Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode
NASA Astrophysics Data System (ADS)
Wu, Gaomin; Long, Yang; Ren, Jie
2018-05-01
We demonstrate symmetric wave propagations in asymmetric nonlinear systems. By solving the nonlinear Schördinger equation, we first analytically prove the existence of symmetric transmission in asymmetric systems with a single nonlinear delta-function interface. We then point out that a finite width of the nonlinear interface region is necessary to produce nonreciprocity in asymmetric systems. However, a geometrical resonant condition for breaking nonreciprocal propagation is then identified theoretically and verified numerically. With such a resonant condition, the nonlinear interface region of finite width behaves like a single nonlinear delta-barrier so that wave propagations in the forward and backward directions are identical under arbitrary incident wave intensity. As such, reciprocity reemerges periodically in the asymmetric nonlinear system when changing the width of interface region. Finally, similar resonant conditions of discrete nonlinear Schördinger equation are discussed. Therefore, we have identified instances of reciprocity that breaking spatial symmetry in nonlinear interface systems is not sufficient to produce nonreciprocal wave propagation.
NASA Astrophysics Data System (ADS)
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
NASA Astrophysics Data System (ADS)
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background
NASA Astrophysics Data System (ADS)
Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo
2016-06-01
A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.
Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines
NASA Astrophysics Data System (ADS)
Wang, Heng; Zheng, Shuhua
2017-06-01
By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.
Generation of Caustics and Rogue Waves from Nonlinear Instability.
Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W
2017-11-17
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
Generation of Caustics and Rogue Waves from Nonlinear Instability
NASA Astrophysics Data System (ADS)
Safari, Akbar; Fickler, Robert; Padgett, Miles J.; Boyd, Robert W.
2017-11-01
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
Controllable rogue waves in the nonautonomous nonlinear system with a linear potential
NASA Astrophysics Data System (ADS)
Dai, C. Q.; Zheng, C. L.; Zhu, H. P.
2012-04-01
Based on the similarity transformation connected the nonautonomous nonlinear Schrödinger equation with the autonomous nonlinear Schrödinger equation, we firstly derive self-similar rogue wave solutions (rational solutions) for the nonautonomous nonlinear system with a linear potential. Then, we investigate the controllable behaviors of one-rogue wave, two-rogue wave and rogue wave triplets in a soliton control system. Our results demonstrate that the propagation behaviors of rogue waves, including postpone, sustainment, recurrence and annihilation, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the parameter Z 0. Moreover, the excitation time of controllable rogue waves is decided by the parameter T 0.
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjung; Kovacic, Gregor; Cai, David
Using the (1+1)D Majda-McLaughlin-Tabak model as an example, we present an extension of the wave turbulence (WT) theory to systems with strong nonlinearities. We demonstrate that nonlinear wave interactions renormalize the dynamics, leading to (i) a possible destruction of scaling structures in the bare wave systems and a drastic deformation of the resonant manifold even at weak nonlinearities, and (ii) creation of nonlinear resonance quartets in wave systems for which there would be no resonances as predicted by the linear dispersion relation. Finally, we derive an effective WT kinetic equation and show that our prediction of the renormalized Rayleigh-Jeans distributionmore » is in excellent agreement with the simulation of the full wave system in equilibrium.« less
NASA Astrophysics Data System (ADS)
Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.
2018-05-01
In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.
Generation mechanisms of fundamental rogue wave spatial-temporal structure.
Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling
2017-08-01
We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.
Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.
Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S
2009-05-01
We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
NASA Astrophysics Data System (ADS)
Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying
2018-04-01
The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
NASA Astrophysics Data System (ADS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.
Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves
NASA Astrophysics Data System (ADS)
Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
One-dimensional optical wave turbulence: Experiment and theory
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
2012-05-01
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
NASA Astrophysics Data System (ADS)
Li, Jibin
The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.
NASA Astrophysics Data System (ADS)
Raju, Thokala Soloman; Pal, Ritu
2018-05-01
We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan
2016-02-01
We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruban, V. P., E-mail: ruban@itp.ac.ru
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less
Nonlinear Alfvén wave propagating in ideal MHD plasmas
NASA Astrophysics Data System (ADS)
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
High-order rogue waves in vector nonlinear Schrödinger equations.
Ling, Liming; Guo, Boling; Zhao, Li-Chen
2014-04-01
We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.
Wave kinetics of random fibre lasers
Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.
2015-01-01
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177
General analytic results for nonlinear waves and solitons in molecular clouds
NASA Technical Reports Server (NTRS)
Adams, Fred C.; Fatuzzo, Marco; Watkins, Richard
1994-01-01
We study nonlinear wave phenomena in self-gravitating fluid systems, with a particular emphasis on applications to molecular clouds. This paper presents analytical results for one spatial dimension. We show that a large class of physical systems can be described by theories with a 'charge density' q(rho); this quantity replaces the density on the right-hand side of the Poisson equation for the gravitational potential. We use this formulation to prove general results about nonlinear wave motions in self-gravitating systems. We show that in order for stationary waves to exist, the total charge (the integral of the charge density over the wave profile) must vanish. This 'no-charge' property for solitary waves is related to the capability of a system to be stable to gravitational perturbations for arbitrarily long wavelengths. We find necessary and sufficient conditions on the charge density for the existence of solitary waves and stationary waves. We study nonlinear wave motions for Jeans-type theories (where q(rho) = rho-rho(sub 0)) and find that nonlinear waves of large amplitude are confined to a rather narrow range of wavelengths. We also study wave motions for molecular clouds threaded by magnetic fields and show how the allowed range of wavelengths is affected by the field strength. Since the gravitational force in one spatial dimension does not fall off with distance, we consider two classes of models with more realistic gravity: Yukawa potentials and a pseudo two-dimensional treatment. We study the allowed types of wave behavior for these models. Finally, we discuss the implications of this work for molecular cloud structure. We argue that molecular clouds can support a wide variety of wave motions and suggest that stationary waves (such as those considered in this paper) may have already been observed.
Heise, M; Hoffmann, Ch; Abshagen, J; Pinter, A; Pfister, G; Lücke, M
2008-02-15
We present a new mechanism that allows the stable existence of domain walls between oppositely traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that results directly from the nonlinearities in the underlying momentum balance. Our work provides the first observation and explanation of such strongly nonlinearly driven domain walls that separate structured states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes equations and experimental measurements.
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Manipulating acoustic wave reflection by a nonlinear elastic metasurface
NASA Astrophysics Data System (ADS)
Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent
2018-03-01
The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.
NASA Astrophysics Data System (ADS)
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-11-01
Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.
Comparison of heaving buoy and oscillating flap wave energy converters
NASA Astrophysics Data System (ADS)
Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.
2013-04-01
Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
2017-09-30
AFRL-RD-PS- AFRL-RD-PS- TR-2017-0047 TR-2017-0047 TIME -DOMAIN FULL-WAVE MODELING OF NONLINEAR AIR BREAKDOWN IN HIGH-POWER MICROWAVE...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...TITLE AND SUBTITLE Time -Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems 5a. CONTRACT NUMBER 5b
Kanna, T; Sakkaravarthi, K; Tamilselvan, K
2013-12-01
We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.
Wave cybernetics: A simple model of wave-controlled nonlinear and nonlocal cooperative phenomena
NASA Astrophysics Data System (ADS)
Yasue, Kunio
1988-09-01
A simple theoretical description of nonlinear and nonlocal cooperative phenomena is presented in which the global control mechanism of the whole system is given by the tuned-wave propagation. It provides us with an interesting universal scheme of systematization in physical and biological systems called wave cybernetics, and may be understood as a model realizing Bohm's idea of implicate order in natural philosophy.
Nonlinear wave chaos: statistics of second harmonic fields.
Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2017-10-01
Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.
A coupled "AB" system: Rogue waves and modulation instabilities.
Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N
2015-10-01
Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai
2013-07-15
We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less
Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.
NASA Astrophysics Data System (ADS)
Mahmoud, Abeer A.
2018-01-01
Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.
O Wave Interactions: Explosive Resonant Triads and Critical Layers.
NASA Astrophysics Data System (ADS)
Mahoney, Daniel J.
This thesis considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These are nearly linear waves with slowly varying amplitudes which become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability, in the sense that a weakly nonlinear perturbation to some system grows to such magnitudes that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems which are linearly or neutrally stable. This is contrasted with previous resolutions of this problem, which treated such perturbations as being large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims. These waves represent a potentially important effect in a variety of physical systems, most notably plasma physics. Attention here is turned to their occurrence in fluid mechanics. Here previous work is extended to include flow systems with continuously varying basic velocities and densities. Many of the problems encountered here will be found to be of a singular nature themselves, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context will be presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
NASA Astrophysics Data System (ADS)
Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li
2018-07-01
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
NASA Astrophysics Data System (ADS)
Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.
2014-11-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong
2017-07-01
The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.
Computational process to study the wave propagation In a non-linear medium by quasi- linearization
NASA Astrophysics Data System (ADS)
Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH
2018-03-01
Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.
Aspects of wave turbulence in preheating
NASA Astrophysics Data System (ADS)
Crespo, José A.; de Oliveira, H. P.
2014-06-01
In this work we have studied the nonlinear preheating dynamics of several inflationary models. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since the matter contents are fields instead of usual fluids. Turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the scalar fields. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number that indicates the energy transfer through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.
Interactions of large amplitude solitary waves in viscous fluid conduits
NASA Astrophysics Data System (ADS)
Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.
2014-07-01
The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.
Traveling wave to a reaction-hyperbolic system for axonal transport
NASA Astrophysics Data System (ADS)
Huang, Feimin; Li, Xing; Zhang, Yinglong
2017-07-01
In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong
2017-04-01
We investigate the defocusing coupled nonlinear Schrödinger equations from a 3×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.
Evidence of negative-index refraction in nonlinear chemical waves.
Yuan, Xujin; Wang, Hongli; Ouyang, Qi
2011-05-06
The negative index of refraction of nonlinear chemical waves has become a recent focus in nonlinear dynamics researches. Theoretical analysis and computer simulations have predicted that the negative index of refraction can occur on the interface between antiwaves and normal waves in a reaction-diffusion (RD) system. However, no experimental evidence has been found so far. In this Letter, we report our experimental design in searching for such a phenomenon in a chlorite-iodide-malonic acid (CIMA) reaction. Our experimental results demonstrate that competition between waves and antiwaves at their interface determines the fate of the wave interaction. The negative index of refraction was only observed when the oscillation frequency of a normal wave is significantly smaller than that of the antiwave. All experimental results were supported by simulations using the Lengyel-Epstein RD model which describes the CIMA reaction-diffusion system.
Rogue-wave pattern transition induced by relative frequency.
Zhao, Li-Chen; Xin, Guo-Guo; Yang, Zhan-Ying
2014-08-01
We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis is performed on these different type rogue waves, and the spectrum relations between them are discussed. We demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.
Nonlinear modulation of an extraordinary wave under the conditions of parametric decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2012-06-15
A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less
Models for short-wave instability in inviscid shear flows
NASA Astrophysics Data System (ADS)
Grimshaw, Roger
1999-11-01
The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.
Rogue waves and W-shaped solitons in the multiple self-induced transparency system.
Wang, Xin; Liu, Chong; Wang, Lei
2017-09-01
We study localized nonlinear waves on a plane wave background in the multiple self-induced transparency (SIT) system, which describes an important enhancement of the amplification and control of optical waves compared to the single SIT system. A hierarchy of exact multiparametric rational solutions in a compact determinant representation is presented. We demonstrate that this family of solutions contain known rogue wave solutions and unusual W-shaped soliton solutions. State transitions between the fundamental rogue waves and W-shaped solitons as well as higher-order nonlinear superposition modes are revealed in the zero-frequency perturbation region by the suitable choice for the background wavenumber of the electric field component. Particularly, it is found that the multiple SIT system can admit both stationary and nonstationary W-shaped solitons in contrast to the stationary results in the single SIT system. Moreover, the W-shaped soliton complex which is formed by a certain number of fundamental W-shaped solitons with zero phase parameters and its decomposition mechanism in the case of the nonzero phase parameters are shown. Meanwhile, some important characteristics of the nonlinear waves including trajectories and spectrum are discussed through the numerical and analytical methods.
Manafian Heris, Jalil; Lakestani, Mehrdad
2014-01-01
We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
NASA Astrophysics Data System (ADS)
Bendahmane, Issam; Triki, Houria; Biswas, Anjan; Saleh Alshomrani, Ali; Zhou, Qin; Moshokoa, Seithuti P.; Belic, Milivoj
2018-02-01
We present solitary wave solutions of an extended nonlinear Schrödinger equation with higher-order odd (third-order) and even (fourth-order) terms by using an ansatz method. The including high-order dispersion terms have significant physical applications in fiber optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary wave solutions of the extended model. Furthermore, we investigate the properties of these solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the system parameters for the existence of these structures are discussed exactly. The results show that the higher-order dispersion and nonlinear effects play a crucial role for the formation and properties of propagating waves.
Non-Destructive Evaluation of Material System Using Highly Nonlinear Acoustic Waves
NASA Astrophysics Data System (ADS)
Khatri, Devvrath
A chain of granular particles is one of the most studied examples of highly nonlinear systems deriving its response from the nonlinear Hertzian contact interaction between particles. Interest in these systems derives from their tunable dynamic response, encompassing linear, weakly nonlinear, and strongly nonlinear regimes, controlled by varying the static and dynamic load applied. In chains with a very weak (or zero) static precompression, the system supports the formation and propagation of highly nonlinear solitary waves (HNSWs). The dual-nonlinear interaction between particles (i.e., a power-law type contact potential in compression, and zero strength in tension) combined with discreteness of the system, makes the granular system highly tunable. The propagation properties of these waves, such as traveling pulse width, wave speed, number of separated pulses (single or train of pulses), etc., can be controlled by modifying one or many of the parameters, like the particle's dimension, material properties, static and dynamic force amplitude, the type and duration of the initial excitation applied to the system, and/or the periodicity of the chain. The ability to control the wave properties in such chains has been proposed for several different practical engineering applications. The dynamic properties of these granular chains have been conventionally studied using discrete particle models (DPMs) which consider the particles in the chains as point masses connected by nonlinear Hertzian springs with the neighboring particles. Although, this is a good approximation under proper circumstances, it does not capture many features of the three dimensional elastic particles such as the elastic wave propagation within the particles, the local deformation of the particles in the vicinity of the contact point, the corresponding changes in the contact area, and the collective vibrations of the particles among others. This thesis focuses on the development of a finite element model (FEM) using the commercially available software Abaqus, which takes into account many of these characteristic features. The finite element model discretizes particles by considering them as three-dimensional deformable bodies of revolution and describes the nonlinear dynamic response of one-dimensional granular chains composed of particles with various geometries and orientations. We showed that particles' geometries and orientations provide additional design parameters for controlling the dynamic response of the system, compared to chains composed of spherical particles. We also showed that the tunable and compact nature of these waves can be used to tailor the properties of HNSWs for specific application, such as information carriers for actuation and sensing of mechanical properties and boundary effects of adjoining media in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Using experiments and numerics, we characterized interface dynamics between granular media and adjoining linear elastic media, and found that the coupling produced temporary localization of the incident waves at the boundaries between the two media and their decomposition into reflected waves. We monitored the formation of reflected solitary waves propagating back from the interface and found that their properties are sensitive to the geometric and material properties of the adjoining media. The work done in this research enhances our understanding of the basic physics and tunability of nonlinear granular media, and further establishes a theoretical and numerical foundation in the applications of HNSWs as information carriers.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)
2002-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang
2018-06-01
Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.
NASA Astrophysics Data System (ADS)
Xie, Tao; Zou, Guang-Hui; William, Perrie; Kuang, Hai-Lan; Chen, Wei
2010-05-01
Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed.
Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi
2018-03-01
Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.
NASA Astrophysics Data System (ADS)
Bona, J. L.; Chen, M.; Saut, J.-C.
2004-05-01
In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.
Localization of intense electromagnetic waves in a relativistically hot plasma.
Shukla, P K; Eliasson, B
2005-02-18
We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a relativistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a nonlinear Schro dinger equation describing the dynamics of the EMWs and the Poisson-relativistic Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with localized EMWs.
Nonlinear ultrasonic imaging with X wave
NASA Astrophysics Data System (ADS)
Du, Hongwei; Lu, Wei; Feng, Huanqing
2009-10-01
X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.
Nonlinear modes of the tensor Dirac equation and CPT violation
NASA Technical Reports Server (NTRS)
Reifler, Frank J.; Morris, Randall D.
1993-01-01
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.
Stability of nonlinear waves and patterns and related topics
NASA Astrophysics Data System (ADS)
Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn
2018-04-01
Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.
A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acousticmore » waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.« less
Waves at Navigation Structures
2015-10-30
upgrades the Coastal Modeling System (CMS) wave models CMS-Wave, a phase- averaged spectral wave model, and BOUSS-2D, a Boussinesq type nonlinear wave...developing WaveNet and TideNet, two Web-based tool systems for wind and wave data access and processing, which provide critical data for USACE project...practical applications, resulting in optimization of navigation system to improve safety, reliability and operations with innovative infrastructures
1986-06-10
system consisting of a sampler, a nonlinear rectifier, and a low-pass filter is evaluated generally , for arbitrary half-wave or full-wave v-th law...spectra, the possibility of using deliberate undersampling with no loss of performance is illustrated. The use of a half-wave rectifier generally ... some cases, significantly so. Programs for all procedures employed are presented so that investigation of additional cases or combinations of
NASA Astrophysics Data System (ADS)
Seadawy, A. R.; El-Rashidy, K.
2018-03-01
The Kadomtsev-Petviashvili (KP) and modified KP equations are two of the most universal models in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive waves. The generalized extended tanh method and the F-expansion method are used to derive exact solitary waves solutions of KP and modified KP equations. The region of solutions are displayed graphically.
Nonlinear hyperbolic theory of thermal waves in metals
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Choi, S. H.
1975-01-01
A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.
Traveling waves in an optimal velocity model of freeway traffic.
Berg, P; Woods, A
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Traveling waves in an optimal velocity model of freeway traffic
NASA Astrophysics Data System (ADS)
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
NASA Astrophysics Data System (ADS)
Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.
2012-09-01
The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Nonlinear Waves and Inverse Scattering
1989-01-01
transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional
Chirped self-similar waves for quadratic-cubic nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Pal, Ritu; Loomba, Shally; Kumar, C. N.
2017-12-01
We have constructed analytical self-similar wave solutions for quadratic-cubic Nonlinear Schrödinger equation (QC-NLSE) by means of similarity transformation method. Then, we have investigated the role of chirping on these self-similar waves as they propagate through the tapered graded index waveguide. We have revealed that the chirping leads to interesting features and allows us to control the propagation of self-similar waves. This has been demonstrated for two cases (i) periodically distributed system and (ii) constant choice of system parameters. We expect our results to be useful in designing high performance optical devices.
Refraction of dispersive shock waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.
2012-09-01
We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Xiao; Zhang, Lu Lu; Li, Min; Qi, Feng-Hua
2015-09-01
Under investigation in this paper is a amplifier nonlinear Schrödinger Maxwell-Bloch (NLS-MB) system which describes the propagation of optical pulses in an inhomogeneous erbium doped fiber. Nonautonomous breather and rogue wave (RW) solutions of the amplifier NLS-MB system are constructed via the modified Darboux transformation with the inhomogeneous parameters. By suitably choosing the dispersion coefficient function, several types of inhomogeneous nonlinear waves are obtained in: (1) periodically fluctuating dispersion profile; (2) exponentially increasing (or decreasing) dispersion profile; and (3) linearly decreasing (increasing) dispersion profile. The nonautonomous characteristics of the breathers and RWs are graphically investigated, including the breather accelerating and decelerating motions, boomerang breather, breather compression, breather evolution, periodic RW, boomerang RW and stationary RW. Such novel patterns as the periodic breathers and rogue-wave fission of the amplifier NLS-MB system are exhibited by properly adjusting the group velocity dispersion function and interaction parameter between silica and doped atoms.
NASA Astrophysics Data System (ADS)
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
NASA Astrophysics Data System (ADS)
Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim
2014-05-01
The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less
NASA Astrophysics Data System (ADS)
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
NASA Astrophysics Data System (ADS)
Gupta, Samit Kumar
2018-03-01
Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.
2015-10-15
Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
NASA Astrophysics Data System (ADS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
Nonlinear Time-Reversal in a Wave Chaotic System
NASA Astrophysics Data System (ADS)
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Stability of nonlinear waves and patterns and related topics.
Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn
2018-04-13
Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).
Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming; Wu, Jianhong
Reaction diffusion equations with delayed nonlinear reaction terms are used as prototypes to motivate an appropriate abstract formulation of dynamical systems with unimodal nonlinearity. For such non-monotone dynamical systems, we develop a general comparison principle and show how this general comparison principle, coupled with some existing results for monotone dynamical systems, can be used to establish results on the asymptotic speeds of spread and travelling waves. We illustrate our main results by an integral equation which includes a nonlocal delayed reaction diffusion equation and a nonlocal delayed lattice differential system in an unbounded domain, with the non-monotone nonlinearities including the Ricker birth function and the Mackey-Glass hematopoiesis feedback.
Waves at Navigation Structures
2014-10-27
upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the
NASA Astrophysics Data System (ADS)
Al-Asadi, H. A.
2013-02-01
We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
The effect of system nonlinearities on system noise statistics
NASA Technical Reports Server (NTRS)
Robinson, L. H., Jr.
1971-01-01
The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.
Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system
NASA Astrophysics Data System (ADS)
Tang, Xiao-yan; Liang, Zu-feng; Hao, Xia-zhi
2018-07-01
A new general nonlocal modified KdV equation is derived from the nonlinear inviscid dissipative and equivalent barotropic vorticity equation in a β-plane. The nonlocal property is manifested in the shifted parity and delayed time reversal symmetries. Exact solutions of the nonlocal modified KdV equation are obtained including periodic waves, kink waves, solitary waves, kink- and/or anti-kink-cnoidal periodic wave interaction solutions, which can be utilized to describe various two-place and time-delayed correlated events. As an illustration, a special approximate solution is applied to theoretically capture the salient features of two correlated dipole blocking events in atmospheric dynamical systems.
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
NASA Astrophysics Data System (ADS)
Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.
2018-01-01
A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.
Salient features of solitary waves in dusty plasma under the influence of Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004
The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less
Undular bore theory for the Gardner equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.
2012-09-01
We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, C. Z.; Huang, T. W.; Liu, Z. J.
2014-03-15
Theoretical analysis and corresponding 1D Particle-in-Cell (PIC) simulations of ponderomotive driven Vlasov–Poisson system in electron acoustic wave (EAW) parametric region are demonstrated. Theoretical analysis identifies that under the resonant condition, a monochromatic EAW can be excited when the wave number of the drive ponderomotive force satisfies 0.26≲k{sub d}λ{sub D}≲0.53. If k{sub d}λ{sub D}≲0.26, nonlinear superposition of harmonic waves can be resonantly excited, called kinetic electrostatic electron nonlinear waves. Numerical simulations have demonstrated these wave excitation and evolution dynamics, in consistence with the theoretical predictions. The physical nature of these two waves is supposed to be interaction of harmonic waves, andmore » their similar phase space properties are also discussed.« less
NASA Astrophysics Data System (ADS)
de Brito, P. E.; Nazareno, H. N.
2012-09-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
NASA Astrophysics Data System (ADS)
Jiménez, N.; Romero-García, V.; Picó, R.; Garcia-Raffi, L. M.; Staliunas, K.
2015-11-01
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10-4). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.
Optical Random Riemann Waves in Integrable Turbulence
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Gustave, François; Suret, Pierre; El, Gennady
2017-06-01
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schrödinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, prebreaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru; Nuray, Elif
2018-01-01
In this paper, we consider a coupled nonlinear Maccari’s system (CNMS) which describes the motion of isolated waves localized in a small part of space. There are some integration tools that are adopted to retrieve the solitary wave solutions. They are the modified F-Expansion and the generalized projective Riccati equation methods. Topological, non-topological, complexiton, singular and trigonometric function solutions are derived. A comparison between the results in this paper and the well-known results in the literature is also given. The derived structures of the obtained solutions offer a rich platform to study the nonlinear CNMS. Numerical simulation of the obtained solutions are presented with interesting figures showing the physical meaning of the solutions.
NASA Astrophysics Data System (ADS)
Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.
2017-10-01
Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
NASA Astrophysics Data System (ADS)
Guha, Anirban
2017-11-01
Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.
Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence
NASA Astrophysics Data System (ADS)
Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui
2018-01-01
This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.
Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage
NASA Astrophysics Data System (ADS)
Khrapov, Sergey; Khoperskov, Alexander
2018-03-01
A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.
Nonlinear Wave Chaos and the Random Coupling Model
NASA Astrophysics Data System (ADS)
Zhou, Min; Ott, Edward; Antonsen, Thomas M.; Anlage, Steven
The Random Coupling Model (RCM) has been shown to successfully predict the statistical properties of linear wave chaotic cavities in the highly over-moded regime. It is of interest to extend the RCM to strongly nonlinear systems. To introduce nonlinearity, an active nonlinear circuit is connected to two ports of the wave chaotic 1/4-bowtie cavity. The active nonlinear circuit consists of a frequency multiplier, an amplifier and several passive filters. It acts to double the input frequency in the range from 3.5 GHz to 5 GHz, and operates for microwaves going in only one direction. Measurements are taken between two additional ports of the cavity and we measure the statistics of the second harmonic voltage over an ensemble of realizations of the scattering system. We developed an RCM-based model of this system as two chaotic cavities coupled by means of a nonlinear transfer function. The harmonics received at the output are predicted to be the product of three statistical quantities that describe the three elements correspondingly. Statistical results from simulation, RCM-based modeling, and direct experimental measurements will be compared. ONR under Grant No. N000141512134, AFOSR under COE Grant FA9550-15-1-0171,0 and the Maryland Center for Nanophysics and Advanced Materials.
Zhong, Wei-Ping; Belić, Milivoj
2010-10-01
Exact traveling wave and soliton solutions, including the bright-bright and dark-dark soliton pairs, are found for the system of two coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients, by employing the homogeneous balance principle and the F-expansion technique. A kind of shape-changing soliton collision is identified in the system. The collision is essentially elastic between the two solitons with opposite velocities. Our results demonstrate that the dynamics of solitons can be controlled by selecting the diffraction, nonlinearity, and gain coefficients.
Route to thermalization in the α-Fermi–Pasta–Ulam system
Onorato, Miguel; Vozella, Lara; Lvov, Yuri V.
2015-01-01
We study the original α-Fermi–Pasta–Ulam (FPU) system with N = 16, 32, and 64 masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave–wave interaction theory; i.e., we assume that, in the weakly nonlinear regime (the one in which Fermi was originally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis of the α-FPU equation of motion, we find that the first nontrivial resonances correspond to six-wave interactions. Those are precisely the interactions responsible for the thermalization of the energy in the spectrum. We predict that, for small-amplitude random waves, the timescale of such interactions is extremely large and it is of the order of 1/ϵ8, where ϵ is the small parameter in the system. The wave–wave interaction theory is not based on any threshold: Equipartition is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical simulations. A key role in our finding is played by the Umklapp (flip-over) resonant interactions, typical of discrete systems. The thermodynamic limit is also briefly discussed. PMID:25805822
Optical rogue waves and stimulated supercontinuum generation
NASA Astrophysics Data System (ADS)
Solli, Daniel R.; Ropers, Claus; Jalali, Bahram
2010-06-01
Nonlinear action is known for its ability to create unusual phenomena and unexpected events. Optical rogue waves-freak pulses of broadband light arising in nonlinear fiber-testify to the fact that optical nonlinearities are no less capable of generating anomalous events than those in other physical contexts. In this paper, we will review our work on optical rogue waves, an ultrafast phenomenon counterpart to the freak ocean waves known to roam the open oceans. We will discuss the experimental observation of these rare events in real time and the measurement of their heavytailed statistical properties-a probabilistic form known to appear in a wide variety of other complex systems from financial markets to genetics. The nonlinear Schrödinger equation predicts the existence of optical rogue waves, offering a means to study their origins with simulations. We will also discuss the type of initial conditions behind optical rogue waves. Because a subtle but specific fluctuation leads to extreme waves, the rogue wave instability can be harnessed to produce these events on demand. By exploiting this property, it is possible to produce a new type of optical switch as well as a supercontinuum source that operates in the long pulse regime but still achieves a stable, coherent output.
NASA Astrophysics Data System (ADS)
Shen, Yanfeng
2017-04-01
This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.
Spectra of Baroclinic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1996-01-01
Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.
Kalman filter control of a model of spatiotemporal cortical dynamics
Schiff, Steven J; Sauer, Tim
2007-01-01
Recent advances in Kalman filtering to estimate system state and parameters in nonlinear systems have offered the potential to apply such approaches to spatiotemporal nonlinear systems. We here adapt the nonlinear method of unscented Kalman filtering to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model for cerebral cortex. We demonstrate the ability to track spiral wave dynamics, and to use an observer system to calculate control signals delivered through applied electrical fields. We demonstrate how this strategy can control the frequency of such a system, or quench the wave patterns, while minimizing the energy required for such results. These findings are readily testable in experimental applications, and have the potential to be applied to the treatment of human disease. PMID:18310806
Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.
2016-01-01
Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513
Akhmediev, Nail; Ankiewicz, Adrian
2011-04-01
We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.
Possible management of near shore nonlinear surging waves through bottom boundary conditions
NASA Astrophysics Data System (ADS)
Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan
2017-03-01
We propose an alternative way for managing near shore surging waves, including extreme waves like tsunamis, going beyond the conventional passive measures like the warning system. We study theoretically the possibility of influencing the nonlinear surface waves through a leakage boundary effect at the bottom. It has been found through analytic result, that the controlled leakage at the bottom might regulate the amplitude of the surface solitary waves. This could lead to a possible decay of the surging waves to reduce its hazardous effects near the shore. Our theoretical results are estimated by applying it to a real coastal bathymetry of the Bay of Bengal in India.
Nonlinear dynamics near the stability margin in rotating pipe flow
NASA Technical Reports Server (NTRS)
Yang, Z.; Leibovich, S.
1991-01-01
The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.
NASA Astrophysics Data System (ADS)
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-11
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
Solitary waves in dimer binary collision model
NASA Astrophysics Data System (ADS)
Ahsan, Zaid; Jayaprakash, K. R.
2017-01-01
Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.
A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao
2016-10-01
A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.
Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems
Trillo, S.; Gongora, J. S. Totero; Fratalocchi, A.
2014-01-01
We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign. PMID:25468032
Influence of optical activity on rogue waves propagating in chiral optical fibers.
Temgoua, D D Estelle; Kofane, T C
2016-06-01
We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.
Nonlinear energy transport in one-dimensional lattices
NASA Astrophysics Data System (ADS)
Vuppuluri, P.; Hamilton, M.; de Alcantara Bonfim, O. F.
2007-03-01
We present a simple lattice model consisting of a one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in the horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs. In the transverse directions the springs are either in the extended or compressed state depending on the position of the mass. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytical solution for these nonlinear waves is found. Numeric integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves. Nonlinear supratransmission is examined and shown to exist in the model and an explanation of its mechanism is presented.
Nonlinear dynamics of electromagnetic turbulence in a nonuniform magnetized plasma
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mirza, Arshad M.; Faria, R. T.
1998-03-01
By using the hydrodynamic electron response with fixed (kinetic) ions along with Poisson's equation as well as Ampère's law, a system of nonlinear equations for low-frequency (in comparison with the electron gyrofrequency) long-(short-) wavelength electromagnetic waves in a nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are obtained and analyzed. It is found that sheared equilibrium flows can cause instability of Alfvén-like electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that possible stationary solutions of the nonlinear equations without dissipation can be represented in the form of various types of vortices. On the other hand, the temporal behavior of our nonlinear dissipative systems without the equilibrium density inhomogeneity can be described by the generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead to even qualitative changes in the chaotic dynamics. The results of our investigation should be useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in space and laboratory plasmas.
Limitations on the upconversion of ion sound to Langmuir turbulence
NASA Technical Reports Server (NTRS)
Vlahos, L.; Papadopoulos, K.
1982-01-01
The weak turbulence theory of Tsytovich, Stenflo and Wilhelmsson (1981) for evaluation of the nonlinear transfer of ion acoustic waves to Langmuir waves is shown to be limited in its region of validity to the level of ion acoustic waves. It is also demonstrated that, in applying the upconversion of ion sound to Langmuir waves for electron acceleration, nonlinear scattering should be self-consistently included, with a suppression of the upconversion process resulting. The impossibility of accelerating electrons by such a process for any reasonable physical system is thereby reaffirmed.
Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry
2016-09-19
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.
Mukdadi, Osama; Shandas, Robin
2004-01-01
Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.
Nonparaxial rogue waves in optical Kerr media.
Temgoua, D D Estelle; Kofane, T C
2015-06-01
We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion, nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial rogue waves may give another opportunity to perform experimental realizations and potential applications in optical fibers.
Nonlinear dispersive waves in repulsive lattices
NASA Astrophysics Data System (ADS)
Mehrem, A.; Jiménez, N.; Salmerón-Contreras, L. J.; García-Andrés, X.; García-Raffi, L. M.; Picó, R.; Sánchez-Morcillo, V. J.
2017-07-01
The propagation of nonlinear waves in a lattice of repelling particles is studied theoretically and experimentally. A simple experimental setup is proposed, consisting of an array of coupled magnetic dipoles. By driving harmonically the lattice at one boundary, we excite propagating waves and demonstrate different regimes of mode conversion into higher harmonics, strongly influenced by dispersion and discreteness. The phenomenon of acoustic dilatation of the chain is also predicted and discussed. The results are compared with the theoretical predictions of the α -Fermi-Pasta-Ulam equation, describing a chain of masses connected by nonlinear quadratic springs and numerical simulations. The results can be extrapolated to other systems described by this equation.
Long-Time Asymptotics of a Box-Type Initial Condition in a Viscous Fluid Conduit
NASA Astrophysics Data System (ADS)
Franco, Nevil; Webb, Emily; Maiden, Michelle; Hoefer, Mark; El, Gennady
2017-11-01
The initial value problem for a localized hump disturbance is fundamental to dispersive nonlinear waves, beginning with studies of the celebrated, completely integrable Korteweg-de Vries equation. However, understanding responses to similar disturbances in many realistic dispersive wave systems is more complicated because they lack the mathematical property of complete integrability. This project applies Whitham nonlinear wave modulation theory to estimate how a viscous fluid conduit evolves this classic initial value problem. Comparisons between theory, numerical simulations, and experiments are presented. The conduit system consists of a viscous fluid column (glycerol) and a diluted, dyed version of the same fluid introduced to the column through a nozzle at the bottom. Steady injection and the buoyancy of the injected fluid leads to the eventual formation of a stable fluid conduit. Within this structure, a one hump disturbance is introduced and is observed to break up into a quantifiable number of solitons. This structure's experimental evolution is to Whitham theory and numerical simulations of a long-wave interfacial model equation. The method presented is general and can be applied to other dispersive nonlinear wave systems. Please email me, as I am the submitter.
Hydroelastic response of a floating runway to cnoidal waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertekin, R. C., E-mail: ertekin@hawaii.edu; Xia, Dingwu
2014-02-15
The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety and survivability. An efficient and robust nonlinear hydroelastic model is required to predict accurately the motion of and the dynamic loads on a VLFS due to such large waves. We develop a nonlinear theory to predict the hydroelastic response of a VLFS in the presence of cnoidal waves and compare the predictions with the linear theory that is also developed here. This hydroelastic problem is formulated by directly coupling the structure with the fluid, by usemore » of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid structure system, together with the appropriate jump conditions are solved in two-dimensions by the finite-difference method. The numerical model is used to study the nonlinear response of a VLFS to storm waves which are modeled by use of the cnoidal-wave theory. Parametric studies show that the nonlinearity of the waves is very important in accurately predicting the dynamic bending moment and wave run-up on a VLFS in high seas.« less
Nonlinear Tides in Close Binary Systems
NASA Astrophysics Data System (ADS)
Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh
2012-06-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P <~ a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing; this coupling appears particularly efficient at draining energy out of the dynamical tide and may be more important than either wave breaking or parametric resonance at determining the nonlinear dissipation of the dynamical tide.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated strain-rates introduced at the end of the structure where the load is applied. In addition, it is shown that when steep wave fronts are generated in the nonlinear viscoelastic material, energy dissipation is focused in those wave fronts implying deposition of energy in a highly localized region of the material. Novel mechanisms for brain tissue damage are proposed based on the results obtained. The first mechanism is related to the dissipation of energy at steep wave fronts, while the second one is related to the interaction of steep wave fronts with axons encountered on its way through the structure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Geometrically induced nonlinear dynamics in one-dimensional lattices
NASA Astrophysics Data System (ADS)
Hamilton, Merle D.; de Alcantara Bonfim, O. F.
2006-03-01
We present a lattice model consisting of a single one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in a horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other linear springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs, where in the transverse direction the springs are either in the extended or compressed state depending on the position of the masses. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytic solution for these nonlinear waves is found. Numerical integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves.
NASA Astrophysics Data System (ADS)
Saha, Asit
2017-03-01
Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less
Decoupling nonclassical nonlinear behavior of elastic wave types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less
Electronegative nonlinear oscillating modes in plasmas
NASA Astrophysics Data System (ADS)
Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin
2018-02-01
The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.
Controlling modal interactions in lasers for frequency selection and power enhancement
NASA Astrophysics Data System (ADS)
Ge, Li
2015-03-01
The laser is an out-of-equilibrium non-linear wave system where the interplay of the cavity geometry and non-linear wave interactions determines the self-organized oscillation frequencies and the associated spatial field patterns. Using the correspondence between nonlinear and linear systems, we propose a simple and systematic method to achieve selective excitation of lasing modes that would have been dwarfed by more dominant ones. The key idea is incorporating the control of modal interaction into the spatial pump profile. Our proposal is most valuable in the regime of spatially and spectrally overlapping modes, which can lead to a significant enhancement of laser power as well.
Nonlinear Dynamics of a Diffusing Interface
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
2001-01-01
Excitation of two miscible-viscous liquids inside a bounded enclosure in a microgravity environment has shown the evolution of quasi-stationary waves of various modes for a range of parameters. We examine computationally the nonlinear dynamics of the system as the interface breakup and bifurcates to resonance structures typified by the Rayleigh-Taylor instability mechanism. Results show that when the mean steady field is much smaller than the amplitude of the sinusoidal excitation, the system behaves linearly, and growth of quasi-stationary waves occurs through the Kelvin-Helmholtz instability mechanism. However, as the amplitude of excitation increases, nonlinearity occurs through subharmonic bifurcation prior to broadband chaos.
NASA Astrophysics Data System (ADS)
Katayama, Soichiro
We consider the Cauchy problem for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions. Under the null condition for such systems, the global existence of small amplitude solutions is known. In this paper, we will show that the global solution is asymptotically free in the energy sense, by obtaining the asymptotic pointwise behavior of the derivatives of the solution. Nonetheless we can also show that the pointwise behavior of the solution itself may be quite different from that of the free solution. In connection with the above results, a theorem is also developed to characterize asymptotically free solutions for wave equations in arbitrary space dimensions.
Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.
Bugaychuk, S; Conte, R
2012-08-01
We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
Chan, H N; Malomed, B A; Chow, K W; Ding, E
2016-01-01
Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.
Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.
2018-02-01
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.
Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
NASA Astrophysics Data System (ADS)
Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid
2018-06-01
Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.
Study of Linear and Nonlinear Waves in Plasma Crystals Using the Box_Tree Code
NASA Astrophysics Data System (ADS)
Qiao, K.; Hyde, T.; Barge, L.
Dusty plasma systems play an important role in both astrophysical and planetary environments (protostellar clouds, planetary ring systems and magnetospheres, cometary environments) and laboratory settings (plasma processing or nanofabrication). Recent research has focussed on defining (both theoretically and experimentally) the different types of wave mode propagations, which are possible within plasma crystals. This is an important topic since several of the fundamental quantities for characterizing such crystals can be obtained directly from an analysis of the wave propagation/dispersion. This paper will discuss a num rical model fore 2D-monolayer plasma crystals, which was established using a modified box tree code. Different wave modes were examined by adding a time dependent potential to the code designed to simulate a laser radiation perturbation as has been applied in many experiments. Both linear waves (for example, longitudinal and transverse dust lattice waves) and nonlinear waves (solitary waves) are examined. The output data will also be compared with the results of corresponding experiments and discussed.
Optical rogue waves generation in a nonlinear metamaterial
NASA Astrophysics Data System (ADS)
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
Strong Langmuir Turbulence and Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Glanz, James
1991-02-01
The staircase expansion is a new mathematical technique for deriving reduced, nonlinear-PDE descriptions from the plasma-moment equations. Such descriptions incorporate only the most significant linear and nonlinear terms of more complex systems. The technique is used to derive a set of Dawson-Zakharov or "master" equations, which unify and generalize previous work and show the limitations of models commonly used to describe nonlinear plasma waves. Fundamentally new wave-evolution equations are derived that admit of exact nonlinear solutions (solitary waves). Analytic calculations illustrate the competition between well-known effects of self-focusing, which require coupling to ion motion, and pure-electron nonlinearities, which are shown to be especially important in curved geometries. Also presented is an N -moment hydrodynamic model derived from the Vlasov equation. In this connection, the staircase expansion is shown to remain useful for all values of N >= 3. The relevance of the present work to nonlocally truncated hierarchies, which more accurately model dissipation, is briefly discussed. Finally, the general formalism is applied to the problem of electromagnetic emission from counterpropagating Langmuir pumps. It is found that previous treatments have neglected order-unity effects that increase the emission significantly. Detailed numerical results are presented to support these conclusions. The staircase expansion--so called because of its appearance when written out--should be effective whenever the largest contribution to the nonlinear wave remains "close" to some given frequency. Thus the technique should have application to studies of wake-field acceleration schemes and anomalous damping of plasma waves.
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Effect of electron beam on the properties of electron-acoustic rogue waves
NASA Astrophysics Data System (ADS)
El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.
2015-04-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.
NASA Astrophysics Data System (ADS)
Herbold, Eric
2005-07-01
Strongly nonlinear phononic crystals were assembled from chains of stainless steel spheres with diameter 4.78 mm. Propagation of solitary waves and splitting of initial pulse into train of solitary waves excited by the impact of piston was investigated in different viscous media in experiments and in numerical calculations. Oil of various grades was used to introduce controlled dissipation into the system. Preliminary results indicate that splitting of the initial pulse into the train of solitary waves was dramatically influenced by viscosity. This work was supported by NSF (Grant No. DCMS03013220).
Nonlinear Light Dynamics in Multi-Core Structures
2017-02-27
be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a
Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model
NASA Astrophysics Data System (ADS)
Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.
2014-12-01
We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.
Linear and nonlinear dynamics of isospectral granular chains
NASA Astrophysics Data System (ADS)
Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.
2017-04-01
We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Gaussian solitary waves and compactons in Fermi–Pasta–Ulam lattices with Hertzian potentials
James, Guillaume; Pelinovsky, Dmitry
2014-01-01
We consider a class of fully nonlinear Fermi–Pasta–Ulam (FPU) lattices, consisting of a chain of particles coupled by fractional power nonlinearities of order α>1. This class of systems incorporates a classical Hertzian model describing acoustic wave propagation in chains of touching beads in the absence of precompression. We analyse the propagation of localized waves when α is close to unity. Solutions varying slowly in space and time are searched with an appropriate scaling, and two asymptotic models of the chain of particles are derived consistently. The first one is a logarithmic Korteweg–de Vries (KdV) equation and possesses linearly orbitally stable Gaussian solitary wave solutions. The second model consists of a generalized KdV equation with Hölder-continuous fractional power nonlinearity and admits compacton solutions, i.e. solitary waves with compact support. When , we numerically establish the asymptotically Gaussian shape of exact FPU solitary waves with near-sonic speed and analytically check the pointwise convergence of compactons towards the limiting Gaussian profile. PMID:24808748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali Shan, S.; National Centre for Physics; Pakistan Institute of Engineering and Applied Sciences
2016-07-15
In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positronmore » beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.« less
Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeed, R.; Mushtaq, A.
2009-03-15
Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n{sub e0}{approx}10{sup 4} cm{sup -3}. It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected bymore » the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.« less
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring. PMID:24691462
NASA Astrophysics Data System (ADS)
Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui
2018-02-01
Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Enhancement of laser power-efficiency by control of spatial hole burning interactions
NASA Astrophysics Data System (ADS)
Ge, Li; Malik, Omer; Türeci, Hakan E.
2014-11-01
The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.
Nonlinear spin waves in magnetic thin films - foldover, dispersive shock waves, and spin pumping
NASA Astrophysics Data System (ADS)
Janantha, Pasdunkorale Arachchige Praveen
Three nonlinear phenomena of spin waves and the spin Seebeck effect in yttrium iron garnet (YIG)/Pt bi-layer structures are studied in this thesis and are reported in detail in Chapters 4-7. In the fourth chapter, the first observation of foldover effect of nonlinear eigenmodes in feedback ring systems is reported. The experiments made use of a system that consisted of a YIG thin film strip, which supported the propagation of forward volume spin waves, and a microwave amplifier, which amplified the signal from the output of the YIG strip and then fed it back to the input of the strip. The signal amplitude vs. frequency response in this ring system showed resonant peaks which resulted from ring eigenmodes. With an increase in the resonance amplitude, those resonant peaks evolved from symmetric peaks to asymmetric ones and then folded over to higher frequencies. The experimental observations were reproduced by theoretical calculations that took into account the nonlinearity-produced frequency shift of the traveling spin waves. The fifth chapter presents the first experimental observation of the formation of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear spin waves. The experiments used a microwave step pulse to excite a spin-wave step pulse in a YIG thin film strip, in which the spin-wave amplitude increases rapidly. Under certain conditions, the spin-wave pulse evolved into a DSW excitation that consisted of a train of dark soliton-like dips with both the dip width and depth increasing from the front to the back and was terminated by a black soliton that had an almost zero intensity and a nearly 180° phase jump at its center. The sixth chapter reports on the spin pumping due to traveling spin waves. The experiment used a micron-thick YIG strip capped by a nanometer-thick Pt layer. The YIG film was biased by an in-plane magnetic field. The spin waves pumped spin currents into the Pt layer, and the later produced electrical voltages across the length of the Pt strip through the inverse spin Hall effect (ISHE). Several distinct pumping regimes were observed and were interpreted in the frame work of the nonlinear three-wave splitting processes of the spin waves. The seventh chapter presents the first experimental work on the roles of damping in the spin Seebeck effect (SSE). The experiments used YIG/Pt bi-layered structures where the YIG films exhibited very similar structural and static magnetic properties but very different damping. The data indicate that a decrease in the damping of the YIG film gives rise to an increase in the SSE coefficient, and this response shows quasi-linear behavior. The data also indicate that the SSE coefficient shows no notable dependences on the enhanced damping due to spin pumping.
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
El-Shamy, E F
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
Causal properties of nonlinear gravitational waves in modified gravity
NASA Astrophysics Data System (ADS)
Suvorov, Arthur George; Melatos, Andrew
2017-09-01
Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.
AKNS eigenvalue spectrum for densely spaced envelope solitary waves
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey; Starobor, Alexey
2010-05-01
The problem of the influence of one envelope soliton to the discrete eigenvalues of the associated scattering problem for the other envelope soliton, which is situated close to the first one, is discussed. Envelope solitons are exact solutions of the integrable nonlinear Schrödinger equation (NLS). Their generalizations (taking into account the background nonlinear waves [1-4] or strongly nonlinear effects [5, 6]) are possible candidates to rogue waves in the ocean. The envelope solitary waves could be in principle detected in the stochastic wave field by approaches based on the Inverse Scattering Technique in terms of ‘unstable modes' (see [1-3]), or envelope solitons [7-8]. However, densely spaced intense groups influence the spectrum of the associated scattering problem, so that the solitary trains cannot be considered alone. Here we solve the initial-value problem exactly for some simplified configurations of the wave field, representing two closely placed intense wave groups, within the frameworks of the NLS equation by virtue of the solution of the AKNS system [9]. We show that the analogues of the level splitting and the tunneling effects, known in quantum physics, exist in the context of the NLS equation, and thus may be observed in application to sea waves [10]. These effects make the detecting of single solitary wave groups surrounded by other nonlinear wave groups difficult. [1]. A.L. Islas, C.M. Schober (2005) Predicting rogue waves in random oceanic sea states. Phys. Fluids 17, 031701-1-4. [2]. A.R. Osborne, M. Onorato, M. Serio (2005) Nonlinear Fourier analysis of deep-water random surface waves: Theoretical formulation and and experimental observations of rogue waves. 14th Aha Huliko's Winter Workshop, Honolulu, Hawaii. [3]. C.M. Schober, A. Calini (2008) Rogue waves in higher order nonlinear Schrödinger models. In: Extreme Waves (Eds.: E. Pelinovsky & C. Kharif), Springer. [4]. N. Akhmediev, A. Ankiewicz, M. Taki (2009) Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675-678. [5]. A.I. Dyachenko, V.E. Zakharov (2008) On the formation of freak waves on the surface of deep water. JETP Lett. 88 (5), 307-311. [6]. A.V. Slunyaev (2009) Numerical simulation of "limiting" envelope solitons of gravity waves on deep water. JETP 109, 676-686. [7]. A. Slunyaev, E. Pelinovsky, and C. Guedes Soares (2005) Modeling freak waves from the North Sea. Appl. Ocean Res. 27, 12-22. [8]. A. Slunyaev (2006) Nonlinear analysis and simulations of measured freak wave time series. Eur. J. Mech. B / Fluids 25, 621-635. [9]. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur (1974) The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249-315. [10]. A.V. Starobor (2009) Interpretation of the inverse scattering data for the analysis of wave groups on water surface. Bachelor degree thesis. N. Novgorod State University, in Russian.
NASA Astrophysics Data System (ADS)
Chae, Jongchul; Litvinenko, Yuri E.
2017-08-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na I D2 and Hα lines.
SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS
Wang, Haiyan; Castillo-Chavez, Carlos
2014-01-01
The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins’ non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us. PMID:24899868
Water waves generated by impulsively moving obstacle
NASA Astrophysics Data System (ADS)
Makarenko, Nikolay; Kostikov, Vasily
2017-04-01
There are several mechanisms of tsunami-type wave formation such as piston displacement of the ocean floor due to a submarine earthquake, landslides, etc. We consider simplified mathematical formulation which involves non-stationary Euler equations of infinitely deep ideal fluid with submerged compact wave-maker. We apply semi-analytical method [1] based on the reduction of fully nonlinear water wave problem to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Recently, small-time asymptotic solutions were constructed by this method for submerged piston modeled by thin elliptic cylinder which starts with constant acceleration from rest [2,3]. By that, the leading-order solution terms describe several regimes of non-stationary free surface flow such as formation of inertial fluid layer, splash jets and diverging waves over the obstacle. Now we construct asymptotic solution taking into account higher-order nonlinear terms in the case of submerged circular cylinder. The role of non-linearity in the formation mechanism of surface waves is clarified in comparison with linear approximations. This work was supported by RFBR (grant No 15-01-03942). References [1] Makarenko N.I. Nonlinear interaction of submerged cylinder with free surface, JOMAE Trans. ASME, 2003, 125(1), 75-78. [2] Makarenko N.I., Kostikov V.K. Unsteady motion of an elliptic cylinder under a free surface, J. Appl. Mech. Techn. Phys., 2013, 54(3), 367-376. [3] Makarenko N.I., Kostikov V.K. Non-linear water waves generated by impulsive motion of submerged obstacle, NHESS, 2014, 14(4), 751-756.
Liu, T Y; Chiu, T L; Clarkson, P A; Chow, K W
2017-09-01
Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.
NASA Astrophysics Data System (ADS)
Liu, T. Y.; Chiu, T. L.; Clarkson, P. A.; Chow, K. W.
2017-09-01
Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman
2014-05-01
We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.
Nonreciprocal wave scattering on nonlinear string-coupled oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino; Pikovsky, Arkady
2014-12-01
We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaoticmore » scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.« less
Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
NASA Astrophysics Data System (ADS)
Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail
2018-05-01
We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.
NASA Astrophysics Data System (ADS)
Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.
2018-03-01
Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.
The characters of ion acoustic rogue waves in nonextensive plasma
NASA Astrophysics Data System (ADS)
Du, Hai-su; Lin, Mai-mai; Gong, Xue; Duan, Wen-shan
2017-10-01
Several well-known nonlinear waves in the rational solutions of the nonlinear Schrödinger equation are studied in two-component plasmas consisting of ions fluid and nonextensive electrons, such as Kuznetsov-Ma breather (K-M), bright soliton, rogue wave (RW), Akhmediev breather (AB) and dark soliton, and so on. In this paper, we have investigated the characteristics of K-M, AB, and RW's propagation in plasma with nonextensive electron distribution, and the dependence of amplitude and width for ion acoustic rogue waves in this system. It is found that K-M' triplet is appearance-disappearance-appearance-disappearance. AB solitons only appear once and RW is a single wave that appears from nowhere and then disappears. It is also noted that the wave number and nonextensive parameter of electrons have a significant influence on the maximum envelope amplitude, but, the influence of the width was not significant. At the same time, the effects of the small parameter, which represent the nonlinear strength, on the amplitude and width of ion acoustic rogue waves are also being highlighted.
Relativistic laser-plasma interactions in the quantum regime.
Eliasson, Bengt; Shukla, P K
2011-04-01
We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.
NASA Astrophysics Data System (ADS)
Ganiev, R. F.; Reviznikov, D. L.; Rogoza, A. N.; Slastushenskiy, Yu. V.; Ukrainskiy, L. E.
2017-03-01
A description of a complex approach to investigation of nonlinear wave processes in the human cardiovascular system based on a combination of high-precision methods of measuring a pulse wave, mathematical methods of processing the empirical data, and methods of direct numerical modeling of hemodynamic processes in an arterial tree is given.
Shock wave structure in a strongly nonlinear lattice with viscous dissipation.
Herbold, E B; Nesterenko, V F
2007-02-01
The shock wave structure in a one-dimensional lattice (e.g., granular chain of elastic particles) with a power law dependence of force on displacement between particles (F proportional to delta(n)) with viscous dissipation is considered and compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity between neighboring particles is included to investigate its influence on the shape of a steady shock. The critical viscosity coefficient p(c), defining the transition from an oscillatory to a monotonic shock profile in strongly nonlinear systems, is obtained from the long-wave approximation for arbitrary values of the exponent n. The expression for the critical viscosity is comparable to the value obtained in the numerical analysis of a discrete system with a Hertzian contact interaction (n=3/2) . The expression for p(c) in the weakly nonlinear case converges to the known equation for the critical viscosity. An initial disturbance in a discrete system approaches a stationary shock profile after traveling a short distance that is comparable to the width of the leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its critical value.
NASA Astrophysics Data System (ADS)
Li, Jibin
The dynamical model of the nonlinear ion-acoustic oscillations is governed by a partial differential equation system. Its traveling system is just a singular traveling wave system of first class depending on four parameters. By using the method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as kink and anti-kink wave solutions.
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Wave theory of turbulence in compressible media
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.
NASA Astrophysics Data System (ADS)
Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.
2015-10-01
We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.
Matter rogue waves in an F=1 spinor Bose-Einstein condensate.
Qin, Zhenyun; Mu, Gui
2012-09-01
We report new types of matter rogue waves of a spinor (three-component) model of the Bose-Einstein condensate governed by a system of three nonlinearly coupled Gross-Pitaevskii equations. The exact first-order rational solutions containing one free parameter are obtained by means of a Darboux transformation for the integrable system where the mean-field interaction is attractive and the spin-exchange interaction is ferromagnetic. For different choices of the parameter, there exists a variety of different shaped solutions including two peaks in bright rogue waves and four dips in dark rogue waves. Furthermore, by utilizing the relation between the three-component and the one-component versions of the nonlinear Schrödinger equation, we can devise higher-order rational solutions, in which three components have different shapes. In addition, it is noteworthy that dark rogue wave features disappear in the third-order rational solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt
A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to themore » borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.« less
Nonlinear stress waves in a perfectly flexible string. [for aerodynamic decelerating system
NASA Technical Reports Server (NTRS)
Fan, D.-N.; Mcgarvey, J. F.
1977-01-01
This paper discusses nonlinear stress-wave propagation in a perfectly flexible string obeying a quasilinear (rate-dependent) constitutive equation. Wave speeds and compatibility relations valid along various families of characteristics were determined. It was shown that the compatibility relations associated with the transverse as well as the longitudinal waves readily yield a physical interpretation when they are expressed in suitable variables and in vector form. Coding based on the present information was completed for the machine solution of a class of mixed initial- and boundary-value problems of practical interest. Computer simulation of the stress-wave interaction in the 40-foot lanyard in the Arcas 'Rocoz' system during deployment was carried out using a stress-strain relation for nylon at the strain rate of 30/second. A method for estimating the maximum tension and strain in a string during the initial loading phase is proposed.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
From linear mechanics to nonlinear mechanics
NASA Technical Reports Server (NTRS)
Loeb, Julian
1955-01-01
Consideration is given to the techniques used in telecommunication where a nonlinear system (the modulator) results in a linear transposition of a signal. It is then shown that a similar method permits linearization of electromechanical devices or nonlinear mechanical devices. A sweep function plays the same role as the carrier wave in radio-electricity. The linearizations of certain nonlinear functionals are presented.
MHD shocks in coronal mass ejections
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).
Self-sustained peristaltic waves: Explicit asymptotic solutions
NASA Astrophysics Data System (ADS)
Dudchenko, O. A.; Guria, G. Th.
2012-02-01
A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.
Mechanical energy fluctuations in granular chains: the possibility of rogue fluctuations or waves.
Han, Ding; Westley, Matthew; Sen, Surajit
2014-09-01
The existence of rogue or freak waves in the ocean has been known for some time. They have been reported in the context of optical lattices and the financial market. We ask whether such waves are generic to late time behavior in nonlinear systems. In that vein, we examine the dynamics of an alignment of spherical elastic beads held within fixed, rigid walls at zero precompression when they are subjected to sufficiently rich initial conditions. Here we define such waves generically as unusually large energy fluctuations that sustain for short periods of time. Our simulations suggest that such unusually large fluctuations ("hot spots") and occasional series of such fluctuations through space and time ("rogue fluctuations") are likely to exist in the late time dynamics of the granular chain system at zero dissipation. We show that while hot spots are common in late time evolution, rogue fluctuations are seen in purely nonlinear systems (i.e., no precompression) at late enough times. We next show that the number of such fluctuations grows exponentially with increasing nonlinearity whereas rogue fluctuations decrease superexponentially with increasing precompression. Dissipation-free granular alignment systems may be possible to realize as integrated circuits and hence our observations may potentially be testable in the laboratory.
Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa-Mima model and its extensions
NASA Astrophysics Data System (ADS)
Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda
2015-12-01
A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from the drift waves as they grow. Eventually the turbulence is completely suppressed and the zonal flows saturate. The turbulence spectrum is shown to diffuse in a manner which has been mathematically predicted. The insights gained from this simple model could provide a basis for equivalent studies in more sophisticated plasma and geophysical fluid dynamics models in an effort to fully understand the zonal flow generation, the turbulent transport suppression and the zonal flow saturation processes in both the plasma and geophysical contexts as well as other wave and turbulence systems where order evolves from chaos.
NASA Astrophysics Data System (ADS)
Jang, T. S.
2018-03-01
A dispersion-relation preserving (DRP) method, as a semi-analytic iterative procedure, has been proposed by Jang (2017) for integrating the classical Boussinesq equation. It has been shown to be a powerful numerical procedure for simulating a nonlinear dispersive wave system because it preserves the dispersion-relation, however, there still exists a potential flaw, e.g., a restriction on nonlinear wave amplitude and a small region of convergence (ROC) and so on. To remedy the flaw, a new DRP method is proposed in this paper, aimed at improving convergence performance. The improved method is proved to have convergence properties and dispersion-relation preserving nature for small waves; of course, unique existence of the solutions is also proved. In addition, by a numerical experiment, the method is confirmed to be good at observing nonlinear wave phenomena such as moving solitary waves and their binary collision with different wave amplitudes. Especially, it presents a ROC (much) wider than that of the previous method by Jang (2017). Moreover, it gives the numerical simulation of a high (or large-amplitude) nonlinear dispersive wave. In fact, it is demonstrated to simulate a large-amplitude solitary wave and the collision of two solitary waves with large-amplitudes that we have failed to simulate with the previous method. Conclusively, it is worth noting that better convergence results are achieved compared to Jang (2017); i.e., they represent a major improvement in practice over the previous method.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Controllable optical rogue waves via nonlinearity management.
Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi
2018-03-19
Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkasskii, M. A., E-mail: macherkasskii@hotmail.com; Nikitin, A. A.; Kalinikos, B. A.
A theory is developed to describe the wave processes that occur in waveguide media having several types of nonlinearity, specifically, multinonlinear media. It is shown that the nonlinear Schrödinger equation can be used to describe the general wave process that occurs in such media. The competition between the electric wave nonlinearity and the magnetic wave nonlinearity in a layered multinonlinear ferrite–ferroelectric structure is found to change a total repulsive nonlinearity into a total attractive nonlinearity.
Nonlinear wavenumber shift of large amplitude Langmuir waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dehui, E-mail: dhli@ipp.ac.cn; Wang, Shaojie
2016-07-15
Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua
2014-01-15
With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significantmore » effects on the properties of nonlinear waves and collision-induced nonlinear structure.« less
Nonlinear wave propagation in discrete and continuous systems
NASA Astrophysics Data System (ADS)
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
Nonlinear VLF Wave Physics in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.
2014-12-01
Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function [Storey and Lefeuvre, 1979] to yield the power distribution as a function of wave-normal angle and local azimuthal angle. We have validated this technique in the NRL space chamber and applied this methodology to Van Allen probe data to demonstrate that traditional wave-normal analaysis can give misleading results when multiple waves are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang
Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based onmore » spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.« less
Nonlinear regime of electrostatic waves propagation in presence of electron-electron collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2015-04-15
The effects are presented of including electron-electron collisions in self-consistent Eulerian simulations of electrostatic wave propagation in nonlinear regime. The electron-electron collisions are approximately modeled through the full three-dimensional Dougherty collisional operator [J. P. Dougherty, Phys. Fluids 7, 1788 (1964)]; this allows the elimination of unphysical byproducts due to reduced dimensionality in velocity space. The effects of non-zero collisionality are discussed in the nonlinear regime of the symmetric bump-on-tail instability and in the propagation of the so-called kinetic electrostatic electron nonlinear (KEEN) waves [T. W. Johnston et al., Phys. Plasmas 16, 042105 (2009)]. For both cases, it is shown howmore » collisions work to destroy the phase-space structures created by particle trapping effects and to damp the wave amplitude, as the system returns to the thermal equilibrium. In particular, for the case of the KEEN waves, once collisions have smoothed out the trapped particle population which sustains the KEEN fluctuations, additional oscillations at the Langmuir frequency are observed on the fundamental electric field spectral component, whose amplitude decays in time at the usual collisionless linear Landau damping rate.« less
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang
2018-05-01
Studied in this paper is a (2+1)-dimensional coupled nonlinear Schrödinger system with variable coefficients, which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. According to the similarity transformation, we derive the type-I and type-II rogue-wave solutions. We graphically present two types of the rouge wave and discuss the influence of the diffraction parameter on the rogue waves. When the diffraction parameters are exponentially-growing-periodic, exponential, linear and quadratic parameters, we obtain the periodic rogue wave and composite rogue waves respectively. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.
Early time evolution of a localized nonlinear excitation in the β-FPUT chain
NASA Astrophysics Data System (ADS)
Kashyap, Rahul; Westley, Alexandra; Datta, Amitava; Sen, Surajit
2017-04-01
We present the detailed dynamics of the particles in the β-Fermi-Pasta-Ulam-Tsingou (FPUT) chain after the initiation of a localized nonlinear excitation (LNE) by squeezing a central bond in the monodispersed chain at time t = 0 while all other particles remain in their original relaxed positions. In the absence of phonons in the system, the LNE appears to initiate its relaxation process by symmetrically emitting two very weak solitary waves. The next stage involves the spreading of the LNE and the formation of nonsolitary wave-like objects to broaden the excitation region until a stage is reached when many weak solitary wave-like objects can be emitted as the system begins its journey to quasi-equilibrium and then to equilibrium. In addition to being of fundamental interest, these systems may be realized using cantilever systems and could well hold the key to constructing the next generation of broadband energy harvesting systems.
NASA Astrophysics Data System (ADS)
Xie, Tao; Kuang, Hai-Lan; William, Perrie; Zou, Guang-Hui; Nan, Cheng-Feng; He, Chao; Shen, Tao; Chen, Wei
2009-07-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.
Rogue wave modes for a derivative nonlinear Schrödinger model.
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-03-01
Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.
KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions
NASA Astrophysics Data System (ADS)
Chierchia, Luigi; You, Jiangong
In this paper, one-dimensional (1D) nonlinear wave equations
A computationally efficient scheme for the non-linear diffusion equation
NASA Astrophysics Data System (ADS)
Termonia, P.; Van de Vyver, H.
2009-04-01
This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.
A novel method for predicting the power outputs of wave energy converters
NASA Astrophysics Data System (ADS)
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad
2007-05-15
The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less
Traveling wave solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-10-01
In this paper, we investigate the traveling soliton and the periodic wave solutions of the nonlinear Schrödinger equation (NLSE) with generalized nonlinear functionality. We also explore the underlying close connection between the well-known KdV equation and the NLSE. It is remarked that both one-dimensional KdV and NLSE models share the same pseudoenergy spectrum. We also derive the traveling wave solutions for two cases of weakly nonlinear mathematical models, namely, the Helmholtz and the Duffing oscillators' potentials. It is found that these models only allow gray-type NLSE solitary propagations. It is also found that the pseudofrequency ratio for the Helmholtz potential between the nonlinear periodic carrier and the modulated sinusoidal waves is always in the range 0.5 ≤ Ω/ω ≤ 0.537285 regardless of the potential parameter values. The values of Ω/ω = {0.5, 0.537285} correspond to the cnoidal waves modulus of m = {0, 1} for soliton and sinusoidal limits and m = 0.5, respectively. Moreover, the current NLSE model is extended to fully NLSE (FNLSE) situation for Sagdeev oscillator pseudopotential which can be derived using a closed set of hydrodynamic fluid equations with a fully integrable Hamiltonian system. The generalized quasi-three-dimensional traveling wave solution is also derived. The current simple hydrodynamic plasma model may also be generalized to two dimensions and other complex situations including different charged species and cases with magnetic or gravitational field effects.
Experimental study of three-wave interactions among capillary-gravity surface waves
NASA Astrophysics Data System (ADS)
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
Experimental study of three-wave interactions among capillary-gravity surface waves.
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Characteristics of solitary waves in a relativistic degenerate ion beam driven magneto plasma
NASA Astrophysics Data System (ADS)
Deka, Manoj Kr.; Dev, Apul N.; Misra, Amar P.; Adhikary, Nirab C.
2018-01-01
The nonlinear propagation of a small amplitude ion acoustic solitary wave in a relativistic degenerate magneto plasma in the presence of an ion beam is investigated in detail. The nonlinear equations describing the evolution of a solitary wave in the presence of relativistic non-degenerate magnetized positive ions and ion beams including magnetized degenerate relativistic electrons are derived in terms of Zakharov-Kuznetsov (Z-K) equation for such plasma systems. The ion beams which are a ubiquitous ingredient in such plasma systems are found to have a decisive role in the propagation of a solitary wave in such a highly dense plasma system. The conditions of a wave, propagating with typical solitonic characteristics, are examined and discussed in detail under suitable conditions of different physical parameters. Both a subsonic and supersonic wave can propagate in such plasmas bearing different characteristics under different physical situations. A detailed analysis of waves propagating in subsonic and/or supersonic regime is carried out. The ion beam concentrations, magnetic field, as well as ion beam streaming velocity are found to play a momentous role on the control of the amplitude and width of small amplitude perturbation in both weakly (or non-relativistic) and relativistic plasmas.
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
Nonlinear ultrasonic wave modulation for online fatigue crack detection
NASA Astrophysics Data System (ADS)
Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark
2014-02-01
This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.
Numerical study of nonlinear full wave acoustic propagation
NASA Astrophysics Data System (ADS)
Velasco-Segura, Roberto; Rendon, Pablo L.
2013-11-01
With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
On the interaction of small-scale linear waves with nonlinear solitary waves
NASA Astrophysics Data System (ADS)
Xu, Chengzhu; Stastna, Marek
2017-04-01
In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow interaction in a fully nonlinear framework.
Predictability of rogue events.
Birkholz, Simon; Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
2015-05-29
Using experimental data from three different rogue wave supporting systems, determinism, and predictability of the underlying dynamics are evaluated with methods of nonlinear time series analysis. We included original records from the Draupner platform in the North Sea as well as time series from two optical systems in our analysis. One of the latter was measured in the infrared tail of optical fiber supercontinua, the other in the fluence profiles of multifilaments. All three data sets exhibit extreme-value statistics and exceed the significant wave height in the respective system by a factor larger than 2. Nonlinear time series analysis indicates a different degree of determinism in the systems. The optical fiber scenario is found to be driven by quantum noise whereas rogue waves emerge as a consequence of turbulence in the others. With the large number of rogue events observed in the multifilament system, we can systematically explore the predictability of such events in a turbulent system. We observe that rogue events do not necessarily appear without a warning, but are often preceded by a short phase of relative order. This surprising finding sheds some new light on the fascinating phenomenon of rogue waves.
Experimental investigation of linear and nonlinear wave systems: A quantum chaos approach
NASA Astrophysics Data System (ADS)
Neicu, Toni
2002-09-01
An experimental and numerical study of linear and nonlinear wave systems using methods and ideas developed from quantum chaos is presented. We exploit the analogy of the wave equation for the flexural modes of a thin clover-shaped acoustic plate to the stationary solutions of the Schrodinger wave equation for a quantum clover-shaped billiard, a generic system that has regular and chaotic regions in its phase space. We observed periodic orbits in the spectral properties of the acoustic plate, the first such definitive acoustic experiment. We also solved numerically the linear wave equation of the acoustic plate for the first few hundred eigenmodes. The Fourier transform of the eigenvalues show peaks corresponding to the principal periodic orbits of the classical billiard. The signatures of the periodic orbits in the spectra were unambiguously verified by deforming one edge of the plate and observing that only the peaks corresponding to the orbits that hit this edge changed. The statistical measures of the eigenvalues are intermediate between universal forms for completely integrable and chaotic systems. The density distribution of the eigenfunctions agrees with the Porter-Thomas formula of chaotic systems. The viscosity dependence and effects of nonlinearity on the Faraday surface wave patterns in a stadium geometry were also investigated. The ray dynamics inside the stadium, a paradigm of quantum chaos, is completely chaotic. The majority of the observed patterns of the orbits resemble three eigenstates of the stadium: the bouncing ball, longitudinal, and bowtie patterns. We observed many disordered patterns that increase with the viscosity. The experimental results were analyzed using recent theoretical work that explains the suppression of certain modes. The theory also predicts that the perimeter dissipation is too strong for whispering gallery modes, which contradicts our observations of these modes for a fluid with low viscosity. Novel vortex patterns were observed in a strongly nonlinear, dissipative granular system of vertically vibrated rods. Above a critical packing fraction, moving domains of nearly vertical rods were seen to coexist with horizontal rods. The vertical domains coarsen to form several large vortices, which were driven by the anisotropy and inclination of the rods.
Acoustic-radiation stress in solids. I - Theory
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1984-01-01
The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.
Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo; Hu, Hongwei
2018-05-12
Angle beam wedge transducers are widely used in nonlinear Rayleigh wave experiments as they can generate Rayleigh wave easily and produce high intensity nonlinear waves for detection. When such a transducer is used, the spurious harmonics (source nonlinearity) and wave diffraction may occur and will affect the measurement results, so it is essential to fully understand its acoustic nature. This paper experimentally investigates the nonlinear Rayleigh wave beam fields generated and received by angle beam wedge transducers, in which the theoretical predictions are based on the acoustic model developed previously for angle beam wedge transducers [S. Zhang, et al., Wave Motion, 67, 141-159, (2016)]. The source of the spurious harmonics is fully characterized by scrutinizing the nonlinear Rayleigh wave behavior in various materials with different driving voltages. Furthermore, it is shown that the attenuation coefficients for both fundamental and second harmonic Rayleigh waves can be extracted by comparing the measurements with the predictions when the experiments are conducted at many locations along the propagation path. A technique is developed to evaluate the material nonlinearity by making appropriate corrections for source nonlinearity, diffraction and attenuation. The nonlinear parameters of three aluminum alloy specimens - Al 2024, Al 6061 and Al 7075 - are measured, and the results indicate that the measurement results can be significantly improved using the proposed method. Copyright © 2018. Published by Elsevier B.V.
Cubic nonlinearity in shear wave beams with different polarizations
Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2008-01-01
A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167
Vector rogue waves and dark-bright boomeronic solitons in autonomous and nonautonomous settings.
Mareeswaran, R Babu; Charalampidis, E G; Kanna, T; Kevrekidis, P G; Frantzeskakis, D J
2014-10-01
In this work we consider the dynamics of vector rogue waves and dark-bright solitons in two-component nonlinear Schrödinger equations with various physically motivated time-dependent nonlinearity coefficients, as well as spatiotemporally dependent potentials. A similarity transformation is utilized to convert the system into the integrable Manakov system and subsequently the vector rogue and dark-bright boomeronlike soliton solutions of the latter are converted back into ones of the original nonautonomous model. Using direct numerical simulations we find that, in most cases, the rogue wave formation is rapidly followed by a modulational instability that leads to the emergence of an expanding soliton train. Scenarios different than this generic phenomenology are also reported.
NASA Astrophysics Data System (ADS)
Virella, Juan C.; Prato, Carlos A.; Godoy, Luis A.
2008-05-01
The influence of nonlinear wave theory on the sloshing natural periods and their modal pressure distributions are investigated for rectangular tanks under the assumption of two-dimensional behavior. Natural periods and mode shapes are computed and compared for both linear wave theory (LWT) and nonlinear wave theory (NLWT) models, using the finite element package ABAQUS. Linear wave theory is implemented in an acoustic model, whereas a plane strain problem with large displacements is used in NLWT. Pressure distributions acting on the tank walls are obtained for the first three sloshing modes using both linear and nonlinear wave theory. It is found that the nonlinearity does not have significant effects on the natural sloshing periods. For the sloshing pressures on the tank walls, different distributions were found using linear and nonlinear wave theory models. However, in all cases studied, the linear wave theory conservatively estimated the magnitude of the pressure distribution, whereas larger pressures resultant heights were obtained when using the nonlinear theory. It is concluded that the nonlinearity of the surface wave does not have major effects in the pressure distribution on the walls for rectangular tanks.
2015-09-30
We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves
NASA Astrophysics Data System (ADS)
Bénisti, Didier
2018-01-01
In this paper, we address the theoretical resolution of the Vlasov-Gauss system from the linear regime to the strongly nonlinear one, when significant trapping has occurred. The electric field is that of a sinusoidal electron plasma wave (EPW) which is assumed to grow from the noise level, and to keep growing at least up to the amplitude when linear theory in no longer valid (while the wave evolution in the nonlinear regime may be arbitrary). The ions are considered as a neutralizing fluid, while the electron response to the wave is derived by matching two different techniques. We make use of a perturbation analysis similar to that introduced to prove the Kolmogorov-Arnold-Moser theorem, up to amplitudes large enough for neo-adiabatic results to be valid. Our theory is applied to the growth and saturation of the beam-plasma instability, and to the three-dimensional propagation of a driven EPW in a non-uniform and non-stationary plasma. For the latter example, we lay a special emphasis on nonlinear collisionless dissipation. We provide an explicit theoretical expression for the nonlinear Landau-like damping rate which, in some instances, is amenable to a simple analytic formula. We also insist on the irreversible evolution of the electron distribution function, which is nonlocal in the wave amplitude and phase velocity. This makes trapping an effective means of dissipation for the electrostatic energy, and also makes the wave dispersion relation nonlocal. Our theory is generalized to allow for stimulated Raman scattering, which we address up to saturation by accounting for plasma inhomogeneity and non-stationarity, nonlinear kinetic effects, and interspeckle coupling.
MJO: Asymptotically-Nondivergent Nonlinear Wave?: A Review
NASA Astrophysics Data System (ADS)
Yano, J. I.
2014-12-01
MJO is often considered a convectively-coupled wave. The present talk is going to argue that it is best understood primarily as a nonlinear solitary wave dominated by vorticity. Role of convection is secondary,though likely catalytic. According to Charney's (1963) scale analysis, the large-scale tropical circulations are nondivergent to the leading order, i.e., dominated by rotational flows. Yano et al (2009) demonstrate indeed that is the case for a period dominated by three MJO events. The scale analysis of Yano and Bonazzola (2009, JAS) demonstrates such an asymptotically nondivergent regime is a viable alternative to the traditionally-believed equatorial-wave regime. Wedi and Smolarkiewicz (2010, JAS) in turn, show by numerical computations of a dry system that a MJO-like oscillation for a similar period can indeed be generated by free solitary nonlinear equatorial Rossby-wave dynamicswithout any convective forcing to a system. Unfortunately, this perspective is slow to be accepted with people's mind so much fixed on the role of convection. This situation may be compared to a slow historical process of acceptance of Eady and Charney's baroclinicinstability simply because it does not invoke any convection Ironically, once the nonlinear free-wave view for MJO is accepted, interpretations can more easily be developed for a recent series of numerical model experiments under a global channel configuration overthe tropics with a high-resolution of 5-50 km with or without convection parameterization. All those experiments tend to reproduce observed large-scale circulations associated with MJO rather well, though most of time, they fail to reproduce convective coherency associated with MJO.These large-scale circulations appear to be generated by lateral forcing imposed at the latitudinal walls. These lateral boundaries are reasonably far enough (30NS) to induce any direct influence to the tropics. There is no linear dry equatorial wave that supports this period either. In Wedi and Smolarkiewicz's analysis, such a lateral forcing is essential in order to obtain their nonlinear solitary wave solution. Thus is the leading-order solution for MJO in the same sense as the linear baroclinic instability is a leading-order solution to the midlatitude synoptic-scale storm.
Layer contributions to the nonlinear acoustic radiation from stratified media.
Vander Meulen, François; Haumesser, Lionel
2016-12-01
This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Acoustics of One-Dimensional Homogeneous Granular Chains
NASA Astrophysics Data System (ADS)
Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.
The Chapter 1 provided a brief glimpse of the general ordered granular chain/lattices, their subtle features and the intricacies associated with their analysis. By now it should be clear that this class of highly-inhomogeneous and discontinuous systems poses new challenges in the form of strongly nonlinear behavior, bead separations, and twice (at most) differentiable interaction potential. It follows that the traditional analytical methodologies may need to be modified to effectively address these challenges. To begin with, we consider the simplest case of the homogeneous granular chains, wherein, the particles are identical and are perfectly in contact (no gaps) initially. We consider the case of both the uncompressed (strongly nonlinear) and the pre-compressed (weakly nonlinear) chains and elucidate the striking differences between their dynamical behaviors. In the latter case, the long wave/continuum approximation is invoked in this analysis thus precluding any bead separations. A landmark discovery in this class of systems is the realization of the solitary wave propagation [1-3]. These waves are highly localized spatially symmetric disturbances which propagate in the nonlinear medium. In general, it is well known that the linear nondispersive waves have a characteristic wave speed (property of the medium), and a disturbance of any amplitude or waveform propagates at the same speed undistorted. In contrast, the propagation velocity of the solitary waves in a nonlinear medium is a function of the wave amplitude (a general nonlinear behavior) and the physical properties of the medium. It is worth noting that any arbitrary disturbance set in motion in a homogeneous granular chain eventually disintegrates into a train of the solitary waves of varying amplitudes propagating at the proportional velocities (higher the amplitude, higher the propagation velocity). Although these waves are called solitary waves, they do not necessarily conform to the definition [4] provided in the previous chapter. In fact such a definition is applicable when the medium is a continuum and does not consist of a discrete set of particles. Thus such localized waves are alternatively given the name compactons as they span a limited spatial domain of about 6-7 beads or in other words they only require compact support in the media where they propagate (although the characterization as solitary wave is also common in the research community). We briefly dwell on the concept of the compactons [5] and the decaying characteristic [6] of these waves. An aspect that has interested many researchers is the interaction of these solitary waves with the mass defects/intruders (disparity in masses). Such defects, e.g., in the form of a large mass disparity, can lead to the discrete breathers that transiently entrap the energy in space. In the final part of this chapter we consider the effects of the periodic intruders on the wave propagation and the shock mitigation of pulse propagating in the granular chains.
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.
2017-05-10
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low- β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, andmore » also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, i.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.« less
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
NASA Astrophysics Data System (ADS)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.; Reva, A. A.; Kuzin, S. V.
2017-05-01
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low-β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, and also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, I.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.
Book review: Nonlinear ocean waves and the inverse scattering transform
Geist, Eric L.
2011-01-01
Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts. Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
NASA Astrophysics Data System (ADS)
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Localized waves in three-component coupled nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Yong
2016-09-01
We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation. First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solutions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters, the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things, China (Grant No. ZF1213).
Integrability and Linear Stability of Nonlinear Waves
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Experimental and numerical investigations of temporally and spatially periodic modulated wave trains
NASA Astrophysics Data System (ADS)
Houtani, H.; Waseda, T.; Tanizawa, K.
2018-03-01
A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.
Modulational instability in a PT-symmetric vector nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2016-12-01
A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.
Wave turbulence in shallow water models.
Clark di Leoni, P; Cobelli, P J; Mininni, P D
2014-06-01
We study wave turbulence in shallow water flows in numerical simulations using two different approximations: the shallow water model and the Boussinesq model with weak dispersion. The equations for both models were solved using periodic grids with up to 2048{2} points. In all simulations, the Froude number varies between 0.015 and 0.05, while the Reynolds number and level of dispersion are varied in a broader range to span different regimes. In all cases, most of the energy in the system remains in the waves, even after integrating the system for very long times. For shallow flows, nonlinear waves are nondispersive and the spectrum of potential energy is compatible with ∼k{-2} scaling. For deeper (Boussinesq) flows, the nonlinear dispersion relation as directly measured from the wave and frequency spectrum (calculated independently) shows signatures of dispersion, and the spectrum of potential energy is compatible with predictions of weak turbulence theory, ∼k{-4/3}. In this latter case, the nonlinear dispersion relation differs from the linear one and has two branches, which we explain with a simple qualitative argument. Finally, we study probability density functions of the surface height and find that in all cases the distributions are asymmetric. The probability density function can be approximated by a skewed normal distribution as well as by a Tayfun distribution.
A numerical and experimental study on the nonlinear evolution of long-crested irregular waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701
2011-01-15
The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less
Formation of rarefaction waves in origami-based metamaterials
NASA Astrophysics Data System (ADS)
Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.
2016-04-01
We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.
Design of materials configurations for enhanced phononic and electronic properties
NASA Astrophysics Data System (ADS)
Daraio, Chiara
The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.
NASA Astrophysics Data System (ADS)
Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.
2018-01-01
In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.
Nonlinear surge motions of a ship in bi-chromatic following waves
NASA Astrophysics Data System (ADS)
Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis
2018-03-01
Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with a perturbed pendulum with bias.
NASA Astrophysics Data System (ADS)
Jia, Heping; Yang, Rongcao; Tian, Jinping; Zhang, Wenmei
2018-05-01
The nonautonomous nonlinear Schrödinger (NLS) equation with both varying linear and harmonic external potentials is investigated and the semirational rogue wave (RW) solution is presented by similarity transformation. Based on the solution, the interactions between Peregrine soliton and breathers, and the controllability of the semirational RWs in periodic distribution and exponential decreasing nonautonomous systems with both linear and harmonic potentials are studied. It is found that the harmonic potential only influences the constraint condition of the semirational solution, the linear potential is related to the trajectory of the semirational RWs, while dispersion and nonlinearity determine the excitation position of the higher-order RWs. The higher-order RWs can be partly, completely and biperiodically excited in periodic distribution system and the diverse excited patterns can be generated for different parameter relations in exponential decreasing system. The results reveal that the excitation of the higher-order RWs can be controlled in the nonautonomous system by choosing dispersion, nonlinearity and external potentials.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
A novel control algorithm for interaction between surface waves and a permeable floating structure
NASA Astrophysics Data System (ADS)
Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu
2016-04-01
An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.
Triple tailored nonlinear dispersion of dressed four- and six-wave mixing
NASA Astrophysics Data System (ADS)
Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng
2018-06-01
We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balyan, M. K., E-mail: mbalyan@ysu.am
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
Elastic Nonlinear Response in Granular Media Under Resonance Conditions
NASA Astrophysics Data System (ADS)
Jia, X.; Johnson, P. A.
2004-12-01
We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).
Turbulence of Weak Gravitational Waves in the Early Universe.
Galtier, Sébastien; Nazarenko, Sergey V
2017-12-01
We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.
Physics of Alfvén waves and energetic particles in burning plasmas
NASA Astrophysics Data System (ADS)
Chen, Liu; Zonca, Fulvio
2016-01-01
Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Fatigue crack detection by nonlinear spectral correlation with a wideband input
NASA Astrophysics Data System (ADS)
Liu, Peipei; Sohn, Hoon
2017-04-01
Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Sayanee; Chakrabarti, Nikhil; Ghosh, Samiran
2016-07-15
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödingermore » equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.« less
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.
Gauge invariant gluon spin operator for spinless nonlinear wave solutions
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.
2017-04-01
We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.
NASA Astrophysics Data System (ADS)
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-01-01
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
NASA Astrophysics Data System (ADS)
Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.
2017-10-01
The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
Self-modulational formation of pulsar microstructures
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Chian, A. C.-L.
1987-01-01
A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.
Li, Li; Yu, Fajun
2017-09-06
We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.
Method to improve optical parametric oscillator beam quality
Smith, Arlee V.; Alford, William J.; Bowers, Mark S.
2003-11-11
A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
NASA Astrophysics Data System (ADS)
Deymier, P. A.; Runge, K.
2018-03-01
A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.
Electron precipitation in solar flares - Collisionless effects
NASA Technical Reports Server (NTRS)
Vlahos, L.; Rowland, H. L.
1984-01-01
A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.
On the origin of heavy-tail statistics in equations of the Nonlinear Schrödinger type
NASA Astrophysics Data System (ADS)
Onorato, Miguel; Proment, Davide; El, Gennady; Randoux, Stephane; Suret, Pierre
2016-09-01
We study the formation of extreme events in incoherent systems described by the Nonlinear Schrödinger type of equations. We consider an exact identity that relates the evolution of the normalized fourth-order moment of the probability density function of the wave envelope to the rate of change of the width of the Fourier spectrum of the wave field. We show that, given an initial condition characterized by some distribution of the wave envelope, an increase of the spectral bandwidth in the focusing/defocusing regime leads to an increase/decrease of the probability of formation of rogue waves. Extensive numerical simulations in 1D+1 and 2D+1 are also performed to confirm the results.
Theoretical and experimental evidence of non-symmetric doubly localized rogue waves.
He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin
2014-11-08
We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water.
Theoretical and experimental evidence of non-symmetric doubly localized rogue waves
He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin
2014-01-01
We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water. PMID:25383023
NASA Astrophysics Data System (ADS)
Arutyunov, Yu A.; Bagan, A. A.; Gerasimov, V. B.; Golyanov, A. V.; Ogluzdin, Valerii E.; Sugrobov, V. A.; Khizhnyak, A. I.
1990-04-01
Theoretical analyses and experimental studies are made of transient stimulated thermal scattering in a thermal nonlinear medium subjected to a field of counterpropagating quasiplane waves. The equations for the counterpropagating four-beam interaction are solved analytically for pairwise counterpropagating scattered waves using the constant pump wave intensity approximation. The conditions for the occurrence of an absolute instability of the scattered waves are determined and the angular dependence of their increment is obtained; these results are in good agreement with experimental data. An investigation is reported of the dynamics of spiky lasing in a laser with resonators coupled by a dynamic hologram in which stimulated thermal scattering is a source of radiation initiating lasing in the system as a whole.
Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion
NASA Astrophysics Data System (ADS)
Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.
2018-05-01
Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.
Laboratory tests of short intense envelope solitons
NASA Astrophysics Data System (ADS)
Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.
2012-04-01
Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long-living nonlinear wave groups in dynamics of intense sea waves. [1] V.E. Zakharov, A.I. Dyachenko, A.O. Prokofiev, Eur. J. Mech. B / Fluids 25, 677 (2006). [2] A.I. Dyachenko, V.E. Zakharov, JETP Lett. 88, 307 (2008). [3] A.V. Slunyaev, JETP 109, 676 (2009).
Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations
NASA Astrophysics Data System (ADS)
Collier, N.; Knepley, M.
2015-12-01
The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).
Nonlinear Scattering of VLF Waves in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish
2014-10-01
Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.
Yu, X.; Hsu, T.-J.; Hanes, D.M.
2010-01-01
Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.
Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics.
Tlidi, Mustapha; Panajotov, Krassimir
2017-01-01
We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.
Formation of rarefaction waves in origami-based metamaterials
Yasuda, H.; Chong, C.; Charalampidis, E. G.; ...
2016-04-15
Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less
Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro
2004-05-01
Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.
2018-06-01
Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
Evolution of basic equations for nearshore wave field
ISOBE, Masahiko
2013-01-01
In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680
NASA Astrophysics Data System (ADS)
Vorotnikov, K.; Starosvetsky, Y.
2018-01-01
The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.
NASA Astrophysics Data System (ADS)
Fernandez, L.; Toffoli, A.; Monbaliu, J.
2012-04-01
In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.
Nonlinear Landau damping in the ionosphere
NASA Technical Reports Server (NTRS)
Kiwamoto, Y.; Benson, R. F.
1978-01-01
A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
NASA Astrophysics Data System (ADS)
Khadzhi, P. I.; Lyakhomskaya, K. D.
1999-10-01
The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, H.; Chong, C.; Charalampidis, E. G.
Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less
Liu, Menglong; Wang, Kai; Lissenden, Cliff J.; Wang, Qiang; Zhang, Qingming; Long, Renrong; Su, Zhongqing; Cui, Fangsen
2017-01-01
Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence. PMID:28772908
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
NASA Astrophysics Data System (ADS)
Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-04-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less
2015-12-24
simulation of the electromagnetic- plasma interaction and the high-power microwave breakdown in air. Under the high pressure and high frequency condition of...the high-power air breakdown, the physical phenomenon is described using a nonlinearly coupled full-wave Maxwell and fluid plasma system. This...Challenges ........................................................................... 3 3.1.1 Plasma Fluid Model
Nonlinear electrostatic solitary waves in electron-positron plasmas
NASA Astrophysics Data System (ADS)
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
Nonlinear and Dissipation Characteristics of Ocean Surface Waves in Estuarine Environments
2013-09-30
developed models while using the general framework of operational wave models. We will conduct robustness tests of the system to determine the...and Guza (1984) model is weakly dispersive, in line with the assumptions behind the Boussinesq equations from which it was derived. The Kaihatu and...interactions across both frequency and directions. This system of equations is solved over a 2D frequency (f) and shore parallel wave number (κ) space. The
From solitons to rogue waves in nonlinear left-handed metamaterials.
Shen, Yannan; Kevrekidis, P G; Veldes, G P; Frantzeskakis, D J; DiMarzio, D; Lan, X; Radisic, V
2017-03-01
In the present work, we explore soliton and roguelike wave solutions in the transmission line analog of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltage-dependent, symmetric capacitance motivated by recently developed ferroelectric barium strontium titanate thin-film capacitor designs. We develop both the corresponding nonlinear dynamical lattice and its reduction via a multiple scales expansion to a nonlinear Schrödinger (NLS) model for the envelope of a given carrier wave. The reduced model can feature either a focusing or a defocusing nonlinearity depending on the frequency (wave number) of the carrier. We then consider the robustness of different types of solitary waves of the reduced model within the original nonlinear left-handed medium. We find that both bright and dark solitons persist in a suitable parametric regime, where the reduction to the NLS model is valid. Additionally, for suitable initial conditions, we observe a rogue wave type of behavior that differs significantly from the classic Peregrine rogue wave evolution, including most notably the breakup of a single Peregrine-like pattern into solutions with multiple wave peaks. Finally, we touch upon the behavior of generalized members of the family of the Peregrine solitons, namely, Akhmediev breathers and Kuznetsov-Ma solitons, and explore how these evolve in the left-handed transmission line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less
Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.
Li, Nianbei; Ren, Jie
2014-08-29
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng
2016-04-15
In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less
Roles Played by Electrostatic Waves in Producing Radio Emissions
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
2000-01-01
Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.
Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li
2017-04-17
We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.
Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes
NASA Astrophysics Data System (ADS)
Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.
2014-07-01
We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.
Wave propagation in a strongly nonlinear locally resonant granular crystal
NASA Astrophysics Data System (ADS)
Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.
2018-02-01
In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
Nonlinear fractional waves at elastic interfaces
NASA Astrophysics Data System (ADS)
Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.
2017-11-01
We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors
NASA Astrophysics Data System (ADS)
Pigeon, Jeremy James
The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882 GHz beat-waves revealed an unexpected and rapid decrease in the FWM yield that was not predicted by the GNLSE model that accounts for third-order nonlinearities alone. These results suggest that the effective nonlinear refractive index of GaAs, having formidable second- and third-order susceptibilities, may be altered by quadratic nonlinearities.
Nonlinear low frequency (LF) waves - Comets and foreshock phenomena
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.
1991-01-01
A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.
A geometric theory of waves and its applications to plasma physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, Daniel
Waves play an essential role in many aspects of plasma dynamics. For example, they are indispensable in plasma manipulation and diagnostics. Although the physics of waves is well understood in the context of relatively simple problems, difficulties arise when studying waves that propagate in inhomogeneous or nonlinear media. This thesis presents a new systematic wave theory based on phase-space variational principles. In this dissertation, waves are treated as geometric objects of a variational theory rather than formal solutions of specific PDEs. This approach simplifies calculations, highlights the underlying wave symmetries, and leads to improved modeling of wave dynamics. Specifically, thismore » dissertation presents two important breakthroughs that were obtained in the general theory of waves. The first main contribution of the present dissertation is an extension of the theory of geometrical optics (GO) in order to include polarization effects. Even when diffraction is ignored, the GO ray equations are not entirely accurate. This occurs because GO treats wave rays as classical particles described by their position and momentum coordinates. However, vector waves have another degree of freedom, their polarization. As a result, wave rays can behave as particles with spin and show polarization dynamics, such as polarization precession and polarization-driven bending of ray trajectories. In this thesis, the theory of GO is reformulated as a first-principle Lagrangian wave theory that governs both mentioned polarization phenomena simultaneously. The theory was applied successfully to several systems of interest, such as relativistic spin-$1/2$ particles and radio-frequency waves propagating in magnetized plasmas. The second main contribution of this thesis is the development of a phase-space method to study basic properties of nonlinear wave--wave interactions. Specifically, a general theory is proposed that describes the ponderomotive refraction that a wave can experience when interacting with another wave. It is also shown that phase-space methods can be useful to study problems in the field of wave turbulence, such as the nonlinear interaction of high-frequency waves with large-scale structures. Overall, the results obtained can serve as a basis for future studies on more complex nonlinear wave--wave interactions, such as modulational instabilities in general wave ensembles or wave turbulence.« less
Nonlinear dynamics of global atmospheric and Earth system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry
1993-01-01
During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.
Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.
Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning
2018-07-01
This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.
The dissipation of electromagnetic waves in plasmas
NASA Astrophysics Data System (ADS)
Basov, N. G.
The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
NASA Astrophysics Data System (ADS)
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
Nonlinear dynamic phenomena in the space shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Housner, J. M.; Edighoffer, H. H.; Park, K. C.
1981-01-01
The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Abulwafa, Essam M.; Elhanbaly, Atalla A.
2017-07-01
Based on Sagdeev pseudo-potential and phase-portrait, the dynamics of four-component dust plasma with non-extensively distributed electrons and ions are investigated. Three distinct types of nonlinear waves, namely, soliton, double layer, and super-soliton, have been found. The basic features of such waves are high sensitivity to Mach number, non-extensive parameter, and dust temperature ratio. It is found that the multi-component plasma is a necessary condition for super-soliton's existence, having a wider amplitude and a larger width than the regular soliton. Super-solitons may also exist when the Sagdeev pseudo-potential curves admit at least four extrema and two roots. In our multi-component plasma system, the super-solitons can be found by increasing the Mach number and the non-extensive parameter beyond those of double-layers. On the contrary, the super-soliton can be produced by decreasing the dust temperature ratio. The conditions of the onset of such nonlinear waves and its merging to regular solitons have been studied. This work shows that the obtained nonlinear waves are found to exist only in the super-sonic Mach number regime. The obtained results may be of wide relevance in the field of space plasma and may also be helpful to better understand the nonlinear fluctuations in the Auroral-zone of the Earth's magnetosphere.
Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preynas, M.; Goniche, M.; Hillairet, J.
2014-02-12
To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have beenmore » performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling for the first time on the FAM and PAM antennas on Tore Supra.« less
Whistler and Alfvén Mode Cyclotron Masers in Space
NASA Astrophysics Data System (ADS)
Trakhtengerts, V. Y.; Rycroft, M. J.
2012-10-01
Preface; 1. Introduction; 2. Basic theory of cyclotron masers (CMs); 3. Linear theory of the cyclotron instability (CI); 4. Backward wave oscillator (BWO) regime in CMs; 5. Nonlinear cyclotron wave-particle interactions for a quasi-monochromatic wave; 6. Nonlinear interaction of quasi-monochromatic whistler mode waves with gyroresonant electrons in an in homogeneous plasma; 7. Wavelet amplification in an inhomogeneous plasma; 8. Quasi-linear theory of cyclotron masers; 9. Nonstationary generation regimes, and modulation effects; 10. ELF/VLF noise-like emissions and electrons in the Earth's radiation belts; 11. Generation of discrete ELF/VLF whistler mode emissions; 12. Cyclotron instability of the proton radiation belts; 13. Cyclotron masers elsewhere in the solar system and in laboratory plasma devices; Epilogue; Glossary of terms; List of acronyms; References; Index.
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.
Mordant, Nicolas; Miquel, Benjamin
2017-10-01
We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate
NASA Astrophysics Data System (ADS)
Mordant, Nicolas; Miquel, Benjamin
2017-10-01
We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.
2018-02-01
In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.
NASA Astrophysics Data System (ADS)
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonlinear evolution of energetic-particles-driven waves in collisionless plasmas
NASA Astrophysics Data System (ADS)
Li, Shuhan; Liu, Jinyuan; Wang, Feng; Shen, Wei; Li, Dong
2018-06-01
A one-dimensional electrostatic collisionless particle-in-cell code has been developed to study the nonlinear interaction between electrostatic waves and energetic particles (EPs). For a single wave, the results are clear and agree well with the existing theories. For coexisting two waves, although the mode nonlinear coupling between two wave fields is ignored, the second-order phase space islands can still exist between first-order islands generated by the two waves. However, the second-order phase islands are not formed by the superposed wave fields and the perturbed motions of EPs induced by the combined effect of two main resonances make these structures in phase space. Owing to these second-order islands, energy can be transferred between waves, even if the overlap of two main resonances never occurs. Depending on the distance between the main resonance islands in velocity space, the second-order island can affect the nonlinear dynamics and saturations of waves.
Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials
Li, Nianbei; Ren, Jie
2014-01-01
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668
Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.
Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo
2009-04-13
Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.
Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N
2013-07-01
The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
NASA Astrophysics Data System (ADS)
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, Brett
2012-10-01
It is often assumed that linear instabilities maintain turbulence in plasmas and some fluids, but this is not always the case. It is well known that many fluids display subcritical turbulence at a Reynolds number well below the threashold of linear instability. Certain plasma models such as drift waves in a sheared slab also exhibit subcritical turbulence [1]. In other instances such as drift-ballooning turbulence in tokamak edge plasmas, linear instabilities exist in a system, but they become subdominant to more robust nonlinear mechanisms that sustain a turbulent state [2, 3]. In our simulation of LAPD turbulence, which was previously analyzed in [4], we diagnose the results using an energy dynamics analysis [5]. This allows us to track energy input into turbulent fluctuations and energy dissipation out of them. We also track conservative energy transfer between different energy types (e.g. from potential to kinetic energy) and between different Fourier waves of the system. The result is that a nonlinear instability drives and maintains the turbulence in the steady state saturated phase of the simulation. While a linear restistive drift wave instability resides in the system, the nonlinear drift wave instability dominates when the fluctuation amplitude becomes large enough. The nonlinear instability is identified by its energy growth rate spectrum, which varies significantly from the linear growth rate spectrum. The main differences are the presence of positive growth rates when k|| = 0 and negative growth rates for nonzero k||, which is opposite that of the linear growth rate spectrum.[4pt] [1] B. D. Scott, Phys. Rev. Lett., 65, 3289 (1990).[0pt] [2] A. Zeiler et al, Phys. Plasmas, 3, 2951 (1996).[0pt] [3] B. D. Scott, Phys. Plasmas, 12, 062314 (2005).[0pt] [4] P. Popovich et al, Phys. Plasmas, 17, 122312 (2010).[0pt] [5] [physics.plasm-ph].
NASA Astrophysics Data System (ADS)
Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.
2014-12-01
Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].
NASA Astrophysics Data System (ADS)
Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2017-12-01
We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
NASA Astrophysics Data System (ADS)
Cummings, Patrick
We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
Signatures of Nonlinear Waves in Coronal Plumes and Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
1999-01-01
In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.
Stability of post-fertilization traveling waves
NASA Astrophysics Data System (ADS)
Flores, Gilberto; Plaza, Ramón G.
This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
NASA Astrophysics Data System (ADS)
Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef
2018-05-01
This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.
Dispersive shock waves in systems with nonlocal dispersion of Benjamin-Ono type
NASA Astrophysics Data System (ADS)
El, G. A.; Nguyen, L. T. K.; Smyth, N. F.
2018-04-01
We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin-Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is not a pre-requisite for the application of this method which represents a modification of the DSW fitting method previously developed for dispersive-hydrodynamic systems of Korteweg-de Vries (KdV) type (i.e. reducible to the KdV equation in the weakly nonlinear, long wave, unidirectional approximation). The developed method is applied to the Calogero-Sutherland dispersive hydrodynamics for which the classification of all solution types arising from the Riemann step problem is constructed and the key physical parameters (DSW edge speeds, lead soliton amplitude, intermediate shelf level) of all but one solution type are obtained in terms of the initial step data. The analytical results are shown to be in excellent agreement with results of direct numerical simulations.
The solution of non-linear hyperbolic equation systems by the finite element method
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Zienkiewicz, O. C.
1984-01-01
A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.
Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback
NASA Astrophysics Data System (ADS)
Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir
2006-01-01
The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.
NASA Astrophysics Data System (ADS)
Raza, Nauman; Murtaza, Isma Ghulam; Sial, Sultan; Younis, Muhammad
2018-07-01
The article studies the dynamics of solitons in electrical microtubule ? model, which describes the propagation of waves in nonlinear dynamical system. Microtubules are not only a passive support of a cell but also they have highly dynamic structures involved in cell motility, intracellular transport and signaling. The underlying model has been considered with constant and variable coefficients of time function. The solitary wave ansatz has been applied successfully to extract these solitons. The corresponding integrability criteria, also known as constraint conditions, naturally emerge from the analysis of these models.
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
NASA Astrophysics Data System (ADS)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.
2015-09-15
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Zhang, Guoqiang
2018-01-01
Under investigation in this paper is the Kundu equation, which may be used to describe the propagation process of ultrashort optical pulses in nonlinear optics. The modulational instability of the plane-wave for the possible reason of the formation of the rogue wave (RW) is studied for the system. Based on our proposed generalized perturbation (n,N - n)-fold Darboux transformation (DT), some new higher-order implicit RW solutions in terms of determinants are obtained by means of the generalized perturbation (1,N - 1)-fold DT, when choosing different special parameters, these results will reduce to the RW solutions of the Kaup-Newell (KN) equation, Chen-Lee-Liu (CLL) equation and Gerjikov-Ivanov (GI) equation, respectively. The relevant wave structures are shown graphically, which display abundant interesting wave structures. The dynamical behaviors and propagation stability of the first-order and second-order RW solutions are discussed by using numerical simulations, the higher-order nonlinear terms for the Kundu equation have an impact on the propagation instability of the RW. The method can also be extended to find the higher-order RW or rational solutions of other integrable nonlinear equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Jongchul; Litvinenko, Yuri E.
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical resultsmore » suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.« less
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles
2017-08-01
This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.
Unidirectional Transition Waves in Bistable Lattices
NASA Astrophysics Data System (ADS)
Nadkarni, Neel; Arrieta, Andres F.; Chong, Christopher; Kochmann, Dennis M.; Daraio, Chiara
2016-06-01
We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Nonlinear resonances and antiresonances of a forced sonic vacuum
Pozharskiy, D.; Zhang, Y.; Williams, M. O.; ...
2015-12-23
We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude- and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force (“antiresonances”) between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., ofmore » period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) “nonlinear spectrum” in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). As a result, we rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves.« less
Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves
NASA Astrophysics Data System (ADS)
Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2015-11-01
We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.
NASA Technical Reports Server (NTRS)
Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.
2016-01-01
Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
NASA Astrophysics Data System (ADS)
Aver'yanov, M. V.; Khokhlova, V. A.; Sapozhnikov, O. A.; Blanc-Benon, Ph.; Cleveland, R. O.
2006-12-01
A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional version of the algorithm is used to investigate the propagation of nonlinear periodic waves in media with random inhomogeneities. For the case of scalar inhomogeneities, including the case of a flow parallel to the wave propagation direction, a complex acoustic field structure with multiple caustics is obtained. Inclusion of the transverse component of vectorial random inhomogeneities has little effect on the acoustic field. However, when a uniform transverse flow is present, the field structure is shifted without changing its morphology. The impact of nonlinearity is twofold: it produces strong shock waves in focal regions, while, outside the caustics, it produces higher harmonics without any shocks. When the intensity is averaged across the beam propagating through a random medium, it evolves similarly to the intensity of a plane nonlinear wave, indicating that the transverse redistribution of acoustic energy gives no considerable contribution to nonlinear absorption.
NASA Technical Reports Server (NTRS)
Shih, C. C.
1973-01-01
In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan Ghosh, Uday; Kumar Mandal, Pankaj, E-mail: pankajwbmsd@gmail.com; Chatterjee, Prasanta
Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior ofmore » the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.« less
Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, R. E.; Cheng, B.
1996-01-01
For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.
Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
Ankiewicz, A; Akhmediev, N
2017-07-01
We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.
Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.
Loomba, Shally; Kaur, Harleen
2013-12-01
We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.
Hydrodynamic optical soliton tunneling
NASA Astrophysics Data System (ADS)
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Hydrodynamic optical soliton tunneling.
Sprenger, P; Hoefer, M A; El, G A
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
2011-04-01
experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier
Nonlinear Stage of Modulation Instability for a Fifth-Order Nonlinear Schrödinger Equation
NASA Astrophysics Data System (ADS)
Jia, Hui-Xian; Shan, Dong-Ming
2017-10-01
In this article, a fifth-order nonlinear Schrödinger equation, which can be used to characterise the solitons in the optical fibre and inhomogeneous Heisenberg ferromagnetic spin system, has been investigated. Akhmediev breather, Kuzentsov soliton, and generalised soliton have all been attained via the Darbox transformation. Propagation and interaction for three-type breathers have been studied: the types of breather are determined by the module and complex angle of parameter ξ; interaction between Akhmediev breather and generalised soliton displays a phase shift, whereas the others do not. Modulation instability of the generalised solitons have been analysed: a small perturbation can develop into a rogue wave, which is consistent with the results of rogue wave solutions.
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation
Jing, Yun; Tao, Molei; Clement, Greg T.
2011-01-01
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985
The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...
2016-06-06
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less
NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp
2016-04-01
Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wavemore » with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.« less
Second-harmonic generation in shear wave beams with different polarizations
NASA Astrophysics Data System (ADS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Modelling of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, M.; Schmidt, J.; Salo, H.
2014-04-01
Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
Nonlinear effects in the time measurement device based on surface acoustic wave filter excitation.
Prochazka, Ivan; Panek, Petr
2009-07-01
A transversal surface acoustic wave filter has been used as a time interpolator in a time interval measurement device. We are presenting the experiments and results of an analysis of the nonlinear effects in such a time interpolator. The analysis shows that the nonlinear distortion in the time interpolator circuits causes a deterministic measurement error which can be understood as the time interpolation nonlinearity. The dependence of this error on time of the measured events can be expressed as a sparse Fourier series thus it usually oscillates very quickly in comparison to the clock period. The theoretical model is in good agreement with experiments carried out on an experimental two-channel timing system. Using highly linear amplifiers in the time interpolator and adjusting the filter excitation level to the optimum, we have achieved the interpolation nonlinearity below 0.2 ps. The overall single-shot precision of the experimental timing device is 0.9 ps rms in each channel.
Numerical studies of identification in nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.
1989-01-01
An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.
Simple waves in a two-component Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Ivanov, S. K.; Kamchatnov, A. M.
2018-04-01
We study the dynamics of so-called simple waves in a two-component Bose-Einstein condensate. The evolution of the condensate is described by Gross-Pitaevskii equations which can be reduced for these simple wave solutions to a system of ordinary differential equations which coincide with those derived by Ovsyannikov for the two-layer fluid dynamics. We solve the Ovsyannikov system for two typical situations of large and small difference between interspecies and intraspecies nonlinear interaction constants. Our analytic results are confirmed by numerical simulations.
Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.
2016-01-01
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005
Nonlinear Whistler Wave Physics in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data suggest that these weak turbulence processes may be playing a role in saturating the nonlinear instability.
Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space
NASA Astrophysics Data System (ADS)
Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus
2018-05-01
We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
Nonlinear surface waves at ferrite-metamaterial waveguide structure
NASA Astrophysics Data System (ADS)
Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques
2016-09-01
A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.
Time-Reversal Generation of Rogue Waves
NASA Astrophysics Data System (ADS)
Chabchoub, Amin; Fink, Mathias
2014-03-01
The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
2015-03-23
SAMPE, Long Beach, CA, 2008. [28] N Hu and H Fukunaga. A new approach for health monitoring of composite structures through identification of impact...Bernard H Minster . Hysteresis and two- dimensional nonlinear wave propagation in berea sandstone. Journal of Geo- physical Research: Solid Earth (1978–2012
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.
2017-01-01
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
The interaction between a propagating coastal vortex and topographic waves
NASA Astrophysics Data System (ADS)
Parry, Simon Wyn
This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Rogue waves in space dusty plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, N. A.; Mannan, A.; Mamun, A. A.
2017-11-01
The modulational instability of dust-acoustic (DA) waves (DAWs) and corresponding DA rogue waves (DARWs) in a realistic space dusty plasma system (containing inertial warm positively and negatively charged dust, isothermal ions, and super-thermal kappa distributed electrons) has been theoretically investigated. The nonlinear Schrödinger equation is derived by using a reductive perturbation method for this investigation. It is observed that the dusty plasma system under consideration supports two branches of modes, namely, fast and slow DA modes, and that both of these two modes can be stable or unstable depending on the sign of ratio of the dispersive and nonlinear coefficients. The numerical analysis has shown that the basic features (viz., stability/instability, growth rate, amplitude, and width of the rogue structures, etc.) of the DAWs associated with the fast DA modes are significantly modified by super-thermal parameter (κ) and other various plasma parameters. The results of our present investigation should be useful for understanding DARWs in space plasma systems, viz., mesosphere and ionosphere.
NASA Astrophysics Data System (ADS)
Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin
2017-09-01
We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.
A novel nonlinear damage resonance intermodulation effect for structural health monitoring
NASA Astrophysics Data System (ADS)
Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele
2017-04-01
This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.
Stationary states of extended nonlinear Schrödinger equation with a source
NASA Astrophysics Data System (ADS)
Borich, M. A.; Smagin, V. V.; Tankeev, A. P.
2007-02-01
Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.
Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent
2017-10-01
The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.
NASA Astrophysics Data System (ADS)
Vrecica, Teodor; Toledo, Yaron
2015-04-01
One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Dust acoustic cnoidal waves in a polytropic complex plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; Abdelghany, A. M.
2018-01-01
The nonlinear characteristics of dust acoustic (DA) waves in an unmagnetized collisionless complex plasma containing adiabatic electrons and ions and negatively charged dust grains (including the effects of modified polarization force) are investigated. Employing the reductive perturbation technique, a Korteweg-de Vries-Burgers (KdVB) equation is derived. The analytical solution for the KdVB equation is discussed. Also, the bifurcation and phase portrait analyses are presented to recognize different types of possible solutions. The dependence of the properties of nonlinear DA waves on the system parameters is investigated. It has been shown that an increase in the value of the modified polarization parameter leads to a fast decay and diminishes the oscillation amplitude of the DA damped cnoidal wave. The relevance of our findings and their possible applications to laboratory and space plasma situations is discussed.
Experimental implementation of phase locking in a nonlinear interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.
2015-09-21
Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, B.; Carter, T. A.; Umansky, M. V.; Schaffner, D.; Dudson, B.
2012-10-01
Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Planning for coordinated space and ground-based ionospheric modification experiments
NASA Technical Reports Server (NTRS)
Lee, M. C.; Burke, William J.; Carlson, Herbert C.; Heckscher, John L.; Kossey, Paul A.; Weber, E. J.; Kuo, S. P.
1990-01-01
The planning and conduction of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to discuss: (1) the nonlinear VLF wave interaction with the ionospheric plasmas; and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HF-induced ionospheric density striations can render the nonlinear mode conversion of VLF waved into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the results obtained from the field experiments.
Excitations of breathers and rogue wave in the Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Qi, Jian-Wen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li
2018-01-01
We study the excitations of breathers and rogue wave in a classical Heisenberg spin chain with twist interaction, which is governed by a fourth-order integrable nonlinear Schrödinger equation. The dynamics of these waves have been extracted from an exact solution. In particular, the corresponding existence conditions based on the parameters of perturbation wave number K, magnon number N, background wave vector ks and amplitude c are presented explicitly. Furthermore, the characteristics of magnetic moment distribution corresponding to these nonlinear waves are also investigated in detail. Finally, we discussed the state transition of three types nonlinear localized waves under the different excitation conditions.
NASA Astrophysics Data System (ADS)
Zozulya, A. A.
1988-12-01
A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.
Intermittency in generalized NLS equation with focusing six-wave interactions
NASA Astrophysics Data System (ADS)
Agafontsev, D. S.; Zakharov, V. E.
2015-10-01
We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger (NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. We demonstrate the universal behavior of this system for the region of parameters when six-wave interactions term affects significantly only the largest waves. In particular, in the statistically steady state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly non-Rayleigh one for large waves, with characteristic "fat tail" decaying with amplitude | Ψ | close to ∝ exp (- γ | Ψ |), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave coupling coefficient.
Optical triple-in digital logic using nonlinear optical four-wave mixing
NASA Astrophysics Data System (ADS)
Widjaja, Joewono; Tomita, Yasuo
1995-08-01
A new programmable optical processor is proposed for implementing triple-in combinatorial digital logic that uses four-wave mixing. Binary-coded decimal-to-octal decoding is experimentally demonstrated by use of a photorefractive BaTiO 3 crystal. The result confirms the feasibility of the proposed system.
Optical wave turbulence and the condensation of light
NASA Astrophysics Data System (ADS)
Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania
2009-11-01
In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.
Jaksic, V.; O'Shea, R.; Cahill, P.; Murphy, J.; Mandic, D. P.; Pakrashi, V.
2015-01-01
Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson–Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. PMID:25583866
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant.
Kuznetsov-Ma waves train generation in a left-handed material
NASA Astrophysics Data System (ADS)
Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon
2015-03-01
We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.
NASA Astrophysics Data System (ADS)
Schroeder, J. W. R.; Drake, D. J.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.; Auerbach, D.
2012-10-01
Turbulence plays an important role in the transport of mass and energy in many space and astrophysical plasmas ranging from galaxy clusters to Earth's magnetosphere. One active topic of research is the application of idealized Alfv'enic turbulence models to plasma conditions relevant to space and astrophysical plasmas. Alfv'enic turbulence models based on incompressible magnetohydrodynamics (MHD) contain a nonlinear interaction that drives the cascade of energy to smaller scales. We describe experiments at the Large Plasma Device (LaPD) that focus on the interaction of an Alfv'en wave traveling parallel to the mean magnetic field with a counterpropagating Alfv'en wave. Theory predicts the nonlinear interaction of the two primary waves will produce a secondary daughter Alfv'en wave. In this study, we present the first experimental identification of the daughter wave generated by nonlinear interactions between the primary Alfv'en waves.
NASA Astrophysics Data System (ADS)
Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.
2017-12-01
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
Prognostic characteristics of the lowest-mode internal waves in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Kurkin, Andrey; Kurkina, Oxana; Zaytsev, Andrey; Rybin, Artem; Talipova, Tatiana
2017-04-01
The nonlinear dynamics of short-period internal waves on ocean shelves is well described by generalized nonlinear evolutionary models of Korteweg - de Vries type. Parameters of these models such as long wave propagation speed, nonlinear and dispersive coefficients can be calculated using hydrological data (sea water density stratification), and therefore have geographical and seasonal variations. The internal wave parameters for the basin of the Sea of Okhotsk are computed on a base of recent version of hydrological data source GDEM V3.0. Geographical and seasonal variability of internal wave characteristics is investigated. It is shown that annually or seasonally averaged data can be used for linear parameters. The nonlinear parameters are more sensitive to temporal averaging of hydrological data and detailed data are preferable to use. The zones for nonlinear parameters to change their signs (so-called "turning points") are selected. Possible internal waveforms appearing in the process of internal tide transformation including the solitary waves changing polarities are simulated for the hydrological conditions in the Sea of Okhotsk shelf to demonstrate different scenarios of internal wave adjustment, transformation, refraction and cylindrical divergence.
Asymmetry of wind waves studied in a laboratory tank
NASA Astrophysics Data System (ADS)
Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.
1995-03-01
Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.
Asymmetry of wind waves studied in a laboratory tank
NASA Astrophysics Data System (ADS)
Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.
Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.
Spatial Dynamics Methods for Solitary Waves on a Ferrofluid Jet
NASA Astrophysics Data System (ADS)
Groves, M. D.; Nilsson, D. V.
2018-04-01
This paper presents existence theories for several families of axisymmetric solitary waves on the surface of an otherwise cylindrical ferrofluid jet surrounding a stationary metal rod. The ferrofluid, which is governed by a general (nonlinear) magnetisation law, is subject to an azimuthal magnetic field generated by an electric current flowing along the rod. The ferrohydrodynamic problem for axisymmetric travelling waves is formulated as an infinite-dimensional Hamiltonian system in which the axial direction is the time-like variable. A centre-manifold reduction technique is employed to reduce the system to a locally equivalent Hamiltonian system with a finite number of degrees of freedom, and homoclinic solutions to the reduced system, which correspond to solitary waves, are detected by dynamical-systems methods.
Lagrangian methods in nonlinear plasma wave interaction
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1980-01-01
Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre
Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.
2015-01-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290
Electromagnetic-continuum-induced nonlinearity
NASA Astrophysics Data System (ADS)
Matsko, Andrey B.; Vyatchanin, Sergey P.
2018-05-01
A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative nonlinearity cannot be inferred from the standard Hamiltonian formalism.
Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.
2007-11-01
From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.
Amplification of nonlinear surface waves by wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leblanc, Stephane
2007-10-15
A weakly nonlinear analysis is conducted to study the evolution of slowly varying wavepackets with small but finite amplitudes, that evolve at the interface between air and water under the effect of wind. In the inviscid assumption, wave envelopes are governed by cubic nonlinear Schroedinger or Davey-Stewartson equations forced by a linear term corresponding to Miles' mechanism of wave generation. Under fair wind, it is shown that Stokes waves grow exponentially and that Benjamin-Feir instability becomes explosive.
NASA Astrophysics Data System (ADS)
Lopes, S. R.; Chian, A. C.-L.
1996-01-01
A coherent nonlinear theory of three-wave coupling involving Langmuir, Alfven and whistler waves is formulated and applied to the observation of auroral LAW events in the planetary magnetosphere. The effects of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics are analyzed. The relevance of this theory for understanding the fine structures of auroral whistler-mode emissions and amplitude modulations of auroral Langmuir waves is discussed.
Nonlinear extraordinary wave in dense plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
Wave Amplitude Dependent Engineering Model of Propellant Slosh in Spherical Tanks
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Westra, Douglas G.; Eberhart, Chad J.; Yang, Hong Q.; West, Jeffrey S.
2016-01-01
Liquid propellant slosh is often a concern for the controllability of flight vehicles. Anti-slosh devices are traditionally included in propellant tank designs to limit the amount of sloshing allowed during flight. These devices and any necessary supports can be quite heavy to meet various structural requirements. Some of the burden on anti-slosh devices can be relieved by exploiting the nonlinear behavior of slosh waves in bare smooth wall tanks. A nonlinear regime slosh model for bare spherical tanks was developed through a joint analytical and experimental effort by NASA/MSFC. The developed slosh model accounts for the large damping inherent in nonlinear slosh waves which is more accurate and drives conservatism from vehicle stability analyses that use traditional bare tank slosh models. A more accurate slosh model will result in more realistic predicted slosh forces during flight reducing or removing the need for active controls during a maneuver or baffles in the tank design. Lower control gains and smaller or fewer tank baffles can reduce cost and system complexity while increasing vehicle performance. Both Computational Fluid Dynamics (CFD) simulation and slosh testing of three different spherical tank geometries were performed to develop the proposed slosh model. Several important findings were made during this effort in addition to determining the parameters to the nonlinear regime slosh model. The linear regime slosh damping trend for spherical tanks reported in NASA SP-106 was shown to be inaccurate for certain regions of a tank. Additionally, transition to the nonlinear regime for spherical tanks was only found to occur at very large wave amplitudes in the lower hemisphere and was a strong function of the propellant fill level in the upper hemisphere. The nonlinear regime damping trend was also found to be a function of the propellant fill level.
Approximate optimal tracking control for near-surface AUVs with wave disturbances
NASA Astrophysics Data System (ADS)
Yang, Qing; Su, Hao; Tang, Gongyou
2016-10-01
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
Vector rogue waves and baseband modulation instability in the defocusing regime.
Baronio, Fabio; Conforti, Matteo; Degasperis, Antonio; Lombardo, Sara; Onorato, Miguel; Wabnitz, Stefan
2014-07-18
We report and discuss analytical solutions of the vector nonlinear Schrödinger equation that describe rogue waves in the defocusing regime. This family of solutions includes bright-dark and dark-dark rogue waves. The link between modulational instability (MI) and rogue waves is displayed by showing that only a peculiar kind of MI, namely baseband MI, can sustain rogue-wave formation. The existence of vector rogue waves in the defocusing regime is expected to be a crucial progress in explaining extreme waves in a variety of physical scenarios described by multicomponent systems, from oceanography to optics and plasma physics.
Miles, J
1980-04-01
Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Selected Problems in Nonlinear Dynamics and Sociophysics
NASA Astrophysics Data System (ADS)
Westley, Alexandra Renee
This Ph.D. dissertation focuses on a collection of problems on the dynamical behavior of nonlinear many-body systems, drawn from two substantially different areas. First, the dynamical behavior seen in strongly nonlinear lattices such as in the Fermi-Pasta-Ulam-Tsingou (FPUT) system (part I) and second, time evolution behavior of interacting living objects which can be broadly considered as sociophysics systems (part II). The studies on FPUT-like systems will comprise of five chapters, dedicated to the properties of solitary and anti-solitary waves in the system, how localized nonlinear excitations decay and spread throughout these lattices, how two colliding solitary waves can precipitate highly localized and stable excitations, a possible alternative way to view these localized excitations through Duffing oscillators, and finally an exploration of parametric resonance in an FPUT-like lattice. Part II consists of two problems in the context of sociophysics. I use molecular dynamics inspired simulations to study the size and the stability of social groups of chimpanzees (such as those seen in central Africa) and compare the results with existing observations on the stability of chimpanzee societies. Secondly, I use an agent-based model to simulate land battles between an intelligent army and an insurgency when both have access to equally powerful weaponry. The study considers genetic algorithm based adaptive strategies to infer the strategies needed for the intelligent army to win the battles.
NASA Astrophysics Data System (ADS)
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.
Kourakis, I; Shukla, P K
2005-07-01
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.
Planning for coordinated space and ground-based ionospheric modification experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.C.
1990-10-01
The planning and conducting of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to investigate (1) the nonlinear VLF wave interaction with the ionospheric plasmas, and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HY-induced ionospheric density striations can render the nonlinear mode conversion of VLF waves into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the resultsmore » obtained from the field experiments.« less
Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms
NASA Astrophysics Data System (ADS)
Zhang, Weiguo; Li, Xiang; Li, Shaowei; Chen, Xu
2018-06-01
This paper investigates the orbital stability and instability of solitary waves for the generalized Boussinesq equation with two nonlinear terms. Firstly, according to the theory of Grillakis-Shatah-Strauss orbital stability, we present the general results to judge orbital stability of the solitary waves. Further, we deduce the explicit expression of discrimination d‧‧(c) to judge the stability of the two solitary waves, and give the stable wave speed interval. Moreover, we analyze the influence of the interaction between two nonlinear terms on the stable wave speed interval, and give the maximal stable range for the wave speed. Finally, some conclusions are given in this paper.
Observation of a group of dark rogue waves in a telecommunication optical fiber
NASA Astrophysics Data System (ADS)
Baronio, F.; Frisquet, B.; Chen, S.; Millot, G.; Wabnitz, S.; Kibler, B.
2018-01-01
Over the past decade, the rogue wave debate has stimulated the comparison of predictions and observations among different branches of wave physics, particularly between hydrodynamics and optics, in situations where analogous dynamical behaviors can be identified, thanks to the use of common universal models. Although the scalar nonlinear Schrödinger equation (NLSE) has constantly played a central role for rogue wave investigations, moving beyond the standard NLSE model is relevant and needful for describing more general classes of physical systems and applications. In this direction, the coupled NLSEs are known to play a pivotal role for the understanding of the complex wave dynamics in hydrodynamics and optics. Benefiting from the advanced technology of high-speed telecommunication-grade components, and relying on a careful design of the nonlinear propagation of orthogonally polarized optical pump waves in a randomly birefringent telecom fiber, this work explores, both theoretically and experimentally, the rogue wave dynamics governed by such coupled NLSEs. We report, for the first time, the evidence of a group of three dark rogue waves, the so-called dark three-sister rogue waves, where experiments, numerics, and analytics show a very good consistency.
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.; Sydora, R.
2013-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behavior of these waves has been extensively studied, non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in coronal heating and/or in establishing the spectrum of solar wind turbulence. Recent counter-propagating Alfvén wave experiments have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability. The resonance in the observed beat process has several features consistent with ponderomotive coupling to an ion acoustic mode, including the measured dispersion relation and spatial profile. Strong damping observed after the pump Alfvén waves are turned off is under investigation. New experiments and simulations also aim to identify decay instabilities from a single large-amplitude Alfvén wave. Supported by DOE and NSF.
NASA Technical Reports Server (NTRS)
Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero
1988-01-01
The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.
NASA Astrophysics Data System (ADS)
Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.
2018-04-01
We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.
Parametric traveling wave amplifier with a low pump frequency
NASA Astrophysics Data System (ADS)
Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.
1983-01-01
Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.
Properties of Nonlinear Dynamo Waves
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
2.3 Nonlinear wave and chaos in optical metamaterials 2.3.1 Transient chaos in optical metamaterials We investigated the dynamics of light rays in two...equations can be modeled by a set of ordinary differential equations for light rays . We found that transient chaotic dynamics, hyperbolic or nonhyperbolic...are common in optical metamaterial systems. Due to the analogy between light- ray dynamics in metamaterials and the motion of light and matter as
Giammarinaro, B.; Coulouvrat, F.; Pinton, G.
2016-01-01
Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m, 0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries. PMID:26833489
NASA Astrophysics Data System (ADS)
Aksu, Anil A.
2017-09-01
In this paper, we have considered the non-linear effects arising due to the collision of incident and reflected internal wave beams. It has already been shown analytically [Tabaei et al., "Nonlinear effects in reflecting and colliding internal wave beams," J. Fluid Mech. 526, 217-243 (2005)] and numerically [Rodenborn et al., "Harmonic generation by reflecting internal waves," Phys. Fluids 23, 026601 (2011)] that the internal wave beam collision generates the higher harmonics and mean flow in a linear stratification. In this paper, similar to previous analytical work, small amplitude wave theory is employed; however, it is formulated from energetics perspective which allows considering internal wave beams as the product of slowly varying amplitude and fast complex exponential. As a result, the mean energy propagation equation for the second harmonic wave is obtained. Finally, a similar dependence on the angle of incidence is obtained for the non-linear energy transfer to the second harmonic with previous analyses. A possible physical mechanism for this angle dependence on the second harmonic generation is also discussed here. In addition to previous studies, the viscous effects are also included in the mean energy propagation equation for the incident, the reflecting, and the second harmonic waves. Moreover, even though the mean flow obtained here is only confined to the interaction region, it is also affected by viscosity via the decay in the incident and the reflecting internal wave beams. Furthermore, a framework for the non-linear harmonic generation in non-linear stratification is also proposed here.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.
High-order rogue waves of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Liu, Wei
2017-10-01
High-order rogue wave solutions of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin-Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple and fundamental rogue waves are put forward. These high-order rogue wave patterns have not been shown before in the nonlocal Schrödinger equation.
Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua
2017-09-01
An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S 1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yunliang; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum; Lü, Xiaoxia
A theoretical and numerical study of the modulational instability of large amplitude quantum magnetosonic waves (QMWs) in a relativistically degenerate plasma is presented. A modified nonlinear Schrödinger equation is derived by using the reductive perturbation method. The modulational instability regions of the QMWs and the corresponding growth rates are significantly affected by the relativistic degeneracy parameter, the Pauli spin magnetization effects, and the equilibrium magnetic field. The dynamics and nonlinear saturation of the modulational instability of QMWs are investigated numerically. It is found that the increase of the relativistic degeneracy parameter can increase the growth rate of the instability, andmore » the system is saturated nonlinearly by the formation of envelope solitary waves. The current investigation may have relevance to astrophysical magnetized compact objects, such as white dwarfs and pulsar magnetospheres.« less
NASA Astrophysics Data System (ADS)
Wertgeim, Igor I.
2018-02-01
We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.
Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinton, Gianmarco
Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost.more » Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it is necessary to quantify ultrasound image quality and its sources of degradation.« less
NASA Astrophysics Data System (ADS)
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.
2013-01-01
To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.
NASA Astrophysics Data System (ADS)
Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng
2018-06-01
This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.
Extensions of the Ferry shear wave model for active linear and nonlinear microrheology
Mitran, Sorin M.; Forest, M. Gregory; Yao, Lingxing; Lindley, Brandon; Hill, David B.
2009-01-01
The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior. PMID:20011614
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
NASA Astrophysics Data System (ADS)
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A
2016-12-01
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
Nonlinear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.
1972-01-01
Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.
NASA Technical Reports Server (NTRS)
Mcdonald, B. Edward; Plante, Daniel R.
1989-01-01
The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.
Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.
Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-12-02
We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.
Modelization of highly nonlinear waves in coastal regions
NASA Astrophysics Data System (ADS)
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2015-04-01
The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.
NASA Technical Reports Server (NTRS)
Ohnami, S.; Hayakawa, M.; Bell, T. F.; Ondoh, T.
1993-01-01
Nonlinear wave-wave interaction between signals from a ground-based VLF transmitter and narrow-band ELF emissions in the subauroral ionosphere is studied by means of the bispectrum and bicoherence analysis. A bicoherence analysis has indicated that the sideband structures around the Siple transmitter signal received onboard the ISIS satellite are due to the nonlinear interaction between the Siple VLF signal and the pre-existing ELF emission.
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.
Validation of a Wave Data Assimilation System Based on SWAN
NASA Astrophysics Data System (ADS)
Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.
2013-04-01
SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less
Initial-value problem for the Gardner equation applied to nonlinear internal waves
NASA Astrophysics Data System (ADS)
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of solitons (family with positive polarity, and family with negative polarity bounded below by the amplitude of 2) and two-parametric family of breathers (oscillatory wave packets). In this case varying amplitude and width of bell-shaped initial impulse leads to plenty of different evolutionary scenarios with the generation of solitary waves, breathers, solibores and nonlinear Airy wave in their various combinations. Statistical analysis of the wave field in time shows almost permanent substantial exceedance of the level of the significant wave height in some position in spatial coordinate. Evolution of Fourier spectrum of the wave field is also analyzed, and its behavior after a long time of initial wave evolution demonstrates the power asymptotic for small wave numbers and exponential asymptotic for large wave numbers. The presented results of research are obtained with the support of the grant of the President of the Russian Federation for state support of the young Russian scientists - Candidates of Sciences (MK-5208.2016.5) and Russian Foundation for Basic Research grant 16-05-00049. References: Grimshaw R., Pelinovsky D., Pelinovsky E and Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation // Chaos, 2002. - V.12. - No 4. - 1070-1076. Grimshaw, R., Slunyaev, A., and Pelinovsky, E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity //Chaos, 2010. - vol. 20.-013102. Kurkina O.E., Kurkin A.A., Soomere T., Pelinovsky E.N., Rouvinskaya E.A. Higher-order (2+4) Korteweg-de Vries - like equation for interfacial waves in a symmetric three-layer fluid // Physics of Fluids, 2011. - Volume 23. - Issue 11. - p.116602--1--13. Kurkina O., Rouvinskaya E., Talipova T., Kurkin A., Pelinovsky E. Nonlinear disintegration of sine wave in the framework of the Gardner equation // Physica D: Nonlinear Phenomena, 2015. - doi:10.1016/j.physd.2015.12.007. Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book ``Solitary Waves in Fluids''. WIT Press. Southampton, Boston. 2007. P. 85 - 110. Rouvinskaya E., Kurkina O., Kurkin A. Dynamics of nonlinear internal gravity waves in layered fluids // NNSTU n.a. R.E. Alekseev Press - Nizhny Novgorod, 2014 - 160 p. [In Russian] Trillo S., Klein M., Clauss G., Onorato M. Observation of dispersive shock waves developing from initial depressions in shallow water // Physica D, 2016. - http://dx.doi.org/10.1016/j.physd.2016.01.007.
Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines
NASA Astrophysics Data System (ADS)
EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.
2000-01-01
Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.