Science.gov

Sample records for nonlocal envelope equations

  1. Nonlocal Equations with Measure Data

    NASA Astrophysics Data System (ADS)

    Kuusi, Tuomo; Mingione, Giuseppe; Sire, Yannick

    2015-08-01

    We develop an existence, regularity and potential theory for nonlinear integrodifferential equations involving measure data. The nonlocal elliptic operators considered are possibly degenerate and cover the case of the fractional p-Laplacean operator with measurable coefficients. We introduce a natural function class where we solve the Dirichlet problem, and prove basic and optimal nonlinear Wolff potential estimates for solutions. These are the exact analogs of the results valid in the case of local quasilinear degenerate equations established by Boccardo and Gallouët (J Funct Anal 87:149-169, 1989, Partial Differ Equ 17:641-655, 1992) and Kilpeläinen and Malý (Ann Scuola Norm Sup Pisa Cl Sci (IV) 19:591-613, 1992, Acta Math 172:137-161, 1994). As a consequence, we establish a number of results that can be considered as basic building blocks for a nonlocal, nonlinear potential theory: fine properties of solutions, Calderón-Zygmund estimates, continuity and boundedness criteria are established via Wolff potentials. A main tool is the introduction of a global excess functional that allows us to prove a nonlocal analog of the classical theory due to Campanato (Ann Mat Pura Appl (IV) 69:321-381, 1965). Our results cover the case of linear nonlocal equations with measurable coefficients, and the one of the fractional Laplacean, and are new already in such cases.

  2. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  3. Chaotic Orbits for Systems of Nonlocal Equations

    NASA Astrophysics Data System (ADS)

    Dipierro, Serena; Patrizi, Stefania; Valdinoci, Enrico

    2016-07-01

    We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.

  4. Nonlocal boundary value problem for telegraph equations

    NASA Astrophysics Data System (ADS)

    Ashyralyev, Allaberen; Modanli, Mahmut

    2015-09-01

    In this work, the nonlocal boundary value problem for a telegraph equation in a Hilbert space is conceived. Stability estimates for the solution of this problem are obtained. The first and second order of accuracy difference schemes for the approximate solution of this problem are constructed. Stability estimates for the solution of these difference schemes are established. In implementations, two mixed problems for telegraph partial differential equations are investigated. The methods are showed by numerical experiments.

  5. On nonlocal Gross-Pitaevskii equations with periodic potentials

    NASA Astrophysics Data System (ADS)

    Curtis, Christopher W.

    2012-07-01

    The Gross-Pitaevskii equation is a widely used model in physics, in particular in the context of Bose-Einstein condensates. However, it only takes into account local interactions between particles. This paper demonstrates the validity of using a nonlocal formulation as a generalization of the local model. In particular, the paper demonstrates that the solution of the nonlocal model approaches in norm the solution of the local model as the nonlocal model approaches the local model. The nonlocality and potential used for the Gross-Pitaevskii equation are quite general, thus this paper shows that one can easily add nonlocal effects to interesting classes of Bose-Einstein condensate models. Based on a particular choice of potential for the nonlocal Gross-Pitaevskii equation, we establish the orbital stability of a class of parameter-dependent solutions to the nonlocal problem for certain parameter regimes. Numerical results corroborate the analytical stability results and lead to predictions about the stability of the class of solutions for parameter values outside of the purview of the theory established in this paper.

  6. Connection between nonlocal equations of motion and their balance laws

    SciTech Connect

    Gould, L.I.

    1986-05-01

    One starts with a certain class of nonlocal equations of motion, namely, linear second-order integrodifferential equations (LSIDEs). By means of a formalism developed by the author it is then shown how to obtain balance laws, continuity equations, or conservation laws associated with the LSIDEs in a fairly direct way.

  7. Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Jia, Man; Lou, Sen-Yue

    2012-12-01

    Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.

  8. Symmetries and nonlocal conservation laws of the general magma equation

    NASA Astrophysics Data System (ADS)

    Khamitova, Raisa

    2009-11-01

    In this paper the general magma equation modelling a melt flow in the Earth's mantle is discussed. Applying the new theorem on nonlocal conservation laws [Ibragimov NH. A new conservation theorem. J Math Anal Appl 2007;333(1):311-28] and using the symmetries of the model equation nonlocal conservation laws are computed. In accordance with Ibragimov [Ibragimov NH. Quasi-self-adjoint differential equations. Preprint in Archives of ALGA, vol. 4, BTH, Karlskrona, Sweden: Alga Publications; 2007. p. 55-60, ISSN: 1652-4934] it is shown that the general magma equation is quasi-self-adjoint for arbitrary m and n and self-adjoint for n = -m. These important properties are used for deriving local conservation laws.

  9. On a class of nonlocal wave equations from applications

    NASA Astrophysics Data System (ADS)

    Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih

    2016-06-01

    We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.

  10. Solution of K-V envelope equations

    SciTech Connect

    Anderson, O.A.

    1995-04-01

    The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the bean current, emittance, and peak focusing field, we find the envelopes a(s) and b(s) and obtain , a{sub max}, {sigma}, and {sigma}{sub 0}. Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3--10 times better accuracy and are good to {approximately}1% at {sigma}{sub 0} = 70{degree}. Third order gives a factor of 10--30 improvement over the smooth approximation and derived quantities accurate to {approximately}1% at {sigma}{sub 0} = 112 {degree}. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL.

  11. Travelling fronts in non-local evolution equations

    NASA Astrophysics Data System (ADS)

    de Masi, A.; Gobron, T.; Presutti, E.

    1995-06-01

    The existence of travelling fronts and their uniqueness modulo translations are proved in the context of a one-dimensional, non-local, evolution equation derived in [5] from Ising systems with Glauber dynamics and Kac potentials. The front describes the moving interface between the stable and the metastable phases and it is shown to attract all the profiles which at ± ∞ are in the domain of attraction of the stable and, respectively, the metastable states. The results are compared with those of Fife & McLeod [13] for the Allen-Cahn equation.

  12. Nonlocal Symmetry of the Lax Equation Related to Riccati-Type Pseudopotential

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Hu; Chen, Yong; Xin, Xiang-Peng

    2012-12-01

    We investigate the Lax equation that can be employed to describe motions of long waves in shallow water under gravity. A nonlocal symmetry of this equation is given and used to find exact solutions and derive lower integrable models from higher ones. It is interesting that this nonlocal symmetry links with its corresponding Riccati-type pseudopotential. By introducing suitable and simple auxiliary dependent variables, the nonlocal symmetry is localized and used to generate new solutions from trivial solutions. Meanwhile, this equation is reduced to an ordinary differential equation by means of this nonlocal symmetry and some local symmetries.

  13. On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion

    NASA Astrophysics Data System (ADS)

    Lazar, Omar

    2016-11-01

    We study a 1D transport equation with nonlocal velocity with subcritical or supercritical dissipation. For all data in the weighted Sobolev space Hk (wλ,κ) ∩L∞, where k = max ⁡ (0 , 3 / 2 - α) and wλ,κ is a given family of Muckenhoupt weights, we prove a global existence result in the subcritical case α ∈ (1 , 2). We also prove a local existence theorem for large data in H2 (wλ,κ) ∩L∞ in the supercritical case α ∈ (0 , 1). The proofs are based on the use of the weighted Littlewood-Paley theory, interpolation along with some new commutator estimates.

  14. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    PubMed Central

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  15. Exact solutions of fractional Schroedinger-like equation with a nonlocal term

    SciTech Connect

    Jiang Xiaoyun; Xu Mingyu; Qi Haitao

    2011-04-15

    We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter {alpha} and the nonlocal parameter {nu} on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.

  16. Existence of mild solution of impulsive quantum stochastic differential equation with nonlocal conditions

    NASA Astrophysics Data System (ADS)

    Bishop, S. A.; Ayoola, E. O.; Oghonyon, G. J.

    2016-08-01

    New results on existence and uniqueness of solution of impulsive quantum stochastic differential equation with nonlocal conditions are established. The nonlocal conditions are completely continuous. The methods applied here are simple extension of the methods applied in the classical case to this noncummutative quantum setting.

  17. Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Zhu, Zuo-Nong

    2016-08-01

    In this paper, we try to understand the geometry for a nonlocal nonlinear Schrödinger equation (nonlocal NLS) and its discrete version introduced by Ablowitz and Musslimani, Phys. Rev. Lett. 110, 064105 (2013); Phys. Rev. E 90, 042912 (2014). We show that, under the gauge transformations, the nonlocal focusing NLS and the nonlocal defocusing NLS are, respectively, gauge equivalent to a Heisenberg-like equation and a modified Heisenberg-like equation, and their discrete versions are, respectively, gauge equivalent to a discrete Heisenberg-like equation and a discrete modified Heisenberg-like equation. Although the geometry related to the nonlocal NLS and its discrete version is not very clear, from the gauge equivalence, we can see that the properties between the nonlocal NLS and its discrete version and NLS and discrete NLS have significant difference. By constructing the Darboux transformation for discrete nonlocal NLS equations including the cases of focusing and defocusing, we derive their discrete soliton solutions, which differ from the ones obtained by using the inverse scattering transformation.

  18. Nonlocal operators, parabolic-type equations, and ultrametric random walks

    SciTech Connect

    Chacón-Cortes, L. F. Zúñiga-Galindo, W. A.

    2013-11-15

    In this article, we introduce a new type of nonlocal operators and study the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated to these operators. Some of these equations are the p-adic master equations of certain models of complex systems introduced by Avetisov, V. A. and Bikulov, A. Kh., “On the ultrametricity of the fluctuation dynamicmobility of protein molecules,” Proc. Steklov Inst. Math. 265(1), 75–81 (2009) [Tr. Mat. Inst. Steklova 265, 82–89 (2009) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Zubarev, A. P., “First passage time distribution and the number of returns for ultrametric random walks,” J. Phys. A 42(8), 085003 (2009); Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic models of ultrametric diffusion in the conformational dynamics of macromolecules,” Proc. Steklov Inst. Math. 245(2), 48–57 (2004) [Tr. Mat. Inst. Steklova 245, 55–64 (2004) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic description of characteristic relaxation in complex systems,” J. Phys. A 36(15), 4239–4246 (2003); Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., and Osipov, V. A., “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A 35(2), 177–189 (2002); Avetisov, V. A., Bikulov, A. Kh., and Kozyrev, S. V., “Description of logarithmic relaxation by a model of a hierarchical random walk,” Dokl. Akad. Nauk 368(2), 164–167 (1999) (in Russian). The fundamental solutions of these parabolic-type equations are transition functions of random walks on the n-dimensional vector space over the field of p-adic numbers. We study some properties of these random walks, including the first passage time.

  19. A note on the nonlocal boundary value problem for a third order partial differential equation

    NASA Astrophysics Data System (ADS)

    Belakroum, Kheireddine; Ashyralyev, Allaberen; Guezane-Lakoud, Assia

    2016-08-01

    The nonlocal boundary-value problem for a third order partial differential equation d/3u (t ) d t3 +A d/u (t ) d t =f (t ), 0 nonlocal boundary value problem is established. In applications, the stability estimates for the solution of three nonlocal boundary value problems for the third order partial differential equations are obtained.

  20. Similarity reduction, nonlocal and master symmetries of sixth order Korteweg-deVries equation

    NASA Astrophysics Data System (ADS)

    Sahadevan, R.; Nalinidevi, L.

    2009-05-01

    A systematic investigation to derive the Lie point symmetries, nonlocal and master symmetries of sixth order Korteweg-de Vries equation (KdV6) is presented. Using the obtained point symmetries, similarity reductions are derived and constructed their particular solutions wherever possible. It is shown that KdV6 admits infinitely many nonlocal and master symmetries. The existence of infinitely many master symmetries ensures that KdV6 is completely integrable.

  1. New Exact Solutions of the CDGSK Equation Related to a Non-local Symmetry

    NASA Astrophysics Data System (ADS)

    Lou, Senyue; Ruan, Hangyu; Chen, Weizhong; Wang, Zhenli; Chen, Lili

    1994-10-01

    A non-local symmetry of the Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation has been used for finding exact solution in two different ways. Firstly, using the standard prolongation approach, we obtain the finite Lie Bäcklund transformation and the single soliton solution. Secondly, combining some local symmetries and the nonlocal symmetry, we get the group invariant solution which is described by the Weierstrass elliptic function and is deduced to the so-called interacting soliton for a special parameter.

  2. Meshless local integral equation method for two-dimensional nonlocal elastodynamic problems

    NASA Astrophysics Data System (ADS)

    Huang, X. J.; Wen, P. H.

    2016-08-01

    This paper presents the meshless local integral equation method (LIEM) for nonlocal analyses of two-dimensional dynamic problems based on the Eringen’s model. A unit test function is used in the local weak-form of the governing equation and by applying the divergence theorem to the weak-form, local boundary-domain integral equations are derived. Radial Basis Function (RBF) approximations are utilized for implementation of displacements. The Newmark method is employed to carry out the time marching approximation. Two numerical examples are presented to demonstrate the application of time domain technique to deal with nonlocal elastodynamic mechanical problems.

  3. Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential

    SciTech Connect

    Zhang Ying; Liang Haozhao; Meng Jie

    2009-08-26

    The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus {sup 12}C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.

  4. Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method

    NASA Astrophysics Data System (ADS)

    Ren, Bo

    2015-06-01

    The nonlocal symmetries for the modified Kadomtsev-Petviashvili (mKP) equation are obtained with the truncated Painlevé method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing auxiliary dependent variables. The finite symmetry transformations and similarity reductions related with the nonlocal symmetries are computed. The multi-solitary wave solution and interaction solutions among a soliton and cnoidal waves of the mKP equation are presented. In the meantime, the consistent tanh expansion method is applied to the mKP equation. The explicit interaction solutions among a soliton and other types of nonlinear waves such as cnoidal periodic waves and multiple resonant soliton solutions are given.

  5. CTE Solvability, Exact Solutions and Nonlocal Symmetries of the Sharma-Tasso-Olver Equation

    NASA Astrophysics Data System (ADS)

    Pu, Huan; Jia, Man

    2015-12-01

    In this letter, we prove that the STO equation is CTE solvable and obtain the exact solutions of solitons fission and fusion. We also provide the nonlocal symmetries of the STO equation related to CTE. The nonlocal symmetries are localized by prolonging the related enlarged system. Supported by National Natural Science Foundation of China under Grant Nos. 11205092, 11175092 and 11435005, Ningbo Natural Science Foundation under Grant Nos. 2015A610159 and 2012A610178 and by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502. And the authors were sponsored by K. C. Wong Magna Fund in Ningbo University

  6. Nonlocal Symmetry Reductions, CTE Method and Exact Solutions for Higher-Order KdV Equation

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Liu, Xi-Zhong; Liu, Ping

    2015-02-01

    The nonlocal symmetries for the higher-order KdV equation are obtained with the truncated Painlevé method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing suitable prolonged systems. The finite symmetry transformations and similarity reductions for the prolonged systems are computed. Moreover, the consistent tanh expansion (CTE) method is applied to the higher-order KdV equation. These methods lead to some novel exact solutions of the higher-order KdV system.

  7. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions

    NASA Technical Reports Server (NTRS)

    Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.

    1995-01-01

    The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.

  8. A nonlocal modified Poisson-Boltzmann equation and finite element solver for computing electrostatics of biomolecules

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2016-10-01

    The nonlocal dielectric approach has been studied for more than forty years but only limited to water solvent until the recent work of Xie et al. (2013) [20]. As the development of this recent work, in this paper, a nonlocal modified Poisson-Boltzmann equation (NMPBE) is proposed to incorporate nonlocal dielectric effects into the classic Poisson-Boltzmann equation (PBE) for protein in ionic solvent. The focus of this paper is to present an efficient finite element algorithm and a related software package for solving NMPBE. Numerical results are reported to validate this new software package and demonstrate its high performance for protein molecules. They also show the potential of NMPBE as a better predictor of electrostatic solvation and binding free energies than PBE.

  9. Nonlocal Symmetry and Interaction Solutions of a Generalized Kadomtsev—Petviashvili Equation

    NASA Astrophysics Data System (ADS)

    Huang, Li-Li; Chen, Yong; Ma, Zheng-Yi

    2016-08-01

    A generalized Kadomtsev—Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion (CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev—Petviashvili equation, some Bäcklund transformations (BTs) including auto-BT and non-auto-BT are obtained. The auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further, by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation is derived. In addition, the generalized Kadomtsev—Petviashvili equation is proved consistent Riccati expansion (CRE) solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic interaction solutions. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of under Grant Nos. 11275072 and 11435005, Doctoral Program of Higher Education of China under Grant No. 20120076110024, the Network Information Physics Calculation of Basic Research Innovation Research Group of China under Grant No. 61321064, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14A010005

  10. Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation

    NASA Astrophysics Data System (ADS)

    Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu

    2016-07-01

    In this paper we construct asymptotic solutions for the nonlocal multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of functions concentrated on a one-dimensional manifold (curve) using a semiclassical approximation technique. We show that the construction of these solutions can be reduced to solving a similar problem for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov in the class of functions concentrated at a point (zero-dimensional manifold) together with an additional operator condition. The general approach is exemplified by constructing a two-dimensional two-parametric solution, which describes quasi-steady-state patterns on a circumference.

  11. Generalized Klein-Gordon and Dirac Equations from Nonlocal Kinetic Approach

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2016-09-01

    In this note, I generalized the Klein-Gordon and the Dirac equations by using Suykens's nonlocal-in-time kinetic energy approach, which is motivated from Feynman's kinetic energy functional formalism where the position differences are shifted with respect to one another. I proved that these generalized equations are similar to those obtained in literature in the presence of minimal length based on the Quesne-Tkachuk algebra.

  12. Nonlocal Symmetries, Explicit Solutions, and Wave Structures for the Korteweg-de Vries Equation

    NASA Astrophysics Data System (ADS)

    Ma, Zheng-Yi; Fei, Jin-Xi

    2016-08-01

    From the known Lax pair of the Korteweg-de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.

  13. Modulational instability in nonlinear nonlocal equations of regularized long wave type

    NASA Astrophysics Data System (ADS)

    Hur, Vera Mikyoung; Pandey, Ashish Kumar

    2016-06-01

    We study the stability and instability of periodic traveling waves in the vicinity of the origin in the spectral plane, for equations of Benjamin-Bona-Mahony (BBM) and regularized Boussinesq types permitting nonlocal dispersion. We extend recent results for equations of Korteweg-de Vries type and derive modulational instability indices as functions of the wave number of the underlying wave. We show that a sufficiently small, periodic traveling wave of the BBM equation is spectrally unstable to long wavelength perturbations if the wave number is greater than a critical value and a sufficiently small, periodic traveling wave of the regularized Boussinesq equation is stable to square integrable perturbations.

  14. On the Large Time Behavior of the Solutions of a Nonlocal Ordinary Differential Equation with Mass Conservation

    NASA Astrophysics Data System (ADS)

    Hilhorst, Danielle; Matano, Hiroshi; Nguyen, Thanh Nam; Weber, Hendrik

    2016-09-01

    We consider an initial value problem for a nonlocal differential equation with a bistable nonlinearity in several space dimensions. The equation is an ordinary differential equation with respect to the time variable t, while the nonlocal term is expressed in terms of spatial integration. We discuss the large time behavior of solutions and prove, among other things, the convergence to steady-states. The proof that the solution orbits are relatively compact is based upon the rearrangement theory.

  15. New Representations of Multiperiodic and Multisoliton Solutions for a Class of Nonlocal Soliton Equations

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2004-12-01

    We present the new representations of the multiperiodic and multisoliton solutions of the Benjamin-Ono and nonlocal nonlinear Schrödinger equations. The key idea in the analysis is to explore the structure of the determinantal expressions of the solutions. After providing a direct verification of the multiperiodic solution by means of an elementary theory of determinants, we show that the solution admits a representation in terms of solutions for a system of nonlinear algebraic equations. This representation is found to be an analog of the multiperiodic solution of the Korteweg-de Vries equation. We also discuss the long-wave limit of the results associated with the multiperiodic solutions.

  16. A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions

    PubMed Central

    Bhrawy, A. H.; Alghamdi, M. A.

    2014-01-01

    We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507

  17. Global stability of travelling wave fronts for non-local diffusion equations with delay

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lv, G.

    2014-04-01

    This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted L^\\infty-spaces. Moreover, we obtain the decay rates of \\sup_{x\\in{R}}\\vert u(x,t)-\\varphi(x+ct)\\vert using weighted energy estimates.

  18. Monotone waves for non-monotone and non-local monostable reaction-diffusion equations

    NASA Astrophysics Data System (ADS)

    Trofimchuk, Elena; Pinto, Manuel; Trofimchuk, Sergei

    2016-07-01

    We propose a new approach for proving existence of monotone wavefronts in non-monotone and non-local monostable diffusive equations. This allows to extend recent results established for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) within the class of all non-constant traveling waves. Our approach is based on the construction of suitable fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in the first one, the fundamental solution is negative (typically holds for the Mackey-Glass diffusive equations) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher diffusive equations).

  19. Two-vortex structure of electron, nonlocality and Dirac equation

    NASA Astrophysics Data System (ADS)

    Tiwari, S. C.

    2012-02-01

    The dimensionless electromagnetic coupling constant α=e2/planckc may have three interpretations: as the well-known ratio between the electron charge radius e2/mc2 and the Compton wavelength of an electron λc=planck/mc, as the ratio of two angular momenta since the Planck constant has the dimension of angular momentum and as the ratio of two flux quanta e and hc/e . The anomalous part of the electron magnetic moment together with the unified picture of the three interpretations of α is suggested to have deep physical significance. The electric charge is proposed to be a new quantum of flux that leads to a new model of the electron envisaging a two-vortex structure. In analogy with quantum conditions, we postulate sub-quantum conditions applicable in a region of the order of λc replacing planck by a universal constant f=e2/2πc and we apply it to the Dirac equation in internal space that gives rise to the anomalous magnetic moment of an electron. The Dirac spinor and two-spinor representations for the vortex structure of an electron in the single-particle Dirac framework are discussed. The role of sub-quantum rules and internal variables in developing the present ideas is also discussed. A critical discussion of past attempts at giving fundamental importance to magnetism and flux quantum is presented in order to delineate the new ideas in the present work.

  20. Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation

    NASA Astrophysics Data System (ADS)

    Li-Li, Huang; Yong, Chen

    2016-06-01

    In this paper, the truncated Painlevé analysis, nonlocal symmetry, Bäcklund transformation of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation are presented. Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system. In addition, the (2+1)-dimensional modified Bogoyavlenskii-Schiff is proved consistent Riccati expansion (CRE) solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to find by other traditional methods. Moreover figures are given out to show the properties of the explicit analytic interaction solutions. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213).

  1. Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii–Schiff equation

    NASA Astrophysics Data System (ADS)

    Li-Li, Huang; Yong, Chen

    2016-06-01

    In this paper, the truncated Painlevé analysis, nonlocal symmetry, Bäcklund transformation of the (2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented. Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system. In addition, the (2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion (CRE) solvable. As a result, the soliton–cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to find by other traditional methods. Moreover figures are given out to show the properties of the explicit analytic interaction solutions. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213).

  2. Internal noise-driven generalized Langevin equation from a nonlocal continuum model

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Chowdhury, Shubhankar Roy; Roy, Debasish; Vasu, Ram Mohan

    2015-08-01

    Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

  3. Internal noise-driven generalized Langevin equation from a nonlocal continuum model.

    PubMed

    Sarkar, Saikat; Chowdhury, Shubhankar Roy; Roy, Debasish; Vasu, Ram Mohan

    2015-08-01

    Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases. PMID:26382386

  4. Standing wave and global existence to nonlocal nonlinear Schrödinger equations: the two-dimensional case

    NASA Astrophysics Data System (ADS)

    Gan, Zaihui

    2016-07-01

    In this paper, we consider the standing waves and the global existence for two-dimensional nonlocal nonlinear Schrödinger equations. It is a coupled system which describes the spontaneous generation of a magnetic field in a cold plasma under the static limit. The main difficulty in the proofs lies in exploring the inner structure of the equations due to the fact that the nonlocal terms violate the inner scaling invariance, which may cause the non-zero energy for the ground state. For this reason, we first make a proper use of the inner structure of the equations to establish the existence of standing waves, and then we apply an energy scaling to obtain the instability of standing waves. Finally we show a sharp threshold for the global existence of solutions to the nonlocal nonlinear Schrödinger equations by a variational method, which depends again on the inner structure of the equations under consideration.

  5. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.

    PubMed

    Jeong, Darae; Kim, Junseok

    2015-11-01

    We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space. PMID:26577816

  6. Nonlocal diffusion problems that approximate a parabolic equation with spatial dependence

    NASA Astrophysics Data System (ADS)

    Molino, Alexis; Rossi, Julio D.

    2016-06-01

    In this paper, we show that smooth solutions to the Dirichlet problem for the parabolic equation v_t(x,t)=sum_{i,j=1}N a_{ij}(x)partial2v(x,t)/partial{xipartial{x}j} + sum_{i =1}N bi(x)partial{v}(x,t)/partial{x_i} qquad x in Ω, with v( x, t) = g( x, t), {x in partial Ω,} can be approximated uniformly by solutions of nonlocal problems of the form ut^{\\varepsilon}(x,t)=int_{mathbb{R}n} K_{\\varepsilon}(x,y)(u^{\\varepsilon}(y,t)-u^{\\varepsilon}(x,t))dy, quad x in Ω, with {u^{\\varepsilon}(x,t)=g(x,t)}, {x notin Ω}, as {\\varepsilon to 0}, for an appropriate rescaled kernel {K_{\\varepsilon}}. In this way, we show that the usual local evolution problems with spatial dependence can be approximated by nonlocal ones. In the case of an equation in divergence form, we can obtain an approximation with symmetric kernels, that is, {K_{\\varepsilon}(x,y) = K_{\\varepsilon}(y,x)}.

  7. Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains

    NASA Astrophysics Data System (ADS)

    Gal, Ciprian G.; Warma, Mahamadi

    2016-08-01

    We investigate the long term behavior in terms of finite dimensional global and exponential attractors, as time goes to infinity, of solutions to a semilinear reaction-diffusion equation on non-smooth domains subject to nonlocal Robin boundary conditions, characterized by the presence of fractional diffusion on the boundary. Our results are of general character and apply to a large class of irregular domains, including domains whose boundary is Hölder continuous and domains which have fractal-like geometry. In addition to recovering most of the existing results on existence, regularity, uniqueness, stability, attractor existence, and dimension, for the well-known reaction-diffusion equation in smooth domains, the framework we develop also makes possible a number of new results for all diffusion models in other non-smooth settings.

  8. Dynamical renormalization group study for a class of non-local interface equations

    NASA Astrophysics Data System (ADS)

    Nicoli, Matteo; Cuerno, Rodolfo; Castro, Mario

    2011-10-01

    We provide a detailed dynamic renormalization group study for a class of stochastic equations that describe non-conserved interface growth mediated by non-local interactions. We consider explicitly both the morphologically stable case, and the less studied case in which pattern formation occurs, for which flat surfaces are linearly unstable to periodic perturbations. We show that the latter leads to non-trivial scaling behavior in an appropriate parameter range when combined with the Kardar-Parisi-Zhang (KPZ) nonlinearity, which nevertheless does not correspond to the KPZ universality class. This novel asymptotic behavior is characterized by two scaling laws that fix the critical exponents to dimension-independent values, which agree with previous reports from numerical simulations and experimental systems. We show that the precise form of the linear stabilizing terms does not modify the hydrodynamic behavior of these equations. One of the scaling laws, usually associated with Galilean invariance, is shown to derive from a vertex cancellation that occurs (at least to one loop order) for any choice of linear terms in the equation of motion and is independent of the morphological stability of the surface, hence generalizing this well-known property of the KPZ equation. Moreover, the argument carries over to other systems such as the Lai-Das Sarma-Villain equation, in which vertex cancellation is known not to imply an associated symmetry of the equation.

  9. Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats

    NASA Astrophysics Data System (ADS)

    Li, Wan-Tong; Wang, Jia-Bing; Zhang, Li

    2016-08-01

    This paper is concerned with the new types of entire solutions other than traveling wave solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. We first establish the existence and properties of spatially periodic solutions connecting two steady states. Then new types of entire solutions are constructed by combining the rightward and leftward pulsating traveling fronts with different speeds and a spatially periodic solution. Finally, for a class of special heterogeneous reaction, we further establish the uniqueness of entire solutions and the continuous dependence of such an entire solution on parameters, such as wave speeds and the shifted variables. In other words, we build a five-dimensional manifold of solutions and the traveling wave solutions are on the boundary of the manifold.

  10. L2-stability of traveling wave solutions to nonlocal evolution equations

    NASA Astrophysics Data System (ADS)

    Lang, Eva; Stannat, Wilhelm

    2016-10-01

    Stability of the traveling wave solution to a general class of one-dimensional nonlocal evolution equations is studied in L2-spaces, thereby providing an alternative approach to the usual spectral analysis with respect to the supremum norm. We prove that the linearization around the traveling wave solution satisfies a Lyapunov-type stability condition in a weighted space L2 (ρ) for a naturally associated density ρ. The result can be applied to obtain stability of the traveling wave solution under stochastic perturbations of additive or multiplicative type. For small wave speeds, we also prove an alternative Lyapunov-type stability condition in L2 (m), where m is the symmetrizing density for the traveling wave operator, which allows to derive a long-term stochastic stability result.

  11. Universal envelope equation and emittance evolution of high-brightness beam in linac.

    SciTech Connect

    Wang, C.-X.; Accelerator Systems Division

    2009-01-01

    We report a universal beam envelope equation that governs the transverse linear dynamics of high-intensity and high-brightness relativistic beams under constant acceleration in axisymmetric linear accelerators. This dimensionless and almost parameter-free nonlinear equation is useful for understanding scaling properties and for investigating nonlinear behaviors that are beyond analytical analysis. Particularly, we explore emittance compensation in high-brightness beams evolving from the space-charge regime to the thermal-emittance regime, a transition that commonly occurs during acceleration but is not well studied. A new formula is given for correctly computing the rms bunch emittance from slice envelopes, which is different from the commonly used quadratic sum of the thermal emittance and the rms emittance in the envelope phase space.

  12. Multivalley envelope function equations and effective potentials for phosphorus impurity in silicon

    NASA Astrophysics Data System (ADS)

    Klymenko, M. V.; Rogge, S.; Remacle, F.

    2015-11-01

    We propose a system of real-space envelope function equations without fitting parameters for modeling the electronic spectrum and wave functions of a phosphorus donor atom embedded in silicon. The approach relies on the Burt-Foreman envelope function representation and leads to coupled effective-mass Schrödinger equations containing smooth effective potentials. These potentials result from the spatial filtering imposed on the exact potential energy matrix elements in the envelope function representation. The corresponding filter function is determined from the definition of the envelope function. The resulting effective potentials and the system of envelope functions jointly reproduce the valley-orbit coupling effect in doped silicon. It is found that including the valley-orbit coupling not only of the 1 s but also for 2 s atomic orbitals, as well as static dielectric screening, is crucial to accurately reproduce experimental data. The measured binding energies are recovered with a maximum relative error of 1.53%. The computed wave functions are in good agreement with experimental measurements of the electron density provided by scanning tunneling microscopy.

  13. A pseudo-spectral method for a non-local KdV-Burgers equation posed on R

    NASA Astrophysics Data System (ADS)

    de la Hoz, Francisco; Cuesta, Carlota M.

    2016-04-01

    In this paper, we present a new pseudo-spectral method to solve the initial value problem associated to a non-local KdV-Burgers equation involving a Caputo-type fractional derivative. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting.

  14. An Inhomogeneous Space-Time Patching Model Based on a Nonlocal and Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Dantas, Christine C.

    2016-10-01

    We consider an integrable, nonlocal and nonlinear, Schrödinger equation (NNSE) as a model for building space-time patchings in inhomogeneous loop quantum cosmology (LQC). We briefly review exact solutions of the NNSE, specially those obtained through "geometric equivalence" methods. Furthemore, we argue that the integrability of the NNSE could be linked to consistency conditions derived from LQC, under the assumption that the patchwork dynamics behaves as an integrable many-body system.

  15. Modulated solutions and superfluid fraction for the Gross-Pitaevskii equation with a nonlocal potential at T{ne}0

    SciTech Connect

    Sepulveda, Nestor

    2011-04-15

    Modulated solutions of the nonlocal Gross-Pitaevskii equation are studied at T{ne}0. Stationary states are computed by constructing a stochastic process consisting of a noisy Ginzburg-Landau equation. An order parameter is introduced to quantify the superfluid fraction as a function of the temperature. When the temperature increases the superfluid fraction is shown to vanish. This is explained qualitatively by the thermal appearance of defects that disconnect the system wave function. We also deduce an explicit formula for the introduced order parameter in terms of an Arrhenius law. This allow us to estimate the ''energy of activation'' to create a disconnection in the wave function.

  16. Painlevé analysis, nonlocal symmetry and explicit interaction solutions for supersymmetric mKdVB equation

    NASA Astrophysics Data System (ADS)

    Ren, Bo

    2016-08-01

    The N = 1 supersymmetric mKdVB system is transformed to a coupled bosonic system by using the bosonization approach. By a singularity structure analysis, the bosonized supersymmetric mKdVB (BSmKdVB) equation admits the Painlevé property. Starting from the standard truncated Painlevé method, the nonlocal symmetry for the BSmKdVB equation is obtained. To solve the first Lie's principle related with the nonlocal symmetry, the nonlocal symmetry is localized to the Lie point symmetry by introducing multiple new fields. Thanks to localization processes, similarity reductions for the prolonged systems are studied by the Lie point symmetry method. The interaction solutions among solitons and other complicated waves including Painlevé II waves and periodic cnoidal waves are given through the reduction theorems. The soliton-cnoidal wave interaction solutions are explicitly given by using the mapping and deformation method. The concrete soliton-cnoidal interaction solutions are displayed both in analytical and graphical ways.

  17. A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams

    SciTech Connect

    Hong Qin and Ronald C. Davidson

    2012-04-25

    A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equations and the associated envelope equations for high-intensity beams in a periodic lattice is derived. It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions and the envelope equations are specified by eight free parameters. The class of solutions derived captures a wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of high-intensity beams.

  18. A micromechanics-based nonlocal constitutive equation incorporating three-point statistics for random linear elastic composite materials

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Willis, J. R.

    2016-06-01

    A variational formulation employing the minimum potential and complementary energy principles is used to derive a micromechanics-based nonlocal constitutive equation for random linear elastic composite materials, relating ensemble averages of stress and strain in the most general situation when mean fields vary spatially. All information contained in the energy principles is retained; we employ stress polarization trial fields utilizing one-point statistics so that the resulting nonlocal constitutive equation incorporates up through three-point statistics. The variational structure is developed first for arbitrary heterogeneous linear elastic materials, then for randomly inhomogeneous materials, then for general n-phase composite materials, and finally for two-phase composite materials, in which case explicit variational upper and lower bounds on the nonlocal effective modulus tensor operator are derived. For statistically uniform infinite-body composites, these bounds are determined even more explicitly in Fourier transform space. We evaluate these in detail in an example case: longitudinal shear of an aligned fiber or void composite. We determine the full permissible ranges of the terms involving two- and three-point statistics in these bounds, and thereby exhibit explicit results that encompass arbitrary isotropic in-plane phase distributions; we also develop a nonlocal "Milton parameter", the variation of whose eigenvalues throughout the interval [0, 1] describes the full permissible range of the three-point term. Example plots of the new bounds show them to provide substantial improvement over the (two-point) Hashin-Shtrikman bounds on the nonlocal operator tensor, for all permissible values of the two- and three-point parameters. We next discuss further applications of the general nonlocal operator bounds: to any three-dimensional scalar transport problem e.g. conductivity, for which explicit results are given encompassing the full permissible ranges of the

  19. Self-Consistent System of Equations for a Kinetic Description of the Low-Pressure Discharges Accounting for the Nonlocal and Collisionless Electron Dynamics

    SciTech Connect

    Igor D. Kaganovich; Oleg Polomarov

    2003-05-19

    In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated.

  20. Traveling waves in the nonlocal KPP-Fisher equation: Different roles of the right and the left interactions

    NASA Astrophysics Data System (ADS)

    Hasik, Karel; Kopfová, Jana; Nábělková, Petra; Trofimchuk, Sergei

    2016-04-01

    We consider the nonlocal KPP-Fisher equation ut (t , x) =uxx (t , x) + u (t , x) (1 - (K * u) (t , x)) which describes the evolution of population density u (t , x) with respect to time t and location x. The non-locality is expressed in terms of the convolution of u (t , ṡ) with kernel K (ṡ) ≥ 0, ∫R K (s) ds = 1. The restrictions K (s), s ≥ 0, and K (s), s ≤ 0, are responsible for interactions of an individual with his left and right neighbors, respectively. We show that these two parts of K play quite different roles as for the existence and uniqueness of traveling fronts to the KPP-Fisher equation. In particular, if the left interaction is dominant, the uniqueness of fronts can be proved, while the dominance of the right interaction can induce the co-existence of monotone and oscillating fronts. We also present a short proof of the existence of traveling waves without assuming various technical restrictions usually imposed on K.

  1. Nonlocal modification of Newtonian gravity

    SciTech Connect

    Blome, Hans-Joachim; Chicone, Carmen; Hehl, Friedrich W.; Mashhoon, Bahram

    2010-03-15

    The Newtonian regime of a recent nonlocal extension of general relativity is investigated. Nonlocality is introduced via a scalar ''constitutive'' kernel in a special case of the translational gauge theory of gravitation, namely, the teleparallel equivalent of general relativity. In this theory, the nonlocal aspect of gravity simulates dark matter. A nonlocal and nonlinear generalization of Poisson's equation of Newtonian gravitation is presented. The implications of nonlocality for the gravitational physics in the solar system are briefly studied.

  2. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    NASA Astrophysics Data System (ADS)

    Jin-Yuan, Li; Nian-Qiao, Fang; Ji, Zhang; Yu-Long, Xue; Xue-Mu, Wang; Xiao-Bo, Yuan

    2016-04-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. Project supported by the National Natural Science Foundation of China (Grant No. 41406018).

  3. A non-local Richards equation to model infiltration into highly heterogeneous media under macroscopic non-equilibrium pressure conditions

    NASA Astrophysics Data System (ADS)

    Neuweiler, I.; Dentz, M.; Erdal, D.

    2012-04-01

    Infiltration into dry strongly heterogeneous media, such as fractured rocks, can often not be modelled by a standard Richards equation with homogeneous parameters, as the averaged water content is not in equilibrium with the averaged pressure. Often, double continua approaches are used for such cases. We describe infiltration into strongly heterogeneous media by a Richards model for the mobile domain, that is characterized by a memory kernel that encodes the local mass transfer dynamics as well as the geometry of the immobile zone. This approach is based on the assumption that capillary flow can be approximated as diffusion. We demonstrate that this approximation is in many cases justified. Comparison of the model predictions to the results of numerical simulations of infiltration into vertically layered media shows that the non-local approach describes well non-equilibrium effects due to mass transfer between high and low conductivity zones.

  4. Stability of Planar Fronts for a Non-Local Phase Kinetics Equation with a Conservation Law in D ≤ 3

    NASA Astrophysics Data System (ADS)

    Carlen, Eric A.; Orlandi, Enza

    2012-05-01

    We consider, in a D-dimensional cylinder, a non-local evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider sub-critical temperatures, for which there are two local spatially homogeneous equilibria, and show a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibrium; i.e. the planar fronts: We show that an initial perturbation of a front that is sufficiently small in L2 norm, and sufficiently localized yields a solution that relaxes to another front, selected by a conservation law, in the L1 norm at an algebraic rate that we explicitly estimate. We also obtain rates for the relaxation in the L2 norm and the rate of decrease of the excess free energy.

  5. Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Bao; Ma, Ruyun

    2014-10-01

    This paper is concerned with the traveling wave solutions and the spreading speeds for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, which is motivated by an age-structured population model with time delay. We first prove the existence of traveling wave solution with critical wave speed c = c*. By introducing two auxiliary monotone birth functions and using a fluctuation method, we further show that the number c = c* is also the spreading speed of the corresponding initial value problem with compact support. Then, the nonexistence of traveling wave solutions for c < c* is established. Finally, by means of the (technical) weighted energy method, we prove that the traveling wave with large speed is exponentially stable, when the initial perturbation around the wave is relatively small in a weighted norm.

  6. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    NASA Astrophysics Data System (ADS)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  7. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  8. Multiple beam envelope equations for electron injectors using a bunch segmentation model

    NASA Astrophysics Data System (ADS)

    Mizuno, A.; Dewa, H.; Taniuchi, T.; Tomizawa, H.; Hanaki, H.; Hotta, E.

    2012-06-01

    A new semianalytical method of investigating the beam dynamics for electron injectors was developed. In this method, a short bunched electron beam is assumed to be an ensemble of several segmentation pieces in both the longitudinal and the transverse directions. The trajectory of each electron in the segmentation pieces is solved by the beam envelope equations while taking into account the space charge fields produced by all the pieces, the electromagnetic fields of an rf cavity, and the image charge fields at a cathode surface. The shape of the entire bunch is consequently calculated, and thus the emittances can be obtained from weighted mean values of the solutions for the obtained electron trajectories. The advantage of this method is its unique assumption for the beam parameters. We assume that each segmentation slice is not warped in the calculations. Although if the beam energy is low and the charge density is large, this condition is not satisfied, in practice, this condition is usually satisfied. We have performed beam dynamics calculations to obtain traces in free space and in the BNL-type rf gun cavity by comparing the analytical solutions with those obtained by simulation. In most cases, the emittances obtained by the simulation become closer to those obtained analytically with increasing the number of particles used in the simulation. Therefore, the analytically obtained emittances are expected to coincide with converged values obtained by the simulation. The applicable range of the analytical method for the BNL-type rf gun cavity is under 0.5 nC per bunch. This range is often used in recently built x-ray free electron laser facilities.

  9. Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice

    SciTech Connect

    Hong Qin, Moses Chung, and Ronald C. Davidson

    2009-11-20

    In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

  10. Numerical computations of a nearly singular nonlinear equation: Weakly nonlocal bound states of solitons for the fifth-order Korteweg-deVries equation

    SciTech Connect

    Boyd, J.P.

    1996-03-01

    We numerically calculate bions, which are bound states of two solitary waves which travel together as a single coherent structure with a fixed peak-to-peak separation, for the fifth-order Korteweg-deVries equation. R.H.J. Grimshaw and B.A. Malomed predicted such bions using perturbation theory. We find that the nearly singular quasi-translational eigen-mode which is the heart of the theory is also numerically important in the sense that later iterations are approximately proportional to this eigenmode. However, the near-singularity does not create any serious probelms for our Fourier pseudospectral/Newton-Kantorovich/pseudoarclength continuation algorithms. This type of theory for weakly overlapping solitary waves has been previously developed by Gorshkov, Ostrovskii, Papko, and others. However, Grimshaw and Malomed`s work and our own are the first on bions which are {open_quotes}weakly nonlocal,{close_quotes} that is, decay for large {vert_bar}x{vert_bar} to small amplitude oscillations rather than to zero. Our numerical calculations confirm the main assertions of Grimshaw and Malomed. However, thre are other features, such as a complicated branch structure with multiple turning points and the existence of bions with narrow peak-to-peak separation, which are not predicted by the theory. 20 refs., 15 figs., 2 tabs.

  11. Exact Solution of the Envelope Equations for a Matched Quadrupole-Focused Beam in the Zero Space-Charge Limit

    SciTech Connect

    Anderson, O A; LoDestro, L L

    2009-04-01

    The Kapchinskij-Vladimirskij equations are widely used to study the evolution of the beam envelopes in a periodic system of quadrupole focusing cells. In this paper, we analyze the case of a matched beam. Our model is analogous to that used by Courant and Snyder [E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958)], who obtained a first-order approximate solution for a synchrotron. Here, we treat a linear machine and obtain an exact solution. The model uses a full occupancy, piecewise-constant focusing function and neglects space charge. There are solutions in an infinite number of bands as the focus strength is increased. All these bands are stable. Our explicit results for the phase advance {sigma} and the envelopes a(z) and b(z) are exact for all phase advances except multiples of 180{sup o}, where the behavior is singular. We find that the peak envelope size is minimized for {delta} {approx} 81{sup o}. Actual operation in the higher bands would require very large, very accurate field strengths and would produce significantly larger envelope excursions. If such operation were found to be feasible, there would be interesting applications which we discuss.

  12. On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Tang, Qinglin; Zhang, Yong

    2016-11-01

    In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation [31]. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method [4] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian coordinates transform [14], we first reformulate the FSE into a new equation without rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new FSE. In parallel to the numerical schemes, we also prove some existence and nonexistence results for the ground states. Dynamical laws of some standard quantities, including the mass, energy, angular momentum and the center of mass, are stated. The ground states properties with respect to the fractional order and/or rotating frequencies, dynamics involving decoherence and turbulence together with some interesting phenomena are reported.

  13. The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation

    SciTech Connect

    Kostin, A B

    2013-10-31

    We study the inverse problem for a parabolic equation of recovering the source, that is, the right-hand side F(x,t)=h(x,t)f(x), where the function f(x) is unknown. To find f(x), along with the initial and boundary conditions, we also introduce an additional condition of nonlocal observation of the form ∫{sub 0}{sup T}u(x,t) dμ(t)=χ(x). We prove the Fredholm property for the problem stated in this way, and obtain sufficient conditions for the existence and uniqueness of a solution. These conditions are of the form of readily verifiable inequalities and put no restrictions on the value of T>0 or the diameter of the domain Ω under consideration. The proof uses a priori estimates and the qualitative properties of solutions of initial-boundary value problems for parabolic equations. Bibliography: 40 titles.

  14. Nonlocal and quasilocal field theories

    NASA Astrophysics Data System (ADS)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  15. Deriving k·p parameters from full-Brillouin-zone descriptions: A finite-element envelope function model for quantum-confined wurtzite nanostructures

    SciTech Connect

    Zhou, Xiangyu; Ghione, Giovanni; Bertazzi, Francesco Goano, Michele; Bellotti, Enrico

    2014-07-21

    We present a multiband envelope-function model for wurtzite nanostructures based on a rigorous numerical procedure to determine operator ordering and band parameters from nonlocal empirical pseudopotential calculations. The proposed approach, implemented within a finite-element scheme, leads to well-posed, numerically stable envelope equations that accurately reproduce full-Brillouin-zone subband dispersions of quantum systems. Although demonstrated here for III-nitride nonlocal empirical pseudopotentials, the model provides a general theoretical framework applicable to ab initio electronic structures of wurtzite semiconductors.

  16. Turbulence transport with nonlocal interactions

    SciTech Connect

    Linn, R.R.; Clark, T.T.; Harlow, F.H.; Turner, L.

    1998-03-01

    This preliminary report describes a variety of issues in turbulence transport analysis with particular emphasis on closure procedures that are nonlocal in wave-number and/or physical space. Anomalous behavior of the transport equations for large scale parts of the turbulence spectrum are resolved by including the physical space nonlocal interactions. Direct and reverse cascade processes in wave-number space are given a much richer potential for realistic description by the nonlocal formulations. The discussion also describes issues, many still not resolved, regarding new classes of self-similar form functions.

  17. Frustrated Brownian Motion of Nonlocal Solitary Waves

    SciTech Connect

    Folli, V.; Conti, C.

    2010-05-14

    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave packets. The result is valid for any kind of nonlocality and in the presence of nonparaxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equations.

  18. Algebraic Rate of Decay for the Excess Free Energy and Stability of Fronts for a Nonlocal Phase Kinetics Equation with a Conservation Law. I

    NASA Astrophysics Data System (ADS)

    Carlen, E. A.; Carvalho, M. C.; Orlandi, E.

    1999-06-01

    This is the first of two papers devoted to the study of a nonlocal evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider subcritical temperatures, for which there are two local equilibria, and begin the proof of a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibria; i.e., the fronts. We shall show in the second paper that an initial perturbation v 0 of a front that is sufficiently small in L 2 norm, and sufficiently localized that ∫ x 2 v 0( x)2 dx<∞, yields a solution that relaxes to another front, selected by a conservation law, in the L 1 norm at an algebraic rate that we explicitly estimate. There we also obtain rates for the relaxation in the L 2 norm and the rate of decrease of the excess free energy. Here we prove a number of estimates essential for this result. Moreover, the estimates proved here suffice to establish the main result in an important special case.

  19. Origin of Dynamical Quantum Non-locality

    NASA Astrophysics Data System (ADS)

    Pachon, Cesar E.; Pachon, Leonardo A.

    2014-03-01

    Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.

  20. Quantum nonlocality does not exist.

    PubMed

    Tipler, Frank J

    2014-08-01

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  1. Quantum nonlocality does not exist.

    PubMed

    Tipler, Frank J

    2014-08-01

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer. PMID:25015084

  2. Nonlocal Shear Stress for Homogeneous Fluids

    NASA Astrophysics Data System (ADS)

    Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2008-05-01

    It has been suggested that for fluids in which the rate of strain varies appreciably over length scales of the order of the intermolecular interaction range, the viscosity must be treated as a nonlocal property of the fluid. The shear stress can then be postulated to be a convolution of this nonlocal viscosity kernel with the strain rate over all space. In this Letter, we confirm that this postulate is correct by a combination of analytical and numerical methods for an atomic fluid out of equilibrium. Furthermore, we show that a gradient expansion of the nonlocal constitutive equation gives a reasonable approximation to the shear stress in the small wave vector limit.

  3. Temporal Non-locality

    NASA Astrophysics Data System (ADS)

    Filk, Thomas

    2013-04-01

    In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.

  4. Memory in a Nonlocally Damped Oscillator

    NASA Astrophysics Data System (ADS)

    Chruściński, D.; Jurkowski, J.

    2010-01-01

    We analyze the new equation of motion for the damped oscillator. It differs from the standard one by a damping term which is nonlocal in time and hence it gives rise to a system with memory. Both classical and quantum analysis is performed. The characteristic feature of this nonlocal system is that it breaks local composition low for the classical Hamiltonian dynamics and the corresponding quantum propagator.

  5. Nonsmooth feedback controls of nonlocal dispersal models

    NASA Astrophysics Data System (ADS)

    Malaguti, Luisa; Rubbioni, Paola

    2016-03-01

    The paper deals with a nonlocal diffusion equation which is a model for biological invasion and disease spread. A nonsmooth feedback control term is included and the existence of controlled dynamics is proved, satisfying different kinds of nonlocal condition. Jump discontinuities appear in the process. The existence of optimal control strategies is also shown, under suitably regular control functionals. The investigation makes use of techniques of multivalued analysis and is based on the degree theory for condensing operators in Hilbert spaces.

  6. Pacemakers in large arrays of oscillators with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gabriela; Scheel, Arnd

    2016-02-01

    We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.

  7. The equation of state for stellar envelopes. IV - Thermodynamic quantities and selected ionization fractions for six elemental mixes

    NASA Technical Reports Server (NTRS)

    Mihalas, Dimitri; Hummer, D. G.; Mihalas, Barbara Weibel; Daeppen, Werner

    1990-01-01

    The free-energy minimization technique in the form developed in the preceding papers in this series is employed to evaluate thermodynamic quantities and ionization fractions on a fine temperature and density grid for six astrophysical mixtures of 15 elements. The mixtures range from that appropriate to super-metal-rich stars, through solar abundance, to that for extreme Population II objects. In this paper, the results for solar abundances are summarized in a form that is illustrative and which facilitates comparison with the results from other equation of state calculations.

  8. Effects of nonlocality on transfer reactions

    NASA Astrophysics Data System (ADS)

    Titus, Luke

    Nuclear reactions play a key role in the study of nuclei away from stability. Single-nucleon transfer reactions involving deuterons provide an exceptional tool to study the single-particle structure of nuclei. Theoretically, these reactions are attractive as they can be cast into a three-body problem composed of a neutron, proton, and the target nucleus. Optical potentials are a common ingredient in reactions studies. Traditionally, nucleon-nucleus optical potentials are made local for convenience. The effects of nonlocal potentials have historically been included approximately by applying a correction factor to the solution of the corresponding equation for the local equivalent interaction. This is usually referred to as the Perey correction factor. In this thesis, we have systematically investigated the effects of nonlocality on (p,d) and (d,p) transfer reactions, and the validity of the Perey correction factor. We implemented a method to solve the single channel nonlocal equation for both bound and scattering states. We also developed an improved formalism for nonlocal interactions that includes deuteron breakup in transfer reactions. This new formalism, the nonlocal adiabatic distorted wave approximation, was used to study the effects of including nonlocality consistently in ( d,p) transfer reactions. For the (p,d) transfer reactions, we solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127 Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10

  9. Quantum nonlocality does not exist

    PubMed Central

    Tipler, Frank J.

    2014-01-01

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell’s inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming “nonlocality” are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in “collapse” versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer. PMID:25015084

  10. Nonlocal magnetorotational instability

    SciTech Connect

    Mikhailovskii, A. B.; Erokhin, N. N.; Lominadze, J. G.; Galvao, R. M. O.; Churikov, A. P.; Kharshiladze, O. A.; Amador, C. H. S.

    2008-05-15

    An analytical theory of the nonlocal magnetorotational instability (MRI) is developed for the simplest astrophysical plasma model. It is assumed that the rotation frequency profile has a steplike character, so that there are two regions in which it has constant different values, separated by a narrow transition layer. The surface wave approach is employed to investigate the MRI in this configuration. It is shown that the main regularities of the nonlocal MRI are similar to those of the local instability and that driving the nonaxisymmetric MRI is less effective than the axisymmetric one, also for the case of the nonlocal instability. The existence of nonlocal instabilities in nonmagnetized plasma is predicted.

  11. Comment on the invariant envelope solution in rf photoinjectors.

    SciTech Connect

    Wang, C.-x.; Accelerator Systems Division

    2006-02-01

    The beam envelope equation has been used to address the beam dynamics in rf photoinjectors. A special solution of the envelope equation, known as the invariant envelope, plays a critical role in the theory of emittance compensation. In this comment, I will present a different view of the invariant envelope solution that better delineates its properties and simplifies the picture of beam dynamics.

  12. A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2016-10-01

    During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

  13. Transfer reaction code with nonlocal interactions

    NASA Astrophysics Data System (ADS)

    Titus, L. J.; Ross, A.; Nunes, F. M.

    2016-10-01

    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.

  14. Effectively nonlocal metric-affine gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit

    2016-03-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  15. Nonlocal spectroscopy of Andreev bound states

    NASA Astrophysics Data System (ADS)

    Schindele, J.; Baumgartner, A.; Maurand, R.; Weiss, M.; Schönenberger, C.

    2014-01-01

    We experimentally investigate Andreev bound states (ABSs) in a carbon nanotube quantum dot (QD) connected to a superconducting Nb lead (S). A weakly coupled normal metal contact acts as a tunnel probe that measures the energy dispersion of the ABSs. Moreover, we study the response of the ABS to nonlocal transport processes, namely, Cooper pair splitting and elastic co-tunnelling, which are enabled by a second QD fabricated on the same nanotube on the opposite side of S. We find an appreciable nonlocal conductance with a rich structure, including a sign reversal at the ground-state transition from the ABS singlet to a degenerate magnetic doublet. We describe our device by a simple rate equation model that captures the key features of our observations and demonstrates that the sign of the nonlocal conductance is a measure for the charge distribution of the ABS, given by the respective Bogoliubov-de Gennes amplitudes u and v.

  16. Nonlocal viscous transport and the effect on fluid stress

    NASA Astrophysics Data System (ADS)

    Todd, B. D.; Hansen, J. S.

    2008-11-01

    We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for nanofluidic flows.

  17. Multipartite nonlocality distillation

    SciTech Connect

    Hsu, Li-Yi; Wu, Keng-Shuo

    2010-11-15

    The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

  18. Making space for nonlocality

    NASA Astrophysics Data System (ADS)

    Millen, James

    2016-04-01

    George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.

  19. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    PubMed

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology. PMID:27152787

  20. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-01

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  1. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    PubMed

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  2. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  3. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.

    PubMed

    Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G

    2016-01-06

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  4. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits

    PubMed Central

    Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.

    2016-01-01

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751

  5. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits

    NASA Astrophysics Data System (ADS)

    Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.

    2016-01-01

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  6. COMMON ENVELOPE: ENTHALPY CONSIDERATION

    SciTech Connect

    Ivanova, N.; Chaichenets, S.

    2011-04-20

    In this Letter, we discuss a modification to the criterion for the common envelope (CE) event to result in envelope dispersion. We emphasize that the current energy criterion for the CE phase is not sufficient for an instability of the CE, nor for an ejection. However, in some cases, stellar envelopes undergo stationary mass outflows, which are likely to occur during the slow spiral-in stage of the CE event. We propose the condition for such outflows, in a manner similar to the currently standard {alpha}{sub CE}{lambda}-prescription but with an addition of P/{rho} term in the energy balance equation, accounting therefore for the enthalpy of the envelope rather than merely the gas internal energy. This produces a significant correction, which might help to dispense with an unphysically high value of energy efficiency parameter during the CE phase, currently required in the binary population synthesis studies to make the production of low-mass X-ray binaries with a black hole companion to match the observations.

  7. Nonlocal N=1 supersymmetry

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuji; Mazumdar, Anupam; Noumi, Toshifumi; Yamaguchi, Masahide

    2016-10-01

    We construct N=1 supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  8. Kummer solitons in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj

    2009-01-01

    We solve the three-dimensional (3D) time-dependent strongly nonlocal nonlinear Schrödinger equation (NNSE) in spherical coordinates, with the help of Kummer's functions. We obtain analytical solitary solutions, which we term the Kummer solitons. We compare analytical solutions with the numerical solutions of NNSE. We discuss higher-order Kummer spatial solitons, which can exist in various forms, such as the 3D vortex solitons and the multipole solitons.

  9. Application of nonlocal models to nano beams. Part II: Thickness length scale effect.

    PubMed

    Kim, Jun-Sik

    2014-10-01

    Applicability of nonlocal models to nano-beams is discussed in terms of the Eringen's nonlocal Euler-Bernoulli (EB) beam model. In literature, most work has taken the axial coordinate derivative in the Laplacian operator presented in nonlocal elasticity. This causes that the non-locality always makes the beam soften as compared to the local counterpart. In this paper, the thickness scale effect is solely considered to investigate if the nonlocal model can simulate stiffening effect. Taking the thickness derivative in the Laplacian operator leads to the presence of a surface stress state. The governing equation derived is compared to that of the EB model with the surface stress. The results obtained reveal that the nonlocality tends to decrease the bending moment stiffness whereas to increase the bending rigidity in the governing equation. This tendency also depends on the surface conditions. PMID:25942832

  10. Teaching Quantum Nonlocality

    ERIC Educational Resources Information Center

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  11. SAFEGUARDS ENVELOPE

    SciTech Connect

    Duc Cao; Richard Metcalf

    2010-07-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z-testing. A brief analysis of the impact of the safeguards optimization on the rest of plant efficiency, criticality concerns, and overall requirements is presented.

  12. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation

    NASA Astrophysics Data System (ADS)

    Lim, C. W.; Zhang, G.; Reddy, J. N.

    2015-05-01

    In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational

  13. Superactivation of quantum nonlocality.

    PubMed

    Palazuelos, Carlos

    2012-11-01

    In this Letter we show that quantum nonlocality can be superactivated. That is, one can obtain violations of Bell inequalities by tensorizing a local state with itself. In the second part of this work we study how large these violations can be. In particular, we show the existence of quantum states with very low Bell violation but such that five copies of them give very large violations. In fact, this gap can be made arbitrarily large by increasing the dimension of the states.

  14. Giant nonlocal lossless permittivity at optical frequencies.

    PubMed

    Goncharenko, A V; Nazarov, V U

    2015-08-10

    We show how to achieve a giant permittivity combined with negligible losses in both the visible and the near-IR for composites made of alternating layers of plasmonic and gain materials as the electric field is directed normally to the layers. The effects of nonlocality are taken into account that makes the method quite realistic. Solving the dispersion equation for eigenmodes of an infinite layered composite, we show that both propagating and nonpropagating modes can be excited, that leads to the realization of a giant nonlocal permittivity. Both phase and group velocities for the propagating eigenmode have been calculated showing that slow light can be achieved in the system under study. The results obtained open new possibilities for designing nanolaser, slow-light, superresolution imaging devices, etc. PMID:26367898

  15. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGES

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  16. Superlinear nonlocal fractional problems with infinitely many solutions

    NASA Astrophysics Data System (ADS)

    Binlin, Zhang; Molica Bisci, Giovanni; Servadei, Raffaella

    2015-07-01

    In this paper we study the existence of infinitely many weak solutions for equations driven by nonlocal integrodifferential operators with homogeneous Dirichlet boundary conditions. A model for these operators is given by the fractional Laplacian where s ∈ (0, 1) is fixed. We consider different superlinear growth assumptions on the nonlinearity, starting from the well-known Ambrosetti-Rabinowitz condition. In this framework we obtain three different results about the existence of infinitely many weak solutions for the problem under consideration, by using the Fountain Theorem. All these theorems extend some classical results for semilinear Laplacian equations to the nonlocal fractional setting.

  17. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G'/G)-expansion method including the generalized Riccati equation

    NASA Astrophysics Data System (ADS)

    Tala-Tebue, E.; Tsobgni-Fozap, D. C.; Kenfack-Jiotsa, A.; Kofane, T. C.

    2014-06-01

    Using the Jacobi elliptic functions and the alternative ( G'/ G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.

  18. Uncertainty-induced quantum nonlocality

    NASA Astrophysics Data System (ADS)

    Wu, Shao-xiong; Zhang, Jun; Yu, Chang-shui; Song, He-shan

    2014-01-01

    Based on the skew information, we present a quantity, uncertainty-induced quantum nonlocality (UIN) to measure the quantum correlation. It can be considered as the updated version of the original measurement-induced nonlocality (MIN) preserving the good computability but eliminating the non-contractivity problem. For 2×d-dimensional state, it is shown that UIN can be given by a closed form. In addition, we also investigate the maximal uncertainty-induced nonlocality.

  19. Structure of nonlocality of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team

    2013-07-01

    Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.

  20. Nonlocal symmetries of Riccati and Abel chains and their similarity reductions

    NASA Astrophysics Data System (ADS)

    Bruzon, M. S.; Gandarias, M. L.; Senthilvelan, M.

    2012-02-01

    We study nonlocal symmetries and their similarity reductions of Riccati and Abel chains. Our results show that all the equations in Riccati chain share the same form of nonlocal symmetry. The similarity reduced Nth order ordinary differential equation (ODE), N = 2, 3, 4, …, in this chain yields (N - 1)th order ODE in the same chain. All the equations in the Abel chain also share the same form of nonlocal symmetry (which is different from the one that exist in Riccati chain) but the similarity reduced Nth order ODE, N = 2, 3, 4, …, in the Abel chain always ends at the (N - 1)th order ODE in the Riccati chain. We describe the method of finding general solution of all the equations that appear in these chains from the nonlocal symmetry.

  1. The nonlocal elastomagnetoelectrostatics of disordered micropolar media

    NASA Astrophysics Data System (ADS)

    Kabychenkov, A. F.; Lisiovskii, F. V.

    2016-08-01

    The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending-torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.

  2. On an Inviscid Model for Incompressible Two-Phase Flows with Nonlocal Interaction

    NASA Astrophysics Data System (ADS)

    Gal, Ciprian G.

    2016-03-01

    We consider a diffuse interface model which describes the motion of an ideal incompressible mixture of two immiscible fluids with nonlocal interaction in two-dimensional bounded domains. This model consists of the Euler equation coupled with a convective nonlocal Cahn-Hilliard equation. We establish the existence of globally defined weak solutions as well as well-posedness results for strong/classical solutions.

  3. Lévy flights and nonlocal quantum dynamics

    SciTech Connect

    Garbaczewski, Piotr; Stephanovich, Vladimir

    2013-07-15

    We develop a fully fledged theory of quantum dynamical patterns of behavior that are nonlocally induced. To this end we generalize the standard Laplacian-based framework of the Schrödinger picture quantum evolution to that employing nonlocal (pseudodifferential) operators. Special attention is paid to the Salpeter (here, m⩾ 0) quasirelativistic equation and the evolution of various wave packets, in particular to their radial expansion in 3D. Foldy's synthesis of “covariant particle equations” is extended to encompass free Maxwell theory, which however is devoid of any “particle” content. Links with the photon wave mechanics are explored.

  4. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    PubMed

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics. PMID:24920153

  5. Optimal measurements for nonlocal correlations

    NASA Astrophysics Data System (ADS)

    Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto

    2016-08-01

    A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.

  6. (1+2)-dimensional strongly nonlocal solitons

    SciTech Connect

    Ouyang Shigen; Guo Qi

    2007-11-15

    Approximate solutions of (1+2)-dimensional strongly nonlocal solitons (SNSs) are presented. It is shown that the power of a SNS in a nematic liquid crystal is in direct proportion to the second power of the degree of nonlocality, the power of a SNS in a nonlocal medium with a logarithmic nonlocal response is in inverse proportion to the second power of its beamwidth, and the power of a SNS in a nonlocal medium with an sth-power decay nonlocal response is in direct proportion to the (s+2)th power of the degree of nonlocality.

  7. Bounds for nonlocality distillation protocols

    SciTech Connect

    Forster, Manuel

    2011-06-15

    Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.

  8. Nonlocality in homogeneous superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Dix, O. M.; Zieve, R. J.

    2014-10-01

    Simulating superfluid turbulence using the localized induction approximation allows neighboring parallel vortices to proliferate. In many circumstances a turbulent tangle becomes unsustainable, degenerating into a series of parallel, noninteracting vortex lines. Calculating with the fully nonlocal Biot-Savart law prevents this difficulty but also increases computation time. Here we use a truncated Biot-Savart integral to investigate the effects of nonlocality on homogeneous turbulence. We find that including the nonlocal interaction up to roughly the spacing between nearest-neighbor vortex segments prevents the parallel alignment from developing, yielding an accurate model of homogeneous superfluid turbulence with less computation time.

  9. Nonlocality and communication complexity

    NASA Astrophysics Data System (ADS)

    Buhrman, Harry; Cleve, Richard; Massar, Serge; de Wolf, Ronald

    2010-01-01

    Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles such as the superposition principle, entanglement, and interference. Until recently the common notion of computing was based on classical mechanics and did not take into account all the possibilities that physically realizable computing devices offer in principle. The field gained momentum after Shor developed an efficient algorithm for factoring numbers, demonstrating the potential computing powers that quantum computing devices can unleash. In this review the information counterpart of computing is studied. It was realized early on by Holevo that quantum bits, the quantum mechanical counterpart of classical bits, cannot be used for efficient transformation of information in the sense that arbitrary k -bit messages cannot be compressed into messages of k-1 qubits. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. The area of quantum communication complexity is reviewed and it is shown how it connects the foundational physics questions regarding nonlocality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on nonlocality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics and could even

  10. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  11. Nonlocal Transport in the Reversed Field Pinch

    SciTech Connect

    Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.

    2009-09-21

    Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparision with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch offers a unique possibility for such a study. A numerical modelling of the magnetic structure and associated particle transport is carried out for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code1 reliably reproduces the observed soft X-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by Rechester-Rosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch2. It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared to experiment. The relation of this formulation to fractional kinetics is also described.

  12. Modelling population growth with delayed nonlocal reaction in 2-dimensions.

    PubMed

    Liang, Dong; Wu, Jianhong; Zhang, Fan

    2005-01-01

    In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.

  13. Nonlocal reactive transport with physical, chemical, and biological heterogeneity

    NASA Astrophysics Data System (ADS)

    Hu, Bill X.; Cushman, John H.; Deng, Fei-Wen

    When a natural porous medium is viewed from an eulerian perspective, incomplete characterization of the hydraulic conductivity, chemical reactivity, and biological activity leads to nonlocal constitutive theories, irrespective of whether the medium has evolving heterogeneity with fluctuations over all scales. Within this framework a constitutive theory involving nonlocal dispersive and convective fluxes and nonlocal sources/sinks is developed for chemicals undergoing random linear nonequilibrium reactions and random equilibrium first-order decay in a random conductivity field. The resulting transport equations are solved exactly in Fourier-Laplace space and then numerically inverted to real space. Mean concentration contours and various spatial moments are presented graphically for several covariance structures. 1997 Published by Elsevier Science Ltd. All rights reserved

  14. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity

    NASA Astrophysics Data System (ADS)

    Arda, Mustafa; Aydogdu, Metin

    2016-03-01

    Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.

  15. Effects of nonlocal heat transport on laser implosion

    SciTech Connect

    Mima, K.; Honda, M.; Miyamoto, S.; Kato, S.

    1996-05-01

    A numerical simulation code describing the spherically symmetric implosion hydrodynamics has been developed to investigate the nonlocal heat transport effects on stable high velocity implosion and fast ignition. In the implosion simulation code HIMICO, the Fokker Planck equation for electron transport is solved to describe the nonlocal effects. For high ablation pressure implosion with a pressure higher than 200 Mbar, the isentrope is found higher by a factor 2 in the nonlocal transport model than in the Spitzer Harm model. As for the fast ignition simulation, the neutron yield for the high density compression with 10 KJ laser increases to be 20 times by injecting an additional heating pulse of 10 KJ with 1 psec. {copyright} {ital 1996 American Institute of Physics.}

  16. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Grisins, Pjotrs; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon

    2016-05-01

    Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.

  17. Nonlocal Transport Phenomena and Various Structure Formations in Plasmas 2.Nonlocal Transport in Laser Implosion and Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Yamada, Shoichi

    Nonlocal transport becomes important in a variety of situations in physics. We briefly review under what conditions it appears to be important in modeling energy transport by neutral gas, neutrons, charged particles, photons, and neutrinos. In the cases of these last three, the cross-sections strongly depend upon particle energies. In such cases, nonlocal transport becomes important even when each mean free path is much shorter than the length of the change of its energy density. We mainly review the research that has been done on nonlocal electron energy transport in relation to laser-produced plasmas and the way in which precise calculation of neutrino transport changes the properties of a shock wave, which is used as a driver to explode a massive star such as a supernova, by solving Boltzmann-type equations for neutrinos and anti-neutrinos.

  18. (1 + 2)-Dimensional sub-strongly nonlocal spatial optical solitons: Perturbation method

    NASA Astrophysics Data System (ADS)

    Ren, Hongyan; Ouyang, Shigen; Guo, Qi; Wu, Lijun

    2007-07-01

    By extending the (1 + 1)-dimensional [(1 + 1)-D] perturbation method suggested by Ouyang et al. [S. Ouyang, Q. Guo, W. Hu, Phys. Rev. E. 74 (2006) 036622] to the (1 + 2)-D case, we obtain a fundamental soliton solution to the (1 + 2)-D nonlocal nonlinear Schrödinger equation (NNLSE) with a Gaussian-type response function for the sub-strongly nonlocal case. Numerical simulations show that the soliton solution obtained in this paper can describe the soliton states in both the sub-strongly nonlocal case and the strongly nonlocal case. It is found that the phase constant and the power of the (1 + 2)-D strongly nonlocal spatial optical soliton with a Gaussian-type response function are both in inverse proportion to the 4th power of its beam width.

  19. a New Nonlocal Beam Theory with Thickness Stretching Effect for Nanobeams

    NASA Astrophysics Data System (ADS)

    Tounsi, Abdelouahed; Benguediab, Soumia; Houari, Mohammed Sid Ahmed; Semmah, Abdelwahed

    2013-08-01

    This paper presents a new nonlocal thickness-stretching sinusoidal shear deformation beam theory for the static and vibration of nanobeams. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and it accounts for both shear deformation and thickness stretching effects by a sinusoidal variation of all displacements through the thickness without using shear correction factor. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio and the thickness stretching on the static and dynamic responses of the nanobeam are discussed. The theoretical development presented herein may serve as a reference for nonlocal theories as applied to the bending and dynamic behaviors of complex-nanobeam-system such as complex carbon nanotube system.

  20. Shear deformable deformation of carbon nanotubes based on a new analytical nonlocal Timoshenko beam nodel

    SciTech Connect

    Zhang, Jianming; Yang, Yang

    2015-03-10

    According to Hamilton’s principle, a new mathematical model and analytical solutions for nonlocal Timoshenko beam model (ANT) is established based on nonlocal elastic continuum theory when shear deformation and nonlocal effect are considered. The new ANT equilibrium equations and boundary conditions are derived for bending analysis of carbon nanotubes (CNTs) with simply supported, clamped and cantilever. The ANT deflection solutions demonstrate that the CNT stiffness is enhanced by the presence of nonlocal stress effects. Furthermore, the new ANT model concluded verifiable bending behaviors for a cantilever CNT with point load at the free end, which depends on the strength of nonlocal stress. Therefore, this new model will gives a better prediction for mechanical behaviors of nanostructures.

  1. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    NASA Astrophysics Data System (ADS)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  2. On locally and nonlocally related potential systems

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.; Bluman, George W.

    2010-07-01

    For any partial differential equation (PDE) system, a local conservation law yields potential equations in terms of some potential variable, which normally is a nonlocal variable. The current paper examines situations when such a potential variable is a local variable, i.e., is a function of the independent and dependent variables of a given PDE system, and their derivatives. In the case of two independent variables, a simple necessary and sufficient condition is presented for the locality of such a potential variable, and this is illustrated by several examples. As a particular example, two-dimensional reductions of equilibrium equations for fluid and plasma dynamics are considered. It is shown that such reductions with respect to helical, axial, and translational symmetries have conservation laws which yield local potential variables. This leads to showing that the well-known Johnson-Frieman-Kruskal-Oberman (JFKO) and Bragg-Hawthorne (Grad-Shafranov) equations are locally related to the corresponding helically and axially symmetric PDE systems of fluid/plasma dynamics. For the axially symmetric case, local symmetry classifications and arising invariant solutions are compared for the original PDE system and the Bragg-Hawthorne (potential) equation. The potential equation is shown to have additional symmetries, denoted as restricted symmetries. Restricted symmetries leave invariant a family of solutions of a given PDE system but not the whole solution manifold, and hence are not symmetries of the given PDE system. Corresponding reductions are shown to yield solutions, which are not obtained as invariant solutions from local symmetry reduction.

  3. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  4. Bipartite units of nonlocality

    SciTech Connect

    Forster, Manuel; Wolf, Stefan

    2011-10-15

    Imagine a task in which a group of separated players aim to simulate a statistic that violates a Bell inequality. Given measurement choices the players shall announce an output based solely on the results of local operations--which they can discuss before the separation--on shared random data and shared copies of a so-called unit correlation. In the first part of this paper we show that in such a setting the simulation of any bipartite correlation, not containing the possibility of signaling, can be made arbitrarily accurate by increasing the number of shared Popescu-Rohrlich (PR) boxes. This establishes the PR box as a simple asymptotic unit of bipartite nonlocality. In the second part we study whether this property extends to the multipartite case. More generally, we ask if it is possible for separated players to asymptotically reproduce any nonsignaling statistic by local operations on bipartite unit correlations. We find that nonadaptive strategies are limited by a constant accuracy and that arbitrary strategies on n resource correlations make a mistake with a probability greater or equal to c/n, for some constant c.

  5. Fast separable nonlocal means

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjay; Chaudhury, Kunal N.

    2016-03-01

    We propose a simple and fast algorithm called PatchLift for computing distances between patches (contiguous block of samples) extracted from a given one-dimensional signal. PatchLift is based on the observation that the patch distances can be efficiently computed from a matrix that is derived from the one-dimensional signal using lifting; importantly, the number of operations required to compute the patch distances using this approach does not scale with the patch length. We next demonstrate how PatchLift can be used for patch-based denoising of images corrupted with Gaussian noise. In particular, we propose a separable formulation of the classical nonlocal means (NLM) algorithm that can be implemented using PatchLift. We demonstrate that the PatchLift-based implementation of separable NLM is a few orders faster than standard NLM and is competitive with existing fast implementations of NLM. Moreover, its denoising performance is shown to be consistently superior to that of NLM and some of its variants, both in terms of peak signal-to-noise ratio/structural similarity index and visual quality.

  6. Nonlocal Intracranial Cavity Extraction

    PubMed Central

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  7. Nonlocal intracranial cavity extraction.

    PubMed

    Manjón, José V; Eskildsen, Simon F; Coupé, Pierrick; Romero, José E; Collins, D Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  8. Nonlocal Anomalous Hall Effect.

    PubMed

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  9. Nonlocal electron transport in magnetized plasmas with arbitrary atomic number

    SciTech Connect

    Bennaceur-Doumaz, D.; Bendib, A.

    2006-09-15

    The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.

  10. Nonlocal Measurements via Quantum Erasure.

    PubMed

    Brodutch, Aharon; Cohen, Eliahu

    2016-02-19

    Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism. PMID:26943514

  11. Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory

    NASA Astrophysics Data System (ADS)

    Lee, Haw-Long; Hsu, Jung-Chang; Chang, Win-Jin

    2010-11-01

    The frequency equation of carbon-nanotube-based cantilever sensor with an attached mass is derived analytically using nonlocal elasticity theory. According to the equation, the relationship between the frequency shift of the sensor and the attached mass can be obtained. When the nonlocal effect is not taken into account, the variation of frequency shift with the attached mass on the sensor is compared with the previous study. According to this study, the result shows that the frequency shift of the sensor increases with increasing the attached mass. When the attached mass is small compared with that of the sensor, the nonlocal effect is obvious and increasing nonlocal parameter decreases the frequency shift of the sensor. In addition, when the location of the attached mass is closer to the free end, the frequency shift is more significant and that makes the sensor reveal more sensitive. When the attached mass is small, a high sensitivity is obtained.

  12. Localization of the SFT inspired nonlocal linear models and exact solutions

    NASA Astrophysics Data System (ADS)

    Vernov, S. Yu.

    2011-05-01

    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function ℱ(□ g ), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.

  13. The inverse scattering problem at fixed angular momentum for nonlocal separable interactions

    NASA Technical Reports Server (NTRS)

    Chadan, K.

    1972-01-01

    The problem of inverse scattering at fixed angular momentum is considered. The problem is particularized to the case of nonlocal separable interactions. A brief survey of the inverse problem for nonlocal separable interactions is presented. This problem can be solved exactly by integration. It amounts to solving singular integral equations of the Hilbert-Mushkhelishvili type, which have been studied extensively in the past and appear in many areas of physics, including theory of elasticity and dispersions relations in high energy physics.

  14. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    SciTech Connect

    Littlewood, David John; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob; Gunzburger, Max

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  15. Structure formation in a nonlocally modified gravity model

    SciTech Connect

    Park, Sohyun; Dodelson, Scott

    2013-01-01

    We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.

  16. Maxwell-Garnett effective medium theory: Quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-04-15

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  17. Nonlocal theory for heat transport at high frequencies

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan; Cahill, David G.; Sun, Bo

    2014-11-01

    We develop a nonlocal theory for heat conduction under high-frequency temperature fields and apply the theory to explain reductions of the apparent thermal conductivity observed in recent experiments. Our nonlocal theory is an analytical solution of the Boltzmann transport equation for phonons in a semi-infinite solid, similar to a prior nonlocal theory for heat conduction under a high-temperature gradient but subjected to periodic heating at the surface. The boundary condition of periodic heating, as opposed to prior calculations of heating by a single laser pulse, better mimics time-domain thermoreflectance (TDTR) and broadband frequency-domain thermoreflectance (BB-FDTR) measurements. We find that, except for pure crystals at high frequencies, the effective thermal conductivity derived using the nonlocal theory compares well with calculations of a modified Callaway model that includes an upper limit on the phonon mean-free path at twice the thermal penetration depth. For pure crystals, however, the effective thermal conductivity derived from the out-of-phase calculations are independent of frequency, in agreement with prior TDTR measurements, due to the countereffect of reduced heat flux and diminished relative phase between the heat flux and temperature oscillations at high frequencies. Our results suggest that empirical interpretation of ballistic phonons not contributing to heat conduction is not general and can only be applied to measurements on alloys and not pure crystals, even when a large laser spot size is used in the experiments and the interfacial thermal resistance is negligible.

  18. Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory

    NASA Astrophysics Data System (ADS)

    Ghafarian, M.; Ariaei, A.

    2016-08-01

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.

  19. A Reciprocal Transformation for the Constant Astigmatism Equation

    NASA Astrophysics Data System (ADS)

    Hlaváč, Adam; Marvan, Michal

    2014-08-01

    We introduce a nonlocal transformation to generate exact solutions of the constant astigmatism equation z_{yy} + (1/z)_{xx} + 2 = 0. The transformation is related to the special case of the famous Bäcklund transformation of the sine-Gordon equation with the Bäcklund parameter λ = ±1. It is also a nonlocal symmetry.

  20. Learning Non-Local Dependencies

    ERIC Educational Resources Information Center

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  1. On nonlocal electron heat conduction

    SciTech Connect

    Krasheninnikov, S.I. )

    1993-01-01

    An improvement of the Albritton nonlocal electron heat transport model is proposed for high-[ital Z] plasmas. The thermal decay of the temperature perturbation in a uniform plasma as calculated by this model is compared with that obtained by Fokker--Planck simulations. Complete agreement is found up to values [ital k][lambda][sub [ital e

  2. Nonlocal Structures: Bilocal Photon

    NASA Astrophysics Data System (ADS)

    Clapp, Roger E.

    1980-01-01

    As a starting point, it is postulated that all particles and fields are built from a single primitive field, which must then be a massless fermion with a σ spin of one-half. Two helicities are embodied in a τ spin of one-half. The vacuum is an open Fermi sea whose height is a wave number κ. Elementary particles are structures having the form of standing-wave systems floating on the vacuum sea, with the height κ providing both the scale of inner structural size and the mass unit for the elementary particle mass spectrum. A bilocal photon starts with a function describing two primitive quanta with parallel σ spin and opposite τ spin. A centroid-time wave equation then couples-in an infinite set of orthogonal functions. The introduction of an operator Q λ permits the reduction of the infinite secular determinant to a finite six-by-six determinant. Solutions (for the infinite expansion) are obtained describing photons with right-handed and left-handed polarizations. Superpositions of these give linearly polarized photons. Electric and magnetic field vectors, satisfying the vacuum Maxwell equations, are obtained from a bilocal Hertz vector given by п= (2/κ3 c)(∂/∂ t r)∇rΨ(1,2), where Ψ(1,2) is the bilocal wave function, and tr and r are the relative time and relative position variables.

  3. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    DOE PAGES

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; Littlewood, David John

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less

  4. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    SciTech Connect

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; Littlewood, David John

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result, the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

  5. Influence of nonlocal damping on the field-driven domain wall motion

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Yuan, Zhe; Xia, Ke; Wang, X. R.

    2016-08-01

    We derive a general expression of nonlocal damping in noncollinear magnetization due to the nonuniform spin current pumped by precessional magnetization and incorporate it into a generalized Thiele equation to study its effects on the dynamics of the transverse and vortex domain walls (DWs) in ferromagnetic nanowires. We demonstrate that the transverse component of nonlocal damping slows down the field-driven DW propagation and increases the Walker breakdown field, whereas it is neglected in many previous works in literature. The experimentally measured DW mobility variation with the damping tuned by doping with heavy rare-earth elements that had discrepancy from micromagnetic simulation is now well understood with the nonlocal damping. Our results suggest that the nonlocal damping should be properly included as a prerequisite for quantitative studies of current-induced torques in noncollinear magnetization.

  6. Quadrature rules for finite element approximations of 1D nonlocal problems

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Gunzburger, Max; Ju, Lili

    2016-04-01

    It is well known that calculations of the entries of the stiffness matrix in the finite element approximations of nonlocal diffusion and mechanics models are often very time-consuming due to the double integration process over the domain and the singularities of the nonlocal kernel functions. In this paper, we propose some effective and accurate quadrature rules for computing these double integrals for one-dimensional nonlocal problems; in particular, for problems with highly singular kernels, the corresponding inner integrals can be first evaluated exactly in our method, and the outer one then will be approximated by some popular quadrature rules. With these quadrature rules, the assembly of the stiffness matrix in the finite element method for the nonlocal problems becomes similar to that for the classical partial differential equations and is thus quite efficient.

  7. CTE Solvability, Nonlocal Symmetry and Explicit Solutions of Modified Boussinesq System

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Cheng, Xue-Ping

    2016-07-01

    A consistent tanh expansion (CTE) method is used to study the modified Boussinesq equation. It is proved that the modified Boussinesq equation is CTE solvable. The soliton-cnoidal periodic wave is explicitly given by a nonanto-BT theorem. Furthermore, the nonlocal symmetry for the modified Boussinesq equation is obtained by the Painlevé analysis. The nonlocal symmetry is localized to the Lie point symmetry by introducing one auxiliary dependent variable. The finite symmetry transformation related with the nonlocal symemtry is obtained by solving the initial value problem of the prolonged systems. Thanks to the localization process, many interaction solutions among solitons and other complicated waves are computed through similarity reductions. Some special concrete soliton-cnoidal wave interaction behaviors are studied both in analytical and graphical ways. Supported by the National Natural Science Foundation of China under Grant Nos. 11305106 and 11505154

  8. The Bacterial Cell Envelope

    PubMed Central

    Silhavy, Thomas J.; Kahne, Daniel; Walker, Suzanne

    2010-01-01

    The bacteria cell envelope is a complex multilayered structure that serves to protect these organisms from their unpredictable and often hostile environment. The cell envelopes of most bacteria fall into one of two major groups. Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which itself is surrounded by an outer membrane containing lipopolysaccharide. Gram-positive bacteria lack an outer membrane but are surrounded by layers of peptidoglycan many times thicker than is found in the Gram-negatives. Threading through these layers of peptidoglycan are long anionic polymers, called teichoic acids. The composition and organization of these envelope layers and recent insights into the mechanisms of cell envelope assembly are discussed. PMID:20452953

  9. Strong nonlocalization induced by small scale parameter on terahertz flexural wave dispersion characteristics of a monolayer graphene

    NASA Astrophysics Data System (ADS)

    Narendar, S.; Gopalakrishnan, S.

    2010-11-01

    This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript.

  10. Randomness versus Nonlocality and Entanglement

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Massar, Serge; Pironio, Stefano

    2012-03-01

    The outcomes obtained in Bell tests involving two-outcome measurements on two subsystems can, in principle, generate up to 2 bits of randomness. However, the maximal violation of the Clauser-Horne-Shimony-Holt inequality guarantees the generation of only 1.23 bits of randomness. We prove here that quantum correlations with arbitrarily little nonlocality and states with arbitrarily little entanglement can be used to certify that close to the maximum of 2 bits of randomness are produced. Our results show that nonlocality, entanglement, and randomness are inequivalent quantities. They also imply that device-independent quantum key distribution with an optimal key generation rate is possible by using almost-local correlations and that device-independent randomness generation with an optimal rate is possible with almost-local correlations and with almost-unentangled states.

  11. Optimal protocols for nonlocality distillation

    SciTech Connect

    Hoeyer, Peter; Rashid, Jibran

    2010-10-15

    Forster et al. recently showed that weak nonlocality can be amplified by giving the first protocol that distills a class of nonlocal boxes (NLBs) [Phys. Rev. Lett. 102, 120401 (2009)] We first show that their protocol is optimal among all nonadaptive protocols. We next consider adaptive protocols. We show that the depth-2 protocol of Allcock et al. [Phys. Rev. A 80, 062107 (2009)] performs better than previously known adaptive depth-2 protocols for all symmetric NLBs. We present a depth-3 protocol that extends the known region of distillable NLBs. We give examples of NLBs for which each of the Forster et al., the Allcock et al., and our protocols perform best. The understanding we develop is that there is no single optimal protocol for NLB distillation. The choice of which protocol to use depends on the noise parameters for the NLB.

  12. Non-Local Euclidean Medians.

    PubMed

    Chaudhury, Kunal N; Singer, Amit

    2012-11-01

    In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.

  13. Temporal nonlocality in bistable perception

    NASA Astrophysics Data System (ADS)

    Atmanspacher, Harald; Filk, Thomas

    2012-12-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal nonlocality of mental states, predicted by the model, can be understood and tested.

  14. Evidence for nonlocal electrodynamics in planar Josephson junctions.

    PubMed

    Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M

    2013-09-13

    We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.

  15. Explaination of nonlocal granular fluidity in terms of microscopic fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Kamrin, Ken

    A recently proposed granular constitutive law has shown capability to predict nonlocal granular rheology using a variable denoted ``granular fluidity''. This work is aimed at finding the microscopic physical meaning of fluidity in terms of fluctuations such as fluctuation of normalized shear stress and fluctuation of velocity. We try to predict the fluidity as a function of the fluctuation of normalized shear stress, and also test Eyring equation and kinetic theory based on the theoretical prediction proposed in other work. We find a consistent definition for the fluidity to be proportional to the product of the velocity fluctuations and some function of packing fraction divided by the average diameter of the grains. This definition shows predictive ability in multiple geometries for which flow behavior is nonlocal. It is notable that the fluidity is well-defined as a function of kinematic state variables, as one would hope for a quantity of this nature.

  16. Evidence for Nonlocal Electrodynamics in Planar Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Boris, A. A.; Rydh, A.; Golod, T.; Motzkau, H.; Klushin, A. M.; Krasnov, V. M.

    2013-09-01

    We study the temperature dependence of the critical current modulation Ic(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O7-δ bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the Ic(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.

  17. Cosmological perturbations in SFT inspired non-local scalar field models

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexey S.; Vernov, Sergey Yu.

    2012-10-01

    We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up.

  18. Nonlocality and entanglement in the XY model

    SciTech Connect

    Batle, J.; Casas, M.

    2010-12-15

    Nonlocality and quantum entanglement constitute two special features of quantum systems of paramount importance in quantum-information theory (QIT). Essentially regarded as identical or equivalent for many years, they constitute different concepts. Describing nonlocality by means of the maximal violation of two Bell inequalities, we study both entanglement and nonlocality for two and three spins in the XY model. Our results shed light on the description of nonlocality and the possible information-theoretic task limitations of entanglement in an infinite quantum system.

  19. Nonlocal gravity in the solar system

    NASA Astrophysics Data System (ADS)

    Chicone, C.; Mashhoon, B.

    2016-04-01

    The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.

  20. Beam envelope calculations in general linear coupled lattices

    SciTech Connect

    Chung, Moses; Qin, Hong; Groening, Lars; Xiao, Chen; Davidson, Ronald C.

    2015-01-15

    The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.

  1. Beam envelope calculations in general linear coupled lattices

    NASA Astrophysics Data System (ADS)

    Chung, Moses; Qin, Hong; Groening, Lars; Davidson, Ronald C.; Xiao, Chen

    2015-01-01

    The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.

  2. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  3. Postbuckling behaviors of nanorods including the effects of nonlocal elasticity theory and surface stress

    SciTech Connect

    Thongyothee, Chawis Chucheepsakul, Somchai

    2013-12-28

    This paper is concerned with postbuckling behaviors of nanorods subjected to an end concentrated load. One end of the nanorod is clamped while the other end is fixed to a support that can slide in the slot. The governing equation is developed from static equilibrium and geometrical conditions by using the exact curvature corresponding to the elastica theory. The nonlocal elasticity, the effect of surface stress, and their combined effects are taken into account in Euler–Bernoulli beam theory. Differential equations in this problem can be solved numerically by using the shooting-optimization technique for the postbuckling loads and the buckled configurations. The results show that nanorods with the nonlocal elasticity effect undergo increasingly large deformation while the effect of surface stress in combination with nonlocal elasticity decreases the deflection of nanorods under the same postbuckling load.

  4. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  5. More nonlocality with less entanglement

    SciTech Connect

    Vidick, Thomas; Wehner, Stephanie

    2011-05-15

    Recent numerical investigations [K. Pal and T. Vertesi, Phys. Rev. A 82, 022116 (2010)] suggest that the I3322 inequality, arguably the simplest extremal Bell inequality after the CHSH inequality, has a very rich structure in terms of the entangled states and measurements that maximally violate it. Here we show that for this inequality the maximally entangled state of any dimension achieves the same violation than just a single EPR pair. In contrast, stronger violations can be achieved using higher dimensional states which are less entangled. This shows that the maximally entangled state is not the most nonlocal resource, even when one restricts attention to the most simple extremal Bell inequalities.

  6. Transient Wave Envelope Elements for Wave Problems

    NASA Astrophysics Data System (ADS)

    Astley, R. J.

    1996-04-01

    A novel family of infinite wave envelope elements is described which can be used in conjunction with conventional finite elements to model the transient wave equation in unbounded regions. The elements are obtained by applying an inverse Fourier transformation to a mapped wave envelope formulation in the frequency domain. The discrete transient equations obtained in this way can be applied to two-dimensional and three-dimensional problems without restriction, being valid over a full range of excitation frequencies. The effectiveness and accuracy of the method is demonstrated in application to simple test cases which involve the calculation of transient sound fields generated by pulsating spheres and cylinders excited from rest in an unbounded region. Test solutions are compared to analytic solutions and to finite element solutions obtained by using large computational grids which extend beyond the region influenced by the transient disturbance.

  7. Proteolysis of Xenopus laevis egg envelope ZPA triggers envelope hardening.

    PubMed

    Lindsay, Leann L; Hedrick, Jerry L

    2004-11-12

    The egg envelope of most animal eggs is modified following fertilization, resulting in the prevention of polyspermy and hardening of the egg envelope. In frogs and mammals a prominent feature of envelope modification is N-terminal proteolysis of the envelope glycoprotein ZPA. We have purified the ZPA protease from Xenopus laevis eggs and characterized it as a zinc metalloprotease. Proteolysis of isolated egg envelopes by the isolated protease resulted in envelope hardening. The N-terminal peptide fragment of ZPA remained disulfide bond linked to the ZPA glycoprotein moiety following proteolysis. We propose a mechanism for egg envelope hardening involving ZPA proteolysis by an egg metalloprotease as a triggering event followed by induction of global conformational changes in egg envelope glycoproteins. PMID:15474476

  8. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  9. Pushing the endogenous envelope

    PubMed Central

    Henzy, Jamie E.; Johnson, Welkin E.

    2013-01-01

    The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the ‘fossil record’ provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution. PMID:23938755

  10. Targeting Nuclear Envelope Repair.

    PubMed

    2016-06-01

    Migrating cancer cells undergo repeated rupture of the protective nuclear envelope as they squeeze through small spaces in the surrounding tissue, compromising genomic integrity. Inhibiting both general DNA repair and the mechanism that seals these tears may enhance cell death and curb metastasis. PMID:27130435

  11. Virial Theorem in Nonlocal Newtonian Gravity

    NASA Astrophysics Data System (ADS)

    Mashhoon, Bahram

    2016-05-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.

  12. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    PubMed

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens. PMID:23787690

  13. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    PubMed Central

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  14. Stability and bifurcations in a nonlocal delayed reaction-diffusion population model

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Yu, Jianshe

    2016-01-01

    A nonlocal delayed reaction-diffusion equation with Dirichlet boundary condition is considered in this paper. It is shown that a positive spatially nonhomogeneous equilibrium bifurcates from the trivial equilibrium. The stability/instability of the bifurcated positive equilibrium and associated Hopf bifurcation are investigated, providing us with a complete picture of the dynamics.

  15. Yukawa's nonlocal field theory from a view point of the lie-admissible approach

    SciTech Connect

    Nishioka, M.

    1984-09-01

    We shall study the Lie-admissible lifting of the commutation relations between field operators, the four-momentum operators and the coordinates operators. By choosing suitable admissible elements, we can show that a set of noncanonical commutation relations will correspond to the equations of Yukawa's nonlocal (bilocal) field theory.

  16. Scalar field cosmology via non-local integrals of motion

    NASA Astrophysics Data System (ADS)

    Dimakis, N.

    2016-08-01

    In re-parametrization invariant systems, such as mini-superspace Lagrangians, the existence of constraints can lead to the emergence of additional non-local integrals of motion defined in phase space. In the case of a FLRW flat/non-flat space-time minimally coupled to an arbitrary scalar field, we manage to use such conserved quantities to completely integrate the system of equations of motion. This is achieved without constraining the potential in any way. Thus, obtaining the most general solution that encompasses all possible cosmological scenarios which can be based on the existence of a scalar field.

  17. Nonlocal contour dynamics model for chemical front motion

    NASA Astrophysics Data System (ADS)

    Petrich, Dean M.; Goldstein, Raymond E.

    1994-02-01

    Pattern formation exhibited by a two-dimensional reaction-diffusion system in the fast inhibitor limit is considered for the point of view of interface motion. A dissipative nonlocal equation of motion for the boundary between high and low concentrations of the slow species is derived heuristically. Under these dynamics, a compact domain of high concentration may develop into a space-filling labyrinthine structure in which nearby fronts repel. Similar patterns have been observed recently by Lee, McCormick, Ouyang, and Swinney in a reacting chemical system.

  18. Nonlocal transport and the hydrodynamic shear viscosity in graphene

    NASA Astrophysics Data System (ADS)

    Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco

    2015-10-01

    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.

  19. A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices

    NASA Astrophysics Data System (ADS)

    Challamel, Noël; Grazide, Cécile; Picandet, Vincent; Perrot, Arnaud; Zhang, Yingyan

    2016-06-01

    This study focuses on heat conduction in unidimensional lattices also known as microstructured rods. The lattice thermal properties can be representative of concentrated thermal interface phases in one-dimensional segmented rods. The exact solution of the linear time-dependent spatial difference equation associated with the lattice problem is presented for some given initial and boundary conditions. This exact solution is compared to the quasicontinuum approximation built by continualization of the lattice equations. A rational-based asymptotic expansion of the pseudo-differential problem leads to an equivalent nonlocal-type Fourier's law. The differential nonlocal Fourier's law is analysed with respect to thermodynamic models available in the literature, such as the Guyer-Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency of the nonlocal model to capture the lattice evolution problem, as compared to the local model. The propagation of error with the nonlocal model is much slower than that in its local counterpart. A two-dimensional thermal lattice is also considered and approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and continualized heat equations both approximate efficiently the two-dimensional thermal lattice response. These extended continuous heat models are shown to be good candidates for approximating the heat transfer behaviour of microstructured rods or membranes.

  20. Can EPR non-locality be geometrical?

    SciTech Connect

    Ne`eman, Y. |; Botero, A.

    1995-10-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.

  1. Local, nonlocal quantumness and information theoretic measures

    NASA Astrophysics Data System (ADS)

    Agrawal, Pankaj; Sazim, Sk; Chakrabarty, Indranil; Pati, Arun K.

    2016-08-01

    It has been suggested that there may exist quantum correlations that go beyond entanglement. The existence of such correlations can be revealed by information theoretic quantities such as quantum discord, but not by the conventional measures of entanglement. We argue that a state displays quantumness, that can be of local and nonlocal origin. Information theoretic measures not only characterize the nonlocal quantumness, but also the local quantumness, such as the “local superposition”. This can be a reason, why such measures are nonzero, when there is no entanglement. We consider a generalized version of the Werner state to demonstrate the interplay of local quantumness, nonlocal quantumness and classical mixedness of a state.

  2. All entangled quantum states are nonlocal.

    PubMed

    Buscemi, Francesco

    2012-05-18

    Departing from the usual paradigm of local operations and classical communication adopted in entanglement theory, we study here the interconversion of quantum states by means of local operations and shared randomness. A set of necessary and sufficient conditions for the existence of such a transformation between two given quantum states is given in terms of the payoff they yield in a suitable class of nonlocal games. It is shown that, as a consequence of our result, such a class of nonlocal games is able to witness quantum entanglement, however weak, and reveal nonlocality in any entangled quantum state. An example illustrating this fact is provided.

  3. Nonlocality in uniaxially polarizable media

    NASA Astrophysics Data System (ADS)

    Gorlach, Maxim A.; Belov, Pavel A.

    2015-08-01

    We reveal extraordinary electromagnetic properties for a general class of uniaxially polarizable media. Depending on parameters, such metamaterials may have a wide range of nontrivial shapes of isofrequency contours including lemniscate, diamond, and multiply connected curves with connectivity number reaching 5. The possibility of the dispersion engineering paves a way to more flexible manipulation of electromagnetic waves. Employing first-principles considerations we prove that uniaxially polarizable media should be described in terms of the nonlocal permittivity tensor which by no means can be reduced to local permittivity and permeability even in the long-wavelength limit. We introduce an alternative set of local material parameters including quadrupole susceptibility capable of capturing all of the second-order spatial dispersion effects.

  4. Experimental test of nonlocal causality

    PubMed Central

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  5. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  6. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  7. Non-local ocean mixing model and a new plume model for deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    Turbulent fluxes can be represented by a diffusivity tensor, the symmetric part of which describes " turbulent diffusion" while the anti-symmetric part describes " advection". Diffusion is a local process in the sense that it depends only on the local gradients of the mean fields while advection is non-local for it is represented by an integral over all length scales (all eddies) that can "fit" from say the bottom of the physical domain to the z where the fluxes are computed. In the ocean, there are two main regimes where non-local transport is important. One regime is where storms release a sudden burst of mechanical energy to the ocean surface that is then transported downward by energetic eddies that deepen the mixed layer. Even relatively simple non-local models yield results considerably more realistic than those of local models. The second regime is deep convection (DC) caused by loss of surface buoyancy, the description of which is required for a reliable assessment of water masses formation. At present, there is no reliable model for either of these non-local regimes individually or much less a formalism capable of accounting for both regimes simultaneously. The goal of this paper is to present a formalism that provides the expressions for the non-local fluxes for momentum, heat and salinity encompassing both cases. Since the resulting number of dynamic equations involves is however large, we work out two sub-models, one when only shear must be treated non-locally (e.g., when storms release mechanical energy) and one when only buoyancy is to be treated non-locally (the DC case). We employ the Reynolds Stress formalism in which non-locality is represented by the third-order moments which in turn depend on the fourth-order moments for which we employ a new model that has been tested against LES data, aircraft data and a full PBL simulation. For the DC case, we rewrite the non-local model in terms of Plumes since thus far the only non-local model used to treat

  8. Model equations for high current transport

    SciTech Connect

    Lee, E.P.

    1985-06-01

    The use of distribution functions to model transverse beam dynamics is discussed. Emphasis is placed on envelope equations, moments, the Vlasov equation, and the Kapchinski-Vladimirskij distribution. 10 refs.

  9. On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this paper, thermo-mechanical buckling analysis of curved functionally graded (FG) nanobeams is carried out via an analytical solution method. Curved FG nanobeam is subjected to uniform, linear and nonlinear temperature distributions across the thickness. Three kinds of boundary condition namely, simply supported-simply supported, simply supported-clamped and clamped-clamped are investigated. Thermo-elastic properties of curved FG beam change in radial direction according to the power-law model. Nonlocal elasticity theory is adopted to capture the size effects. Nonlocal governing equations of curved FG nanobeam are obtained from Hamilton's principle based on Euler-Bernoulli beam model. Finally, the influences of thermal loadings, nonlocal parameter, opening angle, material composition, slenderness ratio and boundary conditions on the thermal buckling behavior of nanosize curved FG beams are explored.

  10. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    In this article, combined effect of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is investigated by developing various refined beam theories which capture shear deformation influences needless of any shear correction factor. The material properties of FG nanobeam are temperature dependent and change gradually along the thickness through the power-law model. Size-dependent description of the nanobeam is performed applying nonlocal elasticity theory of Eringen. Nonlocal governing equations of embedded FG nanobeam in hygro-thermal environment obtained from Hamilton's principle are solved analytically. To verify the validity of the developed theories, the results of the present work are compared with those available in the literature. The effects of various hygro-thermal loadings, elastic foundation, gradient index, nonlocal parameter, and slenderness ratio on the vibrational behavior of FG nanobeams modeled via various beam theories are explored.

  11. Frequency analysis of curved nano-sandwich structure based on a nonlocal model

    NASA Astrophysics Data System (ADS)

    Rahmani, O.; Hosseini, S. A. H.; Hayati, H.

    2016-04-01

    In this paper, we study the vibration of curved nano-sandwich (CNS) with considering the influence of core shear based on the Eringen nonlocal theory. The equation of motion is derived and exact solution for the natural frequencies of CNS is presented. The proposed nonlocal model includes a material length scale parameter that can capture the size effect in CNS beam. The effects of important parameters, such as the thickness to length ratio, nonlocal parameter and mode number on the frequencies of CNS are investigated. The result of our research shows that as the opening angle increases, the amount of natural frequencies decrease. We have additionally validate, our results against previous research works which showed good agreement.

  12. Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM

    NASA Astrophysics Data System (ADS)

    Shafiei, Navvab; Kazemi, Mohammad; Ghadiri, Majid

    2016-08-01

    This study is concerned with the small-scale effect on the nonlinear flapwise bending vibration of rotating cantilever and propped cantilever nanobeams. Euler-Bernoulli beam theory is used to model the nanobeam with nonlinearity. Nonlinear strain-displacement relations are employed to account for geometric nonlinearity of the system. The axial forces are modeled as the true spatial and thermal variations due to the rotation. Hamilton's principle is used to derive the nonlinear governing equation and nonlocal nonlinear boundary conditions based on Eringen's nonlocal elasticity theory. Finally, the differential quadrature method is used in conjunction with the direct iterative method to derive the nonlinear vibration frequencies of the nanobeam. The effects of the angular velocity, nonlocal small-scale parameter, temperature change and nonlinear amplitude on nonlinear vibration of the rotary nanobeam are discussed. The results of this work can be used in nanosensors, nanomotors, nanoturbines and NEMS applications.

  13. Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Zenkour, Ashraf M.

    2016-05-01

    The transient thermal analysis of a single-layered graphene sheet (SLGS) embedded in viscoelastic medium is presented by using the nonlocal elasticity theory. The elastic medium, which characterized by the linear Winkler's modulus and Pasternak's (shear) foundation modulus, is changed to a viscoelastic one by including the viscous damping term. The governing dynamical equation is obtained and solved for simply-supported SLGSs. Firstly; the effect of the nonlocal parameter is discussed carefully for the vibration and bending problems. Secondly, the effects of other parameter like aspect ratio, thickness-to-length ratio, Winkler-Pasternak's foundation, viscous damping coefficient on bending field quantities of the SLGSs are investigated in detail. The present results are compared with the corresponding available in the literature. Additional results for thermal local and nonlocal deflections and stresses are presented to investigate the thermal visco-Pasternak's parameters for future comparisons.

  14. The Gardner category and nonlocal conservation laws for N=1 Super KdV

    SciTech Connect

    Andrea, S.; Restuccia, A.; Sotomayor, A.

    2005-10-01

    The nonlocal conserved quantities of the N=1 Super KdV are obtained using a Gardner map. A fermionic substitution semigroup and the resulting Gardner category are defined and several propositions concerning their algebraic structure are obtained. This algebraic framework makes it possible to define general transformations between different nonlinear SUSY differential equations. A SUSY ring extension is then introduced to deal with the nonlocal conserved quantities of SKdV. The algebraic version of the nonlocal conserved quantities is solved in terms of the exponential function applied to the D{sup -1} of the local conserved quantities of SKdV. Finally the same formulas are shown to work for rapidly decreasing superfields.

  15. Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model

    NASA Astrophysics Data System (ADS)

    Loya, J.; López-Puente, J.; Zaera, R.; Fernández-Sáez, J.

    2009-02-01

    In this paper, flexural vibrations of cracked micro- and nanobeams are studied. The model is based on the theory of nonlocal elasticity applied to Euler-Bernouilli beams. The cracked-beam model is established using a proper modification of the classical cracked-beam theory consisting of dividing the cracked element into two segments connected by a rotational spring located at the cracked section. This model promotes a discontinuity in bending slope, which is proportional to the second derivative of the displacements. Frequency equations of cracked nanobeams with some typical boundary conditions are derived and the natural frequencies for different crack positions, crack lengths, and nonlocal length parameters are calculated. The results are compared with those corresponding to the classical local model, emphasizing the differences occurring when the nonlocal effects are significant.

  16. Dispersive shock waves with nonlocal nonlinearity.

    PubMed

    Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W

    2007-10-15

    We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.

  17. Nonlocal ordinary magnetoresistance in indium arsenide

    NASA Astrophysics Data System (ADS)

    Liu, Pan.; Yuan, Zhonghui.; Wu, Hao.; Ali, S. S.; Wan, Caihua.; Ban, Shiliang.

    2015-07-01

    Deflection of carriers by Lorentz force results in an ordinary magnetoresistance (OMR) of (μB)2 at low field. Here we demonstrate that the OMR in high mobility semiconductor InAs could be enhanced by measurement geometry where two probes of voltmeter were both placed on one outer side of two probes of current source. The nonlocal OMR was 3.6 times as large as the local one, reaching 1.8×104% at 5 T. The slope of the linear field dependence of the nonlocal OMR was improved from 12.6 T-1 to 45.3 T-1. The improvement was ascribed to polarity-conserved charges accumulating on boundaries in nonlocal region due to Hall effect. This InAs device with nonlocal geometry could be competitive in B-sensors due to its high OMR ratio, linear field dependence and simple structure.

  18. Nonlocal-integro-differential modeling of vibration of elastically supported nanorods

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2016-09-01

    In the previously established nonlocal continuum-based models, small characteristic length was commonly incorporated into the mass matrix and the driving force vector which is a bit in contradiction with our sense regarding these factors. Herein, a nonlocal-integro-differential version of the constitutive relations is employed for the bulk and the surface layer of the nanorod. By adopting Hamilton's principle, integro-partial differential equations of motion of elastically supported nanorods are established accounting for both nonlocality and surface energy effects. Then, these are solved by an efficient meshless methodology. For fixed-fixed and fixed-free nanorods, modal analysis of the problem is also performed and the explicit expressions of the mass and stiffness matrices are derived. For these special cases, the obtained results by the meshless technique are successfully verified with those of the modal solution. In the newly developed numerical model, the small-scale parameter is only incorporated into the stiffness matrix which gives us a more realistic sense about the nonlocality effect. Subsequently, the roles of the surface energy, small-scale parameter, elastic supports, and kernel function on natural frequencies of the nanostructure are discussed and explained. This work can be considered as a pivotal step towards a more reasonable nonlocal modeling of vibration of nanoscale structures.

  19. Symmetric states: Their nonlocality and entanglement

    SciTech Connect

    Wang, Zizhu; Markham, Damian

    2014-12-04

    The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.

  20. Structure of quantum and broadcasting nonlocal correlations

    NASA Astrophysics Data System (ADS)

    Saha, Debashis; Pawłowski, Marcin

    2015-12-01

    The multipartite setting offers much more complexity of nonlocality than the bipartite one. We analyze the structure of tripartite nonlocal correlations by proposing inequalities satisfied by each of type bilocal, broadcasting, and quantum but violated by the other two. One of the inequalities satisfied by broadcasting correlations is generalized for multipartite systems. The study of its quantum mechanical violation reveals that Greenberger-Horne-Zeilinger-like states exhibit new, powerful correlations.

  1. Discontinuous envelope function in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Drouhin, Henri-Jean; Bottegoni, Federico; Nguyen, T. L. Hoai; Wegrowe, Jean-Eric; Fishman, Guy

    2013-09-01

    Based on a proper definition of the current operators for non-quadratic Hamiltonians, we derive the expression for the transport current which involves the derivative of the imaginary part of the free-electron current, highlighting peculiarities of the extra terms. The expression of the probability current, when Spin-Orbit Interaction (SOI) is taken into account, requires a reformulation of the boudary conditions. This is especially important for tunnel heterojunctions made of non-centrosymmetric semiconductors. Therefore, we consider a model case: tunneling of conduction electrons through a [110]-oriented GaAs barrier. The new boundary conditions are reduced to two set of equations: the first one expresses the discontinuity of the envelope function at the interface while the other one expresses the discontinuity of the derivative of the envelope function.

  2. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  3. Nonlocal, Kinetic Stimulated Raman Scattering in Nonuniform Plasmas

    NASA Astrophysics Data System (ADS)

    Khain, Pavel; Friedland, Lazar; Shagalov, Arkadiy; Wurtele, Jonathan

    2012-10-01

    Excitation of continuously phase-locked (autoresonant) plasma waves in a nonuniform plasma via stimulated Raman backscattering is analyzed with a focus on the kinetic regime (kλD˜1). The dominant nonlinear effect in this regime is that of resonant particles and the plasma wave excitation is a nonlocal process involving formation and transport of the electron phase space holes. Whitham's averaged variational principle is applied in studying the coupled plasma, laser pump and seed waves dynamics. A flat-top electron velocity distribution is used as the simplest model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable, yields evolution equations for the slow field variables. The adiabatic multiple water bag extension of the theory for application to autoresonant plasma waves in nonuniform plasmas with more realistic initial distributions is also discussed. Numerical solutions of the system of slow variational equations are compared with Vlasov-Ampere simulations.

  4. Performance analysis of half-sweep AOR method with nonlocal discretization scheme for nonlinear two-point boundary value problem

    NASA Astrophysics Data System (ADS)

    Alibubin, M. U.; Sunarto, A.; Sulaiman, J.

    2016-06-01

    In this paper, we present the concept of Half-sweep Accelerated OverRelaxation (HSAOR) iterative method with a nonlocal discretization scheme for solving nonlinear two-point boundary value problems. Second order finite difference scheme has been used to derive the half-sweep finite difference (HSFD) approximations of the problems. Then, the nonlocal discretization scheme is applied in order to transform the system of nonlinear approximation equations into the corresponding system of linear equations. Numerical results showed that HSAOR method is superior compared to Full-sweep Gauss-seidel (FSGS), Full-sweep Successive OverRelaxation (FSSOR) and Full-sweep Accelerated Over Relaxation (FSAOR) methods.

  5. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    SciTech Connect

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jorgen

    2012-11-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  6. Nonlocality in deuteron stripping reactions.

    PubMed

    Timofeyuk, N K; Johnson, R C

    2013-03-15

    We propose a new method for the analysis of deuteron stripping reactions, A(d,p)B, in which the nonlocality of nucleon-nucleus interactions and three-body degrees of freedom are accounted for in a consistent way. The model deals with equivalent local nucleon potentials taken at an energy shifted by ∼40  MeV from the "E(d)/2" value frequently used in the analysis of experimental data, where E(d) is the incident deuteron energy. The "E(d)/2" rule lies at the heart of all three-body analyses of (d, p) reactions performed so far with the aim of obtaining nuclear structure properties such as spectroscopic factors and asymptotic normalization coefficients that are crucial for our understanding of nuclear shell evolution in neutron- and proton-rich regions of the nuclear periodic table and for predicting the cross sections of stellar reactions. The large predicted shift arises from the large relative kinetic energy of the neutron and proton in the incident deuteron in those components of the n+p+A wave function that dominate the (d, p) reaction amplitude. The large shift reduces the effective d-A potentials and leads to a change in predicted (d, p) cross sections, thus affecting the interpretation of these reactions in terms of nuclear structure. PMID:25166525

  7. Periodic envelopes of waves over non-uniform depth

    NASA Astrophysics Data System (ADS)

    Rajan, Girish K.; Bayram, Saziye; Henderson, Diane M.

    2016-04-01

    The envelope of narrow-banded, periodic, surface-gravity waves propagating in one dimension over water of finite, non-uniform depth may be modeled by the Djordjević and Redekopp ["On the development of packets of surface gravity waves moving over an uneven bottom," Z. Angew. Math. Phys. 29, 950-962 (1978)] equation (DRE). Here we find five approximate solutions of the DRE that are in the form of Jacobi-elliptic functions and discuss them within the framework of ocean swell. We find that in all cases, the maximum envelope-amplitude decreases/increases when the wave group propagates on water of decreasing/increasing depth. In the limit of the elliptic modulus approaching one, three of the solutions reduce to the envelope soliton solution. In the limit of the elliptic modulus approaching zero, two of the solutions reduce to an envelope-amplitude that is uniform in an appropriate reference frame.

  8. Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Shafiei, Navvab; Akbarshahi, Amir

    2016-07-01

    This paper is proposed to study the free vibration of a rotating Timoshenko nanobeam based on the nonlocal theory considering thermal and surface elasticity effects. The governing equations and the related boundary conditions are derived using the Hamilton's principle. In order to solve the problem, generalized differential quadrature method is applied to discretize the governing differential equations corresponding to clamped-simply and clamped-free boundary conditions. In this article, the influences of some parameters such as nonlocal parameter, angular velocity, thickness of the nanobeam, and thermal and surface elasticity effects on the free vibration of the rotating nanobeam are investigated, and the results are compared for different boundary conditions. The results show that the surface effect and the nonlocal parameter and the temperature changes have significant roles, and they should not be ignored in the vibrational study of rotating nanobeams. Also, the angular velocity and the hub radius have more significant roles than temperature change effects on the nondimensional frequency. It is found that the nonlocal parameter behavior and the temperature change behavior on the frequency are different in the first mode for the rotating cantilever nanobeam.

  9. Self-localized states for electron transfer in nonlocal continuum deformable media

    NASA Astrophysics Data System (ADS)

    Cisneros-Ake, Luis A.

    2016-08-01

    We consider the problem of electron transport in a deformable continuum medium subjected to an external harmonic substrate potential. We then consider the quasi-stationary state of the full problem to find a Gross-Pitaevskii type equation with a nonlocal external potential, which is solved by variational and numerical means (considered as the exact solution) to find the parameter conditions for the existence of self-localized solutions. The variational approach predicts a threshold on the on-site or nonlocality parameter where localized solutions cease to exist from the Non-Linear Schrödinger soliton limit. A numerical continuation of stationary state solutions in the corresponding discrete system is used to confirm the prediction of the turning value in the on-site term. We finally study the full stationary state and make use of an approximation, proposed by Briedis et al. [17], for the nonlocal term, corresponding to strong nonlocalities, to find analytic expressions for self-localized states in terms of the series solutions of a nonlinear modified Bessel equation.

  10. Wavefunction Collapse via a Nonlocal Relativistic Variational Principle

    SciTech Connect

    Harrison, Alan K.

    2012-06-18

    Since the origin of quantum theory in the 1920's, some of its practitioners (and founders) have been troubled by some of its features, including indeterminacy, nonlocality and entanglement. The 'collapse' process described in the Copenhagen Interpretation is suspect for several reasons, and the act of 'measurement,' which is supposed to delimit its regime of validity, has never been unambiguously defined. In recent decades, nonlocality and entanglement have been studied energetically, both theoretically and experimentally, and the theory has been reinterpreted in imaginative ways, but many mysteries remain. We propose that it is necessary to replace the theory by one that is explicitly nonlinear and nonlocal, and does not distinguish between measurement and non-measurement regimes. We have constructed such a theory, for which the phase of the wavefunction plays the role of a hidden variable via the process of zitterbewegung. To capture this effect, the theory must be relativistic, even when describing nonrelativistic phenomena. It is formulated as a variational principle, in which Nature attempts to minimize the sum of two spacetime integrals. The first integral tends to drive the solution toward a solution of the standard quantum mechanical wave equation, and also enforces the Born rule of outcome probabilities. The second integral drives the collapse process. We demonstrate that the new theory correctly predicts the possible outcomes of the electron two-slit experiment, including the infamous 'delayed-choice' variant. We observe that it appears to resolve some long-standing mysteries, but introduces new ones, including possible retrocausality (a cause later than its effect). It is not clear whether the new theory is deterministic.

  11. INVITED PAPER: Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures

    NASA Astrophysics Data System (ADS)

    Burt, M. G.

    1999-03-01

    The increasing sophistication used in the fabrication of semiconductor nanostructures and in the experiments performed on them requires more sophisticated theoretical techniques than previously employed. The philosophy behind the author's exact envelope function representation method is clarified and contrasted with that of the conventional method. The significance of globally slowly varying envelope functions is explained. The difference between the envelope functions that appear in the author's envelope function representation and conventional envelope functions is highlighted and some erroneous statements made in the literature on the scope of envelope function methods are corrected. A perceived conflict between the standard effective mass Hamiltonian and the uncertainty principle is resolved demonstrating the limited usefulness of this principle in determining effective Hamiltonians. A simple example showing how to obtain correct operator ordering in electronic valence band Hamiltonians is worked out in detailed tutorial style. It is shown how the use of out of zone solutions to the author's approximate envelope function equations plays an essential role in their mathematically rigorous solution. In particular, a demonstration is given of the calculation of an approximate wavefunction for an electronic state in a one dimensional nanostructure with abrupt interfaces and disparate crystals using out of zone solutions alone. The author's work on the interband dipole matrix element for slowly varying envelope functions is extended to envelope functions without restriction. Exact envelope function equations are derived for multicomponent fields to emphasize that the author's method is a general one for converting a microscopic description to a mesoscopic one, applicable to linear partial differential equations with piecewise or approximately piecewise periodic coefficients. As an example, the method is applied to the derivation of approximate envelope function

  12. Maximally Nonlocal Theories Cannot Be Maximally Random

    NASA Astrophysics Data System (ADS)

    de la Torre, Gonzalo; Hoban, Matty J.; Dhara, Chirag; Prettico, Giuseppe; Acín, Antonio

    2015-04-01

    Correlations that violate a Bell inequality are said to be nonlocal; i.e., they do not admit a local and deterministic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell inequality violation) serves to quantify the amount of randomness present in observed correlations. In this work we reverse this research program and ask what do the randomness certification capabilities of a theory tell us about the nonlocality of that theory. We find that, contrary to initial intuition, maximal randomness certification cannot occur in maximally nonlocal theories. We go on and show that quantum theory, in contrast, permits certification of maximal randomness in all dichotomic scenarios. We hence pose the question of whether quantum theory is optimal for randomness; i.e., is it the most nonlocal theory that allows maximal randomness certification? We answer this question in the negative by identifying a larger-than-quantum set of correlations capable of this feat. Not only are these results relevant to understanding quantum mechanics' fundamental features, but also put fundamental restrictions on device-independent protocols based on the no-signaling principle.

  13. Maximally nonlocal theories cannot be maximally random.

    PubMed

    de la Torre, Gonzalo; Hoban, Matty J; Dhara, Chirag; Prettico, Giuseppe; Acín, Antonio

    2015-04-24

    Correlations that violate a Bell inequality are said to be nonlocal; i.e., they do not admit a local and deterministic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell inequality violation) serves to quantify the amount of randomness present in observed correlations. In this work we reverse this research program and ask what do the randomness certification capabilities of a theory tell us about the nonlocality of that theory. We find that, contrary to initial intuition, maximal randomness certification cannot occur in maximally nonlocal theories. We go on and show that quantum theory, in contrast, permits certification of maximal randomness in all dichotomic scenarios. We hence pose the question of whether quantum theory is optimal for randomness; i.e., is it the most nonlocal theory that allows maximal randomness certification? We answer this question in the negative by identifying a larger-than-quantum set of correlations capable of this feat. Not only are these results relevant to understanding quantum mechanics' fundamental features, but also put fundamental restrictions on device-independent protocols based on the no-signaling principle. PMID:25955039

  14. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    This article examines the application of nonlocal strain gradient elasticity theory to wave dispersion behavior of a size-dependent functionally graded (FG) nanobeam in thermal environment. The theory contains two scale parameters corresponding to both nonlocal and strain gradient effects. A quasi-3D sinusoidal beam theory considering shear and normal deformations is employed to present the formulation. Mori-Tanaka micromechanical model is used to describe functionally graded material properties. Hamilton's principle is employed to obtain the governing equations of nanobeam accounting for thickness stretching effect. These equations are solved analytically to find the wave frequencies and phase velocities of the FG nanobeam. It is indicated that wave dispersion behavior of FG nanobeams is significantly affected by temperature rise, nonlocality, length scale parameter and material composition.

  15. One-Step Model of Photoemission for Nonlocal Potentials

    NASA Astrophysics Data System (ADS)

    Potthoff, M.; Lachnitt, J.; Nolting, W.; Braun, J.

    1997-10-01

    The one-step model of valence-band photoemission and inverse photoemission from single-crystal surfaces is reformulated for generalized (nonlocal, complex and energy-dependent) potentials. Thereby, it becomes possible to account for self-energy corrections taken from many-body electronic-structure calculations. The original formulation due to Pendry and coworkers employs the KKR multiple-scattering theory for the calculation of the initial state. This prevents a straightforward generalization of the one-step model to nonlocal potentials. We therefore consider the Dyson equation which is set up within a muffin-tin-orbital representation as an alternative to obtain the initial-state Green function. This approach requires a revision of the transition-matrix elements which is carried out in detail. The final state is considered as a time-reversed LEED state as usual. The proposed generalization of the one-step model allows to distinguish between the bare photocurrent reflecting the (quasi-particle) band structure and the secondary effects due to the (dipole) selection rules and due to the wave-vector and energy dependence of the transition-matrix elements.

  16. Different kinds of chimera death states in nonlocally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2016-05-01

    We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators.

  17. Nonlocal Drag of Magnons in a Ferromagnetic Bilayer.

    PubMed

    Liu, Tianyu; Vignale, G; Flatté, Michael E

    2016-06-10

    Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable. PMID:27341254

  18. Nonlocal Drag of Magnons in a Ferromagnetic Bilayer.

    PubMed

    Liu, Tianyu; Vignale, G; Flatté, Michael E

    2016-06-10

    Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.

  19. Different kinds of chimera death states in nonlocally coupled oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-05-01

    We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators. PMID:27300886

  20. Nonlocal Drag of Magnons in a Ferromagnetic Bilayer

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Vignale, G.; Flatté, Michael E.

    2016-06-01

    Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.

  1. Different kinds of chimera death states in nonlocally coupled oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-05-01

    We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators.

  2. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  3. Nonlocal Markovian models for image denoising

    NASA Astrophysics Data System (ADS)

    Salvadeo, Denis H. P.; Mascarenhas, Nelson D. A.; Levada, Alexandre L. M.

    2016-01-01

    Currently, the state-of-the art methods for image denoising are patch-based approaches. Redundant information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy functions, the pairwise pixel interaction is weighted according to the similarities between the patches corresponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (β) for these models is presented here. For evaluating this proposal, these models are used as an a priori model in a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs.

  4. Nonlocal spin correlations mediated by a superconductor

    NASA Astrophysics Data System (ADS)

    Noh, Taewan; Houzet, Manuel; Meyer, Julia S.; Chandrasekhar, Venkat

    2013-06-01

    Nonlocal charge correlations induced in two normal metals contacted separately to a superconductor have been studied intensively in the past few years. Here we investigate nonlocal correlations induced by the transfer of pure spin currents through a superconductor on a scale comparable to the superconducting coherence length. As with charge currents, two processes contribute to the nonlocal spin signal: crossed Andreev reflection (CAR), where an electron with spin-up injected from one normal metal into the superconductor results in a hole with spin-down being injected into the second normal metal, and elastic cotunneling (EC), where the electron with spin-up injected from the first normal metal results in an electron with spin-up being injected into the second normal metal. Unlike charge currents, however, the spin currents associated with CAR and EC add due to the fact that the bulk superconductor cannot sustain a net spin current.

  5. Hardy's criterion of nonlocality for mixed states

    SciTech Connect

    Ghirardi, GianCarlo; Marinatto, Luca

    2006-03-15

    We generalize Hardy's proof of nonlocality to the case of bipartite mixed statistical operators, and we exhibit a necessary condition which has to be satisfied by any given mixed state {sigma} in order that a local and realistic hidden variable model exists which accounts for the quantum mechanical predictions implied by {sigma}. Failure of this condition will imply both the impossibility of any local explanation of certain joint probability distributions in terms of hidden variables and the nonseparability of the considered mixed statistical operator. Our result can be also used to determine the maximum amount of noise, arising from imperfect experimental implementations of the original Hardy's proof of nonlocality, in presence of which it is still possible to put into evidence the nonlocal features of certain mixed states.

  6. Reversed rainbow with a nonlocal metamaterial

    SciTech Connect

    Morgado, Tiago A. Marcos, João S.; Silveirinha, Mário G.; Costa, João T.; Costa, Jorge R.; Fernandes, Carlos A.

    2014-12-29

    One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.

  7. Experimental nonlocal and surreal Bohmian trajectories.

    PubMed

    Mahler, Dylan H; Rozema, Lee; Fisher, Kent; Vermeyden, Lydia; Resch, Kevin J; Wiseman, Howard M; Steinberg, Aephraim

    2016-02-01

    Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics, predicts trajectories that were at first deemed "surreal" when the second particle is used to probe the position of the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest nonlocality.

  8. Nonlocal formulation of spin Coulomb drag

    NASA Astrophysics Data System (ADS)

    D'Amico, I.; Ullrich, C. A.

    2013-10-01

    The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum wells, where experiments have shown that the local approximation fails.

  9. Compressive Sensing via Nonlocal Smoothed Rank Function.

    PubMed

    Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683

  10. Observational viability and stability of nonlocal cosmology

    SciTech Connect

    Deser, S.; Woodard, R.P. E-mail: woodard@phys.ufl.edu

    2013-11-01

    We show that the nonlocal gravity models, proposed to explain current cosmic acceleration without dark energy, pass two essential tests: first, they can be defined so as not to alter the, observationally correct, general relativity predictions for gravitationally bound systems. Second, they are stable, ghost-free, with no additional excitations beyond those of general relativity. In this they differ from their, ghostful, localized versions. The systems' initial value constraints are the same as in general relativity, and our nonlocal modifications never convert the original gravitons into ghosts.

  11. Experimental nonlocal and surreal Bohmian trajectories.

    PubMed

    Mahler, Dylan H; Rozema, Lee; Fisher, Kent; Vermeyden, Lydia; Resch, Kevin J; Wiseman, Howard M; Steinberg, Aephraim

    2016-02-01

    Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics, predicts trajectories that were at first deemed "surreal" when the second particle is used to probe the position of the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest nonlocality. PMID:26989784

  12. Experimental nonlocal and surreal Bohmian trajectories

    PubMed Central

    Mahler, Dylan H.; Rozema, Lee; Fisher, Kent; Vermeyden, Lydia; Resch, Kevin J.; Wiseman, Howard M.; Steinberg, Aephraim

    2016-01-01

    Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics, predicts trajectories that were at first deemed “surreal” when the second particle is used to probe the position of the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest nonlocality. PMID:26989784

  13. Compressive Sensing via Nonlocal Smoothed Rank Function

    PubMed Central

    Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683

  14. Low energy signatures of nonlocal field theories

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi

    2016-09-01

    The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.

  15. Compressive Sensing via Nonlocal Smoothed Rank Function.

    PubMed

    Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.

  16. Non-locality Sudden Death in Tripartite Systems

    SciTech Connect

    Jaeger, Gregg; Ann, Kevin

    2009-03-10

    Bell non-locality sudden death is the disappearance of non-local properties in finite times under local phase noise, which decoheres states only in the infinite-time limit. We consider the relationship between decoherence, disentanglement, and Bell non-locality sudden death in bipartite and tripartite systems in specific large classes of state preparation.

  17. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory.

    PubMed

    Nami, Mohammad Rahim; Janghorban, Maziar

    2013-12-30

    In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.

  18. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    PubMed

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in Banach spaces C 0 (β,γ) (E α-β ) of all E α-β -valued continuous functions φ(t) on [0, T] satisfying a Hölder condition with a weight (t + τ)(γ). New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  19. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  20. On a difference scheme for nonlocal heat transfer boundary-value problem

    NASA Astrophysics Data System (ADS)

    Akhymbek, Meiram E.; Sadybekov, Makhmud A.

    2016-08-01

    In this paper, we propose a new method of solving nonlocal problems for the heat equation with finite difference method. The main important feature of these problems is their non-self-adjointness. This non-self-adjointness causes major difficulties in their analytical and numerical solving. The problems, which boundary conditions do not possess strong regularity, are less studied. The scope of study of the paper justifies possibility of building a stable difference scheme with weights for abovementioned type of problems.

  1. Nonlocal analysis of finite-beam-driven instabilities

    NASA Technical Reports Server (NTRS)

    Serizawa, Y.; Dum, C. T.

    1992-01-01

    The fully kinetic integral eigenmode equation in wave-number space is used to describe the nonlocal behavior of electrostatic waves in an electron-beam plasma, which are studied in the low-temperature-beam regime and the warm-beam regime. The case of strongly magnetized electrons and unmagnetized ions, which corresponds to the waves in a frequency range from the lower-hybrid to the electron plasma frequency, is examined. Three wave modes are found. The first group consists of modes that have dispersive properties similar to the uniform, infinite beam-plasma system. Depending on the beam width, the growth rates are strongly reduced. The second group, surface modes, are localized at the periphery of the beam region and are less unstable than the unstable modes of the first group. The third group represents natural oscillations of the background plasma. These modes are virtually unaffected by the beam.

  2. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms.

    PubMed

    Wiener, Aeneas; Duan, Huigao; Bosman, Michel; Horsfield, Andrew P; Pendry, John B; Yang, Joel K W; Maier, Stefan A; Fernández-Domínguez, Antonio I

    2013-07-23

    We investigate the emergence of nonlocal effects in plasmonic nanostructures through electron-energy loss spectroscopy. To theoretically describe the spatial dispersion in the metal permittivity, we develop a full three-dimensional nonlocal hydrodynamic solution of Maxwell's equations in frequency domain that implements the electron beam as a line current source. We use our numerical approach to perform an exhaustive analysis of the impact of nonlocality in the plasmonic response of single triangular prisms and connected bowtie dimers. Our results demonstrate the complexity of the interplay between nonlocal and geometric effects taking place in these structures. We show the different sensitivities to both effects of the various plasmonic modes supported by these systems. Finally, we present an experimental electron-energy loss study on gold nanoprisms connected by bridges as narrow as 1.6 nm. The comparison with our theoretical predictions enables us to reveal in a phenomenological fashion the enhancement of absorption damping that occurs in these atomistic junctions due to quantum confinement and grain boundary electron scattering. PMID:23782059

  3. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-08-01

    In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.

  4. Optical-soliton and chaotic motions in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Liu, Lei

    2016-05-01

    The coupled equations for the incoherent optical spatial solitons in a nonlocal nonlinear medium is studied analytically. With the soliton solutions hereby obtained via the symbolic computation, the optical-soliton motion in the nonlocal nonlinear medium is studied: ? is inversely related to ?, ?, and ?, while ? is positively related to ? and ?, but ? is independent of ?, with ? as the slowly varying amplitude of the beam, ? as the refractive index change, ? as the beam intensity distribution, ? as the frequency of the propagating beam, and ? as the unperturbed refractive index. Head-on and overtaking interactions are observed, and head-on interaction is transformed into an overtaking one with ? increasing. Bound-state interaction is displayed, and with ? increasing, the period of ? decreases, while that of ? increases. Considering the external forces in the nonlocal nonlinear medium, we explore the chaotic motions in the nonlinear nonlocal medium, including effects of the external forces on such motions. It is seen that when ? and ?, the two-dimensional attractors with stretching-and-folding structures are exhibited, and the developed chaos occurs, where ? and ? are the amplitudes of external forces, c is the speed of light in vacuum. Such chaotic motions are weakened with ?, ?, ?, and ? increasing, or with ? decreasing, where ? and ? represent the frequencies of external forces.

  5. Radiative interactions in molecular gases under local and nonlocal thermodynamic equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Jha, M. K.

    1993-01-01

    Basic formulations, analyses, and numerical procedures are presented to investigate radiative heat interactions in diatomic and polyatomic gases under local and nonlocal thermodynamic equilibrium conditions. Essential governing equations are presented for both gray and nongray gases. Information is provided on absorption models, relaxation times, and transfer equations. Radiative flux equations are developed which are applicable under local and nonlocal thermodynamic equilibrium conditions. The problem is solved for fully developed laminar incompressible flows between two parallel plates under the boundary condition of a uniform surface heat flux. For specific applications, three diatomic and three polyatomic gases are considered. The results are obtained numerically by employing the method of variation of parameters. The results are compared under local and nonlocal thermodynamic equilibrium conditions at different temperature and pressure conditions. Both gray and nongray studies are conducted extensively for all molecular gases considered. The particular gases selected for this investigation are CO, NO, OH, CO2, H2O, and CH4. The temperature and pressure range considered are 300-2000 K and 0.1-10 atmosphere, respectively. In general, results demonstrate that the gray gas approximation overestimates the effect of radiative interaction for all conditions. The conditions of NLTE, however, result in underestimation of radiative interactions. The method developed for this study can be extended to solve complex problems of radiative heat transfer involving nonequilibrium phenomena.

  6. Nonlocality and entanglement via the Unruh effect

    SciTech Connect

    Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2013-05-15

    Modeling the qubit by a two-level semiclassical detector coupled to a massless scalar field, we investigate how the Unruh effect affects the nonlocality and entanglement of two-qubit and three-qubit states when one of the entangled qubits is accelerated. Two distinct differences with the results of free field model in non-inertial frames are (i) for the two-qubit state, the CHSH inequality cannot be violated for sufficiently large but finite acceleration, furthermore, the concurrence will experience “sudden death”; and (ii) for the three-qubit state, not only does the entanglement vanish in the infinite acceleration limit, but also the Svetlichny inequality cannot be violated in the case of large acceleration. -- Highlights: ► We compare entanglement and nonlocality of two-level detector model with that of free field model in noninertial frame. ► Two-qubit state entanglement experiences “sudden death”. ► Three-qubit state entanglement vanishes in the infinite acceleration limit. ► Bipartite nonlocal correlations vanish for finite values of the acceleration. ► Tripartite nonlocal correlations vanish for finite values of the acceleration as well.

  7. 29 CFR 780.320 - Nonlocal minors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section 13(a)(6) Statutory... 29 Labor 3 2012-07-01 2012-07-01 false Nonlocal minors. 780.320 Section 780.320 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY...

  8. 29 CFR 780.320 - Nonlocal minors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section 13(a)(6) Statutory... 29 Labor 3 2010-07-01 2010-07-01 false Nonlocal minors. 780.320 Section 780.320 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY...

  9. 29 CFR 780.320 - Nonlocal minors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section 13(a)(6) Statutory... 29 Labor 3 2011-07-01 2011-07-01 false Nonlocal minors. 780.320 Section 780.320 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY...

  10. 29 CFR 780.320 - Nonlocal minors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section 13(a)(6) Statutory... 29 Labor 3 2014-07-01 2014-07-01 false Nonlocal minors. 780.320 Section 780.320 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY...

  11. 29 CFR 780.320 - Nonlocal minors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section 13(a)(6) Statutory... 29 Labor 3 2013-07-01 2013-07-01 false Nonlocal minors. 780.320 Section 780.320 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY...

  12. Testing nonlocal realism with entangled coherent states

    SciTech Connect

    Paternostro, Mauro; Jeong, Hyunseok

    2010-03-15

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  13. Wave-particle transport from density drift instabilities - A comparison of local and nonlocal theories. [applicable to ionosphere

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.

    1984-01-01

    Second-order Vlasov theory is used to compute the dissipation rates of plasma irregularities with a variety of shapes. A derivation of the nonlocal dispersion equation using linearized Vlasov theory is presented. Expressions for the normalized amplitudes of the first-order plasma density and electrostatic potential fluctuations are derived. Expressions are given for the saturation amplitudes of the electrostatic eigenmodes. The wave-particle transport and irregularity dissipation rate are computed by using formulas whose derivation is presented. Computational results for specific density variations are shown, and conclusions on the validity of the local theory as opposed to the nonlocal theory are given.

  14. Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Faraji Oskouie, M.; Sadeghi, F.; Bazdid-Vahdati, M.

    2015-11-01

    In this article, the free vibration of a fractional viscoelastic Timoshenko nanobeam is studied through inserting fractional calculus as a viscoelastic material compatibility equations in nonlocal beam theory. The material properties of a single-walled carbon nanotube (SWCNT) are used and two solution procedures are proposed to solve the obtained equations in the time domain. The former is a semi-analytical approach in which the Galerkin scheme is employed to discretize the governing equations in the spatial domain and the obtained set of ordinary differential equations is solved using a direct numerical integration scheme. On the contrary, the latter is entirely numerical in which the governing equations of system on the spatial and time domains are first discretized using general differential quadrature (GDQ) technique and finite difference (FD) scheme, respectively and then the set of algebraic equations is solved to arrive at the time response of system under different boundary conditions. Considering the second solution procedure as the main approach, its validity and accuracy are verified by the semi-analytical approach which is more difficult to enter various boundary conditions. Numerical results are also presented to get an insight into the effects of fractional derivative order, nonlocal parameter, viscoelasticity coefficient and nanobeam length on the time response of fractional viscoelastic Timoshenko nanobeams under different boundary conditions.

  15. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Faraji Oskouie, M.; Gholami, R.

    2016-01-01

    In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.

  16. Hidden variables and nonlocality in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hemmick, Douglas Lloyd

    1997-05-01

    Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call

  17. An envelope function formalism for lattice-matched heterostructures

    NASA Astrophysics Data System (ADS)

    Van de Put, Maarten L.; Vandenberghe, William G.; Magnus, Wim; Sorée, Bart

    2015-08-01

    The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k · p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements.

  18. Implicit for local effects and explicit for nonlocal effects is unconditionallly stable.

    SciTech Connect

    Anitescu, M.; Layton, W. J.; Pahlevani, F.; Mathematics and Computer Science; Univ. of Pittsburgh

    2004-01-01

    A combination of implicit and explicit timestepping is analyzed for a system of ordinary differential equations (ODEs) motivated by ones arising from spatial discretizations of evolutionary partial differential equations (PDEs). Loosely speaking, the method we consider is implicit in local and stabilizing terms in the underlying PDE and explicit in nonlocal and unstabilizing terms. Unconditional stability and convergence of the numerical scheme are proved by the energy method and by algebraic techniques. This stability result is surprising because usually when different methods are combined, the stability properties of the least stable method plays a determining role in the combination.

  19. Stability of gap solitons in the presence of a weak nonlocality in periodic potentials

    NASA Astrophysics Data System (ADS)

    Mylonas, I. K.; Rossides, A. K.; Rothos, V. M.

    2016-09-01

    In this work, we study the stability and internal modes of one-dimensional gap solitons employing the modified nonlinear Schrödinger equation with a sinusoidal potential together with the presence of a weak nonlocality. Using an analytical theory, it is proved that two soliton families bifurcate out from every Bloch-band edge under self-focusing or self-defocusing nonlinearity, and one of these is always unstable. Also we study the oscillatory instabilities and internal modes of the modified nonlinear Schrödinger equation.

  20. Classification of scalar and dyadic nonlocal optical response models.

    PubMed

    Wubs, M

    2015-11-30

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency. PMID:26698757

  1. Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A. H.; Rahmani, O.

    2016-03-01

    A free vibration analysis of shallow and deep curved functionally graded (FG) nanobeam is presented. Differential equations and boundary conditions are obtained using Hamilton's principle, and then, nonlocal theory is employed to derive differential equations in small scale. Properties of the material are FG in radial direction. In order to investigate the effects of deep curved beam, extensional stiffness, bending-extension coupling stiffness, and bending stiffness are calculated in the deep case, analytically. By employing Navier method, an analytical solution is presented. Results are compared and validated with available studies, and a good agreement is seen. The influences of effective parameters such as geometrical deep term, nonlocal parameter, opening angle, aspect ratio, mode number, and gradient index are discussed in detail. It is found that the frequency of deep curved nanobeam is higher than that of shallow one, and the aspect ratio significantly affects this difference to decrease. Also, it is concluded that the opening angle, nonlocal parameter, and power gradient index can notably influence the amount of frequency.

  2. Nonlocal polarization interferometer for entanglement detection

    SciTech Connect

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, we present the relevant theory and experimental results.

  3. Nonlocal polarization interferometer for entanglement detection

    DOE PAGES

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less

  4. The link between entropic uncertainty and nonlocality

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Hänggi, Esther

    2013-02-01

    Two of the most intriguing features of quantum physics are the uncertainty principle and the occurrence of nonlocal correlations. The uncertainty principle states that there exist pairs of incompatible measurements on quantum systems such that their outcomes cannot both be predicted. On the other hand, nonlocal correlations of measurement outcomes at different locations cannot be explained by classical physics, but appear in the presence of entanglement. Here, we show that these two fundamental quantum effects are quantitatively related. Namely, we provide an entropic uncertainty relation for the outcomes of two binary measurements, where the lower bound on the uncertainty is quantified in terms of the maximum Clauser-Horne-Shimony-Holt value that can be achieved with these measurements. We discuss applications of this uncertainty relation in quantum cryptography, in particular, to certify quantum sources using untrusted devices.

  5. Molecular decay rate near nonlocal plasmonic particles.

    PubMed

    Girard, Christian; Cuche, Aurélien; Dujardin, Erik; Arbouet, Arnaud; Mlayah, Adnen

    2015-05-01

    When the size of metal nanoparticles is smaller than typically 10 nm, their optical response becomes sensitive to both spatial dispersion and quantum size effects associated with the confinement of the conduction electrons inside the particle. In this Letter, we propose a nonlocal scheme to compute molecular decay rates near spherical nanoparticles which includes the electron-electron interactions through a simple model of electronic polarizabilities. The plasmonic particle is schematized by a dynamic dipolar polarizability α(NL)(ω), and the quantum system is characterized by a two-level system. In this scheme, the light matter interaction is described in terms of classical field susceptibilities. This theoretical framework could be extended to address the influence of nonlocality on the dynamics of quantum systems placed in the vicinity of nano-objects of arbitrary morphologies.

  6. Sampling Quantum Nonlocal Correlations with High Probability

    NASA Astrophysics Data System (ADS)

    González-Guillén, C. E.; Jiménez, C. H.; Palazuelos, C.; Villanueva, I.

    2016-05-01

    It is well known that quantum correlations for bipartite dichotomic measurements are those of the form {γ=(< u_i,v_jrangle)_{i,j=1}^n}, where the vectors u i and v j are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of {α=m/n}, where the previous vectors are sampled according to the Haar measure in the unit sphere of {R^m}. In particular, we prove the existence of an {α_0 > 0} such that if {α≤ α_0}, {γ} is nonlocal with probability tending to 1 as {n→ ∞}, while for {α > 2}, {γ} is local with probability tending to 1 as {n→ ∞}.

  7. Nonlocal neurology: beyond localization to holonomy.

    PubMed

    Globus, G G; O'Carroll, C P

    2010-11-01

    The concept of local pathology has long served neurology admirably. Relevant models include self-organizing nonlinear brain dynamics, global workspace and dynamic core theories. However such models are inconsistent with certain clinical phenomena found in Charles Bonnet syndrome, disjunctive agnosia and schizophrenia, where there is disunity of content within the unity of consciousness. This is contrasted with the split-brain case where there is disunity of content and disunity of consciousnesses. The development of quantum brain theory with it nonlocal mechanisms under the law of the whole ("holonomy") offers new possibilities for explaining disintegration within unity. Dissipative quantum brain dynamics and its approach to the binding problem, memory and consciousness are presented. A nonlocal neurology armed with a holonomic understanding might see more deeply into what clinical neurology has always aspired to: the patient as a whole.

  8. Delayed-choice Measurement and Temporal Nonlocality

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; Mahler, Günter

    2001-02-01

    We study for a composite quantum system with a quantum Turing architecture the temporal non-locality of quantum mechanics by using the temporal Bell inequality, which will be derived for a discretized network dynamics by identifying the subsystem indices with (discrete) parameter time. However, the direct "observation" of the quantum system will lead to no violation of the temporal Bell inequality and to consistent histories of any subsystem. Its violation can be demonstrated, though, for a delayedchoice measurement

  9. Switching non-local vector median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  10. EPR paradox, quantum nonlocality and physical reality

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced

  11. Nonlocal soliton scattering in random potentials

    NASA Astrophysics Data System (ADS)

    Piccardi, Armando; Residori, Stefania; Assanto, Gaetano

    2016-07-01

    We experimentally investigate the transport behaviour of nonlocal spatial optical solitons when launched in and interacting with propagation-invariant random potentials. The solitons are generated in nematic liquid crystals; the randomness is created by suitably engineered illumination of planar voltage-biased cells equipped with a photosensitive wall. We find that the fluctuations follow a super-diffusive trend, with the mean square displacement lowering for decreasing spatial correlation of the noise.

  12. Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Tang, Yugang; Liu, Ying; Zhao, Dong

    2016-10-01

    In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.

  13. Non-local Effects in a Stratified Glow Discharge With Dusty Particles

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.; Ramazanov, T. S.; Amangaliyeva, R. Zh.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The work is aimed to describe non-local effects in the positive column of a low pressure stratified DC glow discharge in argon with dusty particles in a vertical cylindrical discharge tube. The numerical calculations of plasma parameters in the axis of the discharge tube were performed with the help of hybrid model based on the solution of non-local Boltzmann equation for EEDF. Distributions of optical emission from striations were measured experimentally. It is shown that in a stratified positive column the EEDF is not Maxwellian and even non-monotonous. Also, the effect of displacing of optical emission distribution relative to the electric field is shown both by numerical simulation and experimental measurements.

  14. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    SciTech Connect

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.

    2015-08-15

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  15. Personnel occupied woven envelope robot

    NASA Technical Reports Server (NTRS)

    Wessling, F. C.

    1986-01-01

    The use of nonmetallic or fabric structures for space application is considered. The following structures are suggested: (1) unpressurized space hangars; (2) extendable tunnels for soft docking; and (3) manned habitat for space stations, storage facilities, and work structures. The uses of the tunnel as a passageway: for personnel and equipment, eliminating extravehicular activity, for access to a control cabin on a space crane and between free flyers and the space station are outlined. The personnal occupied woven envelope robot (POWER) device is shown. The woven envelope (tunnel) acts as part of the boom of a crane. Potential applications of POWER are outlined. Several possible deflection mechanisms and design criteria are determined.

  16. Carbon chemistry of circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Bieging, John H.

    1990-01-01

    The chemical composition of envelopes surrounding cool evolved stars, as determined from microwave spectroscopic observations, is reviewed. Emphasis is placed on recent observations with the new large mm-wavelength telescopes and interferometer arrays, and on new theoretical work, especially concerning ion-molecule chemistry of carbon-bearing in these envelopes. Thermal (as opposed to maser) emission lines are discussed. Much progress has been made in the past few years in the theoretical understanding of these objects. It is already clear, however, that observations with the new generation of mm-telescopes will require substantial improvements in the theoretical models to achieve a thorough understanding of the data now becoming available.

  17. Connection between Bell nonlocality and Bayesian game theory.

    PubMed

    Brunner, Nicolas; Linden, Noah

    2013-01-01

    In 1964, Bell discovered that quantum mechanics is a nonlocal theory. Three years later, in a seemingly unconnected development, Harsanyi introduced the concept of Bayesian games. Here we show that, in fact, there is a deep connection between Bell nonlocality and Bayesian games, and that the same concepts appear in both fields. This link offers interesting possibilities for Bayesian games, namely of allowing the players to receive advice in the form of nonlocal correlations, for instance using entangled quantum particles or more general no-signalling boxes. This will lead to novel joint strategies, impossible to achieve classically. We characterize games for which nonlocal resources offer a genuine advantage over classical ones. Moreover, some of these strategies represent equilibrium points, leading to the notion of quantum/no-signalling Nash equilibrium. Finally, we describe new types of question in the study of nonlocality, namely the consideration of nonlocal advantage given a set of Bell expressions. PMID:23820748

  18. Conditions for the confirmation of three-particle nonlocality

    SciTech Connect

    Mitchell, Peter; Roberts, David; Popescu, Sandu

    2004-12-01

    The notion of genuine three-particle nonlocality introduced by Svetlichny [Phys. Rev. D 35, 10, 3066 (1987)] is discussed. Svetlichny's inequality, which can distinguish between genuine three-particle and three-particle nonlocality that is based on underlying two-particle nonlocality, is analyzed by reinterpreting it as a frustrated network of correlations. Its quantum-mechanical maximum violation is derived and a situation is presented that produces the maximum violation. We show that recent beautiful experiments to demonstrate nonlocality for a three-party state by the GHZ paradox, although demonstrating nonlocality, do not allow any violation of the Svetlichny inequality. However, we show that with only minor modifications to the measurements performed, the experiments would be far more powerful and able to demonstrate genuine three-party nonlocality.

  19. Gap solitons under competing local and nonlocal nonlinearities

    SciTech Connect

    Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-05-15

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  20. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    SciTech Connect

    Colombant, Denis Manheimer, Wallace

    2010-06-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  1. Continuous time random walks for non-local radial solute transport

    NASA Astrophysics Data System (ADS)

    Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy

    2015-08-01

    This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer

  2. Light steering in a strongly nonlocal nonlinear medium

    SciTech Connect

    Ouyang Shigen; Hu Wei; Guo Qi

    2007-11-15

    With a strongly nonlocal model, we present an analytical solution of the coherent interaction of two Gaussian beams with an arbitrary phase difference and arbitrary incident angles. Numerical simulations show that the analytical solution can describe the interaction of two Gaussian beams very well in the strongly nonlocal case. It is theoretically shown that one can steer lights in strongly nonlocal media by tuning the incident conditions of coherently interacting beams like the phase difference between beams and their relative amplitude.

  3. Exact solutions for a coupled nonlocal model of nanobeams

    NASA Astrophysics Data System (ADS)

    de Sciarra, Francesco Marotti; Barretta, Raffaele

    2014-10-01

    Bernoulli-Euler nanobeams under concentrated forces/couples with the nonlocal constitutive behavior proposed by Eringen do not exhibit small-scale effects. A new model obtained by coupling the Eringen and gradient models is formulated in the present note. A variational treatment is developed by imposing suitable thermodynamic restrictions for nonlocal models and the ensuing differential and boundary conditions of elastic equilibrium are provided. The nonlocal elastostatic problem is solved in a closed-form for nanocantilever and clamped nanobeams.

  4. Exact solutions for a coupled nonlocal model of nanobeams

    SciTech Connect

    Marotti de Sciarra, Francesco E-mail: raffaele.barretta@unina.it; Barretta, Raffaele E-mail: raffaele.barretta@unina.it

    2014-10-06

    BERNOULLI-EULER nanobeams under concentrated forces/couples with the nonlocal constitutive behavior proposed by ERINGEN do not exhibit small-scale effects. A new model obtained by coupling the ERINGEN and gradient models is formulated in the present note. A variational treatment is developed by imposing suitable thermodynamic restrictions for nonlocal models and the ensuing differential and boundary conditions of elastic equilibrium are provided. The nonlocal elastostatic problem is solved in a closed-form for nanocantilever and clamped nanobeams.

  5. Cosmological evolution of generalized non-local gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang

    2016-07-01

    We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n‑2 R□‑nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.

  6. Cosmological evolution of generalized non-local gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang

    2016-07-01

    We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n-2 R□-nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.

  7. Heuristic theory of nonlocally broken gyro-Bohm scaling

    SciTech Connect

    Waltz, R.E.; Candy, J.

    2005-07-15

    Global gyrokinetic simulations of ion temperature gradient turbulent transport with piecewise-flat profiles are given to illustrate the breaking of gyro-Bohm scaling by a nonlocal mechanism. The nonlocal drainage of the turbulence from unstable regions spreading into stable (or less unstable) regions breaks the gyro-Bohm scaling toward Bohm in unstable regions and toward super-gyro-Bohm in stable (or less unstable) regions. A heuristic model for this nonlocal process is formulated in terms of a nonlocal growth rate resulting from a locally weighted radial average of the local linear ballooning mode growth rate. A nonlocality length L measured in ion gyroradii provides the exponential scale for the local weighting. The nonlocal growth rate can be incorporated into a local gyro-Bohm-scaled transport model in place of the local growth rate. The resulting nonlocal transport model will provide some transport in stable regions. A heuristic theory of this nonlocal transport mechanism based on the partial formation of global modes in toroidal geometry is detailed. The theory argues that the nonlocality length L increases with relative gyroradius and decreases with the linear growth rate.

  8. Survey on nonlocal games and operator space theory

    NASA Astrophysics Data System (ADS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  9. ACCELERATED MRI USING ITERATIVE NON-LOCAL SHRINKAGE

    PubMed Central

    Mohsin, Yasir Q.; Ongie, Gregory; Jacob, Mathews

    2015-01-01

    We introduce a fast iterative non-local shrinkage algorithm to recover MRI data from undersampled Fourier measurements. This approach is enabled by the reformulation of current non-local schemes as an alternating algorithm to minimize a global criterion. The proposed algorithm alternates between a non-local shrinkage step and a quadratic subproblem. The resulting algorithm is observed to be considerably faster than current alternating non-local algorithms. We use efficient continuation strategies to minimize local minima issues. The comparisons of the proposed scheme with state-of-the-art regularization schemes show a considerable reduction in alias artifacts and preservation of edges. PMID:25570265

  10. The uncertainty principle determines the nonlocality of quantum mechanics.

    PubMed

    Oppenheim, Jonathan; Wehner, Stephanie

    2010-11-19

    Two central concepts of quantum mechanics are Heisenberg's uncertainty principle and a subtle form of nonlocality that Einstein famously called "spooky action at a distance." These two fundamental features have thus far been distinct concepts. We show that they are inextricably and quantitatively linked: Quantum mechanics cannot be more nonlocal with measurements that respect the uncertainty principle. In fact, the link between uncertainty and nonlocality holds for all physical theories. More specifically, the degree of nonlocality of any theory is determined by two factors: the strength of the uncertainty principle and the strength of a property called "steering," which determines which states can be prepared at one location given a measurement at another.

  11. Reconceptualization of the Budget Envelope.

    ERIC Educational Resources Information Center

    Jefferson, Anne L.

    This paper reconceptualizes the purposes of education's budget envelope. Citing numerous examples of how policymakers consider resource allocations apart from the main concerns of individual programs, the people reallocations affect, and education's most important programs, it suggests that policymakers and finance officers reemphasize program and…

  12. Study of envelope electron acoustic solitary waves under transverse perturbations having kappa distributed hot electrons

    SciTech Connect

    Bedi, Chanchal; Gill, T. S.

    2012-06-15

    As is well known, the envelope electron acoustic (EA) nonlinear waves are expressed by nonlinear Schroedinger equation. In this paper, we find that under transverse perturbations, this kind of nonlinear waves can be described by Davey-Stewartson equation. In this work, modulational properties of EA wave and its stability regions in two-dimensional plasma have been studied.

  13. The Hardy’s nonlocality argument

    NASA Astrophysics Data System (ADS)

    Choudhary, Sujit K.; Agrawal, Pankaj

    2016-08-01

    Certain predictions of quantum theory are not compatible with the notion of local-realism. This was the content of Bell’s famous theorem of the year 1964. Bell proved this with the help of an inequality, famously known as Bell’s inequality. The alternative proofs of Bell’s theorem without using Bell’s inequality are known as “nonlocality without inequality (NLWI)” proofs. We review one such proof namely the Hardy’s proof which due to its simplicity and generality has been considered the best version of Bell’s theorem.

  14. Entanglement swapping for generalized nonlocal correlations

    SciTech Connect

    Short, A. J.; Popescu, S.; Gisin, N.

    2006-01-15

    We consider an analog of entanglement-swapping for a set of black boxes with the most general nonlocal correlations consistent with relativity (including correlations which are stronger than any attainable in quantum theory). In an attempt to incorporate this phenomenon, we consider expanding the space of objects to include not only correlated boxes, but 'couplers', which are an analog for boxes of measurements with entangled eigenstates in quantum theory. Surprisingly, we find that no couplers exist for two binary-input-binary-output boxes, and hence that there is no analog of entanglement swapping for such boxes.

  15. The Nonlocal Nature of Energy Conservation

    NASA Astrophysics Data System (ADS)

    Bruner, Ronald F.

    1998-04-01

    Analysis of a simple thought experiment involving pulleys and masses in a unifor m gravitational field reveals that the principle of conservation of energy is not generally valid in the local sense that energy leaving volume A in space must pass through a surface enclosing volume A in order to appear at location B external to volume A. This result shows that the "strange" nonlocal behavior implied by experimental and theoretical results in quantum physics is also present within the purview of classical mechanics. Fundamental conceptual implications of this result will be discusse d, particularly the implication that a particle need not have a continuous trajectory in space as a function of time.

  16. Relativistic three-partite non-locality

    NASA Astrophysics Data System (ADS)

    Moradpour, Hooman; Montakhab, Afshin

    2016-05-01

    Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation (LT) has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and Greenberger-Horne-Zeilinger (GHZ) states which exhibit distinctly different types of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Czachor’s relativistic spin operator and Svetlichny’s inequality as the main measure of non-locality and uses the same angles in the rest frame (S) as well as the moving frame (S‧), then maximally violated inequality in S will decrease in the moving frame, and will eventually lead to lack of non-locality (i.e. satisfaction of inequality) in the v→c limit. This is shown for both the GHZ and W states and in two different configurations which are commonly studied (Cases 1 and 2). Our results are in line with a more familiar case of two particle case. We also show that the satisfaction of Svetlichny’s inequality in the v→c limit is independent of initial particles’ velocity. Our study shows that whenever we use Czachor’s relativistic spin operator, results draws a clear picture of three-particle non-locality making its general properties consistent with previous studies on two-particle systems regardless of the W state or the GHZ state is involved. Throughout the paper, we also address the results of using Pauli’s operator in investigating the behavior of |Sv| under LT for both of the GHZ and W states and two cases (Cases 1 and 2). Our investigation shows that the violation of |Sv| in moving frame depends on the particle’s energy in the lab frame, which is in agreement with some previous works on two and three-particle systems. Our work may

  17. Non-local magnetoelectric effects via Coulomb interaction in TI-FMI heterostructures

    NASA Astrophysics Data System (ADS)

    Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle

    Magnetic order on the surface of a 3 D topological insulator (TI) has been predicted to evoke a topological magnetoelectric effect (TME) by the breaking of time-reversal invariance. In the TME, an electric field leads to a magnetic polarization in the same direction as the field and vice versa. Here, we consider heterostructures of TI and ferromagnetic insulator (FMI) layers. We show that in the presence of long-range Coulomb interactions the magnetization couples non-locally to the fluctuating electric field (non-local TME) by performing a field-theoretic calculation of the vacuum polarization. In addition, we obtain a Landau-Lifshitz equation for the magnetization dynamics, and find that charged magnetic textures lead to a net magnetization even at a large distance. Such textures can be induced by an external electric field with nonzero in-plane divergence. We apply this effect to a FMI-TI-FMI trilayer heterostructure with two parallel interfaces being well-separated by the bulk TI, where we propose to non-locally control the magnetic texture at one interface by proper gating of the other interface. A preprint can be found at arXiv:1510.04285 Supported by the Norwegian Research Council, Grants 205591/V20 and 216700/F20, and the Collaborative Research Center SFB 1143 ''Correlated Magnetism: From Frustration to Topology''.

  18. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.

    PubMed

    Li, Xian-Fang; Tang, Guo-Jin; Shen, Zhi-Bin; Lee, Kang Yong

    2015-01-01

    Free vibration and mass detection of carbon nanotube-based sensors are studied in this paper. Since the mechanical properties of carbon nanotubes possess a size effect, the nonlocal beam model is used to characterize flexural vibration of nanosensors carrying a concentrated nanoparticle, where the size effect is reflected by a nonlocal parameter. For nanocantilever or bridged sensor, frequency equations are derived when a nanoparticle is carried at the free end or the middle, respectively. Exact resonance frequencies are numerically determined for clamped-free, simply-supported, and clamped-clamped resonators. Alternative approximations of fundamental frequency are given in closed form within the relative error less than 0.4%, 0.6%, and 1.4% for cantilever, simply-supported, and bridged sensors, respectively. Mass identification formulae are derived in terms of the frequency shift. Identified masses via the present approach coincide with those using the molecular mechanics approach and reach as low as 10(-24)kg. The obtained results indicate that the nonlocal effect decreases the resonance frequency except for the fundamental frequency of nanocantilever sensor. These results are helpful to the design of micro/nanomechanical zeptogram-scale biosensor.

  19. Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Rahmani, O.; Jandaghian, A. A.

    2015-06-01

    In this paper, a general third-order beam theory that accounts for nanostructure-dependent size effects and two-constituent material variation through the nanobeam thickness, i.e., functionally graded material (FGM) beam is presented. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. A detailed derivation of the equations of motion based on Eringen nonlocal theory using Hamilton's principle is presented, and a closed-form solution is derived for buckling behavior of the new model with various boundary conditions. The nonlocal elasticity theory includes a material length scale parameter that can capture the size effect in a functionally graded material. The proposed model is efficient in predicting the shear effect in FG nanobeams by applying third-order shear deformation theory. The proposed approach is validated by comparing the obtained results with benchmark results available in the literature. In the following, a parametric study is conducted to investigate the influences of the length scale parameter, gradient index, and length-to-thickness ratio on the buckling of FG nanobeams and the improvement on nonlocal third-order shear deformation theory comparing with the classical (local) beam model has been shown. It is found out that length scale parameter is crucial in studying the stability behavior of the nanobeams.

  20. Two-Color Vector Solitons In Nonlocal Media

    NASA Astrophysics Data System (ADS)

    Alberucci, Alessandro; Peccianti, Marco; Assanto, Gaetano; Dyadyusha, Andriy; Kaczmarek, Malgosia

    2006-10-01

    We investigate the interaction between two beams differing in wavelength and the properties of dual-frequency spatial solitons in nonlocal birefringent reorientational media. We report the first experimental observations of anisotropic nonlocal vector solitons in unbiased nematic liquid crystals. Model and simulations, based on the paraxiality along the Poynting vectors, include joint walk-off and breathing.

  1. Non-local damage rheology and size effect

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.

    2011-12-01

    We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time

  2. Hierarchy of multipartite nonlocality in the nonsignaling scenario

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Zhang, Chengjie; Chen, Qing; Yu, Sixia; Yuan, Haidong; Oh, C. H.

    2016-08-01

    We propose a hierarchy of Bell-type inequalities for arbitrary n -partite systems that identifies the different degrees of nonlocality ranging from standard to genuine multipartite nonlocality. After introducing the definition of nonsignaling m locality, we show that the observed joint probabilities in any nonsignaling m -local realistic models should satisfy the (m -1 )th Bell-type inequality. When m =2 , the corresponding inequality reduces to the one shown earlier [Q. Chen et al., Phys. Rev. Lett. 112, 140404 (2014), 10.1103/PhysRevLett.112.140404] whose violation indicates genuine multipartite nonlocality, and when m =n , the corresponding inequality is just Hardy's inequality whose violation indicates standard multipartite nonlocality. Furthermore, several examples are provided to demonstrate their hierarchy of multipartite nonlocality.

  3. Implementing a Nonlocal Toffoli Gate Using Partially Entangled Qubit Pairs

    NASA Astrophysics Data System (ADS)

    Chen, Li-Bing; Lu, Hong

    2011-11-01

    We investigate the local implementation of a nonlocal quantum Toffoli gate via partially entangled states. Firstly, we show how the nonlocal Toffoli gate can be implemented with unit fidelity and a certain probability by employing two partially entangled qubit pairs as quantum channels. The quantum circuit that does this proposed implementation is built entirely of local single-level and two-level gates if the target node harness a three-level qudit as a catalyser. This enables the construction of this key nonlocal quantum gate with existing technology. Then, we put forward a scheme to realize deterministic and exact implementation of this nonlocal gate via more partially entangled pairs. In this scheme, the control nodes' local positive operator valued measurements (POVMs) lies at the heart. We construct the required POVMs. The fact that the deterministic and exact implementation of a nonlocal multi-qubit gate could be realized by using partially entangled qubit pairs and comparatively fewer resources cost is notable.

  4. Nonlocal electrodynamics of Josephson vortices in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Abdumalikov, A. A., Jr.; Alfimov, G. L.; Malishevskii, A. S.

    2009-02-01

    A review of the main analytical, numerical and experimental results of nonlocal Josephson electrodynamics in different types of junctions is presented. Several mechanisms of nonlocality are discussed. Linear electromagnetic waves and vortices (kinks) propagating along junctions are examined in detail. The main attention is paid to bulk junctions with internal nonlocality and to narrow junctions with geometrical nonlocality. Theoretical conceptions of Cherenkov excitation of plasma waves, discretization of kink velocities and forming of multikinks by binding of elementary vortices are considered. Experimental results for narrow junctions are surveyed. It is shown that the positions of Fiske steps and Cherenkov resonances at current-voltage characteristics which have been obtained in experiments can be properly explained by a nonlocal model that takes into account stray magnetic fields outside the junction.

  5. Origin and effect of nonlocality in a layered composite.

    SciTech Connect

    Silling, Stewart Andrew

    2014-01-01

    A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.

  6. A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility

    NASA Astrophysics Data System (ADS)

    Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta

    2015-05-01

    We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective non-local Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.

  7. Safeguards Envelope Progress FY08

    SciTech Connect

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  8. Transparent ceramic lamp envelope materials

    NASA Astrophysics Data System (ADS)

    Wei, G. C.

    2005-09-01

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  9. Non-local models for ductile failure

    NASA Astrophysics Data System (ADS)

    César de Sá, José; Azinpour, Erfan; Santos, Abel

    2016-08-01

    Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching

  10. Infrared image denoising by nonlocal means filtering

    NASA Astrophysics Data System (ADS)

    Dee-Noor, Barak; Stern, Adrian; Yitzhaky, Yitzhak; Kopeika, Natan

    2012-05-01

    The recently introduced non-local means (NLM) image denoising technique broke the traditional paradigm according to which image pixels are processed by their surroundings. Non-local means technique was demonstrated to outperform state-of-the art denoising techniques when applied to images in the visible. This technique is even more powerful when applied to low contrast images, which makes it tractable for denoising infrared (IR) images. In this work we investigate the performance of NLM applied to infrared images. We also present a new technique designed to speed-up the NLM filtering process. The main drawback of the NLM is the large computational time required by the process of searching similar patches. Several techniques were developed during the last years to reduce the computational burden. Here we present a new techniques designed to reduce computational cost and sustain optimal filtering results of NLM technique. We show that the new technique, which we call Multi-Resolution Search NLM (MRS-NLM), reduces significantly the computational cost of the filtering process and we present a study of its performance on IR images.

  11. Excitation of gravity waves in common envelopes

    NASA Technical Reports Server (NTRS)

    Soker, Noam

    1992-01-01

    We study the excitation of gravity waves by a low-mass companion orbiting inside the envelope of a giant star, concentrating on brown dwarfs inside the envelope of asymptotic giant branch stars. Efficient g-wave excitations occur only after the brown dwarf has spiraled-in to the radiative zone, well inside the envelope, of the asymptotic giant branch star. The brown dwarf excites g-waves when its orbital radius is about 3-10 solar radii. At this stage of the evolution the envelope mass is below 0.1 solar mass. The g-waves propagate inward from the secondary orbit, carrying angular momentum and energy. We find that the angular momentum transport leads to an efficient spin-up of the inner envelopes. The differential rotation between the envelope and core and nonlinear wave effects, can cause a mixing of heavy elements from the core to the envelope.

  12. On a competitive system under chemotactic effects with non-local terms

    NASA Astrophysics Data System (ADS)

    Negreanu, Mihaela; Tello, J. Ignacio

    2013-04-01

    In this paper, we study a system of partial differential equations describing the evolution of a population under chemotactic effects with non-local reaction terms. We consider an external application of chemoattractant in the system and study the cases of one and two populations in competition. By introducing global competitive/cooperative factors in terms of the total mass of the populations, we obtain, for a range of parameters, that any solution with positive and bounded initial data converges to a spatially homogeneous state with positive components. The proofs rely on the maximum principle for spatially homogeneous sub- and super-solutions.

  13. Nonlocal systems of balance laws in several space dimensions with applications to laser technology

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Marcellini, Francesca

    2015-12-01

    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt.

  14. Variational Principles for Buckling of Microtubules Modeled as Nonlocal Orthotropic Shells

    PubMed Central

    2014-01-01

    A variational principle for microtubules subject to a buckling load is derived by semi-inverse method. The microtubule is modeled as an orthotropic shell with the constitutive equations based on nonlocal elastic theory and the effect of filament network taken into account as an elastic surrounding. Microtubules can carry large compressive forces by virtue of the mechanical coupling between the microtubules and the surrounding elastic filament network. The equations governing the buckling of the microtubule are given by a system of three partial differential equations. The problem studied in the present work involves the derivation of the variational formulation for microtubule buckling. The Rayleigh quotient for the buckling load as well as the natural and geometric boundary conditions of the problem is obtained from this variational formulation. It is observed that the boundary conditions are coupled as a result of nonlocal formulation. It is noted that the analytic solution of the buckling problem for microtubules is usually a difficult task. The variational formulation of the problem provides the basis for a number of approximate and numerical methods of solutions and furthermore variational principles can provide physical insight into the problem. PMID:25214886

  15. Security in Quantum Cryptography vs. Nonlocal Hidden Variables

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; Czachor, Marek; Pawłowski, Marcin

    2007-02-01

    In order to prove equivalence of quantum mechanics with nonlocal hidden-variable theories of a Bohm type one assumes that all the possible measurements belong to a restricted class: (a) we measure only positions of particles and (b) have no access to exact values of initial conditions for Bohm's trajectories. However, in any computer simulation based on Bohm's equations one relaxes the assumption (b) and yet obtains agreement with quantum predictions concerning the results of positional measurements. Therefore a theory where (b) is relaxed, although in principle allowing for measurements of a more general type, cannot be experimentally falsified within the current experimental paradigm. Such generalized measurements have not been invented, or have been invented but the information is qualified, but we cannot exclude their possibility on the basis of known experimental data. Since the measurements would simultaneously allow for eavesdropping in standard quantum cryptosystems, the arguments for security of quantum cryptography become logically circular: Bohm-type theories do not allow for eavesdropping because they are fully equivalent to quantum mechanics, but the equivalence follows from the assumption that we cannot measure hidden variables, which would be equivalent to the possibility of eavesdropping… Here we break the vicious circle by a simple modification of entangled-state protocols that makes them secure even if our enemies have more imagination and know how to measure hidden-variable initial conditions with arbitrary precision.

  16. Stationary states in nonlocal type dynamics of composite systems

    NASA Astrophysics Data System (ADS)

    Sowa, Artur

    2009-12-01

    We consider a model for nonlocal type dynamics of composite quantum systems. It is based on the equation -iħK˙=KH+HˆK+βKf(K∗K), describing the time evolution of an operator variable K. Here H and Hˆ are fixed self-adjoint and possibly unbounded operators (subsystem Hamiltonians), z→f(z) is an analytic function, assuming real values for a real argument, and β is a real parameter. This article focuses on the problem of characterization of stationary solutions, i.e. solutions that assume the special form K(t)=eK0 with K0 satisfying K0H+HˆK0+βK0f(K0∗K0)=νK0. The main result is a characterization of stationary solutions subject to certain technical assumptions. In particular, we assume that the Hamiltonians have pure-point spectrum. In addition, the solutions are a priori assumed to be compact operators.

  17. A(2|1) spectral equivalences and nonlocal integrals of motion

    NASA Astrophysics Data System (ADS)

    Assis, P. E. G.

    2013-05-01

    We study the spectral correspondence between a particular class of Schrödinger equations and a supersymmetric quantum integrable model. The latter, a quantized version of the Ablowitz-Kaupp-Newell-Segur hierarchy of nonlinear equations, corresponds to the thermodynamic limit of the Perk-Schultz lattice model. By analyzing the symmetries of the ordinary differential equation in the complex plane, it is possible to obtain important objects in the quantum integrable model in an exact form, under an exact spectral correspondence. In this paper, our main interest lies on the set of nonlocal conserved integrals of motion associated with the integrable system and we provide a systematic method to compute their values evaluated on the vacuum state of the quantum field theory.

  18. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method

    SciTech Connect

    Wang, Yu; Wang, Yi-Ze; Li, Feng-Ming

    2015-06-15

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  19. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.

    PubMed

    Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze

    2015-06-01

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  20. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Wang, Y. B.; Zhu, X. W.; Dai, H. H.

    2016-08-01

    Though widely used in modelling nano- and micro- structures, Eringen's differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.

  1. Cell entry of enveloped viruses.

    PubMed

    Cosset, François-Loic; Lavillette, Dimitri

    2011-01-01

    Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.

  2. Flexible Envelope Request Notation (FERN)

    NASA Technical Reports Server (NTRS)

    Zoch, David R.; Lavallee, David; Weinstein, Stuart

    1991-01-01

    The following topics are presented in view graph form and include the following: scheduling application; the motivation for the Flexible Envelope Request Notation (FERN); characteristics of FERN; types of information needed in requests; where information is stored in requests; FERN structures; generic requests; resource availability for pooled resources; expressive notation; temporal constraints; time formats; changes to FERN; sample FERN requests; the temporal relationship between two steps; maximum activity length to limit step delays; alternative requests; the temporal relationship between two activities; and idle resource usage between steps.

  3. Stochastic waves in a Brusselator model with nonlocal interaction.

    PubMed

    Biancalani, Tommaso; Galla, Tobias; McKane, Alan J

    2011-08-01

    We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns. PMID:21929075

  4. Stochastic waves in a Brusselator model with nonlocal interaction

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; Galla, Tobias; McKane, Alan J.

    2011-08-01

    We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.

  5. Origins of nonlocality near the neutrality point in graphene.

    PubMed

    Renard, Julien; Studer, Matthias; Folk, Joshua A

    2014-03-21

    We present an experimental study of nonlocal electrical signals near the Dirac point in graphene. The in-plane magnetic field dependence of the nonlocal signal confirms the role of spin in this effect, as expected from recent predictions of the Zeeman spin Hall effect in graphene, but our experiments show that thermo-magneto-electric effects also contribute to nonlocality, and the effect is sometimes stronger than that due to spin. Thermal effects are seen to be very sensitive to sample details that do not influence other transport parameters. PMID:24702396

  6. Large nonlocal nonlinear optical response of castor oil

    NASA Astrophysics Data System (ADS)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  7. Nonlocal membrane bending: a reflection, the facts and its relevance.

    PubMed

    Svetina, S; Žekš, B

    2014-06-01

    About forty years ago it was realized that phospholipid membranes, because they are composed of two layers, exhibit particular, and specific mechanical properties. This led to the concept of nonlocal membrane bending, often called area difference elasticity. We present a short history of the development of the concept, followed by arguments for a proper definition of the corresponding elastic constant. The effects of the nonlocal bending energy on vesicle shape are explained. It is demonstrated that lipid vesicles, cells and cellular aggregates exhibit phenomena that can only be described in a complete manner by considering nonlocal bending.

  8. Experimental nonlocality proof of quantum teleportation and entanglement swapping.

    PubMed

    Jennewein, Thomas; Weihs, Gregor; Pan, Jian-Wei; Zeilinger, Anton

    2002-01-01

    Quantum teleportation strikingly underlines the peculiar features of the quantum world. We present an experimental proof of its quantum nature, teleporting an entangled photon with such high quality that the nonlocal quantum correlations with its original partner photon are preserved. This procedure is also known as entanglement swapping. The nonlocality is confirmed by observing a violation of Bell's inequality by 4.5 standard deviations. Thus, by demonstrating quantum nonlocality for photons that never interacted, our results directly confirm the quantum nature of teleportation.

  9. Nonlocal kinetic-energy-density functionals

    SciTech Connect

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |

    1996-04-01

    In this paper we present nonlocal kinetic-energy functionals {ital T}[{ital n}] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. {copyright} {ital 1996 The American Physical Society.}

  10. Genuine multipartite nonlocality of entangled thermal states

    SciTech Connect

    McKeown, G.; Paternostro, M.; Semiao, F. L.; Jeong, H.

    2010-08-15

    We assess quantum nonlocality of multiparty entangled thermal states by studying, quantitatively, both tripartite and quadripartite states belonging to the Greenberger-Horne-Zeilinger, W, and linear cluster-state classes and showing violation of relevant Bell-like inequalities. We discuss the conditions for maximizing the degree of violation against the local thermal character of the states and the inefficiency of the detection apparatuses. We demonstrate that such classes of multipartite entangled states can be made to last quite significantly, notwithstanding adverse operating conditions. This opens up the possibility for coherent exploitation of multipartite quantum channels made out of entangled thermal states. Our study is accompanied by a detailed description of possible generation schemes for the states analyzed.

  11. Local and nonlocal dynamics in superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Sherwin-Robson, L. K.; Barenghi, C. F.; Baggaley, A. W.

    2015-03-01

    In turbulent superfluid He II, the quantized vortex lines interact via the classical Biot-Savart law to form a complicated vortex tangle. We show that vortex tangles with the same vortex line density will have different energy spectra, depending on the normal fluid which feeds energy into the superfluid component, and identify the spectral signature of two forms of superfluid turbulence: Kolmogorov tangles and Vinen tangles. By decomposing the superfluid velocity field into local and nonlocal contributions, we find that in Vinen tangles the motion of vortex lines depends mainly on the local curvature, whereas in Kolmogorov tangles the long-range vortex interaction is dominant and leads to the formation of clustering of lines, in analogy to the "worms" of ordinary turbulence.

  12. Nonlinear and nonlocal rheology of jammed matter

    NASA Astrophysics Data System (ADS)

    Tighe, Brian

    Emulsions, foams, and grains all jam into a weakly elastic state when confined by pressure. By now the mechanics of jammed matter is well understood in the case of slow, weak, and homogeneous forcing - but in reality, it is rare for all three of these assumptions to hold. Here we demonstrate the complex rheology that results when jammed materials are forced at finite rate, finite amplitude, and finite wavelength. Using computer simulations, we subject dense soft sphere packings to a host of rheological tests, including stress relaxation, flow start-up, oscillatory shear, and standing wave forcing. These allow us to tease apart the influence of viscous, nonlinear, and nonlocal effects, and also to probe the link between particle dynamics and bulk response. We identify strain, time, and length scales that depend critically on the distance to the jamming transition, and which govern the onset of shear thinning, strain softening, and gradient elasticity.

  13. A nonlocal spatial model for Lyme disease

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  14. A Combinatorial Approach to Nonlocality and Contextuality

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Fritz, Tobias; Leverrier, Anthony; Sainz, Ana Belén

    2015-03-01

    So far, most of the literature on (quantum) contextuality and the Kochen-Specker theorem seems either to concern particular examples of contextuality, or be considered as quantum logic. Here, we develop a general formalism for contextuality scenarios based on the combinatorics of hypergraphs, which significantly refines a similar recent approach by Cabello, Severini and Winter (CSW). In contrast to CSW, we explicitly include the normalization of probabilities, which gives us a much finer control over the various sets of probabilistic models like classical, quantum and generalized probabilistic. In particular, our framework specializes to (quantum) nonlocality in the case of Bell scenarios, which arise very naturally from a certain product of contextuality scenarios due to Foulis and Randall. In the spirit of CSW, we find close relationships to several graph invariants. The recently proposed Local Orthogonality principle turns out to be a special case of a general principle for contextuality scenarios related to the Shannon capacity of graphs. Our results imply that it is strictly dominated by a low level of the Navascués-Pironio-Acín hierarchy of semidefinite programs, which we also apply to contextuality scenarios. We derive a wealth of results in our framework, many of these relating to quantum and supraquantum contextuality and nonlocality, and state numerous open problems. For example, we show that the set of quantum models on a contextuality scenario can in general not be characterized in terms of a graph invariant. In terms of graph theory, our main result is this: there exist two graphs and with the properties

  15. Nonlinear structure formation in nonlocal gravity

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2014-09-01

    We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from ΛCDM by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ∼ 6% larger today). Compared to ΛCDM today, in the nonlocal model, massive haloes are slightly more abundant (by ∼ 10% at M ∼ 10{sup 14} M{sub ⊙}/h) and concentrated ≈ 8% enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For k ∼> 1 h/Mpc, the amplitude of the nonlinear matter and velocity divergence power spectra exhibits a modest enhancement of ∼ 12% to 15%, compared to ΛCDM today. This suggests that this model might only be distinguishable from ΛCDM by future observational missions. We point out that the absence of a screening mechanism may lead to tensions with Solar System tests due to local time variations of the gravitational strength, although this is subject to assumptions about the local time evolution of background averaged quantities.

  16. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    NASA Astrophysics Data System (ADS)

    McKerr, M.; Haas, F.; Kourakis, I.

    2016-05-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  17. Robust Maneuvering Envelope Estimation Based on Reachability Analysis in an Optimal Control Formulation

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan R.; Wheeler, Kevin; Acosta, Diana; Kaneshige, John

    2013-01-01

    This paper discusses an algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. Starting with an optimal control formulation, the optimization problem can be rewritten as a Hamilton- Jacobi-Bellman equation. This equation can be solved by level set methods. This approach has been applied on an aircraft example involving structural airframe damage. Monte Carlo validation tests have confirmed that this approach is successful in estimating the safe maneuvering envelope for damaged aircraft.

  18. Hamiltonian structure of the higher-order corrections to the Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Menyuk, C. R.; Chen, H.-H.

    1985-10-01

    Higher-order corrections to the Korteweg-de Vries equation are examined by Hamiltonian methods. Starting from the underlying Hamiltonian systems (e.g., the two-fluid equations in the case of ion-acoustic waves), one finds that the corrected equations have the same Poisson bracket as the Korteweg-de Vries equation at every order. One also finds that the underlying equations become nonlocal at sufficiently high order.

  19. Safeguards Envelope Progress FY10

    SciTech Connect

    Richard Metcalf

    2010-10-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  20. The nuclear envelope as a chromatin organizer

    PubMed Central

    Zuleger, Nikolaj; Robson, Michael I

    2011-01-01

    In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation. PMID:21970986

  1. Nonstationary envelope process and first excursion probability.

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1972-01-01

    The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.

  2. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  3. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  4. Quarter-sweep Nonlocal Discretization Scheme with QSSOR Iteration for Nonlinear Two-point Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Alibubin, M. U.; Sunarto, A.; Sulaiman, J.

    2016-04-01

    The aim of this paper is to consider the Quarter-sweep Successive Over Relaxation (QSSOR) iteration for solving nonlinear two-point boundary value problems. The second order finite difference (FD) method is applied to derive the quarter-sweep nonlocal discretization scheme for the sake of transforming the system of nonlinear approximation equations into the corresponding system of linear equations. The formulation and the implementation of the methods are discussed. In addition, the numerical results by solving the proposed problems using QSSOR method are included and compared with the Full-sweep Successive Over Relaxation (FSSOR) and Half-sweep Successive Over Relaxation (HSSOR) methods.

  5. Non-local gravity and comparison with observational datasets

    SciTech Connect

    Dirian, Yves; Foffa, Stefano; Kunz, Martin; Maggiore, Michele; Pettorino, Valeria E-mail: stefano.foffa@unige.ch E-mail: michele.maggiore@unige.ch

    2015-04-01

    We study the cosmological predictions of two recently proposed non-local modifications of General Relativity. Both models have the same number of parameters as ΛCDM, with a mass parameter m replacing the cosmological constant. We implement the cosmological perturbations of the non-local models into a modification of the CLASS Boltzmann code, and we make a full comparison to CMB, BAO and supernova data. We find that the non-local models fit these datasets very well, at the same level as ΛCDM. Among the vast literature on modified gravity models, this is, to our knowledge, the only example which fits data as well as ΛCDM without requiring any additional parameter. For both non-local models parameter estimation using Planck +JLA+BAO data gives a value of H{sub 0} slightly higher than in ΛCDM.

  6. Sparse representation-based image restoration via nonlocal supervised coding

    NASA Astrophysics Data System (ADS)

    Li, Ao; Chen, Deyun; Sun, Guanglu; Lin, Kezheng

    2016-09-01

    Sparse representation (SR) and nonlocal technique (NLT) have shown great potential in low-level image processing. However, due to the degradation of the observed image, SR and NLT may not be accurate enough to obtain a faithful restoration results when they are used independently. To improve the performance, in this paper, a nonlocal supervised coding strategy-based NLT for image restoration is proposed. The novel method has three main contributions. First, to exploit the useful nonlocal patches, a nonnegative sparse representation is introduced, whose coefficients can be utilized as the supervised weights among patches. Second, a novel objective function is proposed, which integrated the supervised weights learning and the nonlocal sparse coding to guarantee a more promising solution. Finally, to make the minimization tractable and convergence, a numerical scheme based on iterative shrinkage thresholding is developed to solve the above underdetermined inverse problem. The extensive experiments validate the effectiveness of the proposed method.

  7. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures.

    PubMed

    Krasavin, A V; Ginzburg, P; Wurtz, G A; Zayats, A V

    2016-01-01

    Structured plasmonic metals are widely employed for achieving nonlinear functionalities at the nanoscale due to their ability to confine and enhance electromagnetic fields and strong, inherent nonlinearity. Optical nonlinearities in centrosymmetric metals are dominated by conduction electron dynamics, which at the nanoscale can be significantly affected by the nonlocal effects. Here we show that nonlocal corrections, being usually small in the linear optical response, define nonlinear properties of plasmonic nanostructures. Using a full non-perturbative time-domain hydrodynamic description of electron plasma under femtosecond excitation, we numerically investigate harmonic generation in metallic Archimedean nanospirals, revealing the interplay between geometric and nonlocal effects. The quantum pressure term in the nonlinear hydrodynamic model results in the emergence of fractional nonlinear harmonics leading to broadband coherent white-light generation. The described effects present a novel class of nonlinear phenomena in metallic nanostructures determined by nonlocality of the electron response. PMID:27157982

  8. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Krasavin, A. V.; Ginzburg, P.; Wurtz, G. A.; Zayats, A. V.

    2016-05-01

    Structured plasmonic metals are widely employed for achieving nonlinear functionalities at the nanoscale due to their ability to confine and enhance electromagnetic fields and strong, inherent nonlinearity. Optical nonlinearities in centrosymmetric metals are dominated by conduction electron dynamics, which at the nanoscale can be significantly affected by the nonlocal effects. Here we show that nonlocal corrections, being usually small in the linear optical response, define nonlinear properties of plasmonic nanostructures. Using a full non-perturbative time-domain hydrodynamic description of electron plasma under femtosecond excitation, we numerically investigate harmonic generation in metallic Archimedean nanospirals, revealing the interplay between geometric and nonlocal effects. The quantum pressure term in the nonlinear hydrodynamic model results in the emergence of fractional nonlinear harmonics leading to broadband coherent white-light generation. The described effects present a novel class of nonlinear phenomena in metallic nanostructures determined by nonlocality of the electron response.

  9. Sparse representation-based image restoration via nonlocal supervised coding

    NASA Astrophysics Data System (ADS)

    Li, Ao; Chen, Deyun; Sun, Guanglu; Lin, Kezheng

    2016-10-01

    Sparse representation (SR) and nonlocal technique (NLT) have shown great potential in low-level image processing. However, due to the degradation of the observed image, SR and NLT may not be accurate enough to obtain a faithful restoration results when they are used independently. To improve the performance, in this paper, a nonlocal supervised coding strategy-based NLT for image restoration is proposed. The novel method has three main contributions. First, to exploit the useful nonlocal patches, a nonnegative sparse representation is introduced, whose coefficients can be utilized as the supervised weights among patches. Second, a novel objective function is proposed, which integrated the supervised weights learning and the nonlocal sparse coding to guarantee a more promising solution. Finally, to make the minimization tractable and convergence, a numerical scheme based on iterative shrinkage thresholding is developed to solve the above underdetermined inverse problem. The extensive experiments validate the effectiveness of the proposed method.

  10. Quantum nonlocality via local contextuality with qubit-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Saha, Debashis; Cabello, Adán; Choudhary, Sujit K.; Pawłowski, Marcin

    2016-04-01

    Quantum nonlocality can be revealed "via local contextuality" in qudit-qudit entangled systems with d >2 , that is, through the violation of inequalities containing Alice-Bob correlations that admit a local description, and Alice-Alice correlations (between the results of sequences of measurements on Alice's subsystem) that admit a local (but contextual) description. A fundamental question to understand the respective roles of entanglement and local contextuality is whether nonlocality via local contextuality exists when the parties have only qubit-qubit entanglement. Here we respond affirmatively to this question. This result further clarifies the connection between contextuality and nonlocality and opens the door for observing nonlocality via local contextuality in actual experiments.

  11. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures

    PubMed Central

    Krasavin, A. V.; Ginzburg, P.; Wurtz, G. A.; Zayats, A. V.

    2016-01-01

    Structured plasmonic metals are widely employed for achieving nonlinear functionalities at the nanoscale due to their ability to confine and enhance electromagnetic fields and strong, inherent nonlinearity. Optical nonlinearities in centrosymmetric metals are dominated by conduction electron dynamics, which at the nanoscale can be significantly affected by the nonlocal effects. Here we show that nonlocal corrections, being usually small in the linear optical response, define nonlinear properties of plasmonic nanostructures. Using a full non-perturbative time-domain hydrodynamic description of electron plasma under femtosecond excitation, we numerically investigate harmonic generation in metallic Archimedean nanospirals, revealing the interplay between geometric and nonlocal effects. The quantum pressure term in the nonlinear hydrodynamic model results in the emergence of fractional nonlinear harmonics leading to broadband coherent white-light generation. The described effects present a novel class of nonlinear phenomena in metallic nanostructures determined by nonlocality of the electron response. PMID:27157982

  12. Nonlocal microscopic theory of quantum friction between parallel metallic slabs

    SciTech Connect

    Despoja, Vito

    2011-05-15

    We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.

  13. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2016-08-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.

  14. Understanding quantum non-locality through pseudo-telepathy game

    NASA Astrophysics Data System (ADS)

    Kunkri, Samir

    2006-11-01

    Usually by quantum non-locality we mean that quantum mechanics can not be replaced by local realistic theory. On the other hand this nonlocal feature of quantum mechanics can not be used for instantaneous communication and hence it respect Einstein's special theory of relativity. But still it is not trivial as proved by various quantum information processing using entangled states. Recently there have been studies of hypothetical non-local system again respecting no-signalling which is beyond quantum mechanics. Here we study the power of such a hypothetical nonlocal box first suggested by Popescu et.al. in the context of recently suggested pseudo-telepathy game constructed from a Kochen-Specker set.

  15. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    SciTech Connect

    Goudon, Thierry; Parisot, Martin

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  16. Non-local F(R)-mimetic gravity

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo

    2016-06-01

    In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.

  17. Nonlocal quadratic Poisson algebras, monodromy map, and Bogoyavlensky lattices

    NASA Astrophysics Data System (ADS)

    Suris, Yuri B.

    1997-08-01

    A new Lax representation for the Bogoyavlensky lattice is found and its r-matrix interpretation is elaborated. The r-matrix structure turns out to be related to a highly nonlocal quadratic Poisson structure on a direct sum of associative algebras. The theory of such nonlocal structures is developed and the Poisson property of the monodromy map is worked out in the most general situation. Some problems concerning the duality of Lax representations are raised.

  18. Protecting quantum entanglement and nonlocality for tripartite states under decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yin, Yu Hao; Ma, Wen Chao; Ye, Liu

    2016-06-01

    Quantum entanglement and nonlocality will suffer inevitable harm from decoherence environment. Based on GHZ state, we study the harm of the generalized amplitude damping (GAD) operation and the protection by the single local filtering (SLF) operation in this paper. We verify that the SLF functions to depress the loss of entanglement and nonlocality from GAD. This conclusion will guide us to select the best method to protect the GHZ state from GAD decoherence.

  19. Nonlocality in pure and mixed n-qubit X states

    NASA Astrophysics Data System (ADS)

    Batle, J.; Ooi, C. H. Raymond; Farouk, Ahmed; Abdalla, S.

    2016-04-01

    Nonlocality for general multiqubit X states is studied in detail. Pure and mixed states are analyzed as far as their maximum amount of nonlocality is concerned, and analytic results are obtained for important families of these states. The particular form of nonzero diagonal and antidiagonal matrix elements makes the corresponding study easy enough to obtain exact results. We also provide a numerical recipe to randomly generate an important family of X states endowed with a given degree of mixture.

  20. From local to nonlocal Fermi liquid in doped antiferromagnets

    SciTech Connect

    Prelovsek, P. |; Jaklic, J.; Bedell, K.

    1999-07-01

    The variation of single-particle spectral functions with doping is studied numerically within the t-J model. Results suggest that the corresponding self-energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations. {copyright} {ital 1999} {ital The American Physical Society}

  1. Stabilization of vortex solitons in nonlocal nonlinear media

    SciTech Connect

    Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.; Kivshar, Yuri S.

    2007-12-15

    We study the evolution of vortex solitons in optical media with a nonlocal nonlinear response. We employ a modulation theory for the vortex parameters based on an averaged Lagrangian, and analyze the azimuthal evolution of both the vortex width and diffractive radiation. We describe analytically the physical mechanism for vortex stabilization due to the long-range nonlocal nonlinear response, the effect observed earlier in numerical simulations only.

  2. Spin transfer torques in the nonlocal lateral spin valve.

    PubMed

    Xu, Yuan; Xia, Ke; Ma, Zhongshui

    2008-06-11

    We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with a non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, in contrast to that in a conventional sandwiched spin valve. PMID:21825793

  3. Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    NASA Astrophysics Data System (ADS)

    Ansari, Reza; Torabi, Jalal

    2016-06-01

    Based on the nonlocal elasticity theory, the vibration behavior of circular double-layered graphene sheets (DLGSs) resting on the Winkler- and Pasternak-type elastic foundations in a thermal environment is investigated. The governing equation is derived on the basis of Eringen's nonlocal elasticity and the classical plate theory (CLPT). The initial thermal loading is assumed to be due to a uniform temperature rise throughout the thickness direction. Using the generalized differential quadrature (GDQ) method and periodic differential operators in radial and circumferential directions, respectively, the governing equation is discretized. DLGSs with clamped and simply-supported boundary conditions are studied and the influence of van der Waals (vdW) interaction forces is taken into account. In the numerical results, the effects of various parameters such as elastic medium coefficients, radius-to-thickness ratio, thermal loading and nonlocal parameter are examined on both in-phase and anti-phase natural frequencies. The results show that the thermal load and elastic foundation respectively decreases and increases the fundamental frequencies of DLGSs.

  4. Conservation laws for a class of soil water equations

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah

    2010-10-01

    In this paper, we consider a class of nonlinear partial differential equations which model soil water infiltration, redistribution and extraction in a bedded soil profile irrigated by a line source drip irrigation system. By using the nonlocal conservation theorem method and the partial Lagrangian approach, conservation laws are presented. It is observed that both approaches lead to the nontrivial and infinite conservation laws.

  5. On the Solution of NBVP for Multidimensional Hyperbolic Equations

    PubMed Central

    Ashyralyev, Allaberen

    2014-01-01

    We are interested in studying multidimensional hyperbolic equations with nonlocal integral and Neumann or nonclassical conditions. For the approximate solution of this problem first and second order of accuracy difference schemes are presented. Stability estimates for the solution of these difference schemes are established. Some numerical examples illustrating applicability of these methods to hyperbolic problems are given. PMID:24983006

  6. Nonlocal composite media in calculations of the Casimir force

    NASA Astrophysics Data System (ADS)

    Sun, J.; Huang, Y.; Gao, L.

    2014-01-01

    The Casimir force between two inhomogeneous metal-dielectric composite slabs with spatial dispersion is investigated theoretically. The equivalent permittivity and permeability of the nonlocal metallic nanosphere is originally derived based on full-wave nonlocal Mie theory. We then adopt two nonlocal effective medium models to study the effective permittivity and permeability of the composite slabs and calculate the Casimir force with Casimir-Lifshitz theory. Due to the excitation of the longitudinal modes, the attractive Casimir force between nonlocal composite materials is much weaker than that of the local composites, and numerical results show that the relative errors between local and nonlocal calculations of Casimir force can be on the order of 25%. Moreover, the nonlocal effects on the Casimir force are strongly dependent on the microstructures, and they become significant near the percolation threshold of the composite media. The study may be of great interest for making a precise comparison between theoretical and experimental results on the Casimir force between inhomogeneous composite materials.

  7. A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.

    2015-08-01

    Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results: The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.

  8. Nonlocal, kinetic stimulated Raman scattering in nonuniform plasmas: Averaged variational approach

    NASA Astrophysics Data System (ADS)

    Khain, P.; Friedland, L.; Shagalov, A. G.; Wurtele, J. S.

    2012-07-01

    Excitation of continuously phase-locked (autoresonant) plasma waves in a nonuniform plasma via stimulated Raman backscattering is analyzed with a focus on the kinetic regime (kλD˜1). The dominant nonlinear effect in this regime is that of resonant particles, and the plasma wave excitation is a nonlocal process involving formation and transport of the electron phase space holes. Whitham's averaged variational principle is applied in studying the coupled plasma, laser pump, and seed waves dynamics. A flat-top electron velocity distribution is used as the simplest model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable, yields evolution equations for the slow field variables. The adiabatic multiple water bag extension of the theory for application to autoresonant plasma waves in nonuniform plasmas with more realistic initial distributions is also discussed. Numerical solutions of the system of slow variational equations are compared with Vlasov-Ampere simulations.

  9. Nonlocal, kinetic stimulated Raman scattering in nonuniform plasmas: Averaged variational approach

    SciTech Connect

    Khain, P.; Friedland, L.; Shagalov, A. G.; Wurtele, J. S.

    2012-07-15

    Excitation of continuously phase-locked (autoresonant) plasma waves in a nonuniform plasma via stimulated Raman backscattering is analyzed with a focus on the kinetic regime (k{lambda}{sub D}{approx}1). The dominant nonlinear effect in this regime is that of resonant particles, and the plasma wave excitation is a nonlocal process involving formation and transport of the electron phase space holes. Whitham's averaged variational principle is applied in studying the coupled plasma, laser pump, and seed waves dynamics. A flat-top electron velocity distribution is used as the simplest model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable, yields evolution equations for the slow field variables. The adiabatic multiple water bag extension of the theory for application to autoresonant plasma waves in nonuniform plasmas with more realistic initial distributions is also discussed. Numerical solutions of the system of slow variational equations are compared with Vlasov-Ampere simulations.

  10. Modified formula of nonlocal electron transport in a laser-produced plasma

    SciTech Connect

    Xu, Y. ); He, X.T. China Center of Advanced Science Technology , P.O. Box 8730, Beijing 100080 )

    1994-07-01

    A nonlocal heat-transport formula for electrons is derived to include the terms associated with the electrostatic potential and [partial derivative]/[partial derivative][ital v]([ital f][sub 0],[ital f][sub 1]) in the Fokker-Planck (FP) equation. Then the FP equation for a strongly inhomogeneous plasma is solved. It is found that the behavior of the electron thermal conductivity at a large temperature gradient is considerably affected by the electrostatic field, and the thermal conductivity [kappa]/[kappa][sub SH] for electrons scales as 1/[ital k] in a large temperature gradient [ital k] when there exists a non-negligible electrostatic field, where [kappa][sub SH] is the Spitzer-Haerm heat coefficient.

  11. Dynamics of bell-nonlocality for two atoms interacting with a vacuum multi-mode noise field

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Jie; Zheng, Li; Han, Dong-Mei; Lü, Huan-Lin; Zheng, Tai-Yu

    2016-06-01

    We investigate the internal-state Bell nonlocal entanglement dynamics, as measured by CHSH inequality of two atoms interacting with a vacuum multi-mode noise field by taking into account the spatial degrees of freedom of the two atoms. The dynamics of Bell nonlocality of the atoms with the atomic internal states being initially in a Werner-type state is studied, by deriving the analytical solutions of the Schrödinger equation, and tracing over the degrees of freedom of the field and the external motion of the two atoms. In addition, through comparison with entanglement as measured by concurrence, we find that the survival time of entanglement is much longer than that of the Bell-inequality violation. And the comparison of the quantum correlation time between two Werner-type states is discussed.

  12. Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ze; Wang, Yue-Sheng; Ke, Liao-Liang

    2016-09-01

    In the present work, the nonlinear vibration of a carbon nanotube which is subjected to the external parametric excitation is studied. By the nonlocal continuum theory and nonlinear von Kármán beam theory, the governing equation of the carbon nanotube is derived with the consideration of the large deformation. The principle parametric resonance of the nanotube is discussed and the approximation explicit solution is presented by the multiple scale method. Numerical calculations are performed. It can be observed that when the mode number is 1, the stable region can be significantly changed by the parametric excitation, length-to-diameter ratio and matrix stiffness. This phenomenon becomes different to appear if the mode number increases. Moreover, the small scale effects have great influences on the positive bifurcation point for the short carbon nanotube, and the nonlocal continuum theory can present the proper model.

  13. On solutions of third and fourth-order time dependent Riccati equations and the generalized Chazy system

    NASA Astrophysics Data System (ADS)

    Guha, Partha; Ghose Choudhury, A.; Khanra, Barun

    2012-11-01

    We introduce a new transformation (nonlocal) to find the general solutions of some equations belonging to the third and fourth-order time dependent Riccati class of equations. These are in turn related to the Chazy polynomial class and the time dependent F-XVI Bureau symbol PI equations respectively.

  14. Nonlocal scaling operators with entanglement renormalization

    SciTech Connect

    Evenbly, G.; Corboz, P.; Vidal, G.

    2010-10-01

    The multiscale entanglement renormalization ansatz (MERA) can be used, in its scale invariant version, to describe the ground state of a lattice system at a quantum-critical point. From the scale invariant MERA one can determine the local scaling operators of the model. Here we show that, in the presence of a global symmetry G, it is also possible to determine a class of nonlocal scaling operators. Each operator consists, for a given group element g is an element of G, of a semi-infinite string {Gamma}{sub g} with a local operator {phi} attached to its open end. In the case of the quantum Ising model, G=Z{sub 2}, they correspond to the disorder operator {mu}, the fermionic operators {psi} and {psi}, and all their descendants. Together with the local scaling operators identity I, spin {sigma}, and energy {epsilon}, the fermionic and disorder scaling operators {psi}, {psi}, and {mu} are the complete list of primary fields of the Ising CFT. Therefore the scale invariant MERA allows us to characterize all the conformal towers of this CFT.

  15. Nonlocal order in elongated dipolar gases

    NASA Astrophysics Data System (ADS)

    Ruhman, J.; Dalla Torre, E. G.; Huber, S. D.; Altman, E.

    2012-03-01

    Dipolar particles in an elongated trap are expected to undergo a quantum phase transition from a linear to a zigzag structure with decreasing transverse confinement. We derive the low-energy effective theory of the transition showing that in the presence of quantum fluctuations the zigzag phase can be characterized by a long-ranged string order, while the local Ising correlations decay as a power law. This is also confirmed using density matrix renormalization group calculations on a microscopic model. The nonlocal order in the bulk gives rise to zero energy states localized at the interface between the ordered and disordered phases. Such an interface naturally arises when the particles are subject to a weak harmonic confinement along the tube axis. We compute the signature of the edge states in the single-particle tunneling spectra pointing to differences between a system with bosonic versus fermionic particles. Finally we assess the magnitude of the relevant quantum fluctuations in realistic systems of dipolar particles, including ultracold polar molecules as well as alkali atoms weakly dressed by a Rydberg excitation.

  16. Nonlocal similarity based DEM super resolution

    NASA Astrophysics Data System (ADS)

    Xu, Zekai; Wang, Xuewen; Chen, Zixuan; Xiong, Dongping; Ding, Mingyue; Hou, Wenguang

    2015-12-01

    This paper discusses a new topic, DEM super resolution, to improve the resolution of an original DEM based on its partial new measurements obtained with high resolution. A nonlocal algorithm is introduced to perform this task. The original DEM was first divided into overlapping patches, which were classified either as "test" or "learning" data depending on whether or not they are related to high resolution measurements. For each test patch, the similar patches in the learning dataset were identified via template matching. Finally, the high resolution DEM of the test patch was restored by the weighted sum of similar patches under the condition that the reconstruction weights were the same in different resolution cases. A key assumption of this strategy is that there are some repeated or similar modes in the original DEM, which is quite common. Experiments were done to demonstrate that we can restore a DEM by preserving the details without introducing artifacts. Statistic analysis was also conducted to show that this method can obtain higher accuracy than traditional interpolation methods.

  17. Conservation properties and potential systems of vorticity-type equations

    SciTech Connect

    Cheviakov, Alexei F.

    2014-03-15

    Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations, it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.

  18. Enhanced quantum nonlocality induced by the memory of a thermal-squeezed environment

    NASA Astrophysics Data System (ADS)

    Chen, Po-Wen; Manirul Ali, Md; Chen, Shiaw-Huei

    2016-09-01

    We investigate the transient non-Markovian dynamics of quantum nonlocality for a pair of two-level atoms coupled to a common thermal-squeezed environment. We use Bell-CHSH inequality, steering inequality, and entanglement as theoretical tools to investigate the nonlocality dynamics. We see significant differences between the non-Markovian nonlocality dynamics and its Markovian counterpart. We mainly focus on quantum steering nonlocality which has gained much interest recently. An enhanced quantum nonlocality is shown through the violation of steering inequality and entanglement in the non-Markovian regime of the structured environment. A close correspondence is shown between steering nonlocality and entanglement dynamics.

  19. Ill-Posedness of the Hydrostatic Euler and Singular Vlasov Equations

    NASA Astrophysics Data System (ADS)

    Han-Kwan, Daniel; Nguyen, Toan T.

    2016-09-01

    In this paper, we develop an abstract framework to establish ill-posedness, in the sense of Hadamard, for some nonlocal PDEs displaying unbounded unstable spectra. We apply this to prove the ill-posedness for the hydrostatic Euler equations as well as for the kinetic incompressible Euler equations and the Vlasov-Dirac-Benney system.

  20. Electrostatic envelope modes in multi-component non-thermal plasmas

    NASA Astrophysics Data System (ADS)

    Saiful Islam, Md; Sultana, Sharmin; Mamun, A. A.

    2016-07-01

    A theoretical study of envelope type solitary structures and their modulational instability has been made in a multi-component unmagnetized non-thermal plasma (consisting of negatively charged immobile heavy ions, inertial light ions and non-thermal electrons of two distinct temperatures). The cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time) is derived by adopting the multiple scale (in space and time) perturbation technique. It is found that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also seen that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of plasma non-thermality, etc.) are found to be significant. The modulational instability criterions of the envelope modes are also seen to be influenced due to the variation of the intrinsic plasma parameters. This theoretical study may be useful in understanding the basic features of localized electrostatic structures in some space plasma systems (viz. Saturn's magnetosphere) where high energetic particles are available.

  1. Safeguards Envelope Progress FY09

    SciTech Connect

    Richard Metcalf; Robert Bean

    2009-09-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters which nuclear facilities may operate within to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). As a result of the U.S. having no operating nuclear chemical reprocessing plants, there has been a strong interest in obtaining process monitoring data from the ICPP. The ICPP was shut down in 1996 and a recent effort has been made to retrieve the PM data from storage in a data mining effort. In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z- testing7.

  2. Personnel occupied woven envelope robot

    NASA Technical Reports Server (NTRS)

    Wessling, Francis; Teoh, William; Ziemke, M. Carl

    1988-01-01

    The Personnel Occupied Woven Envelope Robot (POWER) provides an alternative to extravehicular activity (EVA) of space suited astronauts and/or use of long slender manipulator arms such as are used in the Shuttle Remote Manipulator System. POWER provides the capability for a shirt sleeved astronaut to perform such work by entering a control pod through air locks at both ends of an inflated flexible bellows (access tunnel). The exoskeleton of the tunnel is a series of six degrees of freedom (Six-DOF) articulated links compressible to 1/6 of their fully extended length. The operator can maneuver the control pod to almost any location within about 50 m of the base attachment to the space station. POWER can be envisioned as a series of hollow Six-DOF manipulator segments or arms wherein each arm grasps the shoulder of the next arm. Inside the hollow arms ia a bellow-type access tunnel. The control pod is the fist of the series of linked hollow arms. The fingers of the fist are conventional manipulator arms under direct visual control of the nearby operator in the pod. The applications and progress to date of the POWER system is given.

  3. On the common envelope efficiency

    NASA Astrophysics Data System (ADS)

    Zuo, Zhao-Yu; Li, Xiang-Dong

    2014-08-01

    In this work, we try to use the apparent luminosity versus displacement (i.e. LX versus R) correlation of high-mass X-ray binaries (HMXBs) to constrain the common envelope (CE) efficiency αCE, which is a key parameter affecting the evolution of the binary orbit during the CE phase. The major updates that are crucial for the CE evolution include a variable λ parameter and a new CE criterion for Hertzsprung gap donor stars, both of which are recently developed. We find that, within the framework of the standard energy formula for CE and core definition at mass X = 10 per cent, a high value of αCE, i.e. around 0.8-1.0, is more preferable, while αCE < ˜0.4 likely can not reconstruct the observed LX versus R distribution. However, due to an ambiguous definition for the core boundary in the literature, the used λ here still carries almost two order of magnitude uncertainty, which may translate directly to the expected value of αCE. We present the detailed components of current HMXBs and their spatial offsets from star clusters, which may be further testified by future observations of HMXB populations in nearby star-forming galaxies.

  4. Envelope evolution of a laser pulse in an active medium

    SciTech Connect

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v{sub env}, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v{sub env}. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique.

  5. Electromagnetic envelope solitary waves with transverse perturbation in a plasma

    SciTech Connect

    Borhanian, J.

    2013-04-15

    The system of fluid-Maxwell equations governing the two-dimensional dynamics of electromagnetic waves in a plasma is analyzed by means of multiple scale perturbation method. It is shown that the evolution of the amplitude of wave field is governed by a two-dimensional nonlinear Schroedinger equation. The stability of bright envelope solitons is studied using the variational method. It is found that the development of transverse periodic perturbations on bright solitons is faster for a plasma with near critical density. Dynamics of electromagnetic bright solitons is investigated in the long-wave approximation. Our model predicts the appearance of collapse of electromagnetic waves in plasmas and describes the collapse dynamics at initial stages.

  6. Examining the effect of nonlocality in (d ,n ) transfer reactions

    NASA Astrophysics Data System (ADS)

    Ross, A.; Titus, L. J.; Nunes, F. M.

    2016-07-01

    Background: In the past year we have been exploring the effect of the explicit inclusion of nonlocality in (d ,p ) reactions. Purpose: The goal of this paper is to extend previous studies to (d ,n ) reactions, which, although similar to (d ,p ) reactions, have specific properties that merit inspection. Method: We apply our methods (both the distorted-wave Born approximation and the adiabatic wave approximation) to (d ,n ) reactions on 16O,40Ca,48Ca,126Sn,132Sn , and 208Pb at 20 and 50 MeV. Results: We look separately at the modifications introduced by nonlocality in the final bound and scattering states as well as the consequences reflected on the differential angular distributions. The cross sections obtained when using nonlocality explicitly are significantly different than those using the local approximation, just as in (d ,p ) reactions. Due to the particular role of the Coulomb force in the bound state, often we found the effects of nonlocality to be larger in (d ,n ) than in (d ,p ) reactions. Conclusions: Our results confirm the importance of including nonlocality explicitly in deuteron-induced reactions.

  7. Non-local magnetoresistance in YIG/Pt nanostructures

    SciTech Connect

    Goennenwein, Sebastian T. B. Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Schlitz, Richard; Ganzhorn, Kathrin; Althammer, Matthias

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  8. Nonlocal regularization of inverse problems: a unified variational framework

    PubMed Central

    Yang, Zhili; Jacob, Mathews

    2014-01-01

    We introduce a unifying energy minimization framework for nonlocal regularization of inverse problems. In contrast to the weighted sum of square differences between image pixels used by current schemes, the proposed functional is an unweighted sum of inter-patch distances. We use robust distance metrics that promote the averaging of similar patches, while discouraging the averaging of dissimilar patches. We show that the first iteration of a majorize-minimize algorithm to minimize the proposed cost function is similar to current non-local methods. The reformulation thus provides a theoretical justification for the heuristic approach of iterating non-local schemes, which re-estimate the weights from the current image estimate. Thanks to the reformulation, we now understand that the widely reported alias amplification associated with iterative non-local methods are caused by the convergence to local minimum of the nonconvex penalty. We introduce an efficient continuation strategy to overcome this problem. The similarity of the proposed criterion to widely used non-quadratic penalties (eg. total variation and `p semi-norms) opens the door to the adaptation of fast algorithms developed in the context of compressive sensing; we introduce several novel algorithms to solve the proposed non-local optimization problem. Thanks to the unifying framework, these fast algorithms are readily applicable for a large class of distance metrics. PMID:23014745

  9. Local and nonlocal conductance enhancement due to Cooper pair splitting

    NASA Astrophysics Data System (ADS)

    Wei, Jian; Chandrasekhar, V.

    2012-12-01

    Enhanced local conductance due to Andreev reflection is well known for high transparency Normal metal-Superconductor (NS) interface. For low transparency NS junctions, observation of two-electron tunneling contribution (enhanced Andreev reflection) to current was also reported previously. In our recent work [J Wei and V Chandrasekhar, Nat. Phys. 6, 494 (2010)], for a three-terminal Cooper pair splitter geometry, i.e., with two closely placed NS junctions sharing the same S terminal, we were able do a 2D scan of both local and nonlocal differential resistance, since for our ideal tunneling junctions there is little current redistribution (flow from one normal-metal lead to the other via the superconducting lead). In contrast to previous 1D nonlocal resistance measurements, 2D scans clearly show regime with pronounced contribution of the nonlocal processes to both local and nonlocal conductance enhancement. The enhanced local conductance and negative nonlocal resistance are consistent with enhanced Cooper pair splitting, and dynamical Coulomb blockade could be the origin of this enhancement.

  10. The Properties of Heavy Elements in Giant Planet Envelopes

    NASA Astrophysics Data System (ADS)

    Soubiran, François; Militzer, Burkhard

    2016-09-01

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z, in various proportions. However, their effect on the equation of state of the hydrogen–helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He–Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO2, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.

  11. The Properties of Heavy Elements in Giant Planet Envelopes

    NASA Astrophysics Data System (ADS)

    Soubiran, François; Militzer, Burkhard

    2016-09-01

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H-He envelope. Late planetesimal accretion and core erosion could potentially enrich the H-He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z, in various proportions. However, their effect on the equation of state of the hydrogen-helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H-He-Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO2, we show that the behavior of heavy elements in H-He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature-pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.

  12. Resource envelope concepts for mission planning

    NASA Technical Reports Server (NTRS)

    Ibrahim, K. Y.; Weiler, J. D.; Tokaz, J. C.

    1991-01-01

    Seven proposed methods for creating resource envelopes for Space Station Freedom mission planning are detailed. Four reference science activity models are used to illustrate the effect of adding operational flexibility to mission timelines. For each method, a brief explanation is given along with graphs to illustrate the application of the envelopes to the power and crew resources. The benefits and costs of each method are analyzed in terms of resource utilization. In addition to the effect on individual activities, resource envelopes are analyzed at the experiment level.

  13. Nonperturbative embedding for highly nonlocal Hamiltonians

    NASA Astrophysics Data System (ADS)

    Subaşı, Yiǧit; Jarzynski, Christopher

    2016-07-01

    The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.

  14. An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like

    SciTech Connect

    Pierantozzi, T.; Vazquez, L.

    2005-11-01

    Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case.

  15. Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Salari, Erfan

    2015-08-01

    In this paper, the thermal effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams subjected to various types of thermal loading is investigated by presenting a Navier type solution and employing a semi analytical differential transform method (DTM) for the first time. Two kinds of thermal loading, namely, linear temperature rise and nonlinear temperature rise are studied. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying DTM. According to the numerical results, it is revealed that the proposed modeling and semi analytical approach can provide accurate frequency results of the FG nanobeams as compared to analytical results and also some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, mode number and boundary conditions on the normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

  16. Computation and analysis of a nonlinear nonlocal cochlear model with applications to multitone interactions in hearing

    NASA Astrophysics Data System (ADS)

    Xin, Jack; Qi, Yingyong; Deng, Li

    2002-11-01

    A nonlinear nonlocal cochlear model of the transmission line type is studied to capture the multitone interactions and tonal suppression effects. The model can serve as a module for voice signal processing. It is a one-dimensional (in space) damped dispersive nonlinear partial differential equation (PDE) based on mechanics and phenomenology of hearing. The elastic damping is a nonlinear and nonlocal functional of basilar-membrane displacement. The initial boundary value problem is solved with a semi-implicit second-order finite difference method. Numerical results are shown on two-tone suppression from both high-frequency and low-frequency sides, consistent with known behavior. Suppression effects among three tones are demonstrated by showing how the response magnitudes of the two fixed tones are reduced as the third tone is varied in frequency and amplitude. Qualitative agreement with existing cat auditory neural data is observed. The model is thus simple and efficient as a processing tool for voice signals. Mathematical analysis of global well-posedness of the model PDE and the existence of multitone solutions will also be shown via the method of a priori estimates and fixed point theory. [Work partially supported by ARO and NSF.

  17. Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-02-01

    Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory of stochastic processes will be established. The relation with other nonlocal turbulence models (e.g. transilience and spectral diffusivity theory) is also discussed. Using an analytical sampling rate model (satisfying exchange) the theory is applied to the boundary layer (using a scaling hypothesis), which maps boundary layer turbulence mixing of scalar densities onto a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The resulting transpport equation for longitudinal momentum P x ≡ ϱ U is solved for a unified description of both the inertial and the viscous sublayer including the crossover. With a scaling exponent ε ≈ 0.58 (while local turbulence would amount to ε → ∞) the velocity profile U+ = ƒ(y +) is found to be in excellent agreement with the experimental data. Inter alia (i) the significance of ε as a turbulence Cantor set dimension, (ii) the value of the integration constant in the logarithmic region (i.e. if y+ → ∞), (iii) linear timescaling, and (iv) finite Reynolds number effects will be investigated. The (analytical) predictions of the theory for near-wall behaviour (i.e. if y+ → 0) of fluctuating quantities also perfectly agree with recent direct numerical simulations.

  18. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Norouzzadeh, A.

    2016-10-01

    The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin-Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori-Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.

  19. Considerations on elliptical failure envelope associated to Mohr-Coulomb criterion

    NASA Astrophysics Data System (ADS)

    Comanici, A. M.; Barsanescu, P. D.

    2016-08-01

    Mohr-Coulomb theory is mostly used in civil engineering as it is suitable for soils, rock, concretes, etc., meaning that the theory is generally used for brittle facture of the materials, but there are cases when it matches ductile behaviour also. The failure envelope described by the Mohr-Coulomb criterion is not completely accurate to the real yield envelope. The ductile or brittle behaviour of materials could not be incorporated in a linear envelope suggested by classic stress state theories and so, there have been a number of authors who have refined the notion of yield envelope so that it would fit better to the actual behaviour of materials. The need of a realistic yield envelope comes from the demand that the failure state should be able to be predicted in a fair manner and with as little errors as possible. Of course, certain criteria will be closer to the actual situation, but there is a constant need to unify and refine the limit stress theories in order to avoid problems as defining boundaries of application areas on numerical programs. Mohr-Coulomb's yield envelope is the most used one on programs, can be reduced to Tresca theory when the materials are conducting a ductile behaviour and has a linear simplified form. The paper presents some considerations with respect to the elliptical failure envelope correlated to the Mohr-Coulomb theory. The equations have been rewritten for triaxial situation to describe a more accurate state of stress that is encountered under real conditions in materials. Using the Mohr's circles to define the yield envelope, the calculus has been made in in order to determine the yield stress at tensile tests

  20. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  1. An integrable shallow water equation with linear and nonlinear dispersion.

    PubMed

    Dullin, H R; Gottwald, G A; Holm, D D

    2001-11-01

    We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases. PMID:11690414

  2. Nonlocal quartic interactions and universality classes in perovskite manganites.

    PubMed

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2015-07-01

    A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via Wilson's renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the correlation exponent to be ν=1/2+O(ε) through epsilon expansion in the parameter ε=d(c)-d, where d is the space dimension, d(c)=4+2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values of σ compare well with various existing experimental estimates for perovskite manganites with various doping levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes. PMID:26274140

  3. Bound on Hardy's nonlocality from the principle of information causality

    SciTech Connect

    Ahanj, Ali; Kunkri, Samir; Rai, Ashutosh; Rahaman, Ramij; Joag, Pramod S.

    2010-03-15

    Recently, the principle of nonviolation of information causality [Nature 461, 1101 (2009)] has been proposed as one of the foundational properties of nature. We explore the Hardy's nonlocality theorem for two-qubit systems, in the context of generalized probability theory, restricted by the principle of nonviolation of information causality. Applying a sufficient condition for information causality violation, we derive an upper bound on the maximum success probability of Hardy's nonlocality argument. We find that the bound achieved here is higher than that allowed by quantum mechanics but still much less than what the no-signaling condition permits. We also study the Cabello type nonlocality argument (a generalization of Hardy's argument) in this context.

  4. Nonlocal thermal transport across embedded few-layer graphene sheets

    SciTech Connect

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; Sumpter, Bobby G.; Qiao, Rui

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  5. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; Sumpter, Bobby G.; Qiao, Rui

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  6. Nonlocal Separable Solutions of the Inverse Scattering Problem

    NASA Astrophysics Data System (ADS)

    Gherghetta, Tony; Nambu, Yoichiro

    We extend the nonlocal separable potential solutions of Gourdin and Martin for the inverse scattering problem to the case where sin δ0 has more than N zeroes, δ0 being the s-wave scattering phase shift and δ0(0) - δ0(∞) = Nπ. As an example we construct the solution for the particular case of 4He and show how to incorporate a weakly bound state. Using a local square well potential chosen to mimic the real 4He potential, we compare the off-shell extension of the nonlocal potential solution with the exactly solvable square well. We then discuss how a nonlocal potential might be used to simplify the many-body problem of liquid 4He.

  7. Computational nanofluidics: Nonlocal transport and the glass transition

    NASA Astrophysics Data System (ADS)

    Puscasu, Ruslan M.

    2011-08-01

    The paper gives a review of recent advances in theory and simulation of nonlocal transport in nanoflows. The aim is to show how to computationally model and simulate the nonlocal viscous transport in atomic and molecular fluids. The ultimate goal is to provide nanofluidics and other disciplines with methodologies capable to give exact descriptions of flow at the nanoscale by using nonlocal constitutive relations which involve nonlocal transport kernels. Nanomaterials have properties that can be substantially different from those of the corresponding bulk phases. In particular, fluid flows in pores or channels of nanoscale dimension can deviate strongly from macroscopic expectations. When such structures approach the size regime corresponding to molecular scaling lengths, new physical constraints are placed on the behavior of the fluid. These physical constraints induce regions of the fluid to exhibit new properties (e.g. vastly increased viscosity near the pore wall) and they may affect changes in thermodynamic properties and may also alter the chemical reactivity of species at the fluid-solid interface. Consequently, many classical theories break down and are no longer valid at such small length and time scales. The development of models that go beyond classical (Navier-Stokes-Fourier) hydrodynamics would be very helpful for the prediction and understanding of flows in highly confined geometries (typically 1-100 nm). While such nanoscale systems can be very difficult to probe experimentally, they can be easily approached in a very strict manner by molecular modelling, providing theory and simulation an opportunity for the discovery of new phenomena. We therefore review in this article the advances within the framework of generalized hydrodynamics and present the latest theoretical developments and modelling results that can ultimately lead to suitable predictive tools capable of accurate prediction of the key physical properties of fluids under nano

  8. Hardy's proof of nonlocality in the presence of noise

    SciTech Connect

    Ghirardi, GianCarlo; Marinatto, Luca

    2006-12-15

    We extend the validity of Hardy's nonlocality without inequalities proof to cover the case of special one-parameter classes of nonpure statistical operators. These mixed states are obtained by mixing the Hardy states with a completely chaotic noise or with a colored noise and they represent a realistic description of imperfect preparation processes of (pure) Hardy states in nonlocality experiments. Within such a framework we are able to exhibit a precise range of values of the parameter measuring the noise affecting the nonoptimal preparation of an arbitrary Hardy state, for which it is still possible to put into evidence genuine nonlocal effects. Equivalently, our work exhibits particular classes of bipartite mixed states whose constituents do not admit any local and deterministic hidden variable model reproducing the quantum mechanical predictions.

  9. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  10. A Framework for Bounding Nonlocality of State Discrimination

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Leung, Debbie; Mančinska, Laura; Ozols, Maris

    2013-11-01

    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper Quantum nonlocality without entanglement (Bennett et al., Phys Rev A 59:1070-1091, 1999), we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the “rotated” domino states, resolving a long-standing open question (Bennett et al., Phys Rev A 59:1070-1091, 1999).

  11. Nonlocal topological valley transport at large valley Hall angles

    NASA Astrophysics Data System (ADS)

    Beconcini, Michael; Taddei, Fabio; Polini, Marco

    2016-09-01

    Berry curvature hot spots in two-dimensional materials with broken inversion symmetry are responsible for the existence of transverse valley currents, which give rise to giant nonlocal dc voltages. Recent experiments in high-quality gapped graphene have highlighted a saturation of the nonlocal resistance as a function of the longitudinal charge resistivity ρc ,x x, when the system is driven deep into the insulating phase. The origin of this saturation is, to date, unclear. In this work we show that this behavior is fully compatible with bulk topological transport in the regime of large valley Hall angles (VHAs). We demonstrate that, for a fixed value of the valley diffusion length, the dependence of the nonlocal resistance on ρc ,x x weakens for increasing VHAs, transitioning from the standard ρc,x x 3 power law to a result that is independent of ρc ,x x.

  12. Theory of genuine tripartite nonlocality of Gaussian states.

    PubMed

    Adesso, Gerardo; Piano, Samanta

    2014-01-10

    We investigate the genuine multipartite nonlocality of three-mode Gaussian states of continuous variable systems. For pure states, we present a simplified procedure to obtain the maximum violation of the Svetlichny inequality based on displaced parity measurements, and we analyze its interplay with genuine tripartite entanglement measured via Rényi-2 entropy. The maximum Svetlichny violation admits tight upper and lower bounds at fixed tripartite entanglement. For mixed states, no violation is possible when the purity falls below 0.86. We also explore a set of recently derived weaker inequalities for three-way nonlocality, finding violations for all tested pure states. Our results provide a strong signature for the nonclassical and nonlocal nature of Gaussian states despite their positive Wigner function, and lead to precise recipes for its experimental verification.

  13. Morphological evolution and migration of void in bi-piezoelectric interface based on nonlocal phase field method

    NASA Astrophysics Data System (ADS)

    Li, H. B.; Wang, X.

    2016-05-01

    This paper reports the result of investigation into the morphological evolution and migration of void in bi-piezoelectric material interface by utilizing nonlocal phase field model and finite element method (FEM), where the small scale effect containing the long-range forces among atoms is considered. The nonlocal elastic strain energy and the nonlocal electric energy around the void are firstly calculated by the finite element method. Then based on the finite difference method (FDM), the thermodynamic equilibrium equation containing the surface energy and anisotropic diffusivity is solved to simulate the morphological evolution and migration of elliptical void in bi-piezoelectric films interface. Results show that the way of load condition plays a significant role in the evolution process, and the boundary of void's long axis gradually collapses toward the center of ellipse. In addition, the evolutionary speed of left boundary gradually decreases with scale effect coefficient growth. This work can provide references for the safety evaluation of piezoelectric materials in micro electro mechanical system.

  14. Solar envelope concepts: moderate density building applications

    NASA Astrophysics Data System (ADS)

    Knowles, R. L.; Berry, R. D.

    1980-04-01

    The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided.

  15. Personnel occupied woven envelope robot power

    NASA Technical Reports Server (NTRS)

    Wessling, F. C.

    1988-01-01

    The Personnel Occupied Woven Envelope Robot (POWER) concept has evolved over the course of the study. The goal of the project was the development of methods and algorithms for solid modeling for the flexible robot arm.

  16. Nonlocal reactive transport with physical and chemical heterogeneity: Localization errors

    SciTech Connect

    Cushman, J.H.; Hu, B.X.; Deng, F.W.

    1995-09-01

    The origin of nonlocality in {open_quotes}macroscale{close_quotes} models for subsurface chemical transport is illustrated. It is argued that media that are either nonperiodic (e.g., media with evolving heterogeneity) or periodic viewed on a scale wherein a unit cell is discernible must display some nonlocality in the mean. A metaphysical argument suggests that owing to the scarcity of information on natural scales of heterogeneity and on scales of observation associated with an instrument window, constitutive theories for the mean concentration should at the outset of any modeling effort always be considered nonlocal. The intuitive appeal to nonlocality is reinforced with an analytical derivation of the constitutive theory for a conservative tracer without appeal to any mathematical approximations. Comparisons are made between the fully nonlocal (FNL), nonlocal in time (NLT), and fully localized (FL) theories. For conservative transport, there is little difference between the first-order FL and FNL models for spatial moments up to and including the third. However, for conservative transport the first-order NLT model differs significantly from the FNL model in the third spatial moments. For reactive transport, all spatial moments differ between the FNL and FL models. The second transverse-horizontal and third longitudinal-horizontal moments for the NLT model differ from the FNL model. These results suggest that localized first-order transport models for conservative tracers are reasonable if only lower-order moments are desired. However, when the chemical reacts with its environment, the localization approximation can lead to significant error in all moments, and a FNL model will in general be required for accurate simulation. 18 refs., 9 figs., 1 tab.

  17. Survival of an Enveloped Virus on Toys.

    PubMed

    Bearden, Richard L; Casanova, Lisa M

    2016-08-01

    Children's toys may carry respiratory viruses. Inactivation of a lipid-enveloped bacteriophage, Φ6, was measured on a nonporous toy at indoor temperature and relative humidity (RH). Inactivation was approximately 2log10 after 24 hours at 60% RH and 6.8log10 at 10 hours at 40% RH. Enveloped viruses can potentially survive on toys long enough to result in exposures. PMID:27144972

  18. Control load envelope shaping by live twist

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Mirick, P. H.

    1974-01-01

    Rotor control systems experience a rapid load growth resulting from retreating blade stall during flight conditions of high blade loading or airspeeds. An investigation was undertaken to determine the effect of changing blade torsional properties over the rotor flight envelope. The results of this study show that reducing the blade stiffness to introduce more blade live twist significantly reduces the large retreating blade control loads, while expanding the flight envelope and reducing retreating blade stall loads.

  19. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  20. Envelope solitary waves exist and collide head-on without phase shift in a dusty plasma.

    PubMed

    Zhang, Heng; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2015-01-01

    The rarefactive KdV solitary waves in a dusty plasma have been extensively studied analytically and found experimentally in the previous works. Though the envelope solitary wave described by a nonlinear Schrödinger equation (NLSE) has been proposed by using the reductive perturbation method, it is first verified by using the particle-in-cell (PIC) numerical method in this paper. Surprisingly, there is no phase shift after the head on collision between two envelope solitary waves, while it is sure that there are phase shifts of two colliding KdV solitary waves after head on collision. PMID:26383642

  1. Envelope solitary waves exist and collide head-on without phase shift in a dusty plasma

    PubMed Central

    Zhang, Heng; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2015-01-01

    The rarefactive KdV solitary waves in a dusty plasma have been extensively studied analytically and found experimentally in the previous works. Though the envelope solitary wave described by a nonlinear Schrödinger equation (NLSE) has been proposed by using the reductive perturbation method, it is first verified by using the particle-in-cell (PIC) numerical method in this paper. Surprisingly, there is no phase shift after the head on collision between two envelope solitary waves, while it is sure that there are phase shifts of two colliding KdV solitary waves after head on collision. PMID:26383642

  2. To the non-local theory of cold nuclear fusion.

    PubMed

    Alexeev, Boris V

    2014-10-01

    In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics. PMID:26064528

  3. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution. PMID:27575084

  4. Nonlocal Poisson-Fermi model for ionic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  5. To the non-local theory of cold nuclear fusion.

    PubMed

    Alexeev, Boris V

    2014-10-01

    In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.

  6. Comparison for non-local hydrodynamic thermal conduction models

    SciTech Connect

    Marocchino, A.; Atzeni, S.; Schiavi, A.; Tzoufras, M.; Nicolaie, Ph. D.; Mallet, J.; Tikhonchuk, V.; Feugeas, J.-L.

    2013-02-15

    Inertial confinement fusion and specifically shock ignition involve temperatures and temperature gradients for which the classical Spitzer-Haerm thermal conduction breaks down and a non-local operator is required. In this article, two non-local electron thermal conduction models are tested against kinetic Vlasov-Fokker-Planck simulations. Both models are shown to reproduce the main features of thermal heat front propagation at kinetic timescales. The reduction of the thermal conductivity as a function of the scalelength of the temperature gradient is also recovered. Comparisons at nanosecond timescales show that the models agree on the propagation velocity of the heat front, but major differences appear in the thermal precursor.

  7. Local and nonlocal parallel heat transport in general magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  8. Hyperelasticity, Viscoelasticity, and Nonlocal Elasticity Govern Dynamic Fracture in Rubber

    NASA Astrophysics Data System (ADS)

    Wang, Wenqiang; Chen, Shengwei

    2005-09-01

    Dynamic cracks in rubber can spontaneously oscillate under certain biaxial strain conditions [R. D. Deegan et al., Phys. Rev. Lett. 88, 014304 (2002)PRLTAO0031-900710.1103/PhysRevLett.88.014304]. We have found that this unusual phenomenon can be understood from the unique mechanical properties of rubber: hyperelasticity, viscoelasticity, and nonlocal elasticity. While all these are important, the decisive role of nonlocality needs to be particularly emphasized. Through numerical simulations with a lattice model, we have quantitatively reproduced the experimental results.

  9. Non-local heat transport in static solar coronal loops

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Peres, G.; Serio, S.

    1991-04-01

    The limits of applicability of the Spitzer-Harm thermal conductivity in solar coronal loops is investigated, and it is shown that the ratio of electron mean-free path to temperature scale height in large-scale structures can approach the limits of the Spitzer-Harm theory. A nonlocal formulation of heat transport is used to compute a grid of loop models: the effects of nonlocal transport on the distribution of differential emission measure are particularly important in the coronal part of loops longer than the pressure scale height.

  10. Nonlocal effect on vortex-induced pattern dynamics.

    PubMed

    Caullet, V; Marsal, N; Wolfersberger, D; Sciamanna, M

    2013-06-01

    We show experimentally and theoretically that the interplay between a vortex-induced pattern rotation and an optical feedback nonlocality-induced pattern drift leads to new dynamics and geometries of optical pattern formation. First, the vortex-induced pattern rotation and the nonlocality-induced drift can annihilate each other, resulting in the formation of static zones in the near field of the otherwise drifting pattern. Second, increasing the external mirror tilt leads to new pattern solutions that are composed of wave vectors of different amplitudes and directions, resulting in a multistriped pattern geometry.

  11. Persistency of entanglement and nonlocality in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Brunner, Nicolas; Vértesi, Tamás

    2012-10-01

    The behavior under particle loss of entanglement and nonlocality is investigated in multipartite quantum systems. In particular, we define a notion of persistency of nonlocality, which leads to device-independent tests of persistent entanglement. We investigate the persistency of various classes of multipartite quantum states, exhibiting a variety of different behaviors. A particular attention is devoted to states featuring maximal persistency. Finally we discuss a link between the symmetry of a state and its persistency, illustrating the fact that too much symmetry reduces the strength of correlations among subsystems. These ideas also lead to a device-independent estimation of the asymmetry of a quantum state.

  12. Quantum nonlocal effects on optical properties of spherical nanoparticles

    SciTech Connect

    Moradi, Afshin

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  13. Faithful test of nonlocal realism with entangled coherent states

    SciTech Connect

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-02-15

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.

  14. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-08-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105 - 106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  15. Genetic diversity of koala retroviral envelopes.

    PubMed

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  16. Genetic diversity of koala retroviral envelopes.

    PubMed

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. PMID:25789509

  17. Pointwise nonlinear stability of nonlocalized modulated periodic reaction-diffusion waves

    NASA Astrophysics Data System (ADS)

    Jung, Soyeun; Zumbrun, Kevin

    2016-10-01

    In this paper, extending previous results of [2], we obtain pointwise nonlinear stability of periodic traveling reaction-diffusion waves, assuming spectral linearized stability, under nonlocalized perturbations. More precisely, we establish pointwise estimate of nonlocalized modulational perturbation under a small initial perturbation consisting of a nonlocalized modulation plus a localized perturbation decaying algebraically.

  18. Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations

    SciTech Connect

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos; Strozzi, David J.

    2010-10-15

    In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering in a uniform and collisionless plasma using envelope equations. We recall the derivation of these equations, as well as our theoretical predictions for each of the nonlinear kinetic terms, the precision of which having been carefully checked against Vlasov simulations. We particularly focus here on the numerical resolution of these equations, which requires the additional concept of ''self-optimization'' that we explain, and we describe the envelope code BRAMA that we used. As an application of our modeling, we present one-dimensional BRAMA simulations of stimulated Raman scattering which predict threshold intensities, as well as time scales for Raman growth above threshold, in very good agreement with those inferred from Vlasov simulations. Finally, we discuss the differences between our modeling and other published ones.

  19. Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations

    NASA Astrophysics Data System (ADS)

    Bénisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos; Strozzi, David J.

    2010-10-01

    In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering in a uniform and collisionless plasma using envelope equations. We recall the derivation of these equations, as well as our theoretical predictions for each of the nonlinear kinetic terms, the precision of which having been carefully checked against Vlasov simulations. We particularly focus here on the numerical resolution of these equations, which requires the additional concept of "self-optimization" that we explain, and we describe the envelope code BRAMA that we used. As an application of our modeling, we present one-dimensional BRAMA simulations of stimulated Raman scattering which predict threshold intensities, as well as time scales for Raman growth above threshold, in very good agreement with those inferred from Vlasov simulations. Finally, we discuss the differences between our modeling and other published ones.

  20. Higher order nonlocal formalism for linear analysis of a magnetized multispecies plasma with inhomogeneous flows

    SciTech Connect

    Gavrishchaka, V.V.; Ganguli, G.I.; Bakshi, P.M.; Koepke, M.E.

    1998-01-01

    The formalism necessary to study the collective properties of a plasma system with inhomogeneous flows is nonlocal and generally in the form of an integrodifferential equation. Usually the eigenvalue condition is reduced to a second-order differential equation for simplicity. While the gross physical behavior of the system can be obtained from the second-order differential equation level of description, higher-order corrections are necessary for greater accuracy. The limit in which the scale-size of the velocity inhomogeneity is large compared to the ion gyroradius is considered and a transverse flow profile sharply localized in space ({open_quotes}top-hat{close_quotes} profile) is assumed. In this limit, a simple analytical method for the solution of the general eigenvalue condition to all orders is developed. A comparison of the properties of the solutions obtained from the second-order differential equation level of description with those obtained from higher orders is presented. Both the resonant (dissipative) and the nonresonant (reactive) effects of velocity shear are considered. It is found that while the overall features are well represented by the second-order level of description, the higher-order corrections moderate the destabilizing effects due to velocity shear, which can be quite significant in some cases. {copyright} {ital 1998 American Institute of Physics.}

  1. Envelope-kinetic analysis of the electron kinetic effects on Raman backscatter and Raman backward laser amplification

    NASA Astrophysics Data System (ADS)

    Hur, Min Sup; Yoo, Seung Hoon; Suk, Hyyong

    2007-03-01

    The electron kinetic effects on Raman backscattering and Raman backward laser amplification were analyzed. The analysis is based on the envelope-kinetic equations of a plasma wave, which are composed of the conventional envelope equation of a fluid plasma and the kinetic term. One major goal of this paper is to close the envelope-kinetic model by analyzing the kinetic term, which was not fully covered in the previous work [M. S. Hur et al., Phys. Rev. Lett. 95, 115003 (2005)]. It was found that the closed envelope-kinetic equation in the nontrapping regime takes the same form as the envelope equation of the fluid plasma used in the three-wave model. For the closure in the trapping-dominant regime, the test particle technique is employed to calculate the kinetic term. Results from the full kinetic and test particle simulations agree well with each other, while the latter has a great advantage in computation speed. The frequency shift and resonance breaking by the trapped particles are discussed with the help of a new diagnostic inserted in the full kinetic averaged particle-in-cell code.

  2. Envelope-kinetic analysis of the electron kinetic effects on Raman backscatter and Raman backward laser amplification

    SciTech Connect

    Hur, Min Sup; Yoo, Seung Hoon; Suk, Hyyong

    2007-03-15

    The electron kinetic effects on Raman backscattering and Raman backward laser amplification were analyzed. The analysis is based on the envelope-kinetic equations of a plasma wave, which are composed of the conventional envelope equation of a fluid plasma and the kinetic term. One major goal of this paper is to close the envelope-kinetic model by analyzing the kinetic term, which was not fully covered in the previous work [M. S. Hur et al., Phys. Rev. Lett. 95, 115003 (2005)]. It was found that the closed envelope-kinetic equation in the nontrapping regime takes the same form as the envelope equation of the fluid plasma used in the three-wave model. For the closure in the trapping-dominant regime, the test particle technique is employed to calculate the kinetic term. Results from the full kinetic and test particle simulations agree well with each other, while the latter has a great advantage in computation speed. The frequency shift and resonance breaking by the trapped particles are discussed with the help of a new diagnostic inserted in the full kinetic averaged particle-in-cell code.

  3. A New Method to Represent Speech Signals Via Predefined Signature and Envelope Sequences

    NASA Astrophysics Data System (ADS)

    Güz, Ümit; Gürkan, Hakan; Yarman, Binboga Sıddık

    2006-12-01

    A novel systematic procedure referred to as "SYMPES" to model speech signals is introduced. The structure of SYMPES is based on the creation of the so-called predefined "signature[InlineEquation not available: see fulltext.] and envelope[InlineEquation not available: see fulltext.]" sets. These sets are speaker and language independent. Once the speech signals are divided into frames with selected lengths, then each frame sequence[InlineEquation not available: see fulltext.] is reconstructed by means of the mathematical form[InlineEquation not available: see fulltext.]. In this representation,[InlineEquation not available: see fulltext.] is called the gain factor,[InlineEquation not available: see fulltext.] and[InlineEquation not available: see fulltext.] are properly assigned from the predefined signature and envelope sets, respectively. Examples are given to exhibit the implementation of SYMPES. It is shown that for the same compression ratio or better, SYMPES yields considerably better speech quality over the commercially available coders such as G.726 (ADPCM) at 16 kbps and voice excited LPC-10E (FS1015) at[InlineEquation not available: see fulltext.] kbps.

  4. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity

    SciTech Connect

    Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam E-mail: T.S.Koivisto@uu.nl

    2010-11-01

    One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability.

  5. A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks

    SciTech Connect

    Robertson, Scott

    2006-09-15

    A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electrons that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].

  6. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are

  7. Three-dimensional radiation-hydrodynamics calculations of the envelopes of young planets embedded in protoplanetary disks

    SciTech Connect

    D'Angelo, Gennaro; Bodenheimer, Peter E-mail: peter@ucolick.org

    2013-11-20

    We perform global three-dimensional (3D) radiation-hydrodynamics calculations of the envelopes surrounding young planetary cores of 5, 10, and 15 Earth masses, located in a protoplanetary disk at 5 and 10 AU from a solar-mass star. We apply a nested-grid technique to resolve the thermodynamics of the disk at the orbital-radius length scale and that of the envelope at the core-radius length scale. The gas is modeled as a solar mixture of molecular and atomic hydrogen, helium, and their ions. The equation of state accounts for both gas and radiation, and gas energy includes contributions from rotational and vibrational states of molecular hydrogen and from ionization of atomic species. Dust opacities are computed from first principles, applying the full Mie theory. One-dimensional (1D) calculations of planet formation are used to supplement the 3D calculations by providing energy deposition rates in the envelope due to solids accretion. We compare 1D and 3D envelopes and find that masses and gas accretion rates agree within factors of 2, and so do envelope temperatures. The trajectories of passive tracers are used to define the size of 3D envelopes, resulting in radii much smaller than the Hill radius and smaller than the Bondi radius. The moments of inertia and angular momentum of the envelopes are determined and the rotation rates are derived from the rigid-body approximation, resulting in slow bulk rotation. We find that the polar flattening is ≲ 0.05. The dynamics of the accretion flow are examined by tracking the motion of tracers that move into the envelope. The anisotropy of this flow is characterized in terms of both its origin and impact site at the envelope surface. Gas merges with the envelope preferentially at mid- to high latitudes.

  8. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering

    NASA Astrophysics Data System (ADS)

    Jones, S. J.; Wiseman, H. M.; Doherty, A. C.

    2007-11-01

    In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined “steering,” a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob’s state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob’s state was subsequently called steering by Schrödinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox.

  9. On non-local transport processes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Macneice, P.

    1992-01-01

    We review two mechanisms which can lend a non-local character to energy transport in the solar atmosphere, heat flux propagating in the form of collisionless electrons, and non-equilibrium ionization of hydrogen driven by ambipolar diffusion. Application of these processes to modelling of the lower transition region and upper chromosphere is considered.

  10. Nonlocal correlations: Fair and unfair strategies in Bayesian games

    NASA Astrophysics Data System (ADS)

    Roy, Arup; Mukherjee, Amit; Guha, Tamal; Ghosh, Sibasish; Bhattacharya, Some Sankar; Banik, Manik

    2016-09-01

    An interesting connection has been established between two apparently unrelated concepts, namely, quantum nonlocality and Bayesian game theory. It has been shown that nonlocal correlations in the form of advice can outperform classical equilibrium strategies in common-interest Bayesian games and also in conflicting-interest Bayesian games. Classical equilibrium strategies can be of two types, fair and unfair. Whereas in fair equilibrium payoffs of different players are equal, in the unfair case they differ. An advantage of nonlocal correlation has been demonstrated over fair strategies only. We show that quantum strategies can outperform even the unfair classical equilibrium strategies. For this purpose we consider a class of two-player Bayesian games. It becomes that such games can have only fair equilibria, both fair and unfair equilibria, or only unfair ones. We provide a simple analytic method to characterize the nonlocal correlations that are advantageous over the classical equilibrium strategies in these games. We also show that quantum advice provides a better social optimality solution (a relevant notion of equilibrium for the unfair case) over the classical one.

  11. Chimera States in populations of nonlocally coupled chemical oscillators.

    PubMed

    Nkomo, Simbarashe; Tinsley, Mark R; Showalter, Kenneth

    2013-06-14

    Chimera states occur spontaneously in populations of coupled photosensitive chemical oscillators. Experiments and simulations are carried out on nonlocally coupled oscillators, with the coupling strength decreasing exponentially with distance. Chimera states with synchronized oscillators, phase waves, and phase clusters coexisting with unsynchronized oscillators are analyzed. Irregular motion of the cores of asynchronous oscillators is found in spiral-wave chimeras.

  12. Nonlocal Hamiltonian gauge theories and their connection with lattice Hamiltonians

    SciTech Connect

    Ktorides, C.N.; Mavromatos, N.E.

    1985-06-15

    We introduce the concept of primitive Hamiltonian density for nonlocal Abelian gauge theories. We subsequently study the local limit both with respect to the continuum and with respect to a lattice structure introduced via hypercubic cells. The non-Abelian case is also discussed.

  13. Morphologically complex protostellar envelopes : structure and kinematics

    NASA Astrophysics Data System (ADS)

    Tobin, John J.

    I present an in-depth study of protostars and their surrounding envelopes of dense gas and dust, using a multitude of observational methods to reveal new details of the star formation process. I use mid-infrared imaging from the Spitzer Space Telescope, combined with photometry spanning the near-infrared to millimeter wavelengths, to construct a model of the L1527 protostellar system. I modeled both the spectral energy distribution and resolved scattered light images to determine physical properties of the protostellar system. The nature of the apparent central point source in the Spitzer images was uncertain until high-resolution L-band imaging from the Gemini observatory resolved the point source into a disk in scattered light, having a radius of 200 AU. Protostellar envelopes are also often found to cast shadows against the 8 micron Galactic background in Spitzer imaging, enabling direct probes of envelope structure. The shadow images show that the dense envelopes around twenty-two Class 0 protostars are generally morphologically complex from 0.1 pc scales down to ˜1000 AU; they are often filamentary, and frequently non-axisymmetric. The observed envelope structure indicates a likely origin in turbulent cloud structure rather than a quasi-static/equilibrium formation. The complex envelope structure also may indicate an increased likelihood of fragmentation during collapse, forming close binaries. To further characterize these envelopes, I have observed them in the dense molecular gas tracers nthp and nht, both of which closely follow the 8 micron extinction morphology. The magnitude of the velocity gradients and envelope complexity on ˜10000 AU scales indicates that the velocity structure may reflect large-scale infall in addition to the often assumed rotation. Comparisons with three-dimensional filamentary and symmetric rotating collapse models reinforce the interpretation of velocities reflecting large-scale infall, showing that the structure of the envelope

  14. Large Deviations for Nonlocal Stochastic Neural Fields

    PubMed Central

    2014-01-01

    We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers’ law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations. Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20. PMID:24742297

  15. Featured Image: Orbiting Stars Share an Envelope

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  16. The cell envelope proteome of Aggregatibacter actinomycetemcomitans

    PubMed Central

    Smith, Kenneth P.; Fields, Julia G.; Voogt, Richard D.; Deng, Bin; Lam, Ying-Wai; Mintz, Keith P.

    2014-01-01

    Summary The cell envelope of Gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 28% of the predicted ORFs in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, while others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity. PMID:25055881

  17. Chaotic dynamics in the Maxwell-Bloch equations

    SciTech Connect

    Holm, D.D.; Kovacic, G.

    1992-03-06

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle.

  18. r-modified Crank-Nicholson difference schemes for one dimensional nonlinear viscous Burgers' equation for an incompressible flow

    NASA Astrophysics Data System (ADS)

    Ashyralyev, Allaberen; Gambo, Yusuf Ya'u.

    2016-08-01

    The nonlocal boundary value problem for viscous Burgers' equation is considered. Solutions to the 1-D equation are presented numerically by Rothe, Crank-Nicholson and r-modified Crank-Nicholson difference schemes. Matlab codes for all the three schemes are designed based on the idea of fixed-point iteration procedure and modified Gauss elimination method. The numerical results are compared.

  19. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  20. Drug design from the cryptic inhibitor envelope

    PubMed Central

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  1. Existence of a solution to an equation arising from the theory of Mean Field Games

    NASA Astrophysics Data System (ADS)

    Gangbo, Wilfrid; Święch, Andrzej

    2015-12-01

    We construct a small time strong solution to a nonlocal Hamilton-Jacobi equation (1.1) introduced in [48], the so-called master equation, originating from the theory of Mean Field Games. We discover a link between metric viscosity solutions to local Hamilton-Jacobi equations studied in [2,19,20] and solutions to (1.1). As a consequence we recover the existence of solutions to the First Order Mean Field Games equations (1.2), first proved in [48], and make a more rigorous connection between the master equation (1.1) and the Mean Field Games equations (1.2).

  2. Simulations and experiments of short intense envelope solitons of surface water waves

    NASA Astrophysics Data System (ADS)

    Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.

    2013-06-01

    The problem of existence of stable nonlinear groups of gravity waves in deep water is considered by means of laboratory and numerical simulations with the focus on strongly nonlinear waves. Wave groups with steepness up to Acrωm2/g ≈ 0.30 are reproduced in laboratory experiments (Acr is the wave crest amplitude, ωm is the mean angular frequency, and g is the gravity acceleration). We show that the groups remain stable and exhibit neither noticeable radiation nor structural transformation for more than 60 wavelengths or about 15-30 group lengths. These solitary wave patterns differ from the conventional envelope solitons, as only a few individual waves are contained in the group. Very good agreement is obtained between the laboratory results and numerical simulations of the potential Euler equations. The envelope soliton solution of the nonlinear Schrödinger equation is shown to be a reasonable first approximation for specifying the wave-maker driving signal. The short intense envelope solitons possess vertical asymmetry similar to regular Stokes waves with the same frequency and crest amplitude. Nonlinearity is found to have remarkably stronger effect on the speed of envelope solitons in comparison to the nonlinear correction to the Stokes wave velocity.

  3. [NESPRINS--nuclear envelope proteins ensuring integrity].

    PubMed

    Pershina, E G; Morozova, K N; Kiseleva, E V

    2014-01-01

    This review describes the nesprins (nuclear envelope spectrin-repeat proteins), which are recently discovered family of nuclear envelope proteins. These proteins play an important role in maintaining the cellular architecture and establish the link between the nucleus and other sub-cellular compartments. Many tissue-specific diseases including lipodystrophies, hearing loss, cardiac and skeletal myopathies are associated with nesprins mutations. These proteins comprise of multiple tissue specific isoforms which contain spectrin repeats providing interaction of nesprins with other nuclear membrane proteins, cytoskeleton and intranuclear matrix. We summarize recent findings and suggestions about nesprins structural organization and function inside the cell. Human diseases caused by abnormal nesprins expression are also described.

  4. Dynamic Remodeling of the Plastid Envelope Membranes – A Tool for Chloroplast Envelope in vivo Localizations

    PubMed Central

    Breuers, Frederique K. H.; Bräutigam, Andrea; Geimer, Stefan; Welzel, Ulla Y.; Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica; Weber, Andreas P. M.

    2012-01-01

    Two envelope membranes delimit plastids, the defining organelles of plant cells. The inner and outer envelope membranes are unique in their protein and lipid composition. Several studies have attempted to establish the proteome of these two membranes; however, differentiating between them is difficult due to their close proximity. Here, we describe a novel approach to distinguish the localization of proteins between the two membranes using a straightforward approach based on live cell imaging coupled with transient expression. We base our approach on analyses of the distribution of GFP-fusions, which were aimed to verify outer envelope membrane proteomics data. To distinguish between outer envelope and inner envelope protein localization, we used AtTOC64–GFP and AtTIC40–GFP, as respective controls. During our analyses, we observed membrane proliferations and loss of chloroplast shape in conditions of protein over-expression. The morphology of the proliferations varied in correlation with the suborganellar distribution of the over-expressed proteins. In particular, while layers of membranes built up in the inner envelope membrane, the outer envelope formed long extensions into the cytosol. Using electron microscopy, we showed that these extensions were stromules, a dynamic feature of plastids. Since the behavior of the membranes is different and is related to the protein localization, we propose that in vivo studies based on the analysis of morphological differences of the membranes can be used to distinguish between inner and outer envelope localizations of proteins. To demonstrate the applicability of this approach, we demonstrated the localization of AtLACS9 to the outer envelope membrane. We also discuss protein impact on membrane behavior and regulation of protein insertion into membranes, and provide new hypotheses on the formation of stromules. PMID:22645566

  5. Exact Averaging of Stochastic Equations for Flow in Porous Media

    SciTech Connect

    Karasaki, Kenzi; Shvidler, Mark; Karasaki, Kenzi

    2008-03-15

    It is well known that at present, exact averaging of the equations for flow and transport in random porous media have been proposed for limited special fields. Moreover, approximate averaging methods--for example, the convergence behavior and the accuracy of truncated perturbation series--are not well studied, and in addition, calculation of high-order perturbations is very complicated. These problems have for a long time stimulated attempts to find the answer to the question: Are there in existence some, exact, and sufficiently general forms of averaged equations? Here, we present an approach for finding the general exactly averaged system of basic equations for steady flow with sources in unbounded stochastically homogeneous fields. We do this by using (1) the existence and some general properties of Green's functions for the appropriate stochastic problem, and (2) some information about the random field of conductivity. This approach enables us to find the form of the averaged equations without directly solving the stochastic equations or using the usual assumption regarding any small parameters. In the common case of a stochastically homogeneous conductivity field we present the exactly averaged new basic nonlocal equation with a unique kernel-vector. We show that in the case of some type of global symmetry (isotropy, transversal isotropy, or orthotropy), we can for three-dimensional and two-dimensional flow in the same way derive the exact averaged nonlocal equations with a unique kernel-tensor. When global symmetry does not exist, the nonlocal equation with a kernel-tensor involves complications and leads to an ill-posed problem.

  6. Compression and Cavitation of Externally Applied Magnetic Field on a Hohlraum due to Non-Local Heat Flow Effects

    NASA Astrophysics Data System (ADS)

    Joglekar, Archis; Thomas, Alec; Ridgers, Chris; Kingham, Rob

    2015-11-01

    In this study, we present full-scale 2D kinetic modeling of externally imposed magnetic fields on hohlraums with laser heating. We observe magnetic field cavitation and compression due to thermal energy transport. Self-consistent modeling of the electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's Law. A complete Ohm's Law contains magnetic field advection through the Nernst mechanism that arises due to the heat flow. Magnetic field amplification by a factor of 3 occurs due to magnetic flux pile-up from Nernst convection. The magnetic field cavitates towards the hohlraum axis over a 0.5 ns time scale due to Nernst convection. This results in significantly different magnetic field profiles and slower cavitation than can be expected due to the plasma bulk flow. Non-local electrons contribute to the heat flow down the density gradient resulting in an augmented Nernst convection mechanism that is included self-consistently through kinetic modeling. In addition to showing the prevalence of non-local heat flows, we show effects such as anomalous heat flow up the density gradient induced by inverse bremsstrahlung heating. This research was supported by the DOE through Grant No. DE SC0010621 and in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.

  7. Test particle method for incorporation of the kinetic effects into the envelope simulations of Raman backscattering

    SciTech Connect

    Hur, Min Sup; Suk, Hyyong

    2007-10-01

    A new test particle method is presented for self-consistent incorporation of the kinetic effects into the fluid three-wave model. One of the most important kinetic effects is the electron trapping and it has been found that the trapping affects significantly the behavior of Raman backscatter and Raman backward laser amplification. The conventional fluid three-wave model cannot reproduce the kinetic simulations in the trapping regime. The test particle scheme utilizes the same equations for the laser evolution as in the three-wave model. However, the plasma wave is treated by the envelope-kinetic equation, which consists of envelope evolution and the kinetic term. The core of the new scheme is employing test particles to compute the kinetic term self-consistently. The benchmarking results against the averaged particle-in-cell (aPIC) code show excellent agreements, and the computation speed gain over the aPIC is from 2 to 20 depending on parameters.

  8. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory

    NASA Astrophysics Data System (ADS)

    Tong, Lihong; Yu, Yang; Hu, Wentao; Shi, Yufeng; Xu, Changjie

    2016-09-01

    A nonlocal Biot theory is developed by combing Biot theory and nonlocal elasticity theory for fluid saturated porous material. The nonlocal parameter is introduced as an independent variable for describing wave propagation characteristics in poroelastic material. A physical insight on nonlocal term demonstrates that the nonlocal term is a superposition of two effects, one is inertia force effect generated by fluctuation of porosity and the other is pore size effect inherited from nonlocal constitutive relation. Models for situations of excluding fluid nonlocal effect and including fluid nonlocal effect are proposed. Comparison with experiment confirms that model without fluid nonlocal effect is more reasonable for predicting wave characteristics in saturated porous materials. The negative dispersion is observed theoretically which agrees well with the published experimental data. Both wave velocities and quality factors as functions of frequency and nonlocal parameter are examined in practical cases. A few new physical phenomena such as backward propagation and disappearance of slow wave when exceeding critical frequency and disappearing shear wave in high frequency range, which were not predicted by Biot theory, are demonstrated.

  9. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    SciTech Connect

    Richard Metcalf; Aaron Bevill; William Charlton; Robert Bean

    2008-07-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of “non-traditional” operating data, and exploration of new methods of identifying subtle events in transient processes.

  10. Discriminating Dysarthria Type from Envelope Modulation Spectra

    ERIC Educational Resources Information Center

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2010-01-01

    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  11. Diffusive heat blanketing envelopes of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.

    2016-06-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H-He, He-C, C-Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts-Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modelling the evolution of neutron stars.

  12. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  13. Ultraviolet Opacity and Fluorescence in Supernova Envelopes

    NASA Technical Reports Server (NTRS)

    Li, Hongwei; McCray, Richard

    1996-01-01

    By the time the expanding envelope of a Type 2 supernova becomes transparent in the optical continuum, most of the gamma-ray luminosity produced by radioactive Fe/Co/Ni clumps propagates into the hydrogen/helium envelope and is deposited there, if at all. The resulting fast electrons excite He 1 and H 1, the two- photon continua of which are the dominant internal sources of ultraviolet radiation. The UV radiation is blocked by scattering in thousands of resonance lines of metals and converted by fluorescence into optical and infrared emission lines that escape freely. We describe results of Monte Carlo calculations that simulate non-LTE scattering and fluorescence in more than five million allowed lines of Ca, Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. For a model approximating conditions in the envelope of SN 1987A, the calculated emergent spectrum resembles the observed one. For the first 2 yr after explosion, the ultraviolet radiation (lambda less than or approximately equals 3000) is largely blocked and converted into a quasi continuum of many thousands of weak optical and infrared emission lines and some prominent emission features, such as the Ca 2 lambdalambda8600 triplet. Later, as the envelope cools and expands, it becomes more transparent, and an increasing fraction of the luminosity emerges in the UV band.

  14. The Story of the Red Envelopes.

    ERIC Educational Resources Information Center

    Lew, Gordon

    This is one of a series of elementary readers written in Cantonese and English and designed to familiarize children with the traditional major Chinese festivals celebrated by the Chinese in America. This booklet describes in narrative form the meaning of the red envelopes given with money gifts at Chinese New Year and other festivities. A page of…

  15. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses.

    PubMed

    Owen, Danielle J; Crump, Colin M; Graham, Stephen C

    2015-09-01

    Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei. PMID:26393641

  16. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses

    PubMed Central

    Owen, Danielle J.; Crump, Colin M.; Graham, Stephen C.

    2015-01-01

    Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called “tegument” that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei. PMID:26393641

  17. Volume averaging: Local and nonlocal closures using a Green’s function approach

    NASA Astrophysics Data System (ADS)

    Wood, Brian D.; Valdés-Parada, Francisco J.

    2013-01-01

    Modeling transport phenomena in discretely hierarchical systems can be carried out using any number of upscaling techniques. In this paper, we revisit the method of volume averaging as a technique to pass from a microscopic level of description to a macroscopic one. Our focus is primarily on developing a more consistent and rigorous foundation for the relation between the microscale and averaged levels of description. We have put a particular focus on (1) carefully establishing statistical representations of the length scales used in volume averaging, (2) developing a time-space nonlocal closure scheme with as few assumptions and constraints as are possible, and (3) carefully identifying a sequence of simplifications (in terms of scaling postulates) that explain the conditions for which various upscaled models are valid. Although the approach is general for linear differential equations, we upscale the problem of linear convective diffusion as an example to help keep the discussion from becoming overly abstract. In our efforts, we have also revisited the concept of a closure variable, and explain how closure variables can be based on an integral formulation in terms of Green’s functions. In such a framework, a closure variable then represents the integration (in time and space) of the associated Green’s functions that describe the influence of the average sources over the spatial deviations. The approach using Green’s functions has utility not only in formalizing the method of volume averaging, but by clearly identifying how the method can be extended to transient and time or space nonlocal formulations. In addition to formalizing the upscaling process using Green’s functions, we also discuss the upscaling process itself in some detail to help foster improved understanding of how the process works. Discussion about the role of scaling postulates in the upscaling process is provided, and poised, whenever possible, in terms of measurable properties of (1) the

  18. Penetration equations

    SciTech Connect

    Young, C.W.

    1997-10-01

    In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.

  19. Cosmological perturbations in non-local higher-derivative gravity

    SciTech Connect

    Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S. E-mail: Tim.De.Jonckheere@vub.ac.be

    2014-11-01

    We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model.

  20. Non-local MRI denoising using random sampling.

    PubMed

    Hu, Jinrong; Zhou, Jiliu; Wu, Xi

    2016-09-01

    In this paper, we propose a random sampling non-local mean (SNLM) algorithm to eliminate noise in 3D MRI datasets. Non-local means (NLM) algorithms have been implemented efficiently for MRI denoising, but are always limited by high computational complexity. Compared to conventional methods, which raster through the entire search window when computing similarity weights, the proposed SNLM algorithm randomly selects a small subset of voxels which dramatically decreases the computational burden, together with competitive denoising result. Moreover, structure tensor which encapsulates high-order information was introduced as an optimal sampling pattern for further improvement. Numerical experiments demonstrated that the proposed SNLM method can get a good balance between denoising quality and computation efficiency. At a relative sampling ratio (i.e. ξ=0.05), SNLM can remove noise as effectively as full NLM, meanwhile the running time can be reduced to 1/20 of NLM's. PMID:27114338