faults eventually surpass them both in maximum pressure, and in the amount of overall pressurization.
NASA Technical Reports Server (NTRS)
Walker, K. P.
1981-01-01
Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.
Clinical Trials: Spline Modeling is Wonderful for Nonlinear Effects.
Cleophas, Ton J
2016-01-01
Traditionally, nonlinear relationships like the smooth shapes of airplanes, boats, and motor cars were constructed from scale models using stretched thin wooden strips, otherwise called splines. In the past decades, mechanical spline methods have been replaced with their mathematical counterparts. The objective of the study was to study whether spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial and also to study whether it can detect patterns in a trial that are relevant but go unobserved with simpler regression models. A clinical trial assessing the effect of quantity of care on quality of care was used as an example. Spline curves consistent of 4 or 5 cubic functions were applied. SPSS statistical software was used for analysis. The spline curves of our data outperformed the traditional curves because (1) unlike the traditional curves, they did not miss the top quality of care given in either subgroup, (2) unlike the traditional curves, they, rightly, did not produce sinusoidal patterns, and (3) unlike the traditional curves, they provided a virtually 100% match of the original values. We conclude that (1) spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial; (2) spline modeling can detect patterns in a trial that are relevant but may go unobserved with simpler regression models; (3) in clinical research, spline modeling has great potential given the presence of many nonlinear effects in this field of research and given its sophisticated mathematical refinement to fit any nonlinear effect in the mostly accurate way; and (4) spline modeling should enable to improve making predictions from clinical research for the benefit of health decisions and health care. We hope that this brief introduction to spline modeling will stimulate clinical investigators to start using this wonderful method.
Emamuddin, M.; Yasmin, S.; Mamun, A. A.
2013-04-15
The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for qq{sub c}) (where q{sub c} is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.
NASA Astrophysics Data System (ADS)
Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.
2017-09-01
Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).
NASA Astrophysics Data System (ADS)
Moratiel, Ruben; Duran, Jose M.; Tarquis, Ana Maria
2010-05-01
One important problem for understanding the vegetation-atmosphere interactions in an agricultural field is the turbulent exchange of scalar and momentum in the atmospheric boundary layer - above and within the crop canopy. Air temperature time series within and above canopies reveal ramp patterns associated with coherent eddies that are responsible for most of the vertical transport of sensible heat. Van Atta (1977) used a simple step-change ramp model to analyze the coherent part of air temperature structure functions. However, some works reveal that even without linearization his model cannot account for the observed decrease of the cubic structure function for small time lag (Wenjun Chen et al., 2004). Using considerations of scale effect and spatial variability of temperature and wind , the theory of multifractal processes, conservative or not, is introduced as a strategy for characterizing structure functions of temperature and vertical wind velocity at different scales of observation. We will show that kurtosis and phase coherence index characterize the intermittent nature of both series measured by a micrometeorological tower at different scenarios above the crop canopy. References Van Atta, C.W. (1977). Effect of coherent structures on structure functions of temperature in the atmospheric boundary later. Arch. Of Mech. 29, 161-171. Wenjun Chen, Novak, M.D., Black, T.A. and Xuhui Lee (2004). Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorology, 84(1), 99-124.
Longitudinal emittance growth due to nonlinear space charge effect
NASA Astrophysics Data System (ADS)
Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.
2012-03-01
Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.
Supersonic flow past oscillating airfoils including nonlinear thickness effects
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1954-01-01
A solution to second order in thickness is derived for harmonically oscillating two-dimensional airfoils in supersonic flow. For slow oscillations of an arbitrary profile, the result is found as a series including the third power of frequency. For arbitrary frequencies, the method of solution for any specific profile is indicated, and the explicit solution derived for a single wedge. Nonlinear thickness effects are found generally to reduce the torsional damping, and so enlarge the range of Mach numbers within which torsional instability is possible.
A novel nonlinear damage resonance intermodulation effect for structural health monitoring
NASA Astrophysics Data System (ADS)
Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele
2017-04-01
This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.
NASA Astrophysics Data System (ADS)
Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.
2013-02-01
A dynamic shear rheometer is again used to characterize the nonlinearly viscoelastic properties of asphalt binders at intermediate or high temperatures. In our previous work, the dynamic shear rheometer test results showed that, under certain conditions, a compressive normal force was generated in an axially constrained specimen subjected to cyclic torque histories. This normal force could not be solely attributed to the Poynting effect and was also related to the tendency of the asphalt binder to dilate when subjected to shear loads. The generated normal force changed the state of stress and interacted with the shear behavior of asphalt binder. This effect was considered to be an "interaction nonlinearity" or "three-dimensional effect." The concept is explored further in this paper by developing a fundamental approach to modeling the observed behavior. In this approach, the octahedral shear stress is used to represent the three-dimensional stress state in Schapery's model of nonlinearly viscoelastic behavior. The model was successfully validated for several different loading histories. These results highlight the importance of modeling the mechanical behavior of asphalt binders based on the three-dimensional stress state of the material.
Temperature Effects and Compensation-Control Methods
Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng
2009-01-01
In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509
Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps
Doerry, Armin Walter; Dubbert, Dale F.; Tise, Bertice L.
2014-07-01
Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.
Nonlinear dynamics induced anomalous Hall effect in topological insulators.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-28
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.
Nonlinear dynamics induced anomalous Hall effect in topological insulators
NASA Astrophysics Data System (ADS)
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.
Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems
NASA Astrophysics Data System (ADS)
Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.
2006-05-01
Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.
Nonlinear dynamics induced anomalous Hall effect in topological insulators
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223
Nonlinear cosmological consistency relations and effective matter stresses
Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin E-mail: lukas.hollenstein@unige.ch E-mail: martin.kunz@unige.ch
2012-05-01
We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.
Finite ion temperature effects on scrape-off layer turbulence
Mosetto, Annamaria Halpern, Federico D.; Jolliet, Sébastien; Loizu, Joaquim; Ricci, Paolo
2015-01-15
Ion temperature has been measured to be of the same order, or higher, than the electron temperature in the scrape-off layer (SOL) of tokamak machines, questioning its importance in determining the SOL turbulent dynamics. Here, we present a detailed analysis of finite ion temperature effects on the linear SOL instabilities, such as the resistive and inertial branches of drift waves and ballooning modes, and a discussion of the properties of the ion temperature gradient (ITG) instability in the SOL, identifying the η{sub i}=L{sub n}/L{sub T{sub i}} threshold necessary to drive the mode unstable. The non-linear analysis of the SOL turbulent regimes by means of the gradient removal theory is performed, revealing that the ITG plays a negligible role in limited SOL discharges, since the ion temperature gradient is generally below the threshold for driving the mode unstable. It follows that the resistive ballooning mode is the prevailing turbulence regime for typical limited SOL parameters. The theoretical estimates are confirmed by non-linear flux-driven simulations of SOL plasma dynamics.
Coherent energy transport in classical nonlinear oscillators: An analogy with the Josephson effect
NASA Astrophysics Data System (ADS)
Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Bergqvist, Lars; Delin, Anna; Fransson, Jonas
2015-04-01
By means of a simple theoretical model and numerical simulations, we demonstrate the presence of persistent energy currents in a lattice of classical nonlinear oscillators with uniform temperature and chemical potential. In analogy with the well-known Josephson effect, the currents are proportional to the sine of the phase differences between the oscillators. Our results elucidate general aspects of nonequilibrium thermodynamics and point towards a way to practically control transport phenomena in a large class of systems. We apply the model to describe the phase-controlled spin-wave current in a bilayer nanopillar.
Coherent energy transport in classical nonlinear oscillators: An analogy with the Josephson effect.
Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Bergqvist, Lars; Delin, Anna; Fransson, Jonas
2015-04-01
By means of a simple theoretical model and numerical simulations, we demonstrate the presence of persistent energy currents in a lattice of classical nonlinear oscillators with uniform temperature and chemical potential. In analogy with the well-known Josephson effect, the currents are proportional to the sine of the phase differences between the oscillators. Our results elucidate general aspects of nonequilibrium thermodynamics and point towards a way to practically control transport phenomena in a large class of systems. We apply the model to describe the phase-controlled spin-wave current in a bilayer nanopillar.
Effects of model sensitivity and nonlinearity on nonlinear regression of ground water flow
Yager, R.M.
2004-01-01
Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.
Eliasson, B; Shukla, P K
2006-10-01
We consider nonlinear interactions between two colliding laser beams in an electron plasma, accounting for the relativistic electron mass increase in the laser fields and radiation pressure driven electron-acoustic (EA) perturbations that are supported by hot and cold electrons. By using the hydrodynamic and Maxwell equations, we obtain the relevant equations for nonlinearly coupled laser beams and EA perturbations. The coupled equations are then Fourier analyzed to obtain a nonlinear dispersion relation. The latter is numerically solved to show the existence of new classes of the parametric instabilities in the presence of two colliding laser beams in a two-electron plasma. The dynamics of nonlinearly coupled laser beams in our electron plasma is also investigated. The results should be useful in understanding the nonlinear propagation characteristics of multiple electromagnetic beams in laser-produced plasmas as well as in space plasmas.
Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires
NASA Astrophysics Data System (ADS)
Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean
2010-01-01
We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
NASA Astrophysics Data System (ADS)
Sarkhosh, L.; Mansour, N.
2015-06-01
In nanoparticle colloidal systems, the thermal nonlinearity is affected by the thermal parameters of the surrounding solution. Having a low temperature gradient rate solution may be a key factor in producing high thermal nonlinear properties in colloids. In this manuscript, the effect of the thermal conductivity of the surrounding liquid environment on the thermal nonlinear refraction of gold nanoparticles (AuNPs) synthesized by laser ablation of a gold target in different solutions is investigated. Gold nanoparticles colloids have been fabricated by the nanosecond pulsed laser ablation of a pure gold plate in different liquid environments with a thermal conductivity range of 0.14-0.60 W mK-1 including cyclohexanone, castor oil, dimethyl sulfoxide, ethylene glycol, glycerin and water. The AuNPs colloids exhibit a UV-Vis absorption spectrum with a surface plasmon absorption peak at about 540 ± 20 nm. The thermal nonlinear optical responses of the gold colloids are measured using the Z-scan technique under low power CW laser irradiation at 532 nm near the surface plasmon peak of the nanoparticles. Our results show that the nonlinear refractive index of the nanoparticle colloids is considerably affected by the thermal conductivity of liquid medium. The largest nonlinear refractive index of -3.1 × 10-7 cm2 W-1 is obtained for AuNP in cyclohexanone with the lowest thermal conductivity of 0.14 W mK-1 whereas the lowest one of -0.1 × 10-7 cm2 W-1 is obtained for AuNP in water with the highest thermal conductivity of 0.60 W mK-1. This study shows that the nonlinear refractive index value of colloids can be controlled by the thermal conductivity of the used liquid’s environment. This allows us to design low threshold optical limiters by choosing a solution with low thermal conductivity for colloidal nanoparticles.
NASA Astrophysics Data System (ADS)
Zhou, Hao-Miao; Liu, Hui; Zhou, Yun; Hu, Wen-Wen
2016-12-01
Based on the tri-layer symmetrical magnetoelectric laminates, a equivalent circuit for the nonlinear resonance converse magnetoelectric coupling effect is established. Because the nonlinear thermo-magneto-mechanical constitutive equations of magnetostrictive material were introduced, a converse magnetoelectric coefficient model was derived from the equivalent circuit, which can describe the influence of bias electric field, bias magnetic field and ambient temperature on the resonance converse magnetoelectric coupling effect. Especially, the model can well predict the modulation effect of bias electric field/voltage on the magnetism of magnetoelectric composite or the converse magnetoelectric coefficient, which is absolutely vital in applications. Both of the converse magnetoelectric coefficient and the resonance frequency predicted by the model have good agreements with the existing experimental results in qualitatively and quantitatively, and the validity of the model is confirmed. On this basis, according to the model, the nonlinear trends of the resonance converse magnetoelectric effect under different bias voltages, bias magnetic fields and ambient temperatures are predicted. From the results, it can be found that the bias voltage can effectively modulate the curve of the resonance converse magnetoelectric coefficient versus bias magnetic field, and then change the corresponding optimal bias magnetic field of the maximum converse magnetoelectric coefficient; with the increasing volume ratio of piezoelectric layers, the modulation effect of bias voltage becomes more obvious; under different bias magnetic fields, the modulation effect of bias voltage on the converse magnetoelectric effect has nonvolatility in a wide temperature region.
Dang, Tran Ngoc; Seposo, Xerxes T.; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi
2016-01-01
Background The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). Results High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52), females (low temperature effect, RR=2.19, 95% CI=1.14–4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91–6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 95% CI=0.92–4.28). Conclusions In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City. PMID:26781954
Effect of thermal treatments on third-order nonlinear optical properties of hollow Cu nanoclusters
NASA Astrophysics Data System (ADS)
Wang, Y. H.; Jiang, C. Z.; Ren, F.; Wang, Q. Q.; Chen, D. J.; Fu, D. J.
2006-06-01
Metal nanocluster composites prepared by Cu ion implantation have been studied. The formation of nanoclusters has been evidenced by optical absorption spectra and transmission electron microscopy (TEM). Fast nonlinear optical refraction and nonlinear optical absorption coefficients were measured at 790 nm for Cu nanocluster composites by the Z-scan technique. With the increase of annealing temperature, the size of nanoclusters increased significantly, and optical nonlinearities was enhanced. It is suggested that by changing the ingredient configuration of metal nanoclusters in silica, different optical nonlinear properties could be selectively obtained.
A Bayesian nonlinear mixed-effects disease progression model.
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2015-12-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability.
A Bayesian nonlinear mixed-effects disease progression model
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2016-01-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562
Attenuation, dispersion and nonlinearity effects in graphene-based waveguides
Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra
2015-01-01
Summary We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices. PMID:26171299
Second-order nonlinear optical effects of spin currents.
Wang, Jing; Zhu, Bang-Fen; Liu, Ren-Bao
2010-06-25
Pure spin currents carry information in spintronics and signify novel quantum spin phenomena such as topological insulators. Measuring pure spin currents, however, is difficult since they have no direct electromagnetic induction. Noticing that a longitudinal spin current, in which electrons move along their spin directions, is a chiral quantity, we envisage that it has a chiral sum-frequency optical effect. A systematic symmetry analysis confirms this idea and reveals the second-order optical effects of general spin currents with unique polarization dependence. Microscopic calculations based on the eight-band model of III-V compound semiconductors show that the susceptibility is sizable under realistic conditions. These findings form a basis for "seeing" spin currents where and while they flow with standard nonlinear optical spectroscopy, providing a toolbox to explore a wealth of physics connecting spins and photons.
Study of nonlinear optical effects in silicon waveguides
NASA Astrophysics Data System (ADS)
Yin, Lianghong
2009-12-01
This thesis is devoted to investigate optical properties of silicon-on-insulator (SOI) waveguides with an emphasis on third-order nonlinearities of silicon waveguides. The objective is to understand the nonlinear effects inside SOI waveguides, the possible applications of SOI waveguides, and the intrinsic difficulties this structure faces for some of the real applications. We first discuss the types of SOI waveguides used in our laboratory, and present the measurements of propagation loss, total insertion loss and coupling loss using Fabry-Perot resonances, cutback, and scattering methods. Three mathematical tools for calculating the modes and dispersion properties of SOI waveguides are compared from the standpoint of accuracy and efficiency. The importance of dispersion tailoring of SOI waveguides in order to realize anomalous dispersion at wavelength around 1.5 mum, and the possibility of soliton propagation in such a tailored waveguide are discussed next. Chapter 5 provides a general theoretical model for pulse propagation inside an SOI waveguide. The general formalism includes both the electronic and Raman responses. The self-phase modulation process in SOI waveguides is discussed next with an emphasis on the effects of two-photon absorption and the consequent free-carrier effects. The maximum allowed repetition rate of pulse trains is presented to serve as a general guideline of using self-phase modulation effect in real situations We also present our experimental work on self-phase modulation in an SOI waveguide for both the TE and TM modes. In chapter 7 we describe supercontinuum generation in SOI waveguides from a theoretical standpoint. We next consider cross-phase modulation and nonlinear polarization rotation for realizing an SOI-waveguide based optical Ken shutter. The theoretical work is given first followed with our experimental results that show successful all-optical switching of a CW probe light by a pulsed pump light. Sub-pico-second switching
Asano, Tetsuya; Kaneko, Yukihiro; Omote, Atsushi; Adachi, Hideaki; Fujii, Eiji
2017-02-15
We demonstrated the field-effect conductivity modulation of a gold thin film by all-solid-state electric-double-layer (EDL) gating at room temperature using an epitaxially grown oxide fast lithium conductor, La2/3-xLi3xTiO3 (LLT), as a solid electrolyte. The linearly increasing gold conductivity with increasing gate bias demonstrates that the conductivity modulation is indeed due to carrier injection by EDL gating. The response time becomes exponentially faster with increasing gate bias, a result of the onset of nonlinear ionic transportation. This nonlinear dynamic response indicates that the ionic motion-driven device can be much faster than would be estimated from a linear ionic transport model.
NASA Astrophysics Data System (ADS)
Mahapatra, Trupti R.; Panda, Subrata K.; Dash, Sushmita
2016-09-01
The present research deals with the nonlinear free vibration responses of laminated composite flat panel under hygrothermal environment, by considering the corrugated material properties of the composite lamina through a micromechanical model. The plate has been modeled in the framework of the higher-order shear deformation theory and Green-Lagrange strain displacement relations have been used to account for the geometric nonlinearity. Moreover, the present formulation incorporates all the nonlinear higher order terms arising in the model to capture the exact flexure of the panel. Hamilton's principle has been adopted to derive the system governing equations and suitable nonlinear finite element steps have been employed for discretization. The responses are computed using direct iterative method and compared with those available published results for validation purpose. Numerical illustrations are presented to investigate the effect of various parameters (thickness ratio, support conditions and lamination scheme) on the nonlinear frequency responses of laminated composite plate under hygrothermal environment using the present model and discussed in details.
NASA Astrophysics Data System (ADS)
Wang, Yang; Peng, Zhijian; Wang, Qi; Fu, Xiuli
2016-12-01
Highly nonlinear varistors were fabricated by hot-dipping oxygen-deficient zinc oxide (ZnO1-x, x < 1) thin films in Bi2O3. The ZnO1-x films were deposited on conducting silicon chips by radio frequency magnetron sputtering of a sintered zinc oxide ceramic target. Then the films were hot-dipped at a temperature from 200 to 600 °C in Bi2O3. With the increase in hot-dipping temperature, the nonlinear coefficient (α) of the film varistors increases first and then decreases, and the leakage current (IL) correspondingly decreases initially and then increases, owing mainly to the formation and destroying of complete ZnO1-x/Bi2O3 grain boundaries and the roundness change of the ZnO1-x grains; and the varistor voltage (E1mA) decreases from 0.0268 to 0.0137 V/nm, due to the decreased number of effective grain boundaries in the materials. The film varistors prepared by hot-dipping at 400 °C exhibit the optimum nonlinear properties with the highest α = 15.1, lowest IL = 0.0223 mA/cm2, and E1mA = 0.0176 V/nm. Such nanoscaled film varistors will be very promising in electrical/electronic devices working in low-voltage.
Effective temperatures of polymer laser ablation
NASA Astrophysics Data System (ADS)
Furzikov, Nickolay P.
1991-09-01
Effective temperatures of laser ablation of certain polymers are extracted from experimental dependences of ablation depths on laser fluences. Dependence of these temperatures on laser pulse durations is established. Comparison with the known thermodestruction data shows that the effective temperature corresponds to transient thermodestruction proceeding by the statistically most probable way.
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
Nonlinear electrostatic ion-acoustic "oscilliton" waves driven by charge non-neutrality effects
NASA Astrophysics Data System (ADS)
Ma, J. Z. G.; Hirose, A.; St.-Maurice, J.-P.; Liu, W.
2011-01-01
Nonlinear "oscilliton" structures features a low-frequency (LF) solitary envelope, the amplitude of which is modulated violently by superimposed high-frequency (HF) oscillations. We have studied the charge non-neutrality effects on the excitation of electrostatic ion-acoustic (IA) oscillitons. A two-fluid, warm plasma model is employed, and a set of nonlinear self-similar equations is solved in a cylindrical geometry. Under charge-neutrality conditions, three conventional IA structures (namely, sinusoidal, sawtooth, and spicky/bipolar) are obtained. By contrast, under charge non-neutrality conditions, oscilliton structures are excited, where the LF envelope is in the sound-wave (SW) mode, while the HF ingredients include the IA mode and the ion-Langmiur (IL) mode. The amplitudes of the SW wave are violently modulated by the IA oscillations, whereas the upward sides of the IA amplitudes are modulated by the IL oscillations of smaller amplitudes, and the downward sides are modulated by hybrid IA/IL oscillations. The nonlinear oscillitons are found to be dependent not only upon the input parameters (e.g., the Mach number, the Debye length, and the initial temperature of particles), but on initial conditions as well.
Effects of Wave Nonlinearity on Wave Attenuation by Vegetation
NASA Astrophysics Data System (ADS)
Wu, W. C.; Cox, D. T.
2014-12-01
The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell
Nonlinear effects of consumer density on multiple ecosystem processes.
Klemmer, Amanda J; Wissinger, Scott A; Greig, Hamish S; Ostrofsky, Milton L
2012-07-01
1. In the face of human-induced declines in the abundance of common species, ecologists have become interested in quantifying how changes in density affect rates of biophysical processes, hence ecosystem function. We manipulated the density of a dominant detritivore (the cased caddisfly, Limnephilus externus) in subalpine ponds to measure effects on the release of detritus-bound nutrients and energy. 2. Detritus decay rates (k, mass loss) increased threefold, and the loss of nitrogen (N) and phosphorus (P) from detrital substrates doubled across a range of historically observed caddisfly densities. Ammonium and total soluble phosphorus concentrations in the water column also increased with caddisfly density on some dates. Decay rates, nutrient release and the change in total detritivore biomass all exhibited threshold or declining responses at the highest densities. 3. We attributed these threshold responses in biophysical processes to intraspecific competition for limiting resources manifested at the population level, as density-dependent per-capita consumption, growth, development and case : body size in caddisflies was observed. Moreover, caddisflies increasingly grazed on algae at high densities, presumably in response to limiting detrital resources. 4. These results provide evidence that changes in population size of a common species will have nonlinear, threshold effects on the rates of biophysical processes at the ecosystem level. Given the ubiquity of negative density dependence in nature, nonlinear consumer density-ecosystem function relationships should be common across species and ecosystems. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Drikvandi, Reza
2017-02-13
Nonlinear mixed-effects models are frequently used for pharmacokinetic data analysis, and they account for inter-subject variability in pharmacokinetic parameters by incorporating subject-specific random effects into the model. The random effects are often assumed to follow a (multivariate) normal distribution. However, many articles have shown that misspecifying the random-effects distribution can introduce bias in the estimates of parameters and affect inferences about the random effects themselves, such as estimation of the inter-subject variability. Because random effects are unobservable latent variables, it is difficult to assess their distribution. In a recent paper we developed a diagnostic tool based on the so-called gradient function to assess the random-effects distribution in mixed models. There we evaluated the gradient function for generalized liner mixed models and in the presence of a single random effect. However, assessing the random-effects distribution in nonlinear mixed-effects models is more challenging, especially when multiple random effects are present, and therefore the results from linear and generalized linear mixed models may not be valid for such nonlinear models. In this paper, we further investigate the gradient function and evaluate its performance for such nonlinear mixed-effects models which are common in pharmacokinetics and pharmacodynamics. We use simulations as well as real data from an intensive pharmacokinetic study to illustrate the proposed diagnostic tool.
Effects of Inertial and Geometric Nonlinearities in the Simulation of Flexible Aircraft Dynamics
NASA Astrophysics Data System (ADS)
Bun Tse, Bosco Chun
This thesis examines the relative importance of the inertial and geometric nonlinearities in modelling the dynamics of a flexible aircraft. Inertial nonlinearities are derived by employing an exact definition of the velocity distribution and lead to coupling between the rigid body and elastic motions. The geometric nonlinearities are obtained by applying nonlinear theory of elasticity to the deformations. Peters' finite state unsteady aerodynamic model is used to evaluate the aerodynamic forces. Three approximate models obtained by excluding certain combinations of nonlinear terms are compared with that of the complete dynamics equations to obtain an indication of which terms are required for an accurate representation of the flexible aircraft behavior. A generic business jet model is used for the analysis. The results indicate that the nonlinear terms have a significant effect for more flexible aircraft, especially the geometric nonlinearities which leads to increased damping in the dynamics.
Full elimination of nonlinear effects in a Constant Voltage Anemometer
NASA Astrophysics Data System (ADS)
Comte-Bellot, Geneviève; Berson, Arganthaël; Blanc-Benon, Philippe
2008-11-01
A procedure for the elimination of all nonlinearities in a Constant Voltage Anemometer (CVA) has been developed which is easily implemented on a PC when post-processing experimental data. It relies on (1) the first-order differential equation governing the CVA circuit, (2) the first-order differential equation describing the hot-wire response and (3) the algebraic equation corresponding to the calibration law. In practice, the method is adapted to any length of the connection cable between the hot wire probe and the CVA and only requires the extra measurement of the time constant of the hot wire using an embedded square-wave test. The present procedure aims at replacing previous data-processing methods that were mostly based on linearized equations. The two main features of the CVA, i.e. a constant bandwidth and a rapid adjustment of the hot-wire operation in the cold and hot modes to take into account temperature drifts of the incident flow, still hold when using the present method. Benefits of the new procedure are demonstrated for higher order odd moments of turbulence (skewness factors).
Temperature effect on ideal shear strength of Al and Cu
NASA Astrophysics Data System (ADS)
Iskandarov, Albert M.; Dmitriev, Sergey V.; Umeno, Yoshitaka
2011-12-01
According to Frenkel’s estimation, at critical shear stress τc=G/2π, where G is the shear modulus, plastic deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear parallel to the close-packed (111) plane along the [112¯] direction is studied at temperatures up to 800 K using embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25% (22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc, introduced by Ogata as a generalization of Frenkel’s formula, was found to be almost independent of temperature. We also discuss the simulation cell size effect and compare our results with the results of abinitio calculations and experimental data.
Mohanty, Subhasish; Majumdar, Saurindranath
2015-01-01
Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
NASA Astrophysics Data System (ADS)
Balyan, M. K.
2016-12-01
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
From local to global measurements of nonclassical nonlinear elastic effects in geomaterials.
Lott, Martin; Remillieux, Marcel C; Le Bas, Pierre-Yves; Ulrich, T J; Garnier, Vincent; Payan, Cédric
2016-09-01
In this letter, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). After correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly.
NASA Astrophysics Data System (ADS)
Kallush, Shimshon; Fleischer, Sharly; Ultrafast terahertz molecular dynamics Collaboration
2015-05-01
Quantum simulation of large open systems is a hard task that demands huge computation and memory costs. The rotational dynamics of non-linear molecules at high-temperature under external fields is such an example. At room temperature, the initial density matrix populates ~ 104 rotational states, and the whole coupled Hilbert space can reach ~ 106 states. Simulation by neither the direct density matrix nor the full basis set of populated wavefunctions is impossible. We employ the random phase wave function method to represent the initial state and compute several time dependent and independent observables such as the orientation and the alignment of the molecules. The error of the method was found to scale as N- 1 / 2, where N is the number of wave function realizations employed. Scaling vs. the temperature was computed for weak and strong fields. As expected, the convergence of the method increase rapidly with the temperature and the field intensity.
Effects of temperature on mortality in Hong Kong: a time series analysis
NASA Astrophysics Data System (ADS)
Yi, Wen; Chan, Albert P. C.
2015-07-01
Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95 % confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95 % CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.
Effects of temperature on mortality in Hong Kong: a time series analysis.
Yi, Wen; Chan, Albert P C
2015-07-01
Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95% confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95% CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.
Risky Adaptation: The Effect of Temperature Extremes on HIV Prevalence
NASA Astrophysics Data System (ADS)
Baker, R.
2016-12-01
Previous work has linked rainfall shock to an increase in HIV prevalence in Sub-Saharan Africa. In this paper we take advantage of repeated waves of the Demographic and Health Survey (DHS) and a new high resolution climate dataset for the African continent to test the non-linear relationship between temperature and HIV. We find a strong and significant relationship between recent high temperatures and increases in HIV prevalence in a region. We then test the effect of temperature on risk factors that may contribute to this increase. High temperatures are linked to an increase in sexual violence, number of partners and a decrease in condom usage - all of which may contribute to the uptake in HIV rate. This paper contributes to the literature on adaptation from two standpoints. First, we suggest that some behavioral changes that are classed as adaptations, in the sense that they allow for consumption smoothing in the face of extreme temperatures, may carry unexpected risks to the individuals involved. Second, we find preliminary evidence that the relationship between temperature and these risky behaviors is diminished in regions prone to higher temperatures, suggesting some adaptation is possible in the long run.
Imaging the anisotropic nonlinear meissner effect in nodal YBa2 Cu3 O7-δ thin-film superconductors.
Zhuravel, Alexander P; Ghamsari, B G; Kurter, C; Jung, P; Remillard, S; Abrahams, J; Lukashenko, A V; Ustinov, Alexey V; Anlage, Steven M
2013-02-22
We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.
Characterization of nonlinear ultrasonic effects using the dynamic wavelet fingerprint technique
NASA Astrophysics Data System (ADS)
Lv, Hongtao; Jiao, Jingpin; Meng, Xiangji; He, Cunfu; Wu, Bin
2017-02-01
An improved dynamic wavelet fingerprint (DWFP) technique was developed to characterize nonlinear ultrasonic effects. The white area in the fingerprint was used as the nonlinear feature to quantify the degree of damage. The performance of different wavelet functions, the effect of scale factor and white subslice ratio on the nonlinear feature extraction were investigated, and the optimal wavelet function, scale factor and white subslice ratio for maximum damage sensitivity were determined. The proposed DWFP method was applied to the analysis of experimental signals obtained from nonlinear ultrasonic harmonic and wave-mixing experiments. It was demonstrated that the proposed DWFP method can be used to effectively extract nonlinear features from the experimental signals. Moreover, the proposed nonlinear fingerprint coefficient was sensitive to micro cracks and correlated well with the degree of damage.
NASA Astrophysics Data System (ADS)
Molini, A.; Casagrande, E.; Mueller, B.
2013-12-01
Land-Atmosphere (L-A) interactions, their strength and directionality, are one of the main sources of uncertainty in current climate modeling, with strong implications on the accurate assessment of future climate variability and climate change impacts. Beside from the scarcity of direct observations, major uncertainties derive from the inherent complexity and nonlinearity of these interactions, and from their multi-scale character. Statistical analysis of L-A couplings is traditionally based on linear correlation methods and metrics. However, these approaches are not designed to detect causal connections or non-linear couplings and they poorly perform in presence of non-stationarities. Additionally these methods assess L-A couplings essentially in the time domain, despite the fact that L-A dynamical drivers can act simultaneously over a wide range of different space and time scales. This talk explores the multi-scale nature of L-A interactions, through the example of soil moisture-temperature couplings and soil-moisture memory effects. In several regions of the world, soil moisture can have a dampening effect on temperature due to evaporative cooling. By using spectral decomposition techniques and both newly developed satellite based products and re-analysis, we analyze the contribution of different time scales to the build-up of global soil moisture-temperature coupling hot spots, addressing at the same time the role of seasonality, causation and non-linear feedbacks in land-atmosphere interactions. Finally we focus on the role of fine (sub-monthly) time scales and their interplay with the seasonal scales.
Temperature Dependence Of Single-Event Effects
NASA Technical Reports Server (NTRS)
Coss, James R.; Nichols, Donald K.; Smith, Lawrence S.; Huebner, Mark A.; Soli, George A.
1990-01-01
Report describes experimental study of effects of temperature on vulnerability of integrated-circuit memories and other electronic logic devices to single-event effects - spurious bit flips or latch-up in logic state caused by impacts of energetic ions. Involved analysis of data on 14 different device types. In most cases examined, vulnerability to these effects increased or remain constant with temperature.
Nonlinear effects in two-dimensional & layered electronic systems
NASA Astrophysics Data System (ADS)
Lee, Changjin
In this dissertation, nonlinear effects of strongly correlated 2D and layered electronic system are focused on within the framework of quasi-localized charge approximation (QLCA) and dynamic mean field theory (DMFT). In Part I, it is shown that QLCA scheme can be generalized beyond the harmonic approximation into the nonlinear regime, as a powerful tool to handle with not only the liquid phase but also the solid phase of the strongly correlated classical bilayer system. (a) The quadratic order equation of a single quasi-localized charge (QLC) for the strongly coupled classical bilayer system interacting via any general isotropic scalar potential has been derived in real space from first principle, and it is applied to the strongly coupled Coulomb bilayer system (b) The quadratic order collective mode QLCA equation has been derived in real space. (c) The Fourier space representation of quadratic QLCA equation is obtained. (d) Some difficulties for solving quadratic order QLCA equation are emphasized for the future study. In Part II, (a) the formal derivation of the longitudinal quadratic Density Response Function (qDRF) will be given in terms of the modified three-point Density Correlation Function (DCF: symbolized as F-function) not only to extract the naive symmetry of 2D qDRF in imaginary frequency space, but also to point out that the modified DCF does not stand alone because it can violate Pauli principle. (b) The modified three-point longitudinal DCF (F-function) has been calculated with the mathematical rigor. (c) It is shown that the static qDRF develops strong peaks as well as fore-reported properties of vanishing and discontinuity. (d) The mathematical mechanism of vanishing and discontinuity of static qDRF will be given. (e) The vanishing of qDRF is shown not limited to the static qDRF.
NASA Astrophysics Data System (ADS)
Shivanian, Elyas; Hosseini Ghoncheh, S. J.
2017-02-01
In this paper, the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient is revisited. In this problem, it has been assumed that the heat transfer coefficient is expressed in a power-law form and the thermal conductivity is a linear function of temperature. A method based on the traditional shooting method and the homotopy analysis method is applied, the so-called shooting homotopy analysis method (SHHAM), to the governing nonlinear differential equation. In this technique, more high-order approximate solutions are computable and multiple solutions are easily searched and discovered due to being free of the symbolic variable. It is found that the solution might be empty, unique or dual depending on the values of the parameters of the model. Furthermore, corresponding fin efficiencies with high accuracy are computed. As a consequence, a new branch solution for this nonlinear problem by a new proposed method, based on the traditional shooting method and the homotopy analysis method, is obtained.
Effects of water and temperature
John R. Jones; Merrill R. Kaufmann; E. Arlo Richardson
1985-01-01
Aspen's geographic and elevational ranges indicate a species that tolerates severe cold but does not tolerate sustained high temperatures, or semiarid or even dry, subhumid conditions. Much can be inferred from observation of the sites on which quaking aspen grows in the West. Aspen's distribution is related to its regeneration characteristics, its pathology...
White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.
2008-05-15
For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1987-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Nonlinear effects in interactions of swift ions with solids
Crawford, O.H.; Dorado, J.J.; Flores, F.
1994-06-01
The passage of a swift charged particle through a solid gives rise to a wake of induced electron density behind the particle. It is calculated for a proton penetrating an electron gas having the density of the valence electrons in gold, assuming linear response of the medium. The induced potential associated with the wake is responsible for the energy loss of the particle, and for many effects that have captured recent interest. These include, among others, vicinage effects on swift ion clusters, emission of electrons from bombarded solids, forces on swift ions near a surface, and energy shifts in electronic states of channeled ions. Furthermore, the wake has a determining influence on the spatial distribution, and character, of energy deposition in the medium. Previous theoretical studies of these phenomena have employed a linear wake, i.e., one that is proportional to the charge of the projectile, eZ. However, in most experiments that measure these effects, the conditions are such that the wake must include higher-order terms in Z. The purpose of this study is to analyze the nonlinear wake, to understand how the linear results must be revised.
NASA Astrophysics Data System (ADS)
Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.
2016-04-01
Long wavelength turbulent electron temperature fluctuations (kyρs < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].
Sung, C.; White, A. E.; Greenwald, M.; Howard, N. T.; Mikkelsen, D. R.; Churchill, R.; Holland, C.; Theiler, C.
2016-04-15
Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].
A numerical investigation of nonlinear aeroelastic effects on flexible high aspect ratio wings
NASA Astrophysics Data System (ADS)
Garcia, Joseph Avila
2002-01-01
A nonlinear aeroelastic analysis that couples a nonlinear structural model with an Euler/Navier-Stokes flow solver is developed for flexible high aspect ratio wings. To model the nonlinear structural characteristics of flexible high aspect ratio wings, a two-dimensional geometric nonlinear methodology, based on a 6 degree-of-freedom (DOF) beam finite element, is extended to three dimensions based on a 12 DOF beam finite element. The three-dimensional analysis is developed in order to capture the nonlinear torsion-bending coupling, which is not accounted for by the two-dimensional nonlinear methodology. Validation of the three-dimensional nonlinear structural approach against experimental data shows that the approach accurately predicts the geometric nonlinear bending and torsion due to bending for configurations of general interest. Torsion is slightly overpredicted in extreme cases and higher order modeling is then required. The three-dimensional nonlinear beam model is then coupled with an Euler/Navier-Stokes computational fluid dynamics (CFD) analysis. Solving the equations numerically for the two nonlinear systems results in an increase in computational time and cost needed to perform the aeroelastic analysis. To improve the computational efficiency of the nonlinear aeroelastic analysis, the nonlinear structural approach uses a second-order accurate predictor-corrector methodology to solve for the displacements. Static aeroelastic results are presented for an unswept and swept high aspect ratio wing in the transonic flow regime, using the developed nonlinear aeroelastic methodology. Unswept wing results show a reversal in twist due to the nonlinear torsion-bending coupling effects. Specifically, the torsional moments due to drag become large enough to cause the wing twist rotations to washin the wing tips, while the linear results show a washout twist rotation. The nonlinear twist results are attributed to the large bending displacements coupled with the large
Vertical ship motions and sea loads considering nonlinear effects
NASA Astrophysics Data System (ADS)
Shacham, I.; Weller, T.
1986-12-01
A mathematical model dealing with vertical motions and longitudinal strength of a ship, whose shape deviates from the linear theory assumptions, was developed. The model includes nonlinear effects stemming from ship flexibility, widening of side walls in the waterline region and ship bottom emersion. The model also considers coupling between ship response and exciting forces (hydroelastic). Based on the mathematical model equations, a computer program was written to calculate the motions and stresses, developed in a prescribed ship hull sailing at a given speed and course in a given sinusoidal type sea. Calculations obtained for a fast patrol boat and an aircraft carrier featured by a large bow flare, demonstrated very good agreement, both qualitatively and quantitatively, with results measured in sea trials. The method of solution proposed resulted in a time saving computer program, which can be applied effectively for a parametric study of the many factors which affect the whipping phenomenon. The program can also be used as an auxiliary tool at the design stage of new ships and for the determination of sailing envelopes of existing ships.
The particle resonance in spiral galaxies - Nonlinear effects.
NASA Technical Reports Server (NTRS)
Contopoulos, G.
1973-01-01
A theory is developed to account for the nonlinear effects, near the particle resonance, found by numerical integration. There are four equilibrium points in the rotating frame of reference: two of them unstable, at the minima of potential (L1, L2), and two stable, at the maxima of potential (L4, L5). Many particles are trapped in librating orbits around L4, L5. Using the lowest-order terms of a 'third integral' of motion near L4, L5, the behavior of the trapped orbits is determined, and the approximate theoretical results are compared with the orbits found numerically by computer. An estimate of the trapped mass is given. It amounts to about 30% of the total mass between 9 and 11 kpc when the particle resonance is at r sub s = 10 kpc and the maximum force due to the spiral is 4% of the axisymmetric force. Some effects due to these mass concentrations are found numerically and theoretically.
Analysis of linear and nonlinear effects in optical fiber
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Scholtz, Łubomír.; Ladányi, Libor; Müllerová, Jarmila
2016-12-01
The propagation of optical pulses in dispersive nonlinear fibers is studied by using an adaptive split step Fourier method. Propagation of optical pulse is described by a generalized nonlinear Schrödinger equation. Various initial pulse shapes can be used, impact of group velocity dispersion up to the fourth-order dispersion, self phase modulation and their interplay are studied in connection with the dispersion and nonlinear length parameters. Properties of propagating field are analyzed in time and in frequency domain. For pulse propagation in telecommunication applications the results of implemented solutions are in good agreement with experiments.
The Effect of Nonlinear Critical Layers on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear and spatially growing instability waves evolve downstream in nominally two-dimensional and spanwise periodic laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer' with the flow outside this layer consisting of a locally parallel mean flow plus an appropriate superposition of linear instability waves. The amplitudes of these waves are determined by either a single integro-differential equation or by a pair of integro-differential equations with quadratic to quartic-type nonlinearities.
Effective Temperature Scale and Bolometric Corrections
NASA Astrophysics Data System (ADS)
Gray, R.; Murdin, P.
2000-11-01
The conversion from an observational quantity, such as the color index or the spectral type, to the effective temperature (Teff) of a star is known as the effective TEMPERATURE SCALE. Bolometric corrections are required in the calculation of the luminosity of a star if the flux from the star has not been observed over the entire ELECTROMAGNETIC SPECTRUM....
NASA Astrophysics Data System (ADS)
Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert
2016-06-01
We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Nonlinear effects in a model of a thermoacoustic refrigerator driven by a loudspeaker
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Zhe; Zhu, Jun-jie; Ding, Jin; Xia, Jie; Zhang, Shu-yi; Zhang, Hui; Ge, Huan
2015-03-01
It is known that acoustic nonlinear effects in thermoacoustic refrigerators are unfavorable to the performance because they transfer the acoustic energy of the fundamental wave to harmonic waves, while only the former is useful for refrigeration. To study the nonlinear effects in loudspeaker-drive thermoacoustic refrigerators, we measure the acoustic performance in a coupling system composed of a resonant pipe driven by an electrodynamic loudspeaker via an inverse horn. It is found that the nonlinear effects increase both the acoustic pressure of fundamental wave in the resonant pipe and the electroacoustic transfer efficiency of the system. Then, a theoretical model is established to study the nonlinear effects in the coupling system, in which the nonlinearities arising from the loudspeaker, inverse horn, and resonant pipe are taken into account, and the simulated results are used to explain the experimental phenomena.
NASA Astrophysics Data System (ADS)
Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.
2014-06-01
The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.
Peeters, A. G.; Rath, F.; Buchholz, R.; Grosshauser, S. R.; Strintzi, D.; Weikl, A.; Camenen, Y.; Candy, J.; Casson, F. J.; Hornsby, W. A.
2016-08-15
It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.
Yang, Linlin; Li, Nianbei; Li, Baowen
2014-12-01
The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.
NASA Astrophysics Data System (ADS)
Torabi, Mohsen; Yaghoobi, Hessameddin; Boubaker, Karem
2013-01-01
With the advent of temperatures near absolute zero, it is often claimed that at very low temperatures the effect of thermal wave propagation must be included by the hyperbolic heat conduction equation (HHCE). In this paper the non-linear convective-radiative HHCE is investigated. Opposite to common numerical analyses, analytical expressions are obtained for the temperature variations by the multi-step differential transformation method. Some conclusions about alteration of the specific heat of the material, temperature steeping, and Vernotte number have been formulated.
An effective analytic approach for solving nonlinear fractional partial differential equations
NASA Astrophysics Data System (ADS)
Ma, Junchi; Zhang, Xiaolong; Liang, Songxin
2016-08-01
Nonlinear fractional differential equations are widely used for modelling problems in applied mathematics. A new analytic approach with two parameters c1 and c2 is first proposed for solving nonlinear fractional partial differential equations. These parameters are used to improve the accuracy of the resulting series approximations. It turns out that much more accurate series approximations are obtained by choosing proper values of c1 and c2. To demonstrate the applicability and effectiveness of the new method, two typical fractional partial differential equations, the nonlinear gas dynamics equation and the nonlinear KdV-Burgers equation, are solved.
Energy localization in nonlinear fiber arrays: Collapse-effect compressor
Aceves, A.B.; Luther, G.G.; De Angelis, C.; Turitsyn, S.K.
1995-07-03
We analyze a collapse mechanism of energy localization in nonlinear fiber arrays. The nonlinear fiber array is suggested as a device to amplify and compress optical pulses. Pulse propagation in one-dimensional fiber arrays has features of collapse (self-focusing) dynamics. Collapse-type compression leads to the localization of all energy initially dispersed in array into a few fibers. Numerical simulations demonstrate the robustness of the suggested compression mechanism.
Paneling methods with vorticity effects and corrections for nonlinear compressibility
NASA Technical Reports Server (NTRS)
Dillenius, Marnix F. E.; Allen, Jerry M.
1986-01-01
The prediction of missile aerodynamic characteristics is presently undertaken through the application of supersonic paneling methods and nonlinear corrections to the prediction of missile aerodynamic characteristics. Attention is given to supersonic panel methods and line-singularity methods for the modeling of axisymmetric bodies, in combination with corrections for nonlinear flow phenomena, which are applied to complete missile, inlets, and wing-body combinations. The LRCDM2 computer program is used as an example of the methods presented.
Effect of scalar nonlinearity on the dipole vortex solution
Su, X; Horton, W.; Morrison, P.J.; Pavlenko, V.P.
1988-07-01
The dipole vortex solutions of the Hasegawa-Mima drift wave or equivalently, the quasi-geostrophic Rossby wave equation are shown to be split up into long-lived monopole vortices (cyclones and anticyclones) in the presence of a small scalar, i.e. KdV type, nonlinearity. The lifetime of the dipole vortex varies inversely with the strength of the scalar nonlinearity. 12 refs., 4 figs.
Zhang, Juan E-mail: ywang@siom.ac.cn; Zhang, Rongjun; Wang, Yang E-mail: ywang@siom.ac.cn
2014-11-14
A new method to achieve highly sensitive temperature sensing is proposed based on the nonlinear spectral properties of a one-dimensional photonic crystal (1DPC) composed of temperature-sensitive materials with a Kerr defect layer. The sensitivity can be two orders of magnitude higher than that of the corresponding linear 1DPC structure. The sensitivity and measuring range can be precisely tuned. These properties favor the fabrication of a versatile temperature sensor with switchable fine and coarse tuning functions. This principle of nonlinear temperature sensing can also be extended to other kinds of spectrum-based sensors to obtain higher performance.
Size and nonlinear optical effects of ferroic organic nanocomposites
NASA Astrophysics Data System (ADS)
Lakshminarayana, G.; Kapustianyk, V.; Ozga, K.; Rudyk, V.; Kityk, I. V.; Brik, M. G.; Berdowski, J.; Tylczynski, Z.
2011-08-01
The third harmonic generation of ferroic (NH2(C2H5)2)2CuCl4 diethylammonium cuprate chlorate (DEACC) single crystals and nanocrystals (NCs) incorporated into polymethyl methacrylate (PMMA) polymer matrices was investigated. It was established that the crystal field spectra of Cu2+ ion determines the observed size dependence effect. The role of nanocrystallite size and content and the symmetry of the THG at ambient and nitrogen temperatures were studied.
NASA Astrophysics Data System (ADS)
Senthilkumar, P.; Dhanuskodi, S.; Thomas, Anitta Rose; Philip, Reji
2017-08-01
The solgel synthesized Ce: BaTiO3 (BT) particles are crystallized in tetragonal structure and the expansion of lattice along a-axis is ensured from the Rietveld refined XRD spectra. FTIR shows that the increase of force constant from 199.97 to 213.13 N m-1 is owing to an effective incorporation of heavier atomic mass of Ce in BT lattice. HRTEM reflects the discontinuous atomic planes in the form of Ti vacancies which is supported by EDS measurement. The modification of optical band structure of BT with Ce ions is validated through several absorption and defect emission bands. Energy dependent second harmonic generation is carried out to confirm the non saturated signal, thermal stability and maximum intensity 2483 counts attained for 2 mol% Ce at 200 mJ. Optical limiting characteristics of the samples is analysed at 532 nm using 5 ns laser pulses of energy 50, 100 and 150 µJ. The nonlinear absorption coefficient (β) is found to be enhanced upon Ce doping. Lower optical limiting thresholds of 2.8 and 3.3 J cm-2 are obtained in the case of 1 and 4 mol% Ce samples respectively. Dielectric properties in a broad temperature range (40-500 °C) and frequency (100 Hz-5 MHz) have been investigated in detail. The dielectric constant is increased from 1926 to 3750 on Ce doping and there are two semicircles in the Cole-Cole plot at 500 °C due to grain and grain boundaries and corresponding equivalent circuit model is proposed.
Costa, R. S.; Cortes, M. R.; Nunes, D. R.; Batista, A. S. A.
2014-11-11
In this work in contrast to the usual Walecka model [1] we include the interaction between the σ – ω mesons [2,3] with the aim of studying the nuclear matter properties in the relativistic mean-field theory in the regime of high temperatures. Therefore in our work we use the non-linear Walecka model. We investigate whether the phase transition characteristic of other models without these interactions vanishes for a given value of chemical potential μ and baryon density ρ{sub N}.
Weak nonlinear surface-charging effects in electrolytic films.
Dean, D S; Horgan, R R
2003-11-01
A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.
Stochastic nonlinear mixed effects: a metformin case study.
Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien
2016-02-01
In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.
NASA Astrophysics Data System (ADS)
Pazand, Kamran; Nobari, A. S.
2016-10-01
In this paper, inverse-eigen sensitivity identification technique is used to investigate the effect of damage on the effective damping of a viscoelastic adhesive, in both linear and nonlinear regions of adhesive behavior. The modal parameters derived from the measured linear and nonlinear Frequency Response Functions (FRF) of the bonded structure are used in identification process. Experimental FRFs are employed to identify linear and nonlinear bending and shear modes which are then used for identifying of damping coefficient at different frequencies. The nonlinear FRFs are measured using the Optimum Equivalent Linear System (OELS) concept. The results indicate that the damping of the adhesive decreases with frequency. Also, debonding damage has a decreasing effect on damping of adhesive, both in linear and nonlinear regions, and with increasing the damage percentage the reduction becomes more significant. Results also show that the linear and nonlinear effective damping are different and hence depend on both amplitude of response and the mode shapes involved.
Temperature effects in pulsating superfluid neutron stars
Kantor, Elena M.; Gusakov, Mikhail E.
2011-05-15
We study the effects of finite stellar temperatures on the oscillations of superfluid neutron stars. The importance of these effects is illustrated with a simple example of a radially pulsating general relativistic star. Two main effects are taken into account: (i) temperature dependence of the entrainment matrix and (ii) the variation of the size of superfluid region with temperature. Four models are considered, which include either one or both of these two effects. Pulsation spectra are calculated for these models, and asymptotes for eigenfrequencies at temperatures close to critical temperature of neutron superfluidity are derived. It is demonstrated that models that allow for the temperature effect (ii) but disregard the effect (i), yield unrealistic results. Eigenfunctions for the normal- and superfluid-type pulsations are analyzed. It is shown that superfluid pulsation modes practically do not appear at the neutron-star surface and, therefore, can hardly be observed by measuring the modulation of the electromagnetic radiation from the star. The e-folding times for damping of pulsations due to the shear viscosity and nonequilibrium modified Urca processes are calculated and their asymptotes at temperatures close to the neutron critical temperature, are obtained. It is demonstrated that superfluid pulsation modes are damped by 1-3 orders of magnitude faster than normal modes.
NASA Astrophysics Data System (ADS)
Ahn, Joong-Bae; Lee, Joonlee
2016-08-01
A new multimodel ensemble (MME) method that uses a genetic algorithm (GA) is developed and applied to the prediction of winter surface air temperature (SAT) and precipitation. The GA based on the biological process of natural evolution is a nonlinear method which solves nonlinear optimization problems. Hindcast data of winter SAT and precipitation from the six coupled general circulation models participating in the seasonal MME prediction system of the Asia-Pacific Economic Conference Climate Center are used. Three MME methods using GA (MME/GAs) are examined in comparison with a simple composite MME strategy (MS0): MS1 which applies GA to single-model ensembles (SMEs), MS2 which applies GA to each ensemble member and then performs a simple composite method for MME, and MS3 which applies GA to both MME and SME. MS3 shows the highest predictability compared to MS0, MS1, and MS2 for both winter SAT and precipitation. These results indicate that biases of ensemble members of each model and model ensemble are more reduced with MS3 than with other MME/GAs and MS0. The predictability of the MME/GAs shows a greater improvement than that of MS0, particularly in higher-latitude land areas. The reason for the more improved increase of predictability over the land area, particularly in MS3, seems to be the fact that GA is more efficient in finding an optimum solution in a complex region where nonlinear physical properties are evident.
Piezoelectric Non-linear Nanomechanical Temperature and Acceleration Intensive Clocks (PENNTAC)
2014-05-01
overlaid dashed black line represents the fixed point solution of the Duffing resonator. Resonator non-linearities tend to worsen the oscillator PN by...Schematic and Actual implementation of the Oscillator Setup used to demonstrate PN shaping via a Duffing Resonator. (1) AlN CMR mounted on a PCB, (2...exhibited by the Duffing resonator 3.2 1/f Resonator Flicker Noise In order to identify the main noise sources in our oscillators , and
Global variation in the effects of ambient temperature on mortality: a systematic evaluation
Guo, Yuming; Gasparrini, Antonio; Armstrong, Ben; Li, Shanshan; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; de Sousa Zanotti Stagliorio Coelho, Micheline; Leone, Michela; Pan, Xiaochuan; Tong, Shilu; Tian, Linwei; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Punnasiri, Kornwipa; Yi, Seung-Muk; Michelozzi, Paola; Saldiva, Paulo Hilario Nascimento; Williams, Gail
2014-01-01
Background Studies have examined the effects of temperature on mortality in a single city, country or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States and Canada). Two-stage analyses were used to assess the non-linear and delayed relationship between temperature and mortality. In the first stage, a Poisson regression allowing over-dispersion with distributed lag non-linear model was used to estimate the community-specific temperature-mortality relationship. In the second stage, a multivariate meta-analysis was used to pool the non-linear and delayed effects of ambient temperature at the national level, in each country. Results The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, while hot effects appeared quickly and did not last long. Conclusions People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with the risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change. PMID:25166878
Line defects and temperature effects in liquid crystal tunable planar Bragg gratings.
Snow, B D; Adikan, F R M; Gates, J C; Gawith, C B E; Dyadyusha, A; Kaczmarek, M; Smith, P G R
2007-12-10
Liquid crystal tunable planar Bragg Gratings produced by Direct UV Writing are capable of wavelength tuning of over 100GHz. However, such devices exhibit non-linear tuning curves with threshold points and hysteresis. We show that these effects are due to the formation of disclination structures in the liquid crystal and discuss the role of electrode defects and sample temperature on wavelength tuning.
Effects of introducing nonlinear components for a random excited hybrid energy harvester
NASA Astrophysics Data System (ADS)
Zhou, Xiaoya; Gao, Shiqiao; Liu, Haipeng; Guan, Yanwei
2017-01-01
This work is mainly devoted to discussing the effects of introducing nonlinear components for a hybrid energy harvester under random excitation. For two different types of nonlinear hybrid energy harvesters subjected to random excitation, the analytical solutions of the mean output power, voltage and current are derived from Fokker-Planck (FP) equations. Monte Carlo simulation exhibits qualitative agreement with FP theory, showing that load values and excitation’s spectral density have an effect on the total mean output power, piezoelectric (PE) power and electromagnetic power. Nonlinear components affect output characteristics only when the PE capacitance of the hybrid energy harvester is non-negligible. Besides, it is also demonstrated that for this type of nonlinear hybrid energy harvesters under random excitation, introducing nonlinear components can improve output performances effectively.
Effect of ambient pressure on Leidenfrost temperature
NASA Astrophysics Data System (ADS)
Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki
2014-11-01
The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.
Effect of ambient pressure on Leidenfrost temperature.
Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki
2014-11-01
The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
Enhanced Nonlinear Effect of Lithium Niobate Based Periodic Nano-antenna Array
NASA Astrophysics Data System (ADS)
Pei, X. L.; Bai, S. A.; Tian, J. Y.; Ghosh, P.; Li, Q.; Qiu, M.
2017-06-01
We report nonlinear properties of lithium niobate based periodic nano-antenna array. The resonances of this nano-antenna array can be engineered by tuning the geometrical parameters. The nonlinear effect gets enhanced when the electric and magnetic resonances overlap.
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
How nonlinear optical effects degrade Hong-Ou-Mandel like interference
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; van Enk, S. J.
2015-05-01
Two-photon interference effects, such as the Hong-Ou-Mandel (HOM) effect, can be used to characterize to what extent two photons are identical [20]. Furthermore, these interference effects underly linear optics quantum computation. We show here how nonlinear optical effects, such as those mediated by atoms or quantum dots in a cavity, degrade the interference. This implies that, on the one hand, nonlinearities are to be avoided if one wishes to utilize the interference, but on the other hand, one may be able to measure or detect nonlinearities by observing the disappearance of the interference.
Study on Nonlinear Absorption Effect of Nanosecond Pulse Laser Irradiation for GaAs.
Sun, Wenjun; Liu, Zhongyang; Zhou, Haijiao
2016-04-01
In order to research nonlinear absorption effect of pulse laser irradiation for GaAs, a physical model of Gaussian distribution pulse laser irradiation for semiconductor material was established by software COMSOL Multiphysics. The thermal effects of semiconductor material GaAs was analyzed under irradiation of nanosecond pulse laser with wavelength of 1064 nm. The radial and transverse temperature distribution of semiconductor material GaAs was calculated under irradiation of nanosecond pulse laser with different power density by solving the thermal conduction equations. The contribution of one-photon absorption, two-photon absorption and free carrier absorption to temperature of GaAs material were discussed. The results show that when the pulse laser power density rises to 10(10) W/cm2, free carrier absorption played a leading role and it was more than that of one-photon absorption of material. The temperature contribution of two-photon absorption and free carrier absorption could be ignored at laser power density lower than 10(8) W/cm2. The result is basically consistent with relevant experiments, which shows that physical model constructed is valid.
NASA Astrophysics Data System (ADS)
Lan, Jun; Li, Yifeng; Yu, Huiyang; Li, Baoshun; Liu, Xiaozhou
2017-04-01
We theoretically investigate the nonlinear effects of acoustic wave propagation and dispersion in a cylindrical pipe with periodically arranged Helmholtz resonators. By using the classical perturbation method in nonlinear acoustics and considering a nonlinear response up to the third-order at the fundamental frequency, the expressions of the nonlinear impedance ZNHR of the Helmholtz resonator and effective nonlinear bulk modulus Bneff of the composite structure are derived. In order to confirm the nonlinear properties of the acoustic metamaterial, the transmission spectra have been studied by means of the acoustic transmission line method. Moreover, we calculate the effective acoustic impedance and dispersion relation of the system using the acoustic impedance theory and Bloch theory, respectively. It is found that with the increment of the incident acoustic pressure level, owing to the nonlinearity of the Helmholtz resonators, the resonant frequency ω0 shifts toward the lower frequency side and the forbidden bandgap of the transmission spectrum is shown to be broadened. The perturbation method employed in this paper extends the general analytical framework for a nonlinear acoustic metamaterial.
Non-linear electro-optical effects in the study of the helical smectic liquid crystals
NASA Astrophysics Data System (ADS)
Nowicka, K.; Kuczyński, W.
2016-04-01
Measurements of the non-linear electro-optical effects for the well-known prototype liquid crystal material (MHPOBC) are presented. The method to identify liquid crystalline phases and to determine temperatures of phase transitions based on the analysis of the second harmonic component of electro-optical response spectra is used. Applying that method, the values of the frequency (?) at which the second harmonic electro-optic response (EOR) possesses an extremum are determined for each smectic phase. We suggest that this characteristic frequency correspond to the phase-type mode processes. Furthermore, we show that the usually neglected results on heating can be useful in discussions of dynamical behaviour of second harmonic EOR in case of smectic phases.
Robust Noise Modulation of Nonlinearity in Carbon Nanotube Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Kawahara, Toshio; Yamaguchi, Satarou; Maehashi, Kenzo; Ohno, Yasuhide; Matsumoto, Kazuhiko; Kawai, Tomoji
2010-02-01
Carbon nanotubes (CNTs) are one of the candidates for nanosize devices such as field-effect transistors. CNT field-effect transistors (CNTFETs) have very special properties sometimes caused by surface states. For example, they are also well known as noisy devices caused by the molecule adhesion on the surface. Nonlinear systems, however, have some advantages such as weak signal detection or enhancement in working with noise. The small signal enhancement was conventionally studied as stochastic resonance. Therefore, we study the modification of nonlinearity of the systems under noise. For actual applications, the noise is also generated from the devices. Thus, we combined the noise CNTFET and another CNT transistor for the trial nonlinear system. Then, the sine wave amplification in the transistor with 1/ f noise of CNTFETs was measured. We used two different combinations of CNTFETs for noise and nonlinear CNTFETs, and observed the robustness of the noise modification on the nonlinearity.
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
NASA Astrophysics Data System (ADS)
Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.
2017-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.
Discriminating thermal effect in nonlinear-ellipse-rotation-modified Z-scan measurements.
Liu, Zhi-Bo; Shi, Shuo; Yan, Xiao-Qing; Zhou, Wen-Yuan; Tian, Jian-Guo
2011-06-01
We report that a modified Z-scan method by nonlinear ellipse rotation (NER) can be used to discriminate true nonlinear refraction from thermal effect in the transient regime and steady state. The combination of Z-scan and NER allows us to measure the third-order nonlinear susceptibility component without the influence of thermal-optical nonlinearity. The experimental results of pure CS(2) and CS(2) solutions of nigrosine verify that the transient thermal effect can be successfully eliminated from the NER-modified Z-scan measurements. This method is also extended to the case in which thermal-optical nonlinearities depend on a high repetition rate of femtosecond laser pulses for the N,N-dimethylmethanamide solutions of graphene oxide. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Mookerjee, P.; Bar-Shalom, Y.
1983-01-01
Effect of nonlinearity on convergence of the local linear and global linear adaptive controllers is evaluated. A nonlinear helicopter vibration model is selected for the evaluation which has sufficient nonlinearity, including multiple minimum, to assess the vibration reduction capability of the adaptive controllers. The adaptive control algorithms are based upon a linear transfer matrix assumption and the presence of nonlinearity has a significant effect on algorithm behavior. Simulation results are presented which demonstrate the importance of the caution property in the global linear controller. Caution is represented by a time varying rate weighting term in the local linear controller and this improves the algorithm convergence. Nonlinearity in some cases causes Kalman filter divergence. Two forms of the Kalman filter covariance equation are investigated.
Nonlinear acoustic effects in superfluid 3He-B
NASA Astrophysics Data System (ADS)
McKenzie, Ross H.; Sauls, J. A.
1992-05-01
We consider the nonlinear interaction of zero sound with the collective modes of the order-parameter in superfluid 3He-B. The approximate particle-hole symmetry of the 3He-Fermi liquid determines selection rules for the linear and nonlinear coupling of zero sound to the collective modes. Starting from the quasiclassical theory of superfluid 3He, we have shown that the coupling strenghts have a simple representation in terms of Feynman diagrams. We predict measurable two-photon absorption and nonlinear-Raman scattering by the J = 2 + (real squashing) modes at low pressures. Recent observations of two-phonon absorption by a group in Helsinki are compared to the theoretical predictions. Two-phonon absorption can be used to determine the dispersion of the J = 2 + modes.
NASA Astrophysics Data System (ADS)
Park, H.; Ho, C. H.; Jeong, S. J.
2015-12-01
Understanding the changes in vegetation annual cycle is crucial for improving our knowledge about various interactions between the terrestrial ecosystem and climate. However, our understanding about the vegetation seasonality is mostly confined to some phenological timings such as spring emergence and fall senescence. This study assessed large-scale variations in the vegetation green-up rate (VGrate), which indicates the rate of canopy development from winter dormancy to summer maturity, and its relationship over Northern Hemisphere temperate and boreal forests for 1982-2011. VGrate and local temperature changes show a positive correlation over the region of interest, and it indicates that a temperature increase during green-up period leads to faster canopy development. The responses of VGrate tend to be more sensitive to positive temperature anomalies than negative anomalies despite same magnitude of the temperature changes. These nonlinear responsiveness of VGrate to local temperature change is clearly observed in deciduous broadleaf forests over Eurasia compared to woodlands over North America. These results suggest that anomalous warming in green-up period would make canopy developments faster over wide temperate and boreal forest areas.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1990-12-01
This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.
NASA Astrophysics Data System (ADS)
Torrens-Serra, J.; Solivelles, F.; Corró, M. L.; Stoica, M.; Kustov, S.
2016-12-01
Temperature and magnetic field dependence of magnetomechanical damping (MMD) of two ferromagnetic Fe-based bulk metallic glasses with different Curie temperatures, T C, have been studied over a broad temperature interval from the para-ferromagnetic transition down to 15 K. The damping has been scanned under periodic magnetic field at certain preselected temperatures in the ferromagnetic and paramagnetic phases. The selection of bulk metallic glasses for investigations allowed us to eliminate all dislocation-related anelastic effects and facilitated separation of the MMD components. Under zero field, the non-linear MMD emerges at T C and first increases linearly with (T C - T), then levels off until a maximum is formed at around 36 K. At lower temperatures, the magnetic domain wall related non-linear MMD component is partially or completely supressed, depending on the alloy composition. Qualitatively similar anomaly is found in the temperature dependence of the linear macroeddy current damping. These anomalies in the temperature spectra are concomitant with the emergence of a notable hysteresis in MMD versus periodic field dependences and of a maximum of non-linear MMD close to the position of the macroeddy damping peak. The uncovered phenomena are attributed to abrupt change of magnetic properties of ferromagnetic bulk metallic glasses at low temperatures, presumably due to the re-entrant spin glass transition.
Spectral investigation of nonlinear local field effects in Ag nanoparticles
Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji
2015-03-21
The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.
Paneling methods with vorticity effects and corrections for nonlinear compressibility
NASA Technical Reports Server (NTRS)
Dillenius, Marnix F. E.; Allen, Jerry M.
1992-01-01
Supersonic panel methods and axisymmetric body-modeling singularity methods are presently combined with corrections for nonlinear flow phenomena to a complete missile, its airbreathing inlets, and wing-body combinations. The computer code LRCDM2 is used as an illustrative example of the methods in question. Attention is given to a preliminary method which employs panels to estimate additive drag and lift acting on supersonic rectangular inlets, as well as to the method used to correct off-body flowfields for the presence of a shock. Examples of missile applications of these methods with the appropriate nonlinear corrections are presented.
Investigation of nonlinear effects in glassy matter using dielectric methods
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Michl, M.; Bauer, Th.; Loidl, A.
2017-08-01
We summarize current developments in the investigation of glassy matter using nonlinear dielectric spectroscopy. This work also provides a brief introduction into the phenomenology of the linear dielectric response of glass-forming materials and discusses the main mechanisms that can give rise to nonlinear dielectric response in this material class. Here we mainly concentrate on measurements of the conventional dielectric permittivity at high fields and the higher-order susceptibilities characterizing the 3ω and 5ω components of the dielectric response as performed in our group. Typical results on canonical glass-forming liquids and orientationally disordered plastic crystals are discussed, also treating the special case of supercooled monohydroxy alcohols.
The word frequency effect during sentence reading: A linear or nonlinear effect of log frequency?
White, Sarah J; Drieghe, Denis; Liversedge, Simon P; Staub, Adrian
2016-10-20
The effect of word frequency on eye movement behaviour during reading has been reported in many experimental studies. However, the vast majority of these studies compared only two levels of word frequency (high and low). Here we assess whether the effect of log word frequency on eye movement measures is linear, in an experiment in which a critical target word in each sentence was at one of three approximately equally spaced log frequency levels. Separate analyses treated log frequency as a categorical or a continuous predictor. Both analyses showed only a linear effect of log frequency on the likelihood of skipping a word, and on first fixation duration. Ex-Gaussian analyses of first fixation duration showed similar effects on distributional parameters in comparing high- and medium-frequency words, and medium- and low-frequency words. Analyses of gaze duration and the probability of a refixation suggested a nonlinear pattern, with a larger effect at the lower end of the log frequency scale. However, the nonlinear effects were small, and Bayes Factor analyses favoured the simpler linear models for all measures. The possible roles of lexical and post-lexical factors in producing nonlinear effects of log word frequency during sentence reading are discussed.
Doping dependent nonlinear Hall effect in SmFeAsO(1-x)F(x).
Riggs, Scott C; McDonald, R D; Kemper, J B; Stegen, Z; Boebinger, G S; Balakirev, F F; Kohama, Y; Migliori, A; Chen, H; Liu, R H; Chen, X H
2009-10-14
We report the Hall resistivity, ρ(xy), of polycrystalline SmFeAsO(1-x)F(x) for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly doped samples, ρ(xy) is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly doped samples with x<0.15, we find a low temperature regime characterized as ρ(xy)(H) being both nonlinear in magnetic field and strongly temperature-dependent even though the Hall angle is small. The onset temperature for this nonlinear regime is in the vicinity of the structural phase (SPT)/magnetic ordering (MO) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.
Variable effects of temperature on insect herbivory
Burkepile, Deron E.; Parker, John D.
2014-01-01
Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass. PMID:24860701
Electron temperature effects on the eigenmodes of a plasma waveguide
Aghamir, F. M.; Abbas-nejad, M.
2007-06-15
The effect of finite electron temperature on the excitation of eigenmodes of a plasma loaded cylindrical waveguide is investigated. In the analysis, a nonlinear wave equation is derived using the linearized fluid equations along with Maxwell's equations. The general result obtained for the annular plasma column is then reduced to be used for the case in which the plasma column fills the entire waveguide as well as for a partially filled configuration. Dispersion relations for electromagnetic and electrostatic modes are solved numerically to study the effect of electron thermal velocity on the characteristics of azimuthally symmetrical eigenmodes. The numerical studies show that the thermal motion of electrons shifts the frequencies of the perturbed transverse magnetic waveguide and those of cyclotron plasma modes toward higher values.
Modified Z-scan techniques for investigations of nonlinear chiroptical effects.
Markowicz, Przemyslaw; Samoc, Marek; Cerne, John; Prasad, Paras; Pucci, Andrea; Ruggeri, Giacomo
2004-10-18
We present simple modifications of the classic Z-scan technique for the investigations of nonlinear chiroptical effects, i.e. nonlinear circular birefringence and two-photon circular dichroism. Two methods for studying these effects: a "polarimetric Z-scan" and a "polarization modulated Zscan" are described in detail. These techniques were applied to estimate the order of magnitude of the effects for several different materials.
A PCA approach to stellar effective temperatures
NASA Astrophysics Data System (ADS)
Muñoz Bermejo, J.; Asensio Ramos, A.; Allende Prieto, C.
2013-05-01
Context. The derivation of the effective temperature of a star is a critical first step in a detailed spectroscopic analysis. Spectroscopic methods suffer from systematic errors related to model simplifications. Photometric methods may be more robust, but are exposed to the distortions caused by interstellar reddening. Direct methods are difficult to apply, since fundamental data of high accuracy are hard to obtain. Aims: We explore a new approach in which the spectrum is used to characterize a star's effective temperature based on a calibration established by a small set of standard stars. Methods: We perform principal component analysis on homogeneous libraries of stellar spectra, then calibrate a relationship between the principal components and the effective temperature using a set of stars with reliable effective temperatures. Results: We find that our procedure gives excellent consistency when spectra from a homogenous set of observations are used. Systematic offsets may appear when combining observations from different sources. Using as reference the spectra of stars with high-quality spectroscopic temperatures in the Elodie library, we define a temperature scale for FG-type disk dwarfs with an internal consistency of about 50 K, in excellent agreement with temperatures from direct determinations and widely used scales based on the infrared flux method. Tables 2, 4, 5, and reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A95
Linear and nonlinear finite element analysis of laminated composite structures at high temperatures
NASA Astrophysics Data System (ADS)
Wilt, Thomas Edmund
The use of composite materials in aerospace applications, particularly engine components, is becoming more prevalent due to the materials high strength, yet low weight. In addition to thermomechanical deformation response, life prediction and damage modeling analysis is also required to assess the component's service life. These complex and computationally intensive analyses require the development of simple, efficient and robust finite element analysis capabilities. A simple robust finite element which can effectively model the multi-layer composite material is developed. This will include thermal gradient capabilities necessary for a complete thermomechanical analysis. In order to integrate the numerically stiff rate dependent viscoplastic equations, efficient, stable numerical algorithms are developed. In addition, consistent viscoplastic/plastic tangent matrices will also be formulated. The finite element is formulated based upon a generalized mixed variational principle with independently assumed displacements and layer number independent strains. A unique scheme utilizing nodal temperatures is used to model a linear thermal gradient through the thickness of the composite. The numerical integration algorithms are formulated in the context of a fully implicit backward Euler scheme. The consistent tangent matrices arise directly from the formulation. The multi-layer composite finite element demonstrates good performance in terms of static displacement and stress predictions, and dynamic response. Also, the element appears to be relatively insensitive to mesh distortions. The robustness and efficiency of the fully implicit integration algorithms is effectively demonstrated in the numerical results. That is, large time steps and a significant reduction in global iterations, as a direct result of utilizing the consistent tangent matrices, is shown.
NASA Astrophysics Data System (ADS)
Baranov, A. I.; Konyashkin, A. V.; Ryabushkin, O. A.
2015-09-01
Model of second harmonic generation with thermal self-action was developed. Second harmonic generation temperature phase matching curves were measured and calculated for periodically polled lithium niobate crystal. Both experimental and calculated data show asymmetrical shift of temperature tuning curves with pump power.
Kumar, Rakesh; Sood, Shilpa; Sheikholeslami, Mohsen; Shehzad, Sabir Ali
2017-11-01
Combined effects of nonlinear thermal radiation and cubic autocatalysis chemical reaction on the three dimensional flow of stretched nanofluid along a rotating sheet have been investigated in this paper. The flow field is assumed to be suspended with magnetic iron oxide nanoparticles (IONPs). Hamilton-Crosser model is applied to measure effective thermal conductivity of nanofluid. Rosseland approximation is employed to obtain the nonlinear radiative heat flux. For novelty and practical point of view, influence of fluctuating surface velocity and periodic surface temperature constraints are incorporated into the governing equations which in turn are made dimension free by employing suitable transformations. For numerical solutions, an explicit finite difference scheme has been proposed under the restrictions of derived stability conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadpoor, Fatemeh; Wang, Peng; Huang, Rui; Sharma, Pradeep
2017-10-01
The study of statistical mechanics of thermal fluctuations of graphene-the prototypical two-dimensional material-is rendered rather complicated due to the necessity of accounting for geometric deformation nonlinearity. Unlike fluid membranes such as lipid bilayers, coupling of stretching and flexural modes in solid membranes like graphene leads to a highly anharmonic elastic Hamiltonian. Existing treatments draw heavily on analogies in the high-energy physics literature and are hard to extend or modify in the typical contexts that permeate materials, mechanics and some of the condensed matter physics literature. In this study, using a variational perturbation method, we present a ;mechanics-oriented; treatment of the thermal fluctuations of elastic sheets such as graphene and evaluate their effect on the effective bending stiffness at finite temperatures. In particular, we explore the size, pre-strain and temperature dependency of the out-of-plane fluctuations, and demonstrate how an elastic sheet becomes effectively stiffer at larger sizes. Our derivations provide a transparent approach that can be extended to include multi-field couplings and anisotropy for other 2D materials. To reconcile our analytical results with atomistic considerations, we also perform molecular dynamics simulations on graphene and contrast the obtained results and physical insights with those in the literature.
Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities.
Lee, Michael W; Grillet, Christian; Monat, Christelle; Mägi, Eric; Tomljenovic-Hanic, Snjezana; Gai, Xin; Madden, Steve; Choi, Duk-Yong; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J
2010-12-06
We investigate the photosensitive and thermo-optic nonlinear properties of chalcogenide glass photonic crystal (PhC) cavities at telecommunications wavelengths. We observe a photosensitive refractive index change in AMTIR-1 (Ge(33)As(12)Se(55)) material in the near-infrared, which is enhanced by light localization in the PhC cavity and manifests in a permanent blue-shift of the nanocavity resonance. Thermo-optic non-linear properties are thoroughly investigated by i) carrying out thermal bistable switching experiments, from which we determined thermal switching times of 63 μs and 93 μs for switch on and switch off respectively and ii) by studying heating of the cavity with a high peak power pulsed laser input, which shows that two-photon absorption is the dominant heating mechanism. Our measurements and analysis highlight the detrimental impact of near-infrared photosensitivity and two-photon absorption on cavity based nonlinear optical switching schemes. We conclude that glass compositions with lower two-photon absorption and more stable properties (reduced photosensitivity) are therefore required for nonlinear applications in chalcogenide photonic crystal cavities.
Nonlinear effective-medium theory of disordered spring networks.
Sheinman, M; Broedersz, C P; MacKintosh, F C
2012-02-01
Disordered soft materials, such as fibrous networks in biological contexts, exhibit a nonlinear elastic response. We study such nonlinear behavior with a minimal model for networks on lattice geometries with simple Hookian elements with disordered spring constant. By developing a mean-field approach to calculate the differential elastic bulk modulus for the macroscopic network response of such networks under large isotropic deformations, we provide insight into the origins of the strain stiffening and softening behavior of these systems. We find that the nonlinear mechanics depends only weakly on the lattice geometry and is governed by the average network connectivity. In particular, the nonlinear response is controlled by the isostatic connectivity, which depends strongly on the applied strain. Our predictions for the strain dependence of the isostatic point as well as the strain-dependent differential bulk modulus agree well with numerical results in both two and three dimensions. In addition, by using a mapping between the disordered network and a regular network with random forces, we calculate the nonaffine fluctuations of the deformation field and compare them to the numerical results. Finally, we discuss the limitations and implications of the developed theory.
Bobyrev, Yu V; Petnikova, V M; Royanova, G A; Rudenko, K V; Shuvalov, Vladimir V
2007-02-28
It is shown in the model of the nonlinear response of high-temperature superconductors (HTSCs) caused by interband transitions in the electronic spectrum with a metastable energy gap that the Stokes and anti-Stokes components of the HTSC response to picosecond biharmonic pumping are asymmetric, and for the excitation-pulse frequency detuning exceeding 100 cm{sup -1}, the efficiency of self-diffraction in the directions corresponding to these two components is different. (nonlinear optical phenomena)
Sánchez-Ramos, Ismael; Castañera, Pedro
2005-01-01
The effect of temperature on reproductive parameters and longevity of the mold mite, Tyrophagus putrescentiae (Schrank) was examined at seven constant temperatures, ranging from 10 to 34 degrees C, and a relative humidity of 90 +/- 5%. Preoviposition period and fecundity were adversely affected by extreme temperatures and the oviposition period increased as temperature was reduced. Different patterns were observed for longevity data for males and females, with greater longevities for males at intermediate temperatures and more similar values for both sexes at extreme temperatures. Polynomial and non-linear models provided a good fit of the relationship of reproductive and longevity parameters with temperature. The effect of temperature on the intrinsic rate of increase of T. putrescentiae populations was established by the non-linear Lactin model. The optimum temperature for development was obtained at 30 degrees C. At this temperature, the population doubling time is 1.75 days. The lower and upper thresholds for T. putrescentiae populations were established at 10.4 and 34.8 degrees C, respectively. Altogether, these data provide basic information to develop sound physical control strategies of the mold mite.
Nonlinear optical properties and optical power limiting effect of Giemsa dye
NASA Astrophysics Data System (ADS)
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
Temperature effect on DNA molecular wires
NASA Astrophysics Data System (ADS)
Bui, Christopher Minh
The demand of technology and information today has further pushed the fabrication process of nanotechnology, yet there are limits and obstacles set by the primary laws of physics. Therefore, researchers are pursuing alternative technologies. Deoxyribonucleic acids (DNA) molecular wire is one advantageous option due to its unique characteristics including self-assembly and naturally small; size. This thesis reports the temperature effect on the electrical properties of a double-stranded ?-DNA molecular wire. The data will help expand the DNA wire application and functionality. Thus, the data supports the charge hopping theory on DNA electrical conductivity. Diverse amount of literatures has demonstrated that DNA experiences a biochemical alteration when exposed under different temperature conditions. This change will also cause a change in the electrical properties. In this research, DNA will hang between two gold covered microelectrodes with a distance of 10 to 12 microns. The microelectrodes are fabricated through negative lithography techniques. Then, the samples were exposed to a numerous range of temperature from 25°C to 180°C and went through varying cycles of heating and cooling. The experimental results revealed that the DNA experienced a hysteresis like behavior where the impedance differed between the heating and cooling phase. The impedance of the DNA molecular wire increased when exposed to higher temperature. Furthermore, the impedance stops increasing after a certain amount of heat cycles before the DNA structure failed. The biology and thermodynamics of the DNA wire was analyzed due to the temperature hysteresis effect. The melting temperature and the bond dissociation temperature were evaluated to determine the cause of the impedance trends. The studies and analysis of the temperature effect provided certain insights towards the charge hopping transport mechanism. The thesis concludes with possible applications relating to the temperature effect of
Tornøe, Christoffer W; Agersø, Henrik; Jonsson, E Niclas; Madsen, Henrik; Nielsen, Henrik A
2004-10-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/pharmacodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as long as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential equation (ODE) solver package odesolve and the non-linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlmeODE package for population PK/PD analysis using the available data analysis tools in R for model inspection and validation. The nlmeODE package is numerically stable and provides accurate parameter estimates which are consistent with NONMEM estimates.
Surface-enhanced nonlinear optical effects and detection of adsorbed molecular monolayers
Shen, Y.R.; Chen, C.K.; Heinz, T.F.; Ricard, D.
1981-01-01
The observation of a number of surface-enhanced nonlinear optical effects is discussed. The feasibility of using second-harmonic generation to detect the adsorption of molecular monolayers on a metal surface in an electrolytic solution is shown.
ERIC Educational Resources Information Center
Lee, Paul H.
2017-01-01
Purpose: Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. Methods: We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the…
NASA Astrophysics Data System (ADS)
Abdelwahed, H. G.; El-Shewy, E. K.; El-Depsy, A.; EL-Shamy, E. F.
2017-02-01
In this research, the nonlinear propagation of dust-ion acoustic (DIA) periodic travelling waves in a dusty plasma consisting of cold ions, stationary charged dust grains, and two temperature superthermal electrons is theoretically studied. A nonlinear Zakharov-Kuznetsov equation, which describes nonlinear dust-ion acoustic waves, is derived using a reductive perturbation method. Furthermore, the bifurcation theory has been employed to study the nonlinear propagation of DIA periodic travelling wave solutions. In the proposed model, the co-existence of both compressive and rarefactive DIA periodic travelling waves are found. The numerical investigations illustrate that the characteristics of nonlinear DIA periodic travelling waves strongly depend on the temperature ratio, both the concentration and the superthermality of cold electrons, the ion cyclotron frequency, the direction cosines of wave vector k along z axis, and the concentration of dusty grains. The present investigation can help in better understanding of nonlinear DIA periodic travelling waves in astrophysical environments with two temperature superthermal electrons such as Saturn's magnetosphere.
NASA Astrophysics Data System (ADS)
Bañón Navarro, A.; Bardóczi, L.; Carter, T. A.; Jenko, F.; Rhodes, T. L.
2017-03-01
Neoclassical tearing modes have deleterious effects on plasma confinement and, if they grow large enough, they can lead to discharge termination. Therefore, they impose a major barrier in the development of operating scenarios of present-day tokamaks. Gyrokinetics offers a path toward studying multi-scale interactions with turbulence and the effect on plasma confinement. As a first step toward this goal, we have implemented static magnetic islands in nonlinear gyrokinetic simulations with the GENE code. We investigate the effect of the islands on profiles, flows, turbulence and transport and the scaling of these effects with respect to island size. We find a clear threshold island width, below which the islands have little or no effect while beyond this point the islands significantly perturb flows, increase turbulence and transport. Additionally, we study the effect of radially asymmetric islands on shear flows for the first time. We find that island induced shear flows can regulate turbulent fluctuation levels in the vicinity of the island separatrices. Throughout this work, we focus on experimentally relevant quantities, such as rms levels of density and electron temperature fluctuations, as well as amplitude and phasing of turbulence modulation. These simulations aim to provide guidelines for interpreting experimental results by comparing qualitative trends in the simulations with those obtained in tokamak experiments.
Cyclic and low temperature effects on microcircuits
NASA Technical Reports Server (NTRS)
Weissflug, V. A.; Sisul, E. V.
1977-01-01
Cyclic temperature and low temperature operating life tests, and pre-/post-life device evaluations were used to determine the degrading effects of thermal environments on microcircuit reliability. Low power transistor-transistor-logic gates and linear devices were included in each test group. Device metallization systems included aluminum metallization/aluminum wire, aluminum metallization/gold wire, and gold metallization/gold wire. Fewer than 2% electrical failures were observed during the cyclic and low temperature life tests and the post-life evaluations revealed approximately 2% bond pull failures. Reconstruction of aluminum die metallization was observed in all devices and the severity of the reconstruction appeared to be directly related to the magnitude of the temperature excursion. All types of bonds except the gold/gold bonds were weakened by exposure to repeated cyclic temperature stress.
Effects of skin surface temperature on photoplethysmograph.
Jeong, In Cheol; Yoon, Hyungro; Kang, Hyunjeong; Yeom, Hojun
2014-01-01
Photoplethysmograph (PPG) has been widely used to investigate various cardiovascular conditions. Previous studies demonstrated effects of temperature of the measurement environment; however, an integrated evaluation has not been established in environments with gradual air temperature variation. The purpose of this study is to investigate variations and relationships of blood pressure (BP), PPG and cardiovascular parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO) and total peripheral resistance (TPR), by changing skin surface temperature (SST). Local mild cooling and heating was conducted on 16 healthy subjects. The results showed that local SST changes affected Finometer blood pressures (Finger BP), PPG components and TPR, but not the oscillometric blood pressure (Central BP), HR, SV and CO, and indicated that temperature must be maintained and monitored to reliably evaluate cardiovascular conditions in temperature-varying environments.
NASA Astrophysics Data System (ADS)
Baars, Woutijn J.; Tinney, Charles E.; Hamilton, Mark F.
2015-11-01
When replicating full-scale jets by way of sub-scale experiments, it is routine to aim for aerodynamic similarity; this is achieved by matching the jet's geometry, Mach number, temperature ratio and Reynolds number. We here compute the effective Gol'dberg number (Λ) to assess acoustic similarity for supersonic jets--whether the wave propagation obeys by linear or nonlinear theory. Cumulative nonlinear wave distortion may only appear when the jet flow and ambient surround are sufficient incubators for distortion. Noticeably, the imperative conditions for sustaining this distortion do not scale following aerodynamic similarity laws. A method for computing Λ encompasses a ray tube situated along the Mach angle where the sound is not only most intense, but advances from undergoing cylindrical- to spherical-decay in its pressure amplitude. Hence, values of Λ are computed separately for the cylindrically and spherically spreading regions, for a plethora of experimental databases. The findings demonstrate how for sub-scale jets, cumulative nonlinear distortion may be present in the region of cylindrical spreading alone. It is revealed that nonlinear distortion is likely to sustain in the region of spherical pressure decay when full-scale jets are concerned.
Paradoxical effects of temperature on vascular tone.
Herrera, B; Eisenberg, G; Holberndt, O; Desco, M M; Rábano, A; García-Barreno, P; Del Cañizo, J F
2000-08-01
Temperature may have significant influence on vascular tone in such cases as organ preservation, coronary bypass surgery, and extracorporeal circulation. The aim of this research was to study the direct effect of temperature variation on vascular tone in an attempt to elucidate the mechanisms involved. In a first series of experiments, the isometric tension of two different vessels (rat thoracic aorta and pig renal branch artery) was studied at different temperatures. To study the role of calcium in this response, a second series of experiments was performed. In this the vessels were incubated with the intracellular chelator BAPTA/AM. Further experiments were performed to test the effect of cold storage. Our results show that changes in temperature lead to different results in pig renal artery and rat aorta. A decrease in temperature induced a highly reproducible relaxation in rat aorta, whereas pig renal artery presented cooling-induced contraction. Moreover, whereas calcium depletion failed to inhibit cooling-induced relaxation in rat aorta, it did not provoke cooling-induced contraction in pig renal artery. Similar responses were obtained with cold storage and calcium depletion. We intend to demonstrate that, just as the effect of temperature variation on pig renal artery is due to a metabolic mechanism, its effect on rat aorta may be due to structural factors. This hypothesis is supported by the result of histological studies which demonstrate a higher proportion of elastin fibres in rat aorta than in pig renal artery. Copyright 2000 Academic Press.
Combined Nonlinear Effects in Two-Photon Absorption Chromophores at High Intensities (Preprint)
2006-08-01
solutions in THF(cic1es). The solid lines are a Voigt function fit to the data. We seek a simple analytical model that can adequately explain and reliably...photophysical measurements on a system of AFX chromophores and calculate the nonlinear transmission based on an effective three-level model. A numerical... calculate the nonlinear transmission based on an effective three-level model. A numerical model that in- cludes far wing linear absorption has been
NASA Astrophysics Data System (ADS)
Skidin, A. S.; Sidelnikov, O. S.; Fedoruk, M. P.
2016-12-01
We study the influence of nonlinear effects on symbol error statistics when a 16-QAM orthogonal frequency-division multiplexed signal is transmitted in a 1000 {\\text{km}} length of fibre. A technique of adaptive modulation is proposed for generating signals that are resistant to nonlinear distortions. A considerable improvement of the transmission quality is shown to take effect in using an adaptive modulation scheme.
Madaniyazi, Lina; Zhou, Yong; Li, Shanshan; Williams, Gail; Jaakkola, Jouni J K; Liang, Xin; Liu, Yan; Wu, Shouling; Guo, Yuming
2016-02-15
We collected data from Kailuan cohort study from 2006 to 2011 to examine whether short-term effects of ambient temperature on heart rate (HR) and blood pressure (BP) are non-linear or linear, and their potential modifying factors. The HR, BP and individual information, including basic characteristics, life style, socio-economic characteristics and other characteristics, were collected for each participant. Daily mean temperature and relative humidity were collected. A regression model was used to evaluate associations of temperature with HR and BP, with a non-linear function for temperature. We also stratified the analyses in different groups divided by individual characteristics. 47,591 residents were recruited. The relationships of temperature with HR and BP were "V" shaped with thresholds ranging from 22 °C to 28 °C. Both cold and hot effects were observed on HR and BP. The differences of effect estimates were observed among the strata of individual characteristics. The effect estimate of temperature was higher among older people. The cold effect estimate was higher among people with lower Body Mass Index. However, the differences of effect estimates among other groups were inconsistent. These findings suggest both cold and hot temperatures may have short-term impacts on HR and BP. The individual characteristics could modify these relationships.
Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan
2015-01-01
Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.
Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil
NASA Astrophysics Data System (ADS)
Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2015-04-01
Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.
Anthropogenic effects on subsurface temperature in Bangkok
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2006-09-01
Subsurface temperatures in Bangkok, where population and density increase rapidly, were analyzed to evaluate the effects of surface warming due to urbanization. The magnitude of surface warming evaluated from subsurface temperature in Bangkok was 1.7°C which agreed with meteorological data during the last 50 years. The depth apart from steady thermal gradient, which shows an indicator of the magnitude of surface warming due to additional heat from urbanization, was deeper at the center of the city than in the suburb areas of Bangkok. In order to separate surface warming effects into global warming effect and urbanization effect, analyses of subsurface temperature have been done depending on the distance from the city center. The results show that the expansion of urbanization in Bangkok reaches up to 80 km from the city center.
Effect of temperature on surface noise
NASA Technical Reports Server (NTRS)
Olsen, W.; Wasserbauer, C.
1980-01-01
An experimental work is discussed whose objective was to obtain data that show the effect of temperature and temperature fluctuations on surface noise. This was accomplished experimentally by immersing a small chord airfoil in the turbulent airstream of a hot jet. The theory and experiment reported by Olsen (1976) provided a guide for designing and validating the hot jet experiment and for interpreting the data. It is shown that increased temperature causes a small decrease in the sound levels; at the same time it causes a shift in the spectra that is smaller but similar to the shift observed with subsonic hot jet noise.
Temperature effect on plasmons in bilayer graphene
NASA Astrophysics Data System (ADS)
Patel, Digish K.; Sharma, A. C.; Ashraf, S. S. Z.; Ambavale, S. K.
2015-06-01
We have theoretically investigated the plasmon dispersion and damping rate of doped bilayer graphene (BLG) at finite temperatures within the random phase approximation. Our computed results on plasmon dispersion show that plasmon frequency enhances with increasing temperatures in contrast to single layer graphene where it is suppressed. This can be attributed to the fact that the dynamic response of the electron gas or screening in bilayer graphene is different from that of single layer graphene. Further the temperature effect on damping rate is also discussed.
Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides
NASA Astrophysics Data System (ADS)
Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei
2016-04-01
This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.
High temperature Hall-effect apparatus
NASA Technical Reports Server (NTRS)
Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.
1984-01-01
A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.
Temperature effects: methane generation from landfill samples
Hartz, K.E.; Klink, R.E.; Ham, R.K.
1983-08-01
An understanding of the breakdown of municipal solid wastes into gaseous products, especially methane, is important. Landfills act as batch anaerobic digestors. Temperature, one of the variables that affect digestion is examined. Since very minor temperature changes can be accomplished with rather substantial changes in methane generation, the generation rate can be modified to match the capacity of the gas recovery system. The effects of moisture content, oxygen supply, liquid solid ratios and bacterial acclimation are mentioned.
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Nonlinear Effects at the Fermilab Recycler e-Cloud Instability
Balbekov, V.
2016-06-10
Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.
Effects of nonlinearity on cell-ECM interactions
Wen, Qi; Janmey, Paul A.
2014-01-01
Filamentous biopolymers such as F-actin, vimentin, fibrin and collagen that form networks within the cytoskeleton or the extracellular matrix have unusual rheological properties not present in most synthetic soft materials that are used as cell substrates or scaffolds for tissue engineering. Gels formed by purified filamentous biopolymers are often strain stiffening, with an elastic modulus that can increase an order of magnitude at moderate strains that are relevant to cell and tissue deformation in vivo. This review summarizes some experimental studies of nonlinear rheology in biopolymer gels, discusses possible molecular mechanisms that account for strain stiffening, and explores the possible relevance of non-linear rheology to the interactions between cell and extracellular matrices. PMID:23748051
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Collisional effects on nonlinear ion drag force for small grains
Hutchinson, I. H.; Haakonsen, C. B.
2013-08-15
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Farfield viscous effects in nonlinear noise propagation. [in aerodynamics
NASA Technical Reports Server (NTRS)
Harris, W. L., Sr.
1974-01-01
Discussion of the method of parametric differentiation in application to predictions of farfield noise propagation in both lossless and dissipative media. It is shown that, in the lossless medium, the governing equation, transformed to parameter space, reduces to a wave equation in the farfield. In the dissipative medium, the system of nonlinear partial differential equations, transformed to parameter space, reduces to a linear partial differential equation of the propagating type which contains a third-order derivative as well as the wave operator.
Nonlinear Effects in Single-Pass ICRF Heating
NASA Technical Reports Server (NTRS)
Arefiev, A. V.; Breizman, B. N.
1999-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept employs Ion Cyclotron Resonant Frequency (ICRF) heating as the main power deposition mechanism. Since the ions accelerate to the full energy in a single pass through the cyclotron resonance, their response to the RF-field will be essentially nonlinear - hence the motivation to amend the commonly used linear approach to the problem. In a collisionless plasma, the energy gain of an accelerated ion is limited by the time the particle spends at the resonance. This time is affected by: (1) incident flow velocity, (2) longitudinal grad B force, (3) ambipolar electric field, and (4) ponderomotive force of the RF-field. Our analysis shows that the grad B force is the dominant factor at low to moderate levels of RF-power. We present nonlinear scaling for the energy gain and the absorption efficiency with RF-power and plasma parameters. We also demonstrate that the nonlinear regime exhibits a steep decrease in the plasma density at the resonance.
Nonlinear Effects in Single-Pass ICRF Heating
NASA Technical Reports Server (NTRS)
Arefiev, A. V.; Breizman, B. N.
1999-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept employs Ion Cyclotron Resonant Frequency (ICRF) heating as the main power deposition mechanism. Since the ions accelerate to the full energy in a single pass through the cyclotron resonance, their response to the RF-field will be essentially nonlinear - hence the motivation to amend the commonly used linear approach to the problem. In a collisionless plasma, the energy gain of an accelerated ion is limited by the time the particle spends at the resonance. This time is affected by: (1) incident flow velocity, (2) longitudinal grad B force, (3) ambipolar electric field, and (4) ponderomotive force of the RF-field. Our analysis shows that the grad B force is the dominant factor at low to moderate levels of RF-power. We present nonlinear scaling for the energy gain and the absorption efficiency with RF-power and plasma parameters. We also demonstrate that the nonlinear regime exhibits a steep decrease in the plasma density at the resonance.
Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009.
Sherbakov, Toki; Malig, Brian; Guirguis, Kristen; Gershunov, Alexander; Basu, Rupa
2017-09-28
Investigators have examined how heat waves or incremental changes in temperature affect health outcomes, but few have examined both simultaneously. We utilized distributed lag nonlinear models (DLNM) to explore temperature associations and evaluate possible added heat wave effects on hospitalizations in 16 climate zones throughout California from May through October 1999-2009. We define heat waves as a period when daily mean temperatures were above the zone- and month-specific 95th percentile for at least two consecutive days. DLNMs were used to estimate climate zone-specific non-linear temperature and heat wave effects, which were then combined using random effects meta-analysis to produce an overall estimate for each. With higher temperatures, admissions for acute renal failure, appendicitis, dehydration, ischemic stroke, mental health, non-infectious enteritis, and primary diabetes were significantly increased, with added effects from heat waves observed for acute renal failure and dehydration. Higher temperatures also predicted statistically significant decreases in hypertension admissions, respiratory admissions, and respiratory diseases with secondary diagnoses of diabetes, though heat waves independently predicted an added increase in risk for both respiratory types. Our findings provide evidence that both heat wave and temperature exposures can exert effects independently. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.
2014-01-01
The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.
Electrically actuated MEMS resonators: Effects of fringing field and nonlinear viscoelasticity
NASA Astrophysics Data System (ADS)
Farokhi, Hamed; Ghayesh, Mergen H.
2017-10-01
This paper studies the nonlinear electromechanical response of a MEMS resonator numerically. A nonlinear continuous multi-physics model of the MEMS resonator is developed taking into account the effects of fringing field, size, residual axial load, and viscoelasticity. Moreover, both longitudinal and transverse motions are accounted for in the system modelling and simulations. The equations of motion of the MEMS resonator are obtained employing Hamilton's principle together with the modified version of the couple stress based theory (to account for size effects) and the Kelvin-Voigt model (to account for nonlinear energy dissipation). The Meijs-Fokkema electrostatic load formula is used to reliably model the fringing field effects. The continuous multi-physics model, consisting of geometrical, electrical, and viscos nonlinearities is discretised via a weighted-residual method, yielding a set of nonlinearly coupled ordinary differential equations (ODEs). The resultant set of ODEs is solved numerically when the microresonator is actuated by a biased DC voltage and an AC voltage. The results of the numerical simulations are presented in the form of DC voltage-deflection, DC voltage-natural frequency, and AC frequency-displacement diagrams. The effects of fringing field, residual axial load, small-scale, and nonlinear energy dissipation are highlighted. It is shown that fringing field effects are significant on both static and dynamic electromechanical responses of the MEMS resonator.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
Chapman, Cole G; Brooks, John M
2016-12-01
To examine the settings of simulation evidence supporting use of nonlinear two-stage residual inclusion (2SRI) instrumental variable (IV) methods for estimating average treatment effects (ATE) using observational data and investigate potential bias of 2SRI across alternative scenarios of essential heterogeneity and uniqueness of marginal patients. Potential bias of linear and nonlinear IV methods for ATE and local average treatment effects (LATE) is assessed using simulation models with a binary outcome and binary endogenous treatment across settings varying by the relationship between treatment effectiveness and treatment choice. Results show that nonlinear 2SRI models produce estimates of ATE and LATE that are substantially biased when the relationships between treatment and outcome for marginal patients are unique from relationships for the full population. Bias of linear IV estimates for LATE was low across all scenarios. Researchers are increasingly opting for nonlinear 2SRI to estimate treatment effects in models with binary and otherwise inherently nonlinear dependent variables, believing that it produces generally unbiased and consistent estimates. This research shows that positive properties of nonlinear 2SRI rely on assumptions about the relationships between treatment effect heterogeneity and choice. © Health Research and Educational Trust.
Kumar, Yogesh Bern, Francis; Barzola-Quiquia, Jose; Lorite, Israel; Esquinazi, Pablo
2015-07-13
We report magnetotransport studies on microstructured ZnO film grown by pulsed laser deposition in N{sub 2} atmosphere on a-plane Al{sub 2}O{sub 3} substrates and the effect of low energy H{sup +}-implantation. Non-linearity has been found in the magnetic field dependent Hall resistance, which decreases with temperature. We explain this effect with a two-band model assuming the conduction through two different parallel channels having different types of charge carriers. Reduced non-linearity after H{sup +}-implantation in the grown film is due to the shallow-donor effect of hydrogen giving rise to an increment in the electron density, reducing the effect of the other channel.
Effects of nonlinear damping on random response of beams to acoustic loading
NASA Technical Reports Server (NTRS)
Mei, C.; Prasad, C. B.
1986-01-01
Effects of both nonlinear damping and large-deflection are included in the theoretical analysis in an attempt to explain the experimental phenomena of aircraft panels excited at high sound pressure levels; that is the broadening of the strain response peak and the increase of the modal frequency. Two nonlinear damping models are considered in the analysis using a single-mode approach. Mean square maximum deflection, mean square maximum strain, and spectral density function of maximum strain for simply supported and clamped beams are obtained. It is demonstrated that nonlinear damping contributes significantly to the broadening of the response peak and to the mean square maximum deflection and strain.
Rajeswaran, Jeevanantham; Blackstone, Eugene H
2017-02-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.
A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation
Rajeswaran, Jeevanantham; Blackstone, Eugene H.
2014-01-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830
NASA Astrophysics Data System (ADS)
Yu, Shukai; Heffernan, Kate H.; Talbayev, Diyar
2017-03-01
We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinear THz propagation has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to modeling of the conduction-electron optical nonlinearity that governs the THz propagation in semiconductors.
NASA Astrophysics Data System (ADS)
López, Rosa; Sánchez, David
2013-07-01
We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.
Effective Temperatures for Young Stars in Binaries
NASA Astrophysics Data System (ADS)
Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew
2017-01-01
We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.
Noise-induced transitions and resonant effects in nonlinear systems
NASA Astrophysics Data System (ADS)
Zaikin, Alexei
2003-02-01
Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich
Bobyrev, Yu V; Petnikova, V M; Rudenko, K V; Shuvalov, Vladimir V
2006-05-31
Assuming that the nonlinear response of high-temperature superconductors is caused by interband transitions in the electronic spectrum with a metastable energy gap, a model describing the results of experiments performed by picosecond coherent four-photon spectroscopy with a high excitation level is developed. It is shown that a jump in the dependence of the self-diffraction efficiency on the initial temperature of a sample should be observed in the vicinity of the point of superconducting phase transition. It is found that upon biharmonic pump - probing, the energy gap in the electronic spectrum can be detected by a specific two-photon resonance. (nonlinear optical phenomena)
Temperature Effect on Suspended Cohesive Sediment Concentration
NASA Astrophysics Data System (ADS)
Ramalingam, S.; Chandra, V.
2016-12-01
The deposition of suspended cohesive sediments takes place in the form of flocculation which is governed by flow and sediment characteristics. Suspended cohesive sediments adsorb contaminants from surrounding environment during their transport from river to the ocean. These sediments partially settle at low velocity regions along the river and huge amount of sediments settle at the estuaries. The settled sediments affect both biological and chemical dynamics of aquatic environment. Hence, it is important to understand the behaviour of suspended cohesive sediments under different flow and sediment conditions. Temperature is one such parameter which influences the flow behaviour. In literature, the effect of water temperature on the behaviour of suspended cohesive sediments has received very little attention. Research studies based on settling column experiments have stated that cohesive sediment settling velocity increases with an increase of water temperature. In contrary, annular flume based studies have reported that the settling velocity increases with decrease of water temperature. Hence, this research work is mainly focussed to find the effect of temperature on suspended cohesive sediment concentration. Experiments are conducted at high water temperatures (30°, 40° and 50°C) in an annular flume using Kaolin (d50=7.9μm) at different bed shear stresses (0.01, 0.05 and 0.1Pa) and concentrations (1, 2 and 4g/L). Ionized water is used for conducting the experiments. The temporal variation of suspended cohesive sediment concentration and corresponding mean floc size are reported.
The low salinity effect at high temperatures
Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...
2017-04-05
The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less
Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.
Liu, Yan; Yan, Jing; Han, Genquan
2014-09-20
In this paper, we propose a new dual slot based on rib-like structure, which exhibits a flat and near-zero dispersion over a 198 nm wide wavelength range. Chromatic dispersion of dual-slot silicon (Si) waveguide is mainly determined by waveguide dispersion due to the manipulating mode effective area rather than by the material dispersion. Moreover, the nonlinear coefficient and effective mode area of the waveguide are also explored in detail. A nonlinear coefficient of 1460/m/W at 1550 nm is achieved, which is 10 times larger than that of the Si rib waveguide. By changing different waveguide variables, both the dispersion and nonlinear coefficient can be tailored, thus enabling the potential for a highly nonlinear waveguide with uniform dispersion over a wide wavelength range, which could benefit the performance of broadband optical signal systems.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Suming; Nie, Zongxiu
2014-11-01
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a(u) and q(u), which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%.
NASA Astrophysics Data System (ADS)
Denier, James P.; Hall, Philip
1992-07-01
The development of fully nonlinear Goertler vortices in high Reynolds number flow in a symmetrically constricted channel is investigated. Attention is restricted to the case of 'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled constriction height is asymptotically large. Such flows are known to develop a Goldstein singularity and subsequently become separated at some downstream station past the point of maximum channel constriction. It is shown that these flows can support fully nonlinear Goertler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which have an appreciable region of local concave curvature upstream of the position at which separation occurs. The effect on the onset of separation due to the nonlinear Goertler modes is discussed. A brief discussion of other possible nonlinear states which may also have a dramatic effect in delaying (or promoting) separation is given.
Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
Chen, Tao; Sun, Junqiang; Li, Linsen
2012-08-27
In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.
Two-dimensional linear and nonlinear Talbot effect from rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng
2015-03-01
We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.
Effects of temperature changes on groundwater ecosystems
NASA Astrophysics Data System (ADS)
Griebler, Christian; Kellermann, Claudia; Schreglmann, Kathrin; Lueders, Tillmann; Brielmann, Heike; Schmidt, Susanne; Kuntz, David; Walker-Hertkorn, Simone
2014-05-01
The use of groundwater as a carrier of thermal energy is becoming more and more important as a sustainable source of heating and cooling. At the same time, the present understanding of the effects of aquifer thermal usage on geochemical and biological aquifer ecosystem functions is extremely limited. Recently we started to assess the effects of temperature changes in groundwater on the ecological integrity of aquifers. In a field study, we have monitored hydrogeochemical, microbial, and faunal parameters in groundwater of an oligotrophic aquifer in the vicinity of an active thermal discharge facility. The observed seasonal variability of abiotic and biotic parameters between wells was considerable. Yet, due to the energy-limited conditions no significant temperature impacts on bacterial or faunal abundances and on bacterial productivity were observed. In contrast, the diversity of aquifer bacterial communities and invertebrate fauna was either positively or negatively affected by temperature, respectively. In follow-up laboratory experiments temperature effects were systematically evaluated with respect to energy limitation (e.g. establishment of unlimited growth conditions), geochemistry (e.g. dynamics of DOC and nutrients), microbiology (e.g. survival of pathogens), and fauna (temperature preference and tolerance). First, with increased nutrient and organic carbon concentrations even small temperature changes revealed microbiological dynamics. Second, considerable amounts of adsorbed DOC were mobilized from sediments of different origin with an increase in temperatures. No evidence was obtained for growth of pathogenic bacteria and extended survival of viruses at elevated temperatures. Invertebrates clearly preferred natural thermal conditions (10-12°C), where their highest frequency of appearance was measured in a temperature gradient. Short-term incubations (48h) of invertebrates in temperature dose-response tests resulted in LT50 (lethal temperature) values
Discrete breathers in graphane: Effect of temperature
NASA Astrophysics Data System (ADS)
Baimova, J. A.; Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V.; Zhou, Kun
2016-05-01
The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50-600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.
Discrete breathers in graphane: Effect of temperature
Baimova, J. A.; Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V.; Zhou, Kun
2016-05-15
The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.
Effect of directional distribution on non-linear energy transfer in wind wave spectrum
NASA Astrophysics Data System (ADS)
Lavrenov, I.; Krogstad, H.
2003-04-01
Different directional distribution is investigated from the point of view a non-linear energy transfer in wind wave spectrum. In order to produce a numerical simulation of the non-linear interaction in wind wave spectrum a method of numerical integration of the highest accuracy is used. It is shown that the value of non-linear energy transfer is very sensitive to details of frequency-angular approximation of wave spectrum. The non-linear energy transfer is non-zero in wide frequency - angular range, depending on spectrum angular distribution. The calculation results reveal the presence of non-linear energy transfer to spectral components, which propagation is opposite to wind direction for a wide spectrum angular distribution. It should be noted that neither the discrete interaction approximation (DIA) used in the WAM model (Komen et al., 1994), no diffusive approximation of the non-linear transfer (Pushkarev and Zakharov, 1999) are able not to produce this effect. Numerical results show that the bi-model angular distribution, obtained by Hwang et al. (2000) in field experiments, can be generated by the non-linear energy transfer, sending energy in side direction. Present study has been supported by the INTAS-99-666, INTAS-01-25, INTAS-01-234, INTAS-01-2156, RFBR- 01- 05-64846 Grants.
Large Enhancement of Third-Order Nonlinear Effects with a Resonant All-Dielectric Metasurface
2016-09-12
Large Enhancement of Third-Order Nonlinear Effects with a Resonant All -Dielectric Metasurface Samad Jafar-Zanjani,1, a) Jierong Cheng,1 Vladimir...September 2016) A novel low-profile nonlinear metasurface, consisting of a single-layer of all -dielectric material, is proposed and numerically investigated...with an unpatterend film. The proposed all -dielectric metasurface in this work is ultrathin and easy to fabricate. We envision a number of applications
Effects of Landau damping on finite amplitude low-frequency nonlinear waves in a dusty plasma
NASA Astrophysics Data System (ADS)
Sikdar, Arnab; Khan, Manoranjan
2017-06-01
The effect of linear ion Landau damping on weakly nonlinear as well as weakly dispersive low-frequency waves in a dusty plasma is investigated. The standard perturbative approach leads to the Korteweg-de Vries (KdV) equation with a linear Landau damping term for the dynamics of the low-frequency nonlinear wave. Landau damping causes the wave amplitude to decay with time and the dust charge variation enhances the damping rate.
Observed seasonal variations in exospheric effective temperatures
NASA Astrophysics Data System (ADS)
Mierkiewicz, E. J.; Roesler, F. L.; Nossal, S. M.
2012-06-01
High spectral resolution line profile observations indicate a reproducible semi-annual variation in the geocoronal hydrogen Balmer α effective temperature. These observations were made between 08 January 2000 and 21 November 2001 from Pine Bluff Observatory (WI) with a second generation double etalon Fabry-Perot annular summing spectrometer operating at a resolving power of 80,000. This data set spans sixty-four nights of observations (1404 spectra in total) over 20 dark-moon periods. A two cluster Gaussian model fitting procedure is used to determine Doppler line widths, accounting for fine structure contributions to the line, including those due to cascade; cascade contributions at Balmer α are found to be 5 ± 3%. An observed decrease in effective temperature with increasing shadow altitude is found to be a persistent feature for every night in which a wide range of shadow altitudes were sampled. A semiannual variation is observed in the column exospheric effective temperature with maxima near day numbers 100 and 300 and minima near day numbers 1 and 200. Temperatures ranged from ˜710 to 975 K. Average MSIS model exobase temperatures for similar conditions are approximately 1.5× higher than those derived from the Balmer α observations, a difference likely due to contributions to the observed Balmer α column emission from higher, cooler regions of the exosphere.
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
A single phenomenological constitutive equation is derived theoretically from first principles and applied to aluminum, tin and lead. The theory is based on deformation kinetics of steady creep in which the fundamental mechanism is atomic transport over potential barriers whose conformation is distorted by the application of a stress field. The form of the functional dependence of barrier distortion and stress over the entire temperature range is found to be a sigmoidal curve which tends to straight lines of a unit slope in the small and high stress regions. With this form of barrier distortion, the constitutive equation prediction the steady creep behavior of aluminum, tin and lead over a wide range of temperature and stress.
Shahmansouri, M.; Mamun, A. A.
2014-03-15
Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.
NASA Astrophysics Data System (ADS)
Lu, Xiaoxin; Yvonnet, Julien; Detrez, Fabrice; Bai, Jinbo
2017-05-01
Tunnelling effect is a possible mechanism to explain the apparent large electric conductivity and nonlinear electric behavior of graphene-reinforced nanocomposites with polymer matrix. In this work, a numerical modeling framework is proposed to evaluate the effective electric conductivity in polymer composites reinforced with graphene sheets, taking into account the electrical tunnelling effect, which allows conduction between graphene sheets at nanometric distances. We introduce a nonlinear Finite Element formulation and a numerical methodology to model the nonlocal and nonlinear effects introduced by the tunnelling effect conduction model within the polymer matrix between close graphene sheets. In addition, to avoid meshing the thickness of the graphene sheets and in view of their very high aspect ratio, a highly conducting surface model is employed. The computed effective conductivity is evaluated over representative volume elements containing arbitrary distributed graphene sheets. The results exhibit tendencies and percolation thresholds which are in qualitative agreement with the available experimental results.
Nonlinear theory of a "shear-current" effect and mean-field magnetic dynamos.
Rogachevskii, Igor; Kleeorin, Nathan
2004-10-01
The nonlinear theory of a "shear-current" effect in a nonrotating and nonhelical homogeneous turbulence with an imposed mean velocity shear is developed. The shear-current effect is associated with the W x J term in the mean electromotive force and causes the generation of the mean magnetic field even in a nonrotating and nonhelical homogeneous turbulence (where W is the mean vorticity and J is the mean electric current). It is found that there is no quenching of the nonlinear shear-current effect contrary to the quenching of the nonlinear alpha effect, the nonlinear turbulent magnetic diffusion, etc. During the nonlinear growth of the mean magnetic field, the shear-current effect only changes its sign at some value B (*) of the mean magnetic field. The magnitude B (*) determines the level of the saturated mean magnetic field which is less than the equipartition field. It is shown that the background magnetic fluctuations due to the small-scale dynamo enhance the shear-current effect and reduce the magnitude B (*) . When the level of the background magnetic fluctuations is larger than 1/3 of the kinetic energy of the turbulence, the mean magnetic field can be generated due to the shear-current effect for an arbitrary exponent of the energy spectrum of the velocity fluctuations.
NASA Astrophysics Data System (ADS)
Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong
2017-06-01
Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)
Abbas, Z.; Naveed, M.; Sajid, M.
2015-10-15
In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.
NASA Astrophysics Data System (ADS)
Abbas, Z.; Naveed, M.; Sajid, M.
2015-10-01
In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.
Effects of chilling temperatures on photosynthesis
USDA-ARS?s Scientific Manuscript database
Environmental stress is an inescapable reality for most plants growing in natural settings. Conditions of sub or supra-optimal temperatures, water deficit, water logging, salinity, and pollution can have dramatic effects on plant growth and development, and in agricultural settings, yield. In cotton...
Cepheid temperature and the Blazhko effect
NASA Technical Reports Server (NTRS)
Teays, Terry
1995-01-01
Two separate research projects were covered under this contract. The first project was to study the temperatures of Cepheid variable stars, while the second was a study of the Blazhko effect in RR Larae, both of them using IUE data. They will be reported on separately, in what follows.
Cepheid temperature and the Blazhko effect
NASA Astrophysics Data System (ADS)
Teays, Terry
1995-03-01
Two separate research projects were covered under this contract. The first project was to study the temperatures of Cepheid variable stars, while the second was a study of the Blazhko effect in RR Larae, both of them using IUE data. They will be reported on separately, in what follows.
Primarily nonlinear effects observed in a driven asymmetrical vibrating wire
NASA Astrophysics Data System (ADS)
Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.
2005-01-01
The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .