Science.gov

Sample records for nonluminous matter

  1. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  2. Dark matter and triality symmetry of leptons and quarks

    SciTech Connect

    Furui, Sadataka

    2012-11-12

    The radiation in the universe has a mass equivalent of approximately 2% of the luminous matter. Presence of a large amount of non-luminous matter is a problem. In order to solve this puzzle, I use quaternion basis for the leptons, and make an octonion from a combination of two quaternions. With a principle that the electro-magnetic interaction selects one triality and photon couples with a gluon of one triality sector, color-flavor locking becomes natural, and the problem of dark matter may be solved.

  3. Multi-Dimensional Effective Field Theory Analysis for Direct Detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Rogers, Hannah; SuperCDMS Collaboration

    2016-03-01

    Experiments like the Cryogenic Dark Matter Search (CDMS) attempt to find dark matter (non-luminous matter that makes up approximately 80% of the matter in the universe) through direct detection of interactions between dark matter and a target material. The Effective Field Theory (EFT) approach increases the number of considered interactions between dark matter and the normal, target matter from two (spin independent and spin dependent interactions) to eleven operators with four possible interference terms. These additional operators allow for a more complete analysis of complimentary direct dark matter searches; however, the higher dimensional likelihoods necessary to span an increase in operators requires a clever computational tool such as MultiNest. I present here analyses of published and projected data from CDMS (Si and Ge targets) and LUX (liquid Xe target) assuming operator parameter spaces ranging from 3 - 5 dimensions and folding in information on energy-dependent backgrounds when possible.

  4. Search for pseudoscalar cold dark matter

    SciTech Connect

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  5. Sensitivity of HAWC to high-mass dark matter annihilations

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carramiñana, A.; Castillo, M.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-Garcia, R.; Marinelli, A.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Rivière, C.; Rosa-González, D.; Ryan, J.; Salazar, H.; Salesa, F.; Sanchez, F. E.; Sandoval, A.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.; Abazajian, K. N.; Milagro Collaboration

    2014-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

  6. Gamma-ray constraint on the nature of dark matter

    SciTech Connect

    Silk, J.; Bloemen, H.

    1987-02-01

    If even a small component of the Galactic spheroid consists of the weakly interacting majorana fermions that are cold-dark-matter candidate particles for the Galactic halo, there should be a substantial flux of annihilation gamma rays from a source of about 1-deg extent at the Galactic center. COS B observations already constrain the halo cold-dark-matter (CDM) content entrained in the inner spheroid to be less than about 10 percent. A somewhat weaker constraint applies to the CDM believed to be present in the Galactic disk, but still only about 15 percent can be in such particles. Monochromatic line photons of energy 3-10 GeV are also predicted, and future experiments may be capable of improving these limits. Since both theoretical models of galaxy formation in a CDM-dominated universe and mass models for the rotation curve in the inner Galaxy suggest that a substantial fraction of the spheroid component should be nonluminous and incorporate entrained halo CDM, the hypothesis that the halo CDM consists predominantly of weakly interacting fermions such as photinos or heavy majorana mass neutrinos or higgsinos may already be subject to observational test. 30 references.

  7. Searching for dark matter with single phase liquid argon

    NASA Astrophysics Data System (ADS)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  8. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  9. The Cryogenic Dark Matter Search (CDMS-II) Experiment: First Results from the Soudan Mine

    SciTech Connect

    Chang, Clarence Leeder

    2004-09-01

    There is an abundance of evidence that the majority of the mass of the universe is in the form of non-baryonic non-luminous matter that was non-relativistic at the time when matter began to dominate the energy density. Weakly Interacting Massive Particles, or WIMPs, are attractive cold dark matter candidates because they would have a relic abundance today of {approx}0.1 which is consistent with precision cosmological measurements. WIMPs are also well motivated theoretically. Many minimal supersymmetric extensions of the Standard Model have WIMPs in the form of the lightest supersymmetric partner, typically taken to be the neutralino. The CDMS II experiment searches for WIMPs via their elastic scattering off of nuclei. The experiment uses Ge and Si ZIP detectors, operated at <50 mK, which simultaneously measure the ionization and athermal phonons produced by the scattering of an external particle. The dominant background for the experiment comes from electromagnetic interactions taking place very close to the detector surface. Analysis of the phonon signal from these interactions makes it possible to discriminate them from interactions caused by WIMPs. This thesis presents the details of an important aspect of the phonon pulse shape analysis known as the ''Lookup Table Correction''. The Lookup Table Correction is a position dependent calibration of the ZIP phonon response which improves the rejection of events scattering near the detector surface. The CDMS collaboration has recently commissioned its experimental installation at the Soudan Mine. This thesis presents an analysis of the data from the first WIMP search at the Soudan Mine. The results of this analysis set the world's lowest exclusion limit making the CDMS II experiment at Soudan the most sensitive WIMP search to this date.

  10. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  11. Dark Matters

    SciTech Connect

    Joseph Silk

    2009-09-23

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  12. Dark matters

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    The observational evidence for dark matter in the universe is reviewed. Constraints on the baryon density from primordial nucleosynthesis are presented and compared to the dynamical estimates of the mass on various scales. Baryons can account for the observed luminous mass as well as some, perhaps most, of the 'observed' dark mass. However if, as inflation/naturalness suggest, the total density of the universe is equal to the critical density, then nonbaryonic dark matter is required. The assets and liabilities of, as well as the candidates for, hot and cold dark matter are outlined. At present, there is no completely satisfactory candidate for nonbaryonic dark matter.

  13. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark-matter

  14. Changes Matter!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Jensen, Anitra

    2012-01-01

    Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…

  15. Guidance Matters

    ERIC Educational Resources Information Center

    Gartrell, Dan

    2006-01-01

    Conflicts happen all the time in early childhood classrooms--and just about everywhere else in life. Conflict management includes the ability to: (1) prevent conflicts from becoming too serious to resolve easily and (2) resolve conflicts peaceably no matter how serious they get. When a third person assists others in resolving a conflict, this is…

  16. Interstellar Matters

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    In this provocative new book, radio astronomer and author Gerrit L. Verschuur describes the phenomena of scientific curiosity and discovery by following the exciting story of interstellar matter. The discovery of "stuff between the stars" was the result of decades of work by hundreds of astronomers, and the evolving recognition of its existence has profoundly changed the way we view the Universe. Verschuur begins with E.E. Barnard, who puzzled for a quarter century over the interpretation of photographs of dark patches between the stars. Verschuur then traces the tortuous path to acceptance of the existence of interstellar matter. He shares with us the thrill of discovery that motivates astronomers, the use of metaphors and modeling by scientist, and other tricks of the astronomical trade. Finally, we learn about the modern study of interstellar matter: the discovery of complex organic molecules between the stars and how they may have seeded the early earth with the precursors for life, new insights into star formation, the structure of the Milky Way and the elusive interstellar magnetic field. More than a history, Interstellar Matters is a detective story that evokes the excitement and serendipity of science against the background of a century of shared effort by the world community of astronomers. From the reviews: "I can't imagine anyone interested in astronomy who won't enjoy this book - it's chocked full of science, personalities and insights. We are products of the stuff between the stars - Verschuur tells the fascinating story of how its existence was discovered. Interstellar Matters is his best book, I think. It's certainly one of the best astronomy popularizations I've read." Leif J. Robinson, Sky and Teleskope#1

  17. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  18. Dark matter.

    PubMed

    Peebles, P James E

    2015-10-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again.

  19. Dark matter.

    PubMed

    Peebles, P James E

    2015-10-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  20. A search for low-mass dark matter with the cryogenic dark matter search and the development of highly multiplexed phonon-mediated particle detectors

    SciTech Connect

    Moore, David Craig

    2012-01-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ~10 GeV and spin-independent scattering cross sections of 10-41-10-40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ~10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5-9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while

  1. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2001-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  2. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    1999-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  3. Conducting compositions of matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  4. Dark matter in cosmology

    NASA Astrophysics Data System (ADS)

    Luković, Vladimir; Cabella, Paolo; Vittorio, Nicola

    2014-07-01

    In this paper we review the main theoretical and experimental achievements in the field of dark matter from the cosmological and astrophysical point of view. We revisit it from the very first surveys of local astrophysical matter, up to the stringent constraints on matter properties, coming from the last release of data on cosmological scales. To bring closer and justify the idea of dark matter, we will go across methods and tools for measuring dark matter characteristics, and in some cases a combination of methods that provide one of the greatest direct proofs for dark matter, such as Bullet cluster.

  5. Mind Over Matter: Methamphetamine

    MedlinePlus

    ... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Methamphetamine Print Mind Over Matter: Methamphetamine (Meth) Order Free Publication in: English Spanish Download PDF 739.54 KB Methamphetamine comes in ...

  6. Mind Over Matter: Cocaine

    MedlinePlus

    ... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Cocaine Print Mind Over Matter: Cocaine Order Free Publication in: English Spanish Download PDF 806.08 KB Cocaine is made ...

  7. States of Matter

    NASA Video Gallery

    NASA scientists and engineers utilize the basic principles of the states of matter on a daily basis. The states and properties of matter are very important to the design and construction of NASA sp...

  8. Birth to Three Matters

    ERIC Educational Resources Information Center

    Abbott, Lesley; Langston, Ann

    2004-01-01

    "Birth to Three Matters" is essential for all those involved in developing policy and providing care and education for children between birth and three. It carefully examines the structure and content of the recently published Birth to Three Matters materials and explores a range of "matters" that impact on the development of quality in early…

  9. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  10. The physics of strange matter

    SciTech Connect

    Olinto, A.V. |

    1991-12-01

    Strange matter may be the ground state of matter. We review the phenomenology and astrophysical implications of strange matter, and discuss the possible ways for testing the strange matter hypothesis.

  11. Big Questions: Dark Matter

    SciTech Connect

    Lincoln, Don

    2013-12-05

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  12. Big Questions: Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  13. Teachers Matter. Yes. Schools Matter. Yes. Districts Matter--Really?

    ERIC Educational Resources Information Center

    Chenoweth, Karin

    2015-01-01

    School districts shape the conditions in which schools operate and as such can support or undermine school success and thus student success. All of which is to say that school districts matter. This article looks at the success of two districts whose low-income and minority students beat the odds in academic achievement. Lessons from these…

  14. Complex Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  15. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  16. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  17. The nuclear matter problem

    SciTech Connect

    Carlson, J. A.; Cowell, S.; Morales, J.; Ravenhall, D. G.; Pandharipande, V. R.

    2002-01-01

    We review the present statiis of the many-body theory of nuclear and pure neutron matter based on realistic models of nuclear forces, The current models of two- and three-nucleon interactions are discussed along with recent results obtained with the Brueckner and variatioual methods. New initiatives in the variational method and quantuni Monte Carlo nicthods to study pure neutron matter are described, and finally, the analytic behavior of the energy of piire neutron matter at low densities is cliscussed.

  18. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  19. Searching for dark matter

    NASA Astrophysics Data System (ADS)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  20. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  1. Front Matter: Volume 8454

    NASA Astrophysics Data System (ADS)

    SPIE, Proceedings of

    2012-05-01

    This PDF file contains the front matter associated with SPIE Proceedings Volume 8454, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.

  2. Cosmology with Mimetic Matter

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav; Vikman, Alexander E-mail: viatcheslav.Mukhanov@lmu.de

    2014-06-01

    We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.

  3. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  4. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  5. Matter in transition

    NASA Astrophysics Data System (ADS)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU( N) require Weierstrass models that cannot be realized from the standard SU( N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  6. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  7. Compact ultradense matter impactors.

    PubMed

    Rafelski, Johann; Labun, Lance; Birrell, Jeremiah

    2013-03-15

    We study interactions of meteorlike compact ultradense objects (CUDO), having nuclear or greater density, with Earth and other rocky bodies in the Solar System as a possible source of information about novel forms of matter. We study the energy loss in CUDO puncture of the body and discuss differences between regular matter and CUDO impacts.

  8. Language (Policy) Matters!

    ERIC Educational Resources Information Center

    Kozleski, E. B.; Mulligan, E.; Hernandez-Saca, D.

    2011-01-01

    Public education has a vital role in ensuring that this and subsequent generations are successful in a global, multilingual economy. In this What Matters brief, we examine how teachers, students, parents, and communities in our nation's schools can create rich opportunities for students to learn. Language (Policy) Matters! includes information and…

  9. Complex Dark Matter

    SciTech Connect

    Lincoln, Don

    2015-04-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  10. Dark matter possibilities

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2015-04-01

    In my research I observe signals that penetrate dense matter and I hypothesize that they are due to waves in dark matter. Since they readily penetrate thick matter I hypothesize that they are due to small dark matter particles instead of the usual hypothesized Wimps. For example I observed signals that penetrate my local hill at near 77 m/s. In addition the solar cycle appears to be due to to dark matter oscillating in the sun producing standing waves that have to due with planet placement and stability of the solar system. Dozens of experiments, over the past 20 years, confirm the penetrating waves. Examples of the experiments are presented on my website darkmatterwaves.com and US patent number 8,669,917 B1.

  11. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-01

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  12. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-01

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  13. Exothermic dark matter

    SciTech Connect

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  14. GUTzilla dark matter

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Lin, Tongyan; Lou, Hou Keong

    2016-09-01

    Motivated by gauge coupling unification and dark matter, we present an extension to the Standard Model where both are achieved by adding an extra new matter multiplet. Such considerations lead to a Grand Unified Theory with very heavy WIMPzilla dark matter, which has mass greater than ˜ 107 GeV and must be produced before reheating ends. Naturally, we refer to this scenario as GUTzilla dark matter. Here we present a minimal GUTzilla model, adding a vector-like quark multiplet to the Standard Model. Proton decay constraints require the new multiplet to be both color and electroweak charged, which prompts us to include a new confining SU(3) gauge group that binds the multiplet into a neutral composite dark matter candidate. Current direct detection constraints are evaded due to the large dark matter mass; meanwhile, next-generation direct detection and proton decay experiments will probe much of the parameter space. The relic abundance is strongly dependent on the dynamics of the hidden confining sector, and we show that dark matter production during the epoch of reheating can give the right abundance.

  15. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  16. Dense neutron star matter

    SciTech Connect

    Stone, J. R.

    2014-05-02

    The microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high-density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfill basic requirements of fundamental laws of physics.

  17. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  18. The Study of Matter.

    ERIC Educational Resources Information Center

    Campbell, Peter

    2000-01-01

    Reviews the booklet "The Study of Matter" produced by the Institute of Physics as part of their Shaping the Future series. This booklet is designed for teachers of chemistry, physics, design and technology, and biology. (Author/CCM)

  19. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range. PMID:27314712

  20. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  1. Dark Matter Effective Theory

    NASA Astrophysics Data System (ADS)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-05-01

    We organize the effective (self-)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter (DM) cutoff scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting DM induced flavor-changing operators. Our general framework allows for model independent investigations of DM properties.

  2. Dense cold matter

    SciTech Connect

    Stavinskiy, A. V.

    2015-07-15

    The possibility of studying matter at densities on the order of or higher than the neutron-star density in laboratory experiments is considered. For this, it is proposed to employ a rare kinematical trigger in collisions of relativistic ions. The expected properties of matter under such unusual conditions and a program for investigations into it are discussed, and a design of experimental setup for such investigations is proposed.

  3. Matter in transition

    DOE PAGES

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-13

    In this study, we explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, wheremore » a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.« less

  4. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  5. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  6. Matter and singularities

    NASA Astrophysics Data System (ADS)

    Morrison, David R.; Taylor, Washington

    2012-01-01

    We analyze the structure of matter representations arising from codimension two singularities in F-theory, focusing on gauge groups SU( N). We give a detailed local description of the geometry associated with several types of singularities and the associated matter representations. We also construct global F-theory models for 6D and 4D theories containing these matter representations. The codimension two singularities encountered include examples where the apparent Kodaira singularity type does not need to be completely resolved to produce a smooth Calabi-Yau, examples with rank enhancement by more than one, and examples where the 7-brane configuration is singular. We identify novel phase transitions, in some of which the gauge group remains fixed but the singularity type and associated matter content change along a continuous family of theories. Global analysis of 6D theories on ℙ2 with 7-branes wrapped on curves of small degree reproduces the range of 6D supergravity theories identified through anomaly cancellation and other consistency conditions. Analogous 4D models are constructed through global F-theory compactifications on ℙ3, and have a similar pattern of SU( N) matter content. This leads to a constraint on the matter content of a limited class of 4D supergravity theories containing SU( N) as a local factor of the gauge group.

  7. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  8. Symmetryless dark matter

    NASA Astrophysics Data System (ADS)

    Kajiyama, Yuji; Kannike, Kristjan; Raidal, Martti

    2012-02-01

    It is appealing to stabilize dark matter by the same discrete non-Abelian symmetry that is used to explain the structure of quark and lepton mass matrices. However, to generate exact tribimaximal neutrino mixing at tree level, the non-Abelian flavor symmetry must necessarily be broken by vacuum expectation values of flavon scalars, rendering dark matter unstable. We study singlet, doublet, and triplet SU(2) multiplets of both scalar and fermion dark matter candidates and enumerate the conditions under which no d<6 dark matter decay operators are generated even in the case if the flavor symmetry is broken to nothing. We show that under the assumptions that the flavor group is fully broken and that the dark matter decay operators are suppressed only by a high scale, the vacuum expectation values of flavon scalars transforming as higher multiplets (e.g., triplets) of the flavor group must be at the electroweak scale. The most economical way for that is to use standard model Higgs boson(s) as flavons. Such models can be tested by the LHC experiments. This scenario requires the existence of additional Froggatt-Nielsen scalars that generate hierarchies in Yukawa couplings. We study the conditions under which large and small flavor breaking parameters can coexist without destabilizing the dark matter.

  9. Mattering: What It Means to Matter in School

    ERIC Educational Resources Information Center

    Stern, Julian

    2007-01-01

    The "Every Child Matters" policy raises questions about what "mattering" means in school contexts and how schools will know the extent to which "Every Child Matters". The question of what matters means is a philosophical one and is addressed here with reference to the work on community and dialogue of two "personalist" philosophers, John Macmurray…

  10. Quark matter as dark matter in modeling galactic halo

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Kuhfittig, P. K. F.; Amin, Ruhul; Mandal, Gurudas; Ray, Saibal; Islam, Nasarul

    2012-08-01

    Considering the flat rotation curves as input and treating the matter content in the galactic halo region as quark matter, we have found out a background spacetime metric for the region of the galactic halo. We obtain fairly general conditions that ensure that gravity in the halo region is attractive. We also investigate the stability of circular orbits, along with a different role for quark matter. Bag-model quark matter meeting these conditions therefore provides a suitable model for dark matter.

  11. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  12. Asymmetric condensed dark matter

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  13. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  14. Imperfect Dark Matter

    SciTech Connect

    Mirzagholi, Leila; Vikman, Alexander E-mail: alexander.vikman@lmu.de

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  15. WISPy cold dark matter

    NASA Astrophysics Data System (ADS)

    Arias, Paola; Cadamuro, Davide; Goodsell, Mark; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2012-06-01

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches — exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques — can probe large parts of this parameter space in the foreseeable future.

  16. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  17. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  18. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-01

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  19. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  20. Resonant SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Lee, Hyun Min

    2016-07-01

    We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1)D. After the U(1)D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3 → 2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  1. Inflation and shadow matter

    NASA Technical Reports Server (NTRS)

    Krauss, L. M.; Guth, A. H.; Spergel, D. N.; Field, G. B.; Press, W. H.

    1986-01-01

    The possible production of shadow matter during the period of cosmic inflation is considered. The superstring theory of Gross et al. (1985), which results in a gauge group E8 x E8, could, at low energies, result in the existence of two sectors: an observed sector associated with all familiar particles and interactions, and a hidden one whose particles couple only through gravitational interactions with ordinary matter. It is demonstrated here that if, in the early universe, an inflationary phase is associated with the breaking of one of the symmetries in the E8 x E8 theory, this strongly constrains the physics of both sectors if shadow matter is to be the missing mass in the universe.

  2. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  3. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  4. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  5. Dark matter detection

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  6. Education Matters, June 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Who Deserves Tenure? Is It Time to Move beyond This…

  7. Education Matters, May 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Who Me? Yes, You Can Use Technology to Individualize…

  8. Education Matters, October 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Fixing D.C.'s Schools: How a 38-Year-Old Rookie…

  9. Education Matters, April 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) What Teachers Expect from Students, They Generally Get!…

  10. Education Matters, July 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) How to Avoid Burnout (Kate Johanns); and (2) Union Loses…

  11. Education Matters, October 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Big Shift: Changing Demographics in the Teaching…

  12. Education Matters, September 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) You Speak Out: 2010 AAE Member Survey; (2) Five Ways to…

  13. Education Matters, November 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Peeking Behind the Blue Ribbon (Vicki E. Murray); (2)…

  14. Exotic nuclear matter

    NASA Astrophysics Data System (ADS)

    Lenske, H.; Dhar, M.; Tsoneva, N.; Wilhelm, J.

    2016-01-01

    Recent developments of nuclear structure theory for exotic nuclei are addressed. The inclusion of hyperons and nucleon resonances is discussed. Nuclear multipole response functions, hyperon interactions in infinite matter and in neutron stars and theoretical aspects of excitations of nucleon resonances in nuclei are discussed.

  15. Education Matters, February 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Whatever It Takes? (Maybe Not): 4 Reasons Teachers…

  16. Dark matter on top

    SciTech Connect

    Gómez, M.A.; Jackson, C.B.; Shaughnessy, G. E-mail: chris@uta.edu

    2014-12-01

    We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investigate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. We find several kinematic variables that allow for a clean signal extraction and we show that the parameter space of this model will be well probed during LHC Run-II. Finally, we investigate the possibility of detecting this type of dark matter via its annihilations into gamma rays. We compute the continuum and the line emission (which includes a possible ''Higgs in Space!'' line) and its possible discovery by future gamma-ray telescopes. We find that the annihilation spectrum has distinctive features which may distinguish it from other models.

  17. Energy Matters - Spring 2002

    SciTech Connect

    2002-03-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.

  18. Education Matters, March 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Desperate Need for an Education Stimulus: An…

  19. Education Matters, June 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Coaching Teachers Boosts Student Reading: Large-Scale…

  20. Education Matters, April 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Johnny Can Write...If We Challenge Him (Bill Rhatican);…

  1. Education Matters, October 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Does Demography Dictate Destiny? The Radical Success of…

  2. Education Matters, October 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Lessons from the Frontlines of the Charter School…

  3. Education Matters, March 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The War on Progress: Why the National Education…

  4. Education Matters, January 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Invading Privacy: Card Check is on the Way! (Hans…

  5. Energy Matters - Fall 2002

    SciTech Connect

    2002-09-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. This issue focus of this edition of the Energy Matters Newsletter is on energy and environmental issues. Read more about compressed air's role in productivity, making good motor decisions, and more.

  6. Education Matters, September 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Superteacher (What if "Improving Teacher Quality" isn't…

  7. A Message that Matters

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    This article discusses marketing as an important tool in getting out the message that really matters about the value of career and technical education. Across the United States, a number of career tech schools are employing marketing strategies to make their communities aware of the benefits of career and technical education. One of these schools,…

  8. Education Matters, September 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) National Standards Gain Steam: Governors' Support Rooted…

  9. Accountability for What Matters

    ERIC Educational Resources Information Center

    Rothman, Robert

    2016-01-01

    For more than a decade, states have evaluated school performance largely through a single measure--test scores--and rated schools on whether they improved students' performance in reading or math. The idea was to focus schools' attention on the outcomes that mattered most and to focus states' attention on the schools that needed the most help in…

  10. Education Matters, February 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Arrested Development: Time for Professional Development…

  11. Education Matters, February 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Making a Game of Math: AAE Affiliate Motivates Oklahoma…

  12. Education Matters, March 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Teacher Factor: Great Teachers Are the Key to Real…

  13. Education Matters, September 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Lights, Camera, Action! Should Video Cameras Be Put in…

  14. Cancer Epidemiology Matters Blog

    Cancer.gov

    The Cancer Epidemiology Matters blog helps foster a dialogue between the National Cancer Institute's (NCI) Epidemiology and Genomics Research Program (EGRP), extramural researchers, and other individuals, such as clinicians, community partners, and advocates, who are interested in cancer epidemiology and genomics.

  15. Education Matters, July 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Hope and Promise of Charter Schools: A Science…

  16. Education Matters, April 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Doing the Right Thing: Educator Ethics in an Age of…

  17. Education Matters, November 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Education Stimulus Watch: Buckets of Money May Yield…

  18. Education Matters, March 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Supreme Court Hears Union Coercion Case; What I Observed…

  19. Education Matters, November 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Teacher Assessment (Mary Sanchez); (2) Our Economics…

  20. Education Matters, April 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Teaching as Leadership: 6 Traits of Highly Effective…

  1. Hot nuclear matter

    SciTech Connect

    Chapman, S.

    1992-11-01

    The goal in this thesis is thus twofold: The first is to investigate the feasibility of using heavy ion collisions to create conditions in the laboratory which are ripe for the formation of a quark-gluon plasma. The second is to develop a technique for studying some of the many non-perturbative features of this novel phase of matter.

  2. No Laughing Matter. Commentary

    ERIC Educational Resources Information Center

    Simmons, Steven

    2011-01-01

    Steve Kolowich's article, "No Laughing Matter" (2010), highlights the disconnect between information found on university and college websites and information relevant to students. Using a carton by Randall Munroe, Kolowich points out that website designers and college marketing officials really do not understand what is important to prospective…

  3. Why Poetry Matters

    ERIC Educational Resources Information Center

    Parini, Jay

    2008-01-01

    Poetry does not matter to most people. They go about their business as usual, rarely consulting Shakespeare, Wordsworth, or Frost. One has to wonder if poetry has any place in the 21st century, when music videos and satellite television offer daunting competition for poems, which demand a good deal of attention and considerable analytic skills, as…

  4. Education Matters, May 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Balancing Act: Achieving a Harmony between Your Work…

  5. Education Matters, August 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Creating New Paths, Attracting New Teachers: Why…

  6. Education Matters, December 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Notes from the Front Lines: Study Reveals Educators'…

  7. Education Matters, May 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Is She Your Competition? Are India's Students Outpacing…

  8. The Search for Dark Matter

    SciTech Connect

    Orrell, John

    2013-11-20

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  9. Mind Over Matter: Anabolic Steroids

    MedlinePlus

    ... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Anabolic Steroids Print Mind Over Matter: Anabolic Steroids Order Free Publication in: English Spanish Download PDF 830.69 KB Anabolic steroids are ...

  10. The Search for Dark Matter

    ScienceCinema

    Orrell, John

    2016-07-12

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  11. White matter of the brain

    MedlinePlus

    White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...

  12. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  13. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  14. Rigid particulate matter sensor

    DOEpatents

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  15. Matter in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  16. Detailing 'measures that matter'.

    PubMed

    Heavisides, Bob

    2010-04-01

    In a paper originally presented at last October's Healthcare Estates conference in Harrogate, Bob Heavisides, director of facilities at the Milton Keynes NHS Foundation Trust, explains how estates and facilities directors can provide a package of information based on a number of "measures that matter" to demonstrate to their boards that safe systems of work, operational efficiency and effectiveness, and operational parameters, are within, or better than, equivalent-sized Trusts.

  17. Cosmology with matter diffusion

    SciTech Connect

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  18. Dark matter axions revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Gondolo, Paolo

    2009-08-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae, and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma=(85±3)μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma<15meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  19. Inflatable Dark Matter

    DOE PAGES

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  20. Dilaton-assisted dark matter.

    PubMed

    Bai, Yang; Carena, Marcela; Lykken, Joseph

    2009-12-31

    A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.

  1. Dilaton-Assisted Dark Matter

    SciTech Connect

    Bai Yang; Lykken, Joseph; Carena, Marcela

    2009-12-31

    A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.

  2. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  3. Antiprotons are another matter

    SciTech Connect

    Hynes, M.V.

    1987-01-01

    Theories of gravity abound, whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer these properties from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster, and that normal matter will fall with a small Baryon-number dependance in the earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to approx.4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H/sup -/ ions which simulates the electromagnetic behavior of the antiproton, yet is a baryon to approx.0.1%. To extract the gravitational acceleration of the antiproton relative to the H/sup -/ ion with a statistical precision of 1% will require the release of approx.10/sup 6/ to 10/sup 7/ particles.

  4. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  5. Cool Quark Matter.

    PubMed

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-22

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  6. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  7. Cool Quark Matter.

    PubMed

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-22

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium. PMID:27494468

  8. Dark matter axions

    SciTech Connect

    Sikivie, P. |

    1992-09-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  9. Dark matter axions

    SciTech Connect

    Sikivie, P. . Inst. for Theoretical Physics Florida Univ., Gainesville, FL . Dept. of Physics)

    1992-01-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  10. Analysis for Extraneous Matter

    NASA Astrophysics Data System (ADS)

    Dogan, Hulya; Subramanyam, Bhadriraju; Pedersen, John R.

    Analysis for extraneous matter is an important element both in the selection of raw materials for food manufacturing and for monitoring the quality of processed foods. The presence of extraneous material in a food product is unappealing and can pose a serious health hazard to the consumer. It also represents lack of good manufacturing practices and sanitary conditions in production, storage, or distribution. The presence of extraneous materials in the product ingredients may render the final product adulterated and not suitable for human food.

  11. Levitating dark matter

    SciTech Connect

    Kaloper, Nemanja; Padilla, Antonio E-mail: antonio.padilla@nottingham.ac.uk

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  12. Levitating dark matter

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  13. Dark matter candidates

    SciTech Connect

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of. Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs.

  14. Radiative accidental matter

    NASA Astrophysics Data System (ADS)

    Sierra, D. Aristizabal; Simoes, C.; Wegman, D.

    2016-07-01

    Accidental matter models are scenarios where the beyond-the-standard model physics preserves all the standard model accidental and approximate symmetries up to a cutoff scale related with lepton number violation. We study such scenarios assuming that the new physics plays an active role in neutrino mass generation, and show that this unavoidably leads to radiatively induced neutrino masses. We systematically classify all possible models and determine their viability by studying electroweak precision data, big bang nucleosynthesis and electroweak perturbativity, finding that the latter places the most stringent constraints on the mass spectra. These results allow the identification of minimal radiative accidental matter models for which perturbativity is lost at high scales. We calculate radiative charged-lepton flavor violating processes in these setups, and show that μ → eγ has a rate well within MEG sensitivity provided the lepton-number violating scale is at or below 5×105 GeV, a value (naturally) assured by the radiative suppression mechanism. Sizeable τ → μγ branching fractions within SuperKEKB sensitivity are possible for lower lepton-number breaking scales. We thus point out that these scenarios can be tested not only in direct searches but also in lepton flavor-violating experiments.

  15. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  16. Familon model of dark matter

    NASA Astrophysics Data System (ADS)

    Burdyuzha, V.; Lalakulich, O.; Ponomarev, Yu.; Vereshkov, G.

    2004-05-01

    If the next fundamental level of matter occurs (preons), then dark matter must consist of familons containing a 'hot' component from massless particles and a 'cold' component from massive particles. During the evolution of the Universe this dark matter occurred up to late-time relativistic phase transitions the temperatures of which were different. Fluctuations created by these phase transitions had a fractal character. As a result the structuration of dark matter (and therefore the baryon subsystem) occurred, and in the Universe some characteristic scales which have caused this phenomenon arise naturally. Familons are collective excitations of non-perturbative preon condensates that could be produced during an earlier relativistic phase transition. For structuration of dark matter (and the baryon component), three generations of particles are necessary. The first generation of particles produced the observed baryon world. The second and third generations produced dark matter from particles that appeared when symmetry between the generations was spontaneously broken.

  17. Quark matter or new particles?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  18. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  19. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2016-07-12

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  20. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  1. Parents Matter: Supporting the Birth to Three Matters Framework

    ERIC Educational Resources Information Center

    Abbott, Lesley; Langston, Ann

    2006-01-01

    This book explores the important role of parents and the extended family in the lives of babies and young children. It complements and extends the DfES Birth to Three Matters framework, which supports practitioners in working with children aged birth to three, and builds on the information provided in the companion book "Birth to Three Matters:…

  2. Language matters: an introduction.

    PubMed

    Leap, William L; Provencher, Denis M

    2011-01-01

    That language and sexuality are closely connected is one of the enduring themes in human sexuality research. The articles in this special issue of the Journal of Homosexuality explore some of these language-centered insights as they apply to same-sex related desires, identities, and practices and to other dimensions of non-normative sexual experiences. The articles address language use over a range of geographic and social locations. The linguistic practices discussed are diverse, including the language associated with Santería, comments viewers make about gay pornography, homophobic discourse, coming out stories, stories where declarations of sexual identity are tacitly withheld, sexual messages in Black hip hop culture, assessments of urban AIDS ministries, and policies that limit transgender subjects' access to urban space. Taken together, these articles demonstrate that language matters in the everyday experience of sexual sameness and they model some of the approaches that are now being explored in language and sexuality studies. PMID:21740206

  3. PREFACE: Quark Matter 2008

    NASA Astrophysics Data System (ADS)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  4. Organic Matter Management

    SciTech Connect

    Izaurralde, Roberto C.; Cerri, Carlos C.

    2002-01-01

    Soil organic matter (S)M) is an essential attribute of soil quality with a key role in soil conservation and sustainable agriculture. Many practices-some involving land use changes-have been shown to increase SOM and thus received considerable attention for their possible role in climate change mitigation. Carbon sequestration in managed soils occurs when there is a net removal of atmospheric CO2 because of the balance between carbon inputs (net primary productivity) and outputs (soil respiration, management-related C emissions). Soil C sequestration has the additional appeal that all its practices conform to principles of sustainable agriculture (e.g., reduced tillage, erosion control, diverse cropping systems, improved soil fertility). Long-term field experiments have been instrumental to increase our understanding of SOM dynamics. This chapter presents fundamental concepts to guide readers on the role of SOM in sustainable agriculture and climate change mitigation.

  5. Superdense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Datta, B.; Kalman, G.

    1978-01-01

    A relativistic theory of high-density matter is presented which takes into account the short-range interaction due to the exchange of spin-2 mesons. An equation of state is derived and used to compute neutron-star properties. The prediction of the theory for the values of maximum mass and moment of inertia for a stable neutron star are 1.75 solar masses and 1.68 by 10 to the 45th power g-sq cm, in very good agreement with the presently known observational bounds. The corresponding radius is found to be 10.7 km. It is found that the inclusion of the spin-2 interaction reduces the disagreement between the relativistic and nonrelativistic theories in their predictions of masses and moments of inertia.

  6. Indirect Dark Matter Signals

    SciTech Connect

    Boer, Wim de

    2008-11-23

    Dark Matter annihilation (DMA) may yield an excess of gamma rays and antimatter particles, like antiprotons and positrons, above the background from cosmic ray interactions. Several signatures, ranging from the positron excess, as observed by HEAT, AMS-01 and PAMELA, the gamma ray excess, as observed by the EGRET spectrometer, the WMAP-haze, and constraints from antiprotons, as observed by CAPRICE, BESS and PAMELA, have been discussed in the literature. Unfortunately, the different signatures all lead to different WIMP masses, indicating that at least some of these interpretations are likely to be incorrect. Here we review them and discuss their relative merits and uncertainties. New x-ray data from ROSAT suggests non-negligible convection in our Galaxy, which leads to an order of magnitude uncertainty in the yield of charged particles from DMA, since even a rather small convection will let drift the charged particles in the halo to outer space.

  7. Dark Matter Burners

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.; /SLAC

    2007-02-28

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  8. Language matters: an introduction.

    PubMed

    Leap, William L; Provencher, Denis M

    2011-01-01

    That language and sexuality are closely connected is one of the enduring themes in human sexuality research. The articles in this special issue of the Journal of Homosexuality explore some of these language-centered insights as they apply to same-sex related desires, identities, and practices and to other dimensions of non-normative sexual experiences. The articles address language use over a range of geographic and social locations. The linguistic practices discussed are diverse, including the language associated with Santería, comments viewers make about gay pornography, homophobic discourse, coming out stories, stories where declarations of sexual identity are tacitly withheld, sexual messages in Black hip hop culture, assessments of urban AIDS ministries, and policies that limit transgender subjects' access to urban space. Taken together, these articles demonstrate that language matters in the everyday experience of sexual sameness and they model some of the approaches that are now being explored in language and sexuality studies.

  9. Quark matter and fermionic dark matter compact stars

    NASA Astrophysics Data System (ADS)

    Samanta, Chhanda; Mukhopadhyay, Somenath; Basu, Devasish Narayan

    2016-03-01

    Compact stars, made of quark matter and fermionic dark matter with arbitrary masses and interaction strengths, are studied by solving the Tolman-Oppenheimer-Volkoff equation of general relativity. The mass-radius relation for quark matter compact stars is obtained from the MIT bag model equation of state (EoS) with thin crust for different bag constants. The EoS of non-self-annihilating dark matter for an interacting Fermi gas with dark matter particle of 1-100 GeV mass is studied. For sufficiently strong interactions, the maximum stable mass of compact stars and its radius are controlled by the parameter of the interaction, both increasing linearly with the interaction strength. The mass-radius relation for compact stars made of strongly interacting fermions shows that the radius remains approximately constant for a wide range of compact stars.

  10. Does Climate Literacy Matter?

    NASA Astrophysics Data System (ADS)

    Bedford, D. P.

    2014-12-01

    One obstacle to climate science education is the perception that climate literacy plays little or no role in the formation of opinions about the reality and seriousness of anthropogenic global warming (AGW), or that members of the non-specialist public already know enough climate science to hold an informed opinion. Why engage in climate science education if climate literacy does not matter? The idea that resistance to or dismissal of the findings and policy implications of climate science can be addressed simply by providing more and better information—the 'deficit model'—has been heavily critiqued in recent years. However, the pendulum is in danger of swinging too far in the opposite direction, with the view that information deficits either do not exist or are not relevant at all to attitude formation, and that cultural perspectives are sufficient by themselves to explain attitudes to AGW. This paper briefly reviews several recent publications that find a correlation between higher levels of climate literacy and greater acceptance of or concern about AGW, then presents results from a survey completed by 458 students at a primarily undergraduate institution in northern Utah in April-May 2013. These data indicate that attitudes to AGW are largely tribal, based on political outlook, Democrats being more concerned, Republicans less concerned. Overall levels of climate literacy demonstrated by respondents were low, but concern about AGW increased with higher levels of climate literacy among Republicans—though not among Democrats, for whom acceptance of AGW appears to be more an article of faith or badge of identity. Findings such as this suggest that, contrary to some recent critiques of the deficit model, information deficits do exist and do matter for opinion formation on AGW, although cultural factors are clearly also of great importance. Climate science education therefore can potentially help engage members of the public in issues related to AGW.

  11. DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables.

    PubMed

    Kamalakaran, Sitharthan; Varadan, Vinay; Giercksky Russnes, Hege E; Levy, Dan; Kendall, Jude; Janevski, Angel; Riggs, Michael; Banerjee, Nilanjana; Synnestvedt, Marit; Schlichting, Ellen; Kåresen, Rolf; Shama Prasada, K; Rotti, Harish; Rao, Ramachandra; Rao, Laxmi; Eric Tang, Man-Hung; Satyamoorthy, K; Lucito, Robert; Wigler, Michael; Dimitrova, Nevenka; Naume, Bjorn; Borresen-Dale, Anne-Lise; Hicks, James B

    2011-02-01

    The diversity of breast cancers reflects variations in underlying biology and affects the clinical implications for patients. Gene expression studies have identified five major subtypes- Luminal A, Luminal B, basal-like, ErbB2+ and Normal-Like. We set out to determine the role of DNA methylation in subtypes by performing genome-wide scans of CpG methylation in breast cancer samples with known expression-based subtypes. Unsupervised hierarchical clustering using a set of most varying loci clustered the tumors into a Luminal A majority (82%) cluster, Basal-like/ErbB2+ majority (86%) cluster and a non-specific cluster with samples that were also inconclusive in their expression-based subtype correlations. Contributing methylation loci were both gene associated loci (30%) and non-gene associated (70%), suggesting subtype dependant genome-wide alterations in the methylation landscape. The methylation patterns of significant differentially methylated genes in luminal A tumors are similar to those identified in CD24 + luminal epithelial cells and the patterns in basal-like tumors similar to CD44 + breast progenitor cells. CpG islands in the HOXA cluster and other homeobox (IRX2, DLX2, NKX2-2) genes were significantly more methylated in Luminal A tumors. A significant number of genes (2853, p < 0.05) exhibited expression-methylation correlation, implying possible functional effects of methylation on gene expression. Furthermore, analysis of these tumors by using follow-up survival data identified differential methylation of islands proximal to genes involved in Cell Cycle and Proliferation (Ki-67, UBE2C, KIF2C, HDAC4), angiogenesis (VEGF, BTG1, KLF5), cell fate commitment (SPRY1, OLIG2, LHX2 and LHX5) as having prognostic value independent of subtypes and other clinical factors.

  12. Quark Matter '87: Concluding remarks

    SciTech Connect

    Gyulassy, M.

    1988-03-01

    This year marked the beginning of the experimental program at BNL and CERN to probe the properties of ultra dense hadronic matter and to search for the quark-gluon plasma phase of matter. Possible implications of the preliminary findings are discussed. Problems needing further theoretical and experimental study are pointed out. 50 refs.

  13. Astronomy Matters for Chemistry Teachers.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; And Others

    1996-01-01

    Describes basic misconceptions about the origin of elements and forms of matter found in chemistry texts that need modification in light of modern observational data and interpretations given in astronomy. Notes that there are forms of matter other than elements and compounds. Confounding examples from astronomy include white dwarfs, neutron…

  14. Soft matter: food for thought

    NASA Astrophysics Data System (ADS)

    Ogborn, Jon

    2004-01-01

    'Soft matter' is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on the boundary between physics and chemistry.

  15. Soft Matter: Food for Thought

    ERIC Educational Resources Information Center

    Ogborn, Jon

    2004-01-01

    "Soft matter" is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on…

  16. Dark Matter Searches With GLAST

    SciTech Connect

    Wai, Lawrence; Nuss, E.

    2007-02-05

    Indirect detection of particle dark matter relies upon pair annihilation of Weakly Interaction Massive Particles (WIMPs), which is complementary to the well known techniques of direct detection (WIMP-nucleus scattering) and collider production (WIMP pair production). Pair annihilation of WIMPs results in the production of gamma-rays, neutrinos, and anti-matter. Of the various experiments sensitive to indirect detection of dark matter, the Gamma-ray Large Area Space Telescope (GLAST) may play the most crucial role in the next few years. After launch in late 2007, The GLAST Large Area Telescope (LAT) will survey the gamma-ray sky in the energy range of 20MeV-300GeV. By eliminating charged particle background above 100 MeV, GLAST may be sensitive to as yet to be observed Milky Way dark matter subhalos, as well as WIMP pair annihilation spectral lines from the Milky Way halo. Discovery of gamma-ray signals from dark matter in the Milky Way would not only demonstrate the particle nature of dark matter; it would also open a new observational window on galactic dark matter substructure. Location of new dark matter sources by GLAST would dramatically alter the experimental landscape; ground based gamma ray telescopes could follow up on the new GLAST sources with precision measurements of the WIMP pair annihilation spectrum.

  17. The search for dark matter

    NASA Astrophysics Data System (ADS)

    Cline, David B.

    2016-03-01

    We discuss the search for dark matter. We first review the data from LUX that excludes the low-mass WIMP region and slightly lowers the XENON100 limits. We provide a brief review of the problems with the claimed low-mass signals. We discuss the current expectations for SUSY-WIMP dark matter and show why very massive detectors like Darwin may be required. We discuss some theoretical predictions from the meeting. There was compelling evidence from events observed in the Galactic Center by Fermi-LAT of WIMP dark matter at the UCLA meeting. We recount the Richard Arnowitt Lectures at UCLA dark matter symposiums and his role in the development of the strategy to detect SUGRA dark matter. In Honor of Richard Arnowitt.

  18. Multi-Component Dark Matter

    SciTech Connect

    Zurek, Kathryn M.

    2008-11-01

    We explore multi-component dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multi-component nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z{sub 2}, is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals, without an excess in antiprotons which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter.

  19. Unified origin for baryonic visible matter and antibaryonic dark matter.

    PubMed

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  20. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  1. Modeling Soft Matter

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    Soft matter science or soft materials science is a relatively new term for the science of a huge class of rather different materials such as colloids, polymers (of synthetic or biological origin), membranes, complex molecular assemblies, complex fluids, etc. and combinations thereof. While many of these systems are contained in or are even the essential part of everyday products ("simple" plastics such as yoghurt cups, plastic bags, CDs, many car parts; gels and networks such as rubber, many low fat foods, "gummi" bears; colloidal systems such as milk, mayonnaise, paints, almost all cosmetics or body care products, the border lines between the different applications and systems are of course not sharp) or as biological molecules or assemblies (DNA, proteins, membranes and cytoskeleton, etc.) are central to our existence, others are basic ingredients of current and future high tech products (polymers with specific optical or electronic properties, conducting macromolecules, functional materials). Though the motivation is different in life science rather than in materials science biomolecular simulations, the basic structure of the problems faced in the two fields is very similar.

  2. What's the Matter?

    NASA Astrophysics Data System (ADS)

    Berry, L. A.

    2004-11-01

    Virtually all of the visible universe is composed of plasma. Yet, despite the introduction of plasma displays into everyday use, most people still don't know either what a plasma is or the breadth and importance of plasma applications and science. The Coalition for Plasma Science (CPS) is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. CPS activities include maintaining a website, http://www.plasmacoalition.org, developing educational literature, organizing educational luncheon presentations for Members of Congress and their staffs, and responding to questions about plasmas that are received by the CPS e-mail or toll-free number. With the support of the APS/DPP and the IEEE/PSAC, the CPS is working on establishing a science fair prize for plasma related projects. These CPS activities depend on the voluntary labor of CPS members and associates. New participants are needed to enable more people to respond: The matter is plasma! Send an e-mail to the CPS at CPS@plasmacoalition.org for information.

  3. Modelling Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.

    2016-04-01

    Hadron physics stands somewhere in the diffuse intersection between nuclear and particle physics and relies largely on the use of models. Historically, around 1930, the first nuclear physics models known as the liquid drop model and the semi-empirical mass formula established the grounds for the study of nuclei properties and nuclear structure. These two models are parameter dependent. Nowadays, around 500 hundred non-relativistic (Skyrme-type) and relativistic models are available in the literature and largely used and the vast majority are parameter dependent models. In this review I discuss some of the shortcomings of using non-relativistic models and the advantages of using relativistic ones when applying them to describe hadronic matter. I also show possible applications of relativistic models to physical situations that cover part of the QCD phase diagram: I mention how the description of compact objects can be done, how heavy-ion collisions can be investigated and particle fractions obtained and show the relation between liquid-gas phase transitions and the pasta phase.

  4. Bright Galaxies, Dark Matters

    NASA Astrophysics Data System (ADS)

    Rubin, Vera

    In 1965, Vera Rubin was the first woman permitted to observe at Palomar Observatory. In the intervening years, she has become one of the world's finest and most respected astronomers. This particular collection of essays is compiled from work written over the past 15 years and deals with a variety of subjects in astronomy and astrophysics, specifically galaxies and dark matter. The book also contains biographical sketches of astronomers who have been colleagues and friends, providing a stimulating view of a woman in science. About the Author Since 1965 Vera Rubin has been a staff member at the Department of Terrestrial Magnetism of the Carnegie Institution of Washington. Dr. Rubin has authored nearly 200 papers on the structure of our galaxy, motions within other galaxies, and large scale motions in the universe. She has been a distinguished visiting astronomer at the Cerro Tololo Inter American Observatory in Chile; a Chancellor's Distinguished Professor at the University of California, Berkeley; a President's Distinguished Visitor at Vassar College; and a Beatrice Tinsley visiting professor at the University of Texas, Austin.

  5. Quark matter and cosmology

    SciTech Connect

    Schramm, D.N. |; Fields, B.; Thomas, D.

    1992-01-01

    The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin.

  6. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  7. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  8. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  9. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10-25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10-26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  10. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  11. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  12. Skew-flavored dark matter

    DOE PAGES

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  13. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  14. Distribution of Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Langton, Jonathan; Foss, Asa

    2001-04-01

    In this paper we examine the rotational curves of two dwarf spiral galaxies, NGC 2403 and NGC 3198. The observed rotation cannot be accounted for by luminous matter alone, therefore there must be a substantial dark component. We found the dark matter in both galaxies to be distributed according to the equation rho(r) = b*r/(r^2 + x^2). Combining this with a distribution of luminous matter rho(r)= rho(o)* e^-(a*r), we produced a rotation curve that matched the observed orbital velocities to within 4%.

  15. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. PMID:26100932

  16. Mixed dark matter from technicolor

    SciTech Connect

    Belyaev, Alexander; Frandsen, Mads T.; Sarkar, Subir; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo-Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal abundance alone we find a lower bound of m{sub W} on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC.

  17. Dark-matter 'paparazzi' exposed

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2008-10-01

    After waiting almost two years for data that may shed light on the mysterious substance that makes up almost a quarter of the universe, some physicists thought a new result on dark matter was just too exciting to keep quiet. So when a member of the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) team recently gave a conference talk, a few audience members could not resist taking photos of the slides. By incorporating their snapshots into papers posted on the arXiv preprint server, these "paparazzi" physicists sparked a debate on both dark matter and datasharing etiquette in a digital world.

  18. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  19. Superheavy dark Matter

    SciTech Connect

    Daniel Chung

    2000-05-25

    If there exists fields of mass of the order of 10{sup 13} GeV and large field inflation occurs, their interaction with classical gravitation will generate enough particles to give the universe critical density today regardless of their nongravitational coupling. In the standard dark matter scenarios, WIMPs are usually considered to have once been in local thermodynamic equilibrium (LTE), and their present abundance is determined by their self-annihilation cross section. In that case, unitarity and the lower bound on the age of the universe constrains the mass of the relic to be less than 500 TeV. On the other hand, if the DM particles never attained LTE in the past, self-annihilation cross section does not determine their abundance. For example, axions, which may never have been in LTE, can have their abundance determined by the dynamics of the phase transition associated with the breaking of U(1){sub PQ}. These nonthermal relics (ones that never obtained LTE) are typically light. However, there are mechanisms that can produce superheavy (many orders of magnitude greater than the weak scale) nonthermal relics. Some of this is reviewed in reference 2. Although not known at the time when this talk was given, it is now known that if the DM fields are coupled to the inflaton field, then the mass of the DM particles that can be naturally produced in significant abundance after inflation can be as large as 10{sup {minus}3} M{sub Pl} (paper in preparation). The author discusses the gravitational production mechanism which is a generic consequence of any large field inflationary phase ending.

  20. Cerebral White Matter

    PubMed Central

    Schmahmann, Jeremy D.; Smith, Eric E.; Eichler, Florian S.; Filley, Christopher M.

    2013-01-01

    Lesions of the cerebral white matter (WM) result in focal neurobehavioral syndromes, neuropsychiatric phenomena, and dementia. The cerebral WM contains fiber pathways that convey axons linking cerebral cortical areas with each other and with subcortical structures, facilitating the distributed neural circuits that subserve sensorimotor function, intellect, and emotion. Recent neuroanatomical investigations reveal that these neural circuits are topographically linked by five groupings of fiber tracts emanating from every neocortical area: (1) cortico-cortical association fibers; (2) corticostriatal fibers; (3) commissural fibers; and cortico-subcortical pathways to (4) thalamus and (5) pontocerebellar system, brain stem, and/or spinal cord. Lesions of association fibers prevent communication between cortical areas engaged in different domains of behavior. Lesions of subcortical structures or projection/striatal fibers disrupt the contribution of subcortical nodes to behavior. Disconnection syndromes thus result from lesions of the cerebral cortex, subcortical structures, and WM tracts that link the nodes that make up the distributed circuits. The nature and the severity of the clinical manifestations of WM lesions are determined, in large part, by the location of the pathology: discrete neurological and neuropsychiatric symptoms result from focal WM lesions, whereas cognitive impairment across multiple domains—WM dementia—occurs in the setting of diffuse WM disease. We present a detailed review of the conditions affecting WM that produce these neurobehavioral syndromes, and consider the pathophysiology, clinical effects, and broad significance of the effects of aging and vascular compromise on cerebral WM, in an attempt to help further the understanding, diagnosis, and treatment of these disorders. PMID:18990132

  1. Active matter, then and now.

    PubMed

    Keller, Evelyn Fox

    2016-09-01

    Historically, living was divided from dead, inert matter by its autonomous activity. Today, a number of materials not themselves alive are characterized as having inherent activity, and this activity has become the subject of a hot new field of physics, "Active Matter", or "Soft matter become alive." For active matter scientists, the relation of physics to biology is guaranteed in one direction by the assertion that the cell is a material, and hence its study can be considered a branch of material science, and in the other direction, by the claim that the physical dynamics of this material IS what brings the cell to life, and therefore its study is a proper branch of biology. I will examine these claims in relation to the concerns of nineteenth century scientists on the one hand, and on the other, in relation to future prospects of the division between animate and inanimate. PMID:27580611

  2. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-01

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology.

  3. The LZ dark matter experiment

    NASA Astrophysics Data System (ADS)

    McKinsey, D. N.; LZ Collaboration

    2016-05-01

    The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.

  4. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-01

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. PMID:27602719

  5. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  6. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  7. Strongly interacting parton matter equilibration

    SciTech Connect

    Ozvenchuk, V.; Linnyk, O.; Bratkovskaya, E.; Gorenstein, M.; Cassing, W.

    2012-07-15

    We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.

  8. Neutron stars and strange matter

    SciTech Connect

    Cooperstein, J.

    1986-01-01

    The likelihood is investigated that quark matter with strangeness of order unity resides in neutron stars. In the strong coupling regime near rho/sub 0/ this is found to be unlikely. Considering higher densities where perturbative expansions are used, we find a lower bound to be at 7rho/sub 0/ for the transition density. This is higher than the inferred density of observed neutron stars, and thus the transition to quark matter is precluded. 15 refs., 3 figs.

  9. Matter perturbations in Galileon cosmology

    SciTech Connect

    De Felice, Antonio; Kase, Ryotaro; Tsujikawa, Shinji

    2011-02-15

    We study the evolution of matter density perturbations in Galileon cosmology where the late-time cosmic acceleration can be realized by a field kinetic energy. We obtain full perturbation equations at linear order in the presence of five covariant Lagrangians L{sub i} (i=1,{center_dot}{center_dot}{center_dot},5) satisfying the Galileon symmetry {partial_derivative}{sub {mu}}{phi}{yields}{partial_derivative}{sub {mu}}{phi}{sup +}b{sub {mu}} in the flat space-time. The equations for a matter perturbation as well as an effective gravitational potential are derived under a quasistatic approximation on subhorizon scales. This approximation can reproduce full numerical solutions with high accuracy for the wavelengths relevant to large-scale structures. For the model parameters constrained by the background expansion history of the Universe, the growth rate of matter perturbations is larger than that in the {Lambda}-cold dark matter model, with the growth index {gamma} today typically smaller than 0.4. We also find that, even on very large scales associated with the integrated-Sachs-Wolfe effect in cosmic microwave background temperature anisotropies, the effective gravitational potential exhibits a temporal growth during the transition from the matter era to the epoch of cosmic acceleration. These properties are useful to distinguish the Galileon model from the {Lambda}-cold dark matter model in future high-precision observations.

  10. Extreme Mechanics of Growing Matter

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2013-03-01

    Growth is a distinguishing feature of all living things. Unlike standard materials, living matter can autonomously respond to alterations in its environment. As a result of a continuous ultrastructural turnover and renewal of cells and extracellular matrix, living matter can undergo extreme changes in composition, size, and shape within the order of months, weeks, or days. While hard matter typically adapts by increasing its density to grow strong, soft matter adapts by increasing its volume to grow large. Here we provide a state-of-the-art review of growing matter, and compare existing mathematical models for growth and remodeling of living systems. Applications are plentiful ranging from plant growth to tumor growth, from asthma in the lungs to restenosis in the vasculature, from plastic to reconstructive surgery, and from skeletal muscle adaptation to heart failure. Using these examples, we discuss current challenges and potential future directions. We hope to initiate critical discussions around the biophysical modeling of growing matter as a powerful tool to better understand biological systems in health and disease. This research has been supported by the NSF CAREER award CMMI 0952021.

  11. Dark matter and global symmetries

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  12. Bootstrapping white matter segmentation, Eve++

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-03-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  13. Dark matter beams at LBNF

    DOE PAGES

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  14. Plasma dark matter direct detection

    SciTech Connect

    Clarke, J.D.; Foot, R. E-mail: rfoot@unimelb.edu.au

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  15. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  16. Matter-antimatter asymmetry and dark matter from torsion

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem J.

    2011-04-01

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  17. Matter-antimatter asymmetry and dark matter from torsion

    SciTech Connect

    Poplawski, Nikodem J.

    2011-04-15

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  18. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  19. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  20. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  1. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  2. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  3. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  4. Quality and Safety Matter

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    ,(the presenter) 0 injuries, 0 deaths 3. March 18, 1980,(USSR) Vostok 8A92M booster pad explosion, 48 deaths. 4. August 22, 2003,(Brazil) -Alcantara VLS -1, V03. Solid rocket ignited on pad, 21 deaths 5. Summer of 2006(USA) a payload organization inquired about requirements to fly a satellite with a new “safe” SpaceDev hybrid propulsion system using a solid polymer as the fuel and nitrous oxide as the oxidizer. The extensive titanium/nitrous oxide materials compatibility testing that was required discouraged the payload organization from further exploration of using the Shuttle as the launch vehicle. 6. July 26, 2007(USA) SpaceShipTwo nitrous oxide explosion, 3 seriously injured, 3 deaths The above listed catastrophic failures resulted in 210 deaths, but there were none on the Apollo SM explosion because of compliance with CalOSHA. This is an applied lesson learned of the Shuttle. Safety was not jeopardized without extensive materials compatibility testing. On the other hand, the nitrous oxide was erroneously identified as safe for launch from Shuttle or ISS which resulted in a catastrophic explosion and resulted in 3 major injuries, and 3 deaths. This is a testimony of a survivor of a catastrophic failure where safety rules were followed and the application of the lesson learned which confirmed safety and quality, as expressed by Von Braun, PERFECTION and SAFETY do MATTER!

  5. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  6. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  7. Cryogenic Dark Matter Search (CDMS): The Hunt for Dark Matter

    SciTech Connect

    Sadoulet, Bernard

    2006-03-06

    Deciphering the nature of dark matter has great scientific importance. A leading hypothesis is that dark matter is made of Weakly Interactive Massive Particles (WIMPs), which may result from supersymmetry or additional spatial dimensions. The underground search for elastic scattering of WIMPs on suitable targets (the so-called 'direct detection') is currently led by the Cryogenic Dark Matter Search II (CDMS II) experiment. Its sensitivity is ten times better than any other experiment and we hope to obtain another factor ten in the coming two years. After a brief recall of our recent results, I will describe the complementarity between direct detection experiments, the LHC and the ILC and I will outline the role that SLAC could play in this SuperCDMS program.

  8. Dark matter, neutron stars, and strange quark matter.

    PubMed

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  9. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  10. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests. PMID:27258861

  11. Did LIGO Detect Dark Matter?

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D.; Raccanelli, Alvise; Riess, Adam G.

    2016-05-01

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20 M⊙≲Mbh≲100 M⊙ where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2 - 53 Gpc-3 yr-1 rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  12. Inflationary imprints on dark matter

    SciTech Connect

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo E-mail: tommi.tenkanen@helsinki.fi

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  13. Exotic States of Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto; Baldo, Marcello; Burgio, Fiorella; Schulze, Hans-Josef

    2008-02-01

    pt. A. Theory of nuclear matter EOS and symmetry energy. Constraining the nuclear equation of state from astrophysics and heavy ion reactions / C. Fuchs. In-medium hadronic interactions and the nuclear equation of state / F. Sammarruca. EOS and single-particle properties of isospin-asymmetric nuclear matter within the Brueckner theory / W. Zuo, U. Lombardo & H.-J. Schulze. Thermodynamics of correlated nuclear matter / A. Polls ... [et al.]. The validity of the LOCV formalism and neutron star properties / H. R. Moshfegh ... [et al.]. Ferromagnetic instabilities of neutron matter: microscopic versus phenomenological approaches / I. Vidaã. Sigma meson and nuclear matter saturation / A. B. Santra & U. Lombardo. Ramifications of the nuclear symmetry energy for neutron stars, nuclei and heavy-ion collisions / A. W. Steiner, B.-A. Li & M. Prakash. The symmetry energy in nuclei and nuclear matter / A. E. L. Dieperink. Probing the symmetry energy at supra-saturation densities / M. Di Toro et al. Investigation of low-density symmetry energy via nucleon and fragment observables / H. H. Wolter et al. Instability against cluster formation in nuclear and compact-star matter / C. Ducoin ... [et al.]. Microscopic optical potentials of nucleon-nucleus and nucleus-nucleus scattering / Z.-Y. Ma, J. Rong & Y.-Q. Ma -- pt. B. The neutron star crust: structure, formation and dynamics. Neutron star crust beyond the Wigner-Seitz approximation / N. Chamel. The inner crust of a neutron star within the Wigner-Seitz method with pairing: from drip point to the bottom / E. E. Saperstein, M. Baldo & S. V. Tolokonnikov. Nuclear superfluidity and thermal properties of neutron stars / N. Sandulescu. Collective excitations: from exotic nuclei to the crust of neutron stars / E. Khan, M. Grasso & J. Margueron. Monte Carlo simulation of the nuclear medium: fermi gases, nuclei and the role of Pauli potentials / M. A. Pérez-García. Low-density instabilities in relativistic hadronic models / C. Provid

  14. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  15. The DAMIC Dark Matter Experiment

    SciTech Connect

    de Mello Neto, J. R.T.

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  16. Dark matter in 3D

    DOE PAGES

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our methodmore » using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.« less

  17. Swim pressure of active matter

    NASA Astrophysics Data System (ADS)

    Takatori, Sho; Yan, Wen; Brady, John; Caltech Team

    2014-11-01

    Through their self-motion, all active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important (i.e., the Stokes number is not small). Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  18. Dark matter from split seesaw

    NASA Astrophysics Data System (ADS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-09-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  19. Naturality, unification, and dark matter

    SciTech Connect

    Kainulainen, Kimmo; Virkajaervi, Jussi; Tuominen, Kimmo

    2010-08-15

    We consider a model where electroweak symmetry breaking is driven by technicolor dynamics with minimal particle content required for walking coupling and saturation of global anomalies. Furthermore, the model features three additional Weyl fermions singlet under technicolor interactions, two of which provide for a one-loop unification of the standard model gauge couplings. Among these extra matter fields exists a possible candidate for weakly interacting dark matter. We evaluate the relic densities and find that they are sufficient to explain the cosmological observations and avoid the experimental limits from earth-based searches. Hence, we establish a nonsupersymmetric framework where hierarchy and naturality problems are solved, coupling constant unification is achieved, and a plausible dark matter candidate exists.

  20. Deuteron distribution in nuclear matter

    NASA Astrophysics Data System (ADS)

    Benhar, O.; Fabrocini, A.; Fantoni, S.; Illarionov, A. Yu.; Lykasov, G. I.

    2002-05-01

    We analyze the properties of deuteron-like structures in infinite, correlated nuclear matter, described by a realistic hamiltonian containing the Urbana v14 two-nucleon and the Urbana TNI many-body potentials. The distribution of neutron-proton pairs, carrying the deuteron quantum numbers, is obtained as a function of the total momentum by computing the overlap between the nuclear matter in its ground state and the deuteron wave functions in correlated basis functions theory. We study the differences between the S- and D-wave components of the deuteron and those of the deuteron-like pair in the nuclear medium. The total number of deuteron type pairs is computed and compared with the predictions of Levinger's quasideuteron model. The resulting Levinger's factor in nuclear matter at equilibrium density is 11.63. We use the local density approximation to estimate the Levinger's factor for heavy nuclei, obtaining results which are consistent with the available experimental data from photoreactions.

  1. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  2. Introduction. Cosmology meets condensed matter.

    PubMed

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  3. Dark Matter in 3D

    SciTech Connect

    Alves, Daniele S.M.; Hedri, Sonia El; Wacker, Jay G.

    2012-04-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  4. Matters on a Moving Brane

    NASA Astrophysics Data System (ADS)

    Koivisto, Tomi Sebastian; Wills, Danielle Elizabeth

    2013-10-01

    A novel generalization of the Dirac-Born-Infeld string scenario is described. It is shown that matter residing on the moving brane is dark and has the so-called disformal coupling to gravity. This gives rise to cosmologies where dark matter stems from the oscillations of the open strings along the brane and the transverse oscillations result in dark energy. Furthermore, due to a new screening mechanism that conceals the fifth force from local experiments, one may even entertain the possibility that the visible sector is also moving along the extra dimensions.

  5. Magnetic monopoles and strange matter

    NASA Astrophysics Data System (ADS)

    Sañudo, J.; Seguí, A.

    1986-01-01

    We show that if the density of grand unified monopoles at T⋍200 MeV id of the order of or greater than 4.4×1021 cm-3 they annihilate all of the strange matter produced in the quagma-hadron phase transition which of the unverse undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yield upper limits on the density of monopoles for different sizes of strange ball. On leave of absence from Departamento de Física Atómica y Nuclear, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  6. Diquark abundance in stellar matter

    SciTech Connect

    Horvath, J.E.; de Freitas Pacheco, J.A.; de Araujo, J.C.N. )

    1992-11-15

    The clustering of quarks into pairs (diquarks) has been suggested recently to play an important role in dense matter and its astrophysical realization in neutron-star cores. We address in this work the features of diquark matter by employing an accurate equation of state valid for the effective {lambda}{phi}{sup 4} diquark theory, and find milder (although non-negligible) effects than in previous calculations. Some considerations on the very presence of a diquark-dominated region immediately above the deconfinement density are also given.

  7. Dilatons in Dense Baryonic Matter

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Kyu; Rho, Mannque

    We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.

  8. Every Child Mattered in England: But What Matters to Children?

    ERIC Educational Resources Information Center

    Meehan, Catherine

    2016-01-01

    "Every Child Matters" under New Labour provided a framework for services for young children's care and education. It was pushed aside by the Conservative-led coalition and replaced by "More Great Childcare". The UK as a signatory to the United Nations Convention on the Rights of the Child, therefore has obligations for…

  9. Dynamical matter-parity breaking and gravitino dark matter

    SciTech Connect

    Schmidt, Jonas; Weniger, Christoph; Yanagida, Tsutomu T.

    2010-11-15

    Scenarios where gravitinos with GeV masses makeup dark matter are known to be in tension with high reheating temperatures, as required by e.g. thermal leptogenesis. This tension comes from the longevity of the NLSPs (next-to-lightest supersymmetric particle), which can destroy the successful predictions of the standard primordial nucleosynthesis. However, a small violation of matter parity can open new decay channels for the NLSP, avoiding the BBN (standard primordial nucleosynthesis) problems, while being compatible with experimental cosmic-ray constraints. In this paper, we propose a model where matter parity, which we assume to be embedded in the U(1){sub B-L} gauge symmetry, is broken dynamically in a hidden sector at low-scales. This can naturally explain the smallness of the matter parity breaking in the visible sector. We discuss the dynamics of the corresponding pseudo Nambu-Goldstone modes of B-L breaking in the hidden sector, and we comment on typical cosmic-ray and collider signatures in our model.

  10. Gray matter and white matter abnormalities in online game addiction.

    PubMed

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  11. Analysis of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-05-01

    As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.

  12. Accountability for What Matters Most

    ERIC Educational Resources Information Center

    Wagner, Tony

    2012-01-01

    During the author's travels all over the United States speaking to a wide variety of audiences, and his visits with leadership groups in the Middle East and Far East, he has encountered diverse audiences who share his concern that the majority of students are leaving high school without the skills that matter most--even in those school districts…

  13. The Particle Theory of Matter

    ERIC Educational Resources Information Center

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  14. The LZ Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Gehman, Victor M.

    2012-10-01

    One of the most important open questions in physics is the fundamental nature of the dark matter. The direct detection of a dark matter particle in a terrestrial experiment would dramatically impact cosmology and particle physics, and would open a window on a new type of observational astrophysics. The LZ collaboration has proposed to construct a 7-ton liquid xenon dark matter detector at the 4850 level of the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector will be based upon the well-established liquid xenon TPC technology, and will capitalize upon the existing infrastructure of the LUX experiment to allow for a rapid turn-around after the conclusion of LUX data taking. With a ducial mass of more than 5 tons, the experiment will probe WIMP-nucleon cross sections down to 2x10-48 cm^2 in 3 years of operation. This represents an improvement of approximately 5000 times over current results, covering a substantial range of theoretically-motivated particle dark matter candidates.

  15. Dark matter in NGC 4472

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  16. Wake up, because Math Matters

    ERIC Educational Resources Information Center

    Gilpin, Jeanny

    2010-01-01

    This article presents the author's story, as a teacher, about building a Math Matters club and discusses why her students arrived at school before first bell to participate enthusiastically. The author's students seemed to have a negative attitude about math. In giving that stirring motivational speech, she apparently overlooked one important…

  17. A Rigorous Curriculum Really Matters

    ERIC Educational Resources Information Center

    Cook, Erika

    2013-01-01

    As every good secondary administrator knows, rigorous curricula matter. Challenging curricula is the factor in lifting each student to reach their potential: "the academic intensity of the student's high school curriculum still counts more than anything else...in providing momentum toward completing a bachelor's degree"…

  18. Excitotoxic damage to white matter

    PubMed Central

    Matute, Carlos; Alberdi, Elena; Domercq, María; Sánchez-Gómez, María-Victoria; Pérez-Samartín, Alberto; Rodríguez-Antigüedad, Alfredo; Pérez-Cerdá, Fernando

    2007-01-01

    Glutamate kills neurons by excitotoxicity, which is caused by sustained activation of glutamate receptors. In recent years, it has been shown that glutamate can also be toxic to white matter oligodendrocytes and to myelin by this mechanism. In particular, glutamate receptor-mediated injury to these cells can be triggered by activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and N-methyl-d-aspartate glutamate receptor types. Thus, these receptor classes, and the intermediaries of the signal cascades they activate, are potential targets for drug development to treat white matter damage in acute and chronic diseases. In addition, alterations of glutamate homeostasis in white matter can determine glutamate injury to oligodendrocytes and myelin. Astrocytes are responsible for most glutamate uptake in synaptic and non-synaptic areas and consequently are the major regulators of glutamate homeostasis. Activated microglia in turn may secrete cytokines and generate radical oxygen species, which impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes also contribute to glutamate homeostasis. This review aims at summarizing the current knowledge about the mechanisms leading to oligodendrocyte cell death and demyelination as a consequence of alterations in glutamate signalling, and their clinical relevance to disease. In addition, we show evidence that oligodendrocytes can also be killed by ATP acting at P2X receptors. A thorough understanding of how oligodendrocytes and myelin are damaged by excitotoxicity will generate knowledge that can lead to improved therapeutic strategies to protect white matter. PMID:17504270

  19. Wino dark matter under siege

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Lisanti, Mariangela; Pierce, Aaron; Slatyer, Tracy R.

    2013-10-01

    A fermion triplet of SU(2)L — a wino — is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  20. Wino dark matter under siege

    SciTech Connect

    Cohen, Timothy; Lisanti, Mariangela; Pierce, Aaron; Slatyer, Tracy R. E-mail: mlisanti@princeton.edu E-mail: tslatyer@mit.edu

    2013-10-01

    A fermion triplet of SU(2){sub L} — a wino — is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  1. MSSM Dark Matter Without Prejudice

    SciTech Connect

    Gainer, James S.; /SLAC

    2009-12-11

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  2. Status of superheavy dark matter

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.; Kachelrieß, M.

    2006-07-01

    Superheavy particles are a natural candidate for the dark matter in the universe and our galaxy, because they are produced generically during inflation in cosmologically interesting amounts. The most attractive model for the origin of superheavy dark matter (SHDM) is gravitational production at the end of inflation. The observed cosmological density of dark matter determines the mass of the SHDM particle as mX=(afew)×1013GeV, promoting it to a natural candidate for the source of the observed ultrahigh energy cosmic rays (UHECR). After a review of the theoretical aspects of SHDM, we update its predictions for UHECR observations: no GZK cutoff, flat energy spectrum with dN/dE≈1/E1.9, photon dominance and galactic anisotropy. We analyze the existing data and conclude that SDHM as explanation for the observed UHECRs is at present disfavored but not yet excluded. We calculate the anisotropy relevant for future Auger observations that should be the conclusive test for this model. Finally, we emphasize that negative results of searches for SHDM in UHECR do not disfavor SHDM as a dark matter candidate. Therefore, UHECRs produced by SHDM decays and with the signatures as described should be searched for in the future as subdominant effect.

  3. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  4. Diphoton resonance confronts dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-07-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the cascade annihilation of dark matter.

  5. Hyperon matter at low densities

    SciTech Connect

    Sulaksono, A.

    2014-09-25

    It was reported recently that hyperons can be present inside PSRJ1614-2230 compact star. This can be realized only if the strength of the ω-hyperons and φ-hyperons coupling of conventional hyperons coupling constant on the extended relativistic mean field (ERMF) model increase by a factor of 1.5 to 3. In the present work, the mass and radius relation of the neutron star that is calculated by using BSR28 parameter set of ERMF model augmented with maximal coupling strength of the ω-hyperons and φ-hyperons (X=1), is compared to the mass and radius relation of the neutron star that is predicted by the same RMF parameter set but by assuming that hyperons do not exist in the matter (No. Hyp) as well as those by assuming the hyperons coupling constant fulfilled the conventional SU(6) and SU(3) symmetry. The consequences of implementing X=1 prescription are also discussed. The potential depths of hyperons in symmetric nuclear matter (SNM), pure neutron matter (PNM) and pure lambda matter (PLM) based on this parameter set are also calculated by using the X=1, SU (6) and SU (3) prescriptions. The results are compared to those obtained from microscopic models, quark meson coupling model (χ QMM) and the QCD sum rule for finite density (QCD SM) result.

  6. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  7. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  8. MSSM Dark Matter Without Prejudice

    NASA Astrophysics Data System (ADS)

    Gainer, James S.

    2010-02-01

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  9. Raman amplification of matter waves

    SciTech Connect

    Schneble, Dominik; Campbell, Gretchen K.; Streed, Erik W.; Boyd, Micah; Pritchard, David E.; Ketterle, Wolfgang

    2004-04-01

    We demonstrate a Raman amplifier for matter waves, where the amplified atoms and the gain medium are in two different hyperfine states. This amplifier is based on a form of superradiance that arises from self-stimulated Raman scattering in a Bose-Einstein condensate.

  10. Spinor Structure and Matter Spectrum

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.

    2016-08-01

    Classification of relativistic wave equations is given on the ground of interlocking representations of the Lorentz group. A system of interlocking representations is associated with a system of eigenvector subspaces of the energy operator. Such a correspondence allows one to define matter spectrum, where the each level of this spectrum presents a some state of elementary particle. An elementary particle is understood as a superposition of state vectors in nonseparable Hilbert space. Classification of indecomposable systems of relativistic wave equations is produced for bosonic and fermionic fields on an equal footing (including Dirac and Maxwell equations). All these fields are equivalent levels of matter spectrum, which differ from each other by the value of mass and spin. It is shown that a spectrum of the energy operator, corresponding to a given matter level, is non-degenerate for the fields of type (l, 0) ⊕ (0, l), where l is a spin value, whereas for arbitrary spin chains we have degenerate spectrum. Energy spectra of the stability levels (electron and proton states) of the matter spectrum are studied in detail. It is shown that these stability levels have a nature of threshold scales of the fractal structure associated with the system of interlocking representations of the Lorentz group.

  11. Hyperon matter at low densities

    NASA Astrophysics Data System (ADS)

    Sulaksono, A.

    2014-09-01

    It was reported recently that hyperons can be present inside PSRJ1614-2230 compact star. This can be realized only if the strength of the ω-hyperons and φ-hyperons coupling of conventional hyperons coupling constant on the extended relativistic mean field (ERMF) model increase by a factor of 1.5 to 3. In the present work, the mass and radius relation of the neutron star that is calculated by using BSR28 parameter set of ERMF model augmented with maximal coupling strength of the ω-hyperons and φ-hyperons (X=1), is compared to the mass and radius relation of the neutron star that is predicted by the same RMF parameter set but by assuming that hyperons do not exist in the matter (No. Hyp) as well as those by assuming the hyperons coupling constant fulfilled the conventional SU(6) and SU(3) symmetry. The consequences of implementing X=1 prescription are also discussed. The potential depths of hyperons in symmetric nuclear matter (SNM), pure neutron matter (PNM) and pure lambda matter (PLM) based on this parameter set are also calculated by using the X=1, SU (6) and SU (3) prescriptions. The results are compared to those obtained from microscopic models, quark meson coupling model (χ QMM) and the QCD sum rule for finite density (QCD SM) result.

  12. Teacher Working Conditions that Matter

    ERIC Educational Resources Information Center

    Leithwood, Ken; McAdie, Pat

    2007-01-01

    To advance understanding of the issues concerning teachers' working conditions, the Elementary Teachers' Federation of Ontario commissioned one of the authors to do an analytical review of literature on teachers' working conditions. This resulted in the publication, "Teacher Working Conditions That Matter: Evidence for Change." The framework for…

  13. Particulate matter and preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  14. The Electrical Property of Matter.

    ERIC Educational Resources Information Center

    DeMeo, Stephen; Lythcott, Jean

    2001-01-01

    Describes a demonstration of static charge using balloons and crystals to illustrate the electrical nature of matter. Building on the classic physics demonstration that uses pieces of paper and a plastic rod, this approach adds a new dimension of chemistry. Offers suggestions for how to discuss the observed phenomenon. (DLH)

  15. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  16. Warm Dense Matter: An Overview

    SciTech Connect

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  17. Dark matter in the universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  18. Dark matter in the Universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  19. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  20. Dark matter assimilation into the baryon asymmetry

    SciTech Connect

    D'Eramo, Francesco; Fei, Lin; Thaler, Jesse E-mail: lfei@mit.edu

    2012-03-01

    Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called {sup a}ssimilation{sup ,} which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.

  1. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  2. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  3. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  4. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  5. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  6. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  7. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  8. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  9. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  10. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  11. Dark matter axions and caustic rings

    SciTech Connect

    Sikivie, P.

    1997-11-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

  12. Strongly Interacting Matter at High Energy Density

    SciTech Connect

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  13. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  14. Dark matter in a bouncing universe

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong E-mail: jin.u.kang2@gmail.com

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  15. New spectral features from bound dark matter

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  16. Dark Matter Annihilation at the Galactic Center

    SciTech Connect

    Linden, Timothy Ryan

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  17. Nonthermal dark matter in mirage mediation

    SciTech Connect

    Nagai, Minoru; Nakayama, Kazunori

    2007-12-15

    In mirage-mediation models there exists a modulus field whose mass is O(1000) TeV and its late decay may significantly change the standard thermal relic scenario of the dark matter. We study nonthermal production of the dark matter directly from the modulus decay, and find that for some parameter regions nonthermally produced neutralinos can become the dark matter.

  18. An Inquiry into the Phases of Matter

    ERIC Educational Resources Information Center

    Young, Sarah

    2010-01-01

    The "What's the "matter" With XOD" activity addresses students' misconceptions and refines their ideas about phases of matter. This activity introduces the characteristics for solids, liquids, and gases, and begins a discussion about physical and chemical changes and how matter can cycle through different phases. Depending on class size and…

  19. Variational Theory of Hot Dense Matter

    ERIC Educational Resources Information Center

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  20. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  1. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  2. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  3. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  4. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  5. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  6. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  7. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  8. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  9. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  10. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  11. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  12. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  13. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  14. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  15. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  16. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  17. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  18. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  19. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  20. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  1. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  2. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  3. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  4. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  5. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  6. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  7. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  8. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  9. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  10. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  11. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  12. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  13. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  14. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  15. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  16. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  17. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  18. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  19. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  20. Matter Effects On Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Gordon, Michael

    An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for numu → nue oscillations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative analysis to find an approximation for the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitly the evolution operator. These methods are compared to each other using the T2K, MINOS, NOnuA, and LBNE parameters.

  1. Number-theory dark matter

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2011-05-01

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1)B-L gauge symmetry, Z(B-L). We introduce a set of chiral fermions charged under the U(1)B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1)B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z(B-L).

  2. Stochastic thermodynamics for active matter

    NASA Astrophysics Data System (ADS)

    Speck, Thomas

    2016-05-01

    The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.

  3. Milli-interacting dark matter

    NASA Astrophysics Data System (ADS)

    Wallemacq, Quentin

    2013-09-01

    We present a dark matter model reproducing well the results from DAMA/LIBRA and CoGeNT and having no contradiction with the negative results from XENON100 and CDMS-II/Ge. Two new species of fermions F and G form hydrogenlike atoms with standard atomic size through a dark U(1) gauge interaction carried out by a dark massless photon. A Yukawa coupling between the nuclei F and neutral scalar particles S induces an attractive shorter-range interaction. This dark sector interacts with our standard particles because of the presence of two mixings, a kinetic photon-dark photon mixing, and a mass σ-S mixing. The dark atoms from the halo diffuse elastically in terrestrial matter until they thermalize and then reach underground detectors with thermal energies, where they form bound states with nuclei by radiative capture. This causes the emission of photons that produce the signals observed by direct-search experiments.

  4. Anderson and Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, T. V.

    The legacy of P. W. Anderson, perhaps the most fertile and influential condensed matter physicist of the second half of the twentieth century, is briefly mentioned here. I note three pervasive values. They are: emergence with its constant tendency to surprise us and to stretch our imagination, the Baconian emphasis on the experimental moorings of modern science, and mechanism as the explanatory core. Out of his work, which is spread over more than six decades and in many ways has charted modern condensed matter physics, nearly a dozen seminal contributions, chosen idiosyncratically, are mentioned at the risk of leaving out many which may also have started subfields. Some of these are: antiferromagnestism and broken symmetry, superexchange and strong electron correlations, localization in disordered systems, gauge invariance and mass, and the resonating valence bond in magnetic systems as well as in high-temperature superconductivity...

  5. Creep dynamics in soft matter

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela

    Detecting any precursors of failure in Soft Matter Systems (SMS) is an inter-disciplinary topic with important applications (e.g. prediction of failure in engineering processes). Further, it provides an ideal benchmark to understand how mechanical stress and failure impacts the flow properties of amorphous condensed matter. Furthermore, some SMS are viscoelastic, flowing like viscous liquids or deforming like a solid according to applied forces. Often SMS are fragile and local rearrangements trigger catastrophic macroscopic failure. Despite the importance of the topic little is known on the local creep dynamics before the occurrence of such catastrophic events. To study creep and failure at an atomic/molecular level and at time scales that are not easily accessible by experiments we chose to carry out microscopic simulations. In this work we present the response of a colloidal system to uniaxial tensile stress applied and we compare our results to experimental works [8].

  6. Swift Heavy Ions in Matter

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  7. Scalar graviton as dark matter

    SciTech Connect

    Pirogov, Yu. F.

    2015-06-15

    The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.

  8. Dark matter in the universe

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  9. A matter of fried onions.

    PubMed

    Friedman, D B

    1992-12-01

    In the 1946 film 'A Matter of Life and Death', complex partial seizures were portrayed in detail and with surprising accuracy. This study was conducted to determine the nature of the medical collaboration in the preparation of the film as well as the reasons why the creative team of Michael Powell and Emeric Pressburger included these details, but elected to make them invisible to all but those with medical educations.

  10. Optical supercavitation in soft matter.

    PubMed

    Conti, C; DelRe, E

    2010-09-10

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  11. Inflationary attractor from tachyonic matter

    NASA Astrophysics Data System (ADS)

    Guo, Zong-Kuan; Piao, Yun-Song; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2003-08-01

    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behavior of tachyonic inflation using the Hamilton-Jacobi formalism. We also obtain analytical approximations for the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial nonvanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.

  12. Decoupling dark energy from matter

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Martin, Jérôme E-mail: c.vandebruck@sheffield.ac.uk E-mail: jmartin@iap.fr

    2009-09-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.

  13. Carbonaceous Matter in Growing Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  14. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  15. Nuclear matter physics at NICA

    NASA Astrophysics Data System (ADS)

    Senger, P.

    2016-08-01

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed.

  16. Heavy spin-2 Dark Matter

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Marzola, Luca; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; von Strauss, Mikael

    2016-09-01

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  17. Dark Matter Burners: Preliminary Estimate

    SciTech Connect

    Moskalenko, Igor V.; Wai, L.; /SLAC

    2006-09-11

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole can capture a large number of weakly interacting massive particles (WIMPs) during its lifetime. WIMP annihilation energy release in low- to medium-mass stars is comparable with or even exceeds the luminosity of such stars due to thermonuclear burning. The excessive energy release in the stellar core may result in an evolution scenario different from what is expected for a regular star. The model thus predicts the existence of unusual stars within the central parsec of galactic nuclei. If found, such stars would provide evidence for the existence of particle dark matter. The excess luminosity of such stars attributed to WIMP ''burning'' can be used to infer the local WIMP matter density. A white dwarf with a highly eccentric orbit around the central black hole may exhibit variations in brightness correlated with the orbital phase. On the other hand, white dwarfs shown to lack such orbital brightness variations can be used to provide constraints on WIMP matter density, WIMP-nucleus scattering and pair annihilation cross sections.

  18. Conformal inflation coupled to matter

    SciTech Connect

    Brax, Philippe

    2014-05-01

    We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.

  19. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  20. Non-baryonic dark matter in cosmology

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    2013-07-01

    This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.

  1. Quantum treatment of neutrino in background matter

    NASA Astrophysics Data System (ADS)

    Studenikin, A. I.

    2006-05-01

    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLν), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ('spin light of electron in matter', (SLe)) that can be emitted by the electron in this case.

  2. The local dark matter density

    NASA Astrophysics Data System (ADS)

    Read, J. I.

    2014-06-01

    I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for ‘direct detection’ dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a ‘dark disc’. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data—particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I collate the latest measurements of ρdm and show that, once the baryonic surface density contribution Σb is normalized across different groups, there is remarkably good agreement. Compiling data from the literature, I estimate Σb = 54.2 ± 4.9 M⊙pc-2, where the dominant source of uncertainty is in the H i gas contribution. Assuming this contribution from the baryons, I highlight several recent measurements of ρdm in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way’s rotation curve, I show that the Milky Way is consistent with having a spherical dark matter halo at R0 ˜ 8 kpc. The very latest measures of ρdm based on ˜10 000 stars from the Sloan Digital Sky Survey appear to favour little halo flattening at R0, suggesting that the Galaxy has a rather weak dark matter disc, with a correspondingly quiescent merger history. I caution, however, that this result hinges on there being no large systematics that remain to be uncovered in the SDSS data, and on the local baryonic surface density being Σb ˜ 55 M⊙pc-2. I conclude by discussing how the new Gaia satellite will be transformative. We will obtain much tighter

  3. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  4. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions. PMID:27090751

  5. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.

  6. Mass, matter, and energy. A relativistic approach

    NASA Astrophysics Data System (ADS)

    Bitsakis, Eftichios

    1991-01-01

    The debate concerning the relations between matter and motion has the same age as philosophy itself. In modern times this problem was transformed into the one concerning the relations between mass and energy. Newton identified mass with matter. Classical thermodynamics brought this conception to its logical conclusion, establishing an ontic dichotomy between mass-matter and energy. On the basis of this pre-relativistic conception, Einstein's famous equation has been interpreted as a relation of equivalence between mass-matter and energy. Nevertheless, if we reject this epistemologically illegitimate identification, it is possible to elaborate a unitary conception of matter, which at the same time is an argument for the unity between matter and motion. In particular, the classical antithesis between matter and field becomes obsolete in the frame of the proposed interpretation.

  7. Theory of dark matter superfluidity

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin

    2015-11-01

    We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the Λ cold dark matter (Λ CDM ) model on cosmological scales while simultaneously reproducing the modified Newtonian dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have a common origin, representing different phases of a single underlying substance. DM consists of axionlike particles with mass of order eV and strong self-interactions. The condensate has a polytropic equation of state P ˜ρ3 giving rise to a superfluid core within galaxies. Instead of behaving as individual collisionless particles, the DM superfluid is more aptly described as collective excitations. Superfluid phonons, in particular, are assumed to be governed by a MOND-like effective action and mediate a MONDian acceleration between baryonic matter particles. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not); due to the higher velocity dispersion in clusters, and correspondingly higher temperature, the DM in clusters is either in a mixture of superfluid and the normal phase or fully in the normal phase. The rich and well-studied physics of superfluidity leads to a number of observational signatures: an array of low-density vortices in galaxies; merger dynamics that depend on the infall velocity vs phonon sound speed; distinct mass peaks in bulletlike cluster mergers, corresponding to superfluid and normal components; and interference patters in supercritical mergers. Remarkably, the superfluid phonon effective theory is strikingly similar to that of the unitary Fermi gas, which has attracted much excitement in the cold atom community in recent years. The critical temperature for DM superfluidity is of order mK, comparable to known cold atom Bose-Einstein condensates. Identifying a precise cold atom analog would give important insights on the microphysical interactions underlying DM superfluidity

  8. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  9. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  10. Nuclear astrophysics of dense matter.

    NASA Astrophysics Data System (ADS)

    Vautherin, D.

    1991-12-01

    Starting from the equation of state for a non-relativistic Fermi gas the author describes the equilibrium state of stars whereby the equation of state is generalized to the relativistic case for the description of white dwarfs. Then the evolution of massive stars is described in this framework regarding the thermonuclear burning phase, the gravitational collapse, the neutronization, and the neutrino diffusion. Then the equation of state of supernova matter and the cooling of neutron stars are considered. The author concludes that this approach is somewhat oversimplified in the case of neutron stars, while it is very useful in the case of white dwarfs, where residual interactions can be neglected.

  11. Dark Matter in the MSSM

    SciTech Connect

    Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2009-04-07

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  12. Crystallization of dense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.

  13. BBN with light dark matter

    SciTech Connect

    Berezhiani, Zurab; Dolgov, Aleksander; Tkachev, Igor E-mail: dolgov@fe.infn.it

    2013-02-01

    Effects of light millicharged dark matter particles on primordial nucleosynthesis are considered. It is shown that if the mass of such particles is much smaller than the electron mass, they lead to strong overproduction of Helium-4. An agreement with observations can be achieved by non-vanishing lepton asymmetry. Baryon-to-photon ratio at BBN and neutrino-to-photon ratio both at BBN and at recombination are noticeably different as compared to the standard cosmological model. The latter ratio and possible lepton asymmetry could be checked by Planck. For higher mass of new particles the effect is much less pronounced and may even have opposite sign.

  14. Inflation, Dark Matter, Dark Energy

    NASA Astrophysics Data System (ADS)

    Kolb, Edward W.

    2005-06-01

    Remarkable 20th-century cosmological discoveries and theoretical ideas led to the development of the present cosmological "standard model." In this lecture I will focus on one of the more recent ideas that may now be regarded as part of the framework of the standard big-bang model; namely, that structure in the universe results from the growth of small seed density fluctuations produced during the inflationary universe. In order to complete this picture, I will also discuss the idea that the present mass density is dominated by dark matter and that there is now a preponderance of dark energy.

  15. Propagation of Light through Composite Dark Matter

    NASA Astrophysics Data System (ADS)

    Kvam, Audrey; Latimer, David

    2013-10-01

    A concordance of observations indicates that around 80% of the matter in the universe is some unknown dark matter. This dark matter could be comprised of a single structureless particle, but much richer theories exist. Signals from the DAMA, CoGeNT, and CDMS-II dark matter detectors along with the non-observation of dark matter by other detectors motivate theories of composite dark matter along with a ``dark'' electromagnetic sector. The composite models propose baryon-like or atom-like dark matter. If photons kinetically mix with the ``dark'' photons, then light traveling through dark matter will experience dispersion. We expect the dispersion to be approximated by the Drude-Lorentz model where the model parameters are particular to a given dark matter candidate. As light travels through the dispersive medium, it can accrue to a frequency-dependent time lag. Measurement of such a time lag can yield clues as to the nature of the dark matter. As a first application, we model hydrogenic dark atoms and use astrophysical data to constrain the mass, binding energy, and the fractional electric charge of the dark atoms.

  16. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  17. Flavored dark matter beyond Minimal Flavor Violation

    DOE PAGES

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less

  18. Flavored dark matter beyond Minimal Flavor Violation

    SciTech Connect

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.

  19. New astrophysical probes of dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu

    In my thesis, I present four studies to explore astrophysical methods for understanding dark matter properties. To understand the nature of dark matter, I explore a few unstable dark matter models that are invoked as ways to address apparent discrepancies between the predictions of standard cold dark matter and observations of small-scale galactic structure. My studies are aimed at developing independent large-scale constraints on these models. One of the model is a decaying dark matter model such that one dark matter particle decays into two relativistic non-interacting particles. In the second model, a dark matter particle decays into a less massive, stable dark matter particle with a recoil kick velocity Vk and a relativistic non-interacting particle. I consider two types of experiments: one is weak lensing cosmic shear with future or forthcoming surveys like Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST); the other one is Lyman-alpha forest spectrum, which has contemporary data from Sloan Digital Sky Survey (SDSS) and other observations. I found that large-scale structure growth is sensitive to the change of dark matter properties due to these decay processes, and they can provide competitive constraints comparing to other existing limits. On small scale, the gravitational interplay of baryon and dark matter can affect the clustering of dark matter. I examine adiabatic contraction (AC) models what are traditionally used to parametrize the dark matter response to the cooling of baryons by investigating a suite of numerical simulations. We found that the errors in AC reconstructions are correlated with baryonic physics and certain halo properties. Our results indicate that existing AC models need significant calibration in order to predicting realistic matter distribution.

  20. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  1. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  2. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors. PMID:26430985

  3. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  4. A matter of quantum voltages.

    PubMed

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. PMID:25399199

  5. A matter of quantum voltages.

    PubMed

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  6. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  7. What Phase Matters for Diffraction?

    NASA Astrophysics Data System (ADS)

    Jones, Eric; Bach, Roger; Batelaan, Herman

    2014-05-01

    Young's double-slit experiment for matter is often compared to that of optics. In rudimentary explanations of the locations of the diffraction maxima and minima far from the slits, paths are sometimes superimposed over waves drawn from the two slits to the detection screen, leading to a phase difference of Δϕ = 2 πΔL /λdB between paths. Despite the intuitive connection of the two kinds of wave phenomena, this approach can lead to a misunderstanding of the theory for matter waves. The Feynman path-integral formalism justifies the use of paths to determine the phase difference; however, the phase accumulated along single free-particle paths according to the formalism is not ϕ = 2 πL /λdB , even though the expression for the phase difference is correct. The resulting factor of 2 difference in the single path phase from the intuitive value arises from the particular treatment of time-dependence in interpreting the problem. The nature of this misunderstanding will be discussed, and a possible resolution proposed based on the quantum mechanical principle of indistinguishability: the time duration of all interfering paths must be equal. We gratefully acknowledge support from the NSF.

  8. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  9. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  10. A matter of quantum voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  11. Active matter clusters at interfaces

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development and flocks of birds. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit whose movement depends on the nature of the local environment. We find that low speed clusters which exert forces but no active torques, encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds and clusters with active torques, they show more complex behaviors crossing the interface multiple times, becoming trapped at the interface and deviating from the predictable refraction and reflection of the low velocity clusters. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  12. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  13. Active matter clusters at interfaces.

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  14. Thermal effects in supernova matter

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of

  15. The Cosmology of Composite Inelastic Dark Matter

    SciTech Connect

    Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; Schuster, Philip; Wacker, Jay G.; /SLAC

    2011-08-19

    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

  16. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-11-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  17. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl H.; Morrissey, D.; Sigurdson, K.; Tulin, S.

    2011-11-10

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  18. Supersymmetry, nonthermal dark matter, and precision cosmology

    NASA Astrophysics Data System (ADS)

    Easther, Richard; Galvez, Richard; Özsoy, Ogan; Watson, Scott

    2014-01-01

    Within the minimal supersymmetric Standard Model (MSSM), LHC bounds suggest that scalar superpartner masses are far above the electroweak scale. Given a high superpartner mass, nonthermal dark matter is a viable alternative to WIMP dark matter generated via freezeout. In the presence of moduli fields, nonthermal dark matter production is associated with a long matter-dominated phase, modifying the spectral index and primordial tensor amplitude relative to those in a thermalized primordial universe. Nonthermal dark matter can have a higher self-interaction cross section than its thermal counterpart, enhancing astrophysical bounds on its annihilation signals. We constrain the contributions to the neutralino mass from the bino, wino and Higgsino using existing astrophysical bounds and direct detection experiments for models with nonthermal neutralino dark matter. Using these constraints we quantify the expected change to inflationary observables resulting from the nonthermal phase.

  19. Dark matter dynamics and indirect detection

    SciTech Connect

    Bertone, Gianfranco; Merritt, David; /Rochester Inst. Tech.

    2005-04-01

    Non-baryonic, or ''dark'', matter is believed to be a major component of the total mass budget of the universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.

  20. Axion dark matter detection using atomic transitions.

    PubMed

    Sikivie, P

    2014-11-14

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to millikelvin temperatures and count axion induced transitions using laser techniques. This appears to be an appropriate approach to axion dark matter detection in the 10^{-4}  eV mass range.

  1. Dark matter more mysterious than expected

    NASA Astrophysics Data System (ADS)

    Jałocha, Joanna

    2015-12-01

    Based on the lecture Dark Matter --- more mysterious than expected}, given by me at the Cosmology School in Kielce on 18 July 2015, I will briefly discuss in this essay the history of dark matter and why this notion is so essential for the contemporary physics. Next, I will present the point of view of the research team I work with, on the presence of nonbaryonic dark matter in the Universe and in spiral galaxies.

  2. Volume integral theorem for exotic matter

    SciTech Connect

    Nandi, Kamal Kanti; Zhang Yuanzhong; Kumar, K.B. Vijaya

    2004-12-15

    We answer an important question in general relativity about the volume integral theorem for exotic matter by suggesting an exact integral quantifier for matter violating Averaged Null Energy Condition (ANEC). It is checked against some well-known static, spherically symmetric traversable wormhole solutions of general relativity with a sign reversed kinetic term minimally coupled scalar field. The improved quantifier is consistent with the principle that traversable wormholes can be supported by arbitrarily small quantities of exotic matter.

  3. Current and future searches for dark matter

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-07-01

    Recent experimental data confirms that approximately one quarter of the universe consists of cold dark matter. Particle theories provide natural candidates for this dark matter in the form of either Axions or Weakly Interacting Massive Particles (WIMPs). A growing body of experiments is aimed at direct or indirect detection of particle dark matter. I summarize the current status of these experiments and offer projections of their future sensitivity.

  4. Coaly matter in a hydrothermal uranium deposit

    SciTech Connect

    Uspenskii, V.A.; Khaldei, A.E.; Kochenov, A.V.

    1986-09-01

    The behavior of high-carbon organic matter of a plant origin is studied as affected by the various superimposed processes. In stratiform ore placers that developed with the participation of oxygen-containing water, a correlation is observed between the oxidation degree of organic matter and its uranium contents. Coaly matter in steep metasomatically reworked zones with vein metallization is oxidized immediately at the contact with pitchblende microveinlets, apparently as a result of postmetallization radiolytic processes.

  5. Dissipative dark matter explains rotation curves

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  6. TASI 2008 Lectures on Dark Matter

    SciTech Connect

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2009-01-01

    Based on lectures given at the 2008 Theoretical Advanced Study Institute (TASI), I review here some aspects of the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  7. Dark Matter Jets at the LHC

    SciTech Connect

    Bai, Yang; Rajaraman, Arvind; /UC, Irvine

    2012-03-28

    We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

  8. Dark matter as a cancer hazard

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2016-07-01

    We comment on the paper "Dark matter collisions with the human body" by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  9. Axion Dark Matter Detection Using Atomic Transitions

    NASA Astrophysics Data System (ADS)

    Sikivie, P.

    2014-11-01

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to millikelvin temperatures and count axion induced transitions using laser techniques. This appears to be an appropriate approach to axion dark matter detection in the 1 0-4 eV mass range.

  10. Dark matter from decaying topological defects

    SciTech Connect

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M. E-mail: russell.kirk.2008@live.rhul.ac.uk

    2014-03-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits.

  11. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  12. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe. PMID:22304253

  13. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars. PMID:27472110

  14. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  15. Consistent matter couplings for Plebanski gravity

    NASA Astrophysics Data System (ADS)

    Tennie, Felix; Wohlfarth, Mattias N. R.

    2010-11-01

    We develop a scheme for the minimal coupling of all standard types of tensor and spinor field matter to Plebanski gravity. This theory is a geometric reformulation of vacuum general relativity in terms of two-form frames and connection one-forms, and provides a covariant basis for various quantization approaches. Using the spinor formalism we prove the consistency of the newly proposed matter coupling by demonstrating the full equivalence of Plebanski gravity plus matter to Einstein-Cartan gravity. As a by-product we also show the consistency of some previous suggestions for matter actions.

  16. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.

  17. The Dark Matter Problem: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2010-04-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  18. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia E-mail: laviniah@kth.se

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  19. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.

  20. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management. PMID:26595271

  1. Roe v. Wade. Matters sexual.

    PubMed

    Brickner, B

    1998-01-01

    When the US Supreme Court handed down its decision in Roe vs. Wade, the author of this commentary, a rabbi who had been working for years to legalize abortion, believed that the decision had decidedly legitimated a women's right to choose abortion. He was shocked by the fundamentalist fury that grew in the wake of the decision and by the ability of ultra-conservative forces to intimidate legislators. The schizophrenic attitude toward sex exhibited by Americans has them obsessed with sex and blatantly entertained by it while treating it with a secret prudishness and repressing or denying its importance. Thus, magazines are blatant sources of sexual advice, but sex education is limited in public schools. The "fundamental right" is fundamentally wrong in its attitude about women's reproductive rights, and a deadly serious struggle remains to ensure that women have choice and privacy in reproductive matters. The struggle for reproductive freedom is a struggle for freedom itself and for First Amendment rights.

  2. Neutron Matter Wave Quantum Optics

    NASA Astrophysics Data System (ADS)

    Rauch, Helmut

    2012-06-01

    Neutron matter-wave optics provides the basis for new quantum experiments and a step towards applications of quantum phenomena. Most experiments have been performed with a perfect crystal neutron interferometer where widely separated coherent beams can be manipulated individually. Various geometric phases have been measured and their robustness against fluctuation effects has been proven, which may become a useful property for advanced quantum communication. Quantum contextuality for single particle systems shows that quantum correlations are to some extent more demanding than classical ones. In this case entanglement between external and internal degrees of freedom offers new insights into basic laws of quantum physics. Non-contextuality hidden variable theories can be rejected by arguments based on the Kochen-Specker theorem.

  3. Hierarchical Structures in Granular Matter

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, J.; Carrillo-Estrada, J. L.; Ruiz-Suárez, J. C.

    2013-12-01

    Granular matter, under the proper conditions of vibration, exhibits a behavior that closely resembles that of gases, liquids or solids. In a vibrated mix of glass particles and magnetic steel particles, it is also possible to observe aggregation phenomena, as well as, processes of reconstruction of the generated clusters. In this work we discuss the effects of the so called granular temperature on the evolution of the agglomerates generated by the magnetic interactions. On the basis of a fractal analysis and the measured mass distribution, we analyze experimental results on the static structural aspects of the aggregates originated by two methods we call: granular diffusion limited aggregation (GDLA) and growth limited by concentration (GLC).

  4. Holographic viscosity of fundamental matter.

    PubMed

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-03-01

    A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavors Nf or =1/4pi. Given the known results for the entropy density, the contribution of the fundamental matter eta fund is therefore enhanced at strong 't Hooft coupling lambda; for example, eta fund approximately lambda NcNfT3 in four dimensions. Other transport coefficients are analogously enhanced. These results hold with or without a baryon number chemical potential. PMID:17358523

  5. Dark matter sees the light

    NASA Astrophysics Data System (ADS)

    Meade, Patrick; Papucci, Michele; Volansky, Tomer

    2009-12-01

    We construct a Dark Matter (DM) annihilation module that can encompass the predictions from a wide array of models built to explain the recently reported PAMELA and ATIC/PPB-BETS excesses. We present a detailed analysis of the injection spectrums for DM annihilation and quantitatively demonstrate effects that have previously not been included from the particle physics perspective. With this module we demonstrate the parameter space that can account for the aforementioned excesses and be compatible with existing high energy gamma ray and neutrino experiments. However, we find that it is relatively generic to have some tension between the results of the HESS experiment and the ATIC/PPB-BETS experiments within the context of annihilating DM. We discuss ways to alleviate this tension and how upcoming experiments will be able to differentiate amongst the various possible explanations of the purported excesses.

  6. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  7. Singlet-Doublet Dark Matter

    SciTech Connect

    Cohen, Timothy; Kearney, John; Pierce, Aaron; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  8. Morals matter in economic games.

    PubMed

    Brodbeck, Felix C; Kugler, Katharina G; Reif, Julia A M; Maier, Markus A

    2013-01-01

    Contrary to predictions from Expected Utility Theory and Game Theory, when making economic decisions in interpersonal situations, people take the interest of others into account and express various forms of solidarity, even in one-shot interactions with anonymous strangers. Research in other-regarding behavior is dominated by behavioral economical and evolutionary biological approaches. Psychological theory building, which addresses mental processes underlying other-regarding behavior, is rare. Based on Relational Models Theory (RMT, [1]) and Relationship Regulation Theory (RRT, [2]) it is proposed that moral motives influence individuals' decision behavior in interpersonal situations via conscious and unconscious (automatic) processes. To test our propositions we developed the 'Dyadic Solidarity Game' and its solitary equivalent, the 'Self-Insurance Game'. Four experiments, in which the moral motives "Unity" and "Proportionality" were manipulated, support the propositions made. First, it was shown that consciously activated moral motives (via framing of the overall goal of the experiment) and unconsciously activated moral motives (via subliminal priming) influence other-regarding behavior. Second, this influence was only found in interpersonal, not in solitary situations. Third, by combining the analyses of the two experimental games the extent to which participants apply the Golden Rule ("treat others how you wish to be treated") could be established. Individuals with a "Unity" motive treated others like themselves, whereas individuals with a "Proportionality" motive gave others less then they gave themselves. The four experiments not only support the assumption that morals matter in economic games, they also deliver new insights in how morals matter in economic decision making. PMID:24358115

  9. Morals matter in economic games.

    PubMed

    Brodbeck, Felix C; Kugler, Katharina G; Reif, Julia A M; Maier, Markus A

    2013-01-01

    Contrary to predictions from Expected Utility Theory and Game Theory, when making economic decisions in interpersonal situations, people take the interest of others into account and express various forms of solidarity, even in one-shot interactions with anonymous strangers. Research in other-regarding behavior is dominated by behavioral economical and evolutionary biological approaches. Psychological theory building, which addresses mental processes underlying other-regarding behavior, is rare. Based on Relational Models Theory (RMT, [1]) and Relationship Regulation Theory (RRT, [2]) it is proposed that moral motives influence individuals' decision behavior in interpersonal situations via conscious and unconscious (automatic) processes. To test our propositions we developed the 'Dyadic Solidarity Game' and its solitary equivalent, the 'Self-Insurance Game'. Four experiments, in which the moral motives "Unity" and "Proportionality" were manipulated, support the propositions made. First, it was shown that consciously activated moral motives (via framing of the overall goal of the experiment) and unconsciously activated moral motives (via subliminal priming) influence other-regarding behavior. Second, this influence was only found in interpersonal, not in solitary situations. Third, by combining the analyses of the two experimental games the extent to which participants apply the Golden Rule ("treat others how you wish to be treated") could be established. Individuals with a "Unity" motive treated others like themselves, whereas individuals with a "Proportionality" motive gave others less then they gave themselves. The four experiments not only support the assumption that morals matter in economic games, they also deliver new insights in how morals matter in economic decision making.

  10. Morals Matter in Economic Games

    PubMed Central

    Brodbeck, Felix C.; Kugler, Katharina G.; Reif, Julia A. M.; Maier, Markus A.

    2013-01-01

    Contrary to predictions from Expected Utility Theory and Game Theory, when making economic decisions in interpersonal situations, people take the interest of others into account and express various forms of solidarity, even in one-shot interactions with anonymous strangers. Research in other-regarding behavior is dominated by behavioral economical and evolutionary biological approaches. Psychological theory building, which addresses mental processes underlying other-regarding behavior, is rare. Based on Relational Models Theory (RMT, [1]) and Relationship Regulation Theory (RRT, [2]) it is proposed that moral motives influence individuals’ decision behavior in interpersonal situations via conscious and unconscious (automatic) processes. To test our propositions we developed the ‘Dyadic Solidarity Game’ and its solitary equivalent, the ‘Self-Insurance Game’. Four experiments, in which the moral motives “Unity” and “Proportionality” were manipulated, support the propositions made. First, it was shown that consciously activated moral motives (via framing of the overall goal of the experiment) and unconsciously activated moral motives (via subliminal priming) influence other-regarding behavior. Second, this influence was only found in interpersonal, not in solitary situations. Third, by combining the analyses of the two experimental games the extent to which participants apply the Golden Rule (“treat others how you wish to be treated”) could be established. Individuals with a “Unity” motive treated others like themselves, whereas individuals with a “Proportionality” motive gave others less then they gave themselves. The four experiments not only support the assumption that morals matter in economic games, they also deliver new insights in how morals matter in economic decision making. PMID:24358115

  11. The Eighth Liquid Matter Conference.

    PubMed

    Dellago, Christoph; Kahl, Gerhard; Likos, Christos N

    2012-06-27

    The Eighth Liquid Matter Conference (LMC8) was held at the Universität Wien from 6-10 September 2011. Initiated in 1990, the conferences of this series cover a broad range of highly interdisciplinary topics, ranging from simple liquids to soft matter and biophysical systems. The vast spectrum of scientific subjects presented and discussed at the LMC8 is reflected in the themes of the ten symposia: Ionic and quantum liquids, liquid metals Water, solutions and reaction dynamics Liquid crystals Polymers, polyelectrolytes, biopolymers Colloids Films, foams, surfactants, emulsions, aerosols Confined fluids, interfacial phenomena Supercooled liquids, glasses, gels Non-equilibrium systems, rheology, nanofluids Biofluids, active matter This special issue contains scientific papers, authored by participants of the LMC8, which provide a cross-section of the scientific activities in current liquid matter science, as discussed at the conference, and demonstrate the scientific as well as methodological progress made in this field over the past couple of years. The Eighth Liquid Matter Conference contents The Eighth Liquid Matter ConferenceChristoph Dellago, Gerhard Kahl and Christos N Likos Comparing light-induced colloidal quasicrystals with different rotational symmetriesMichael Schmiedeberg and Holger Stark Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperatureS Sarti, D Truzzolillo and F Bordi Equilibrium concentration profiles and sedimentation kinetics of colloidal gels under gravitational stressS Buzzaccaro, E Secchi, G Brambilla, R Piazza and L Cipelletti The capillary interaction between two vertical cylindersHimantha Cooray, Pietro Cicuta and Dominic Vella Hydrodynamic and viscoelastic effects in polymer diffusionJ Farago, H Meyer, J Baschnagel and A N Semenov A density-functional theory study of microphase formation in binary Gaussian mixturesM Carta, D Pini, A Parola and L Reatto Microcanonical determination of the

  12. Revisiting First-Year College Students' Mattering: Social Support, Academic Stress, and the Mattering Experience

    ERIC Educational Resources Information Center

    Rayle, Andrea Dixon; Chung, Kuo-Yi

    2008-01-01

    In this study, Nancy Schlossberg's (1989) theory of college students' mattering to others was revisited. Mattering is the experience of others depending on us, being interested in us, and being concerned with our fate. The relationships of gender, mattering to college friends and the college environment, and friend and family social support with…

  13. Context Matters in Child and Family Policy

    ERIC Educational Resources Information Center

    Dodge, Kenneth A.

    2011-01-01

    The traditional model of translation from basic laboratory science to efficacy trials to effectiveness trials to community dissemination has flaws that arise from false assumptions that context changes little or matters little. One of the most important findings in developmental science is that context matters, but this fact is not sufficiently…

  14. White matter injury detection in neonatal MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Irene; Hajari, Nasim; Firouzmanesh, Amirhossein; Shen, Rui; Miller, Steven; Poskitt, Ken; Basu, Anup

    2013-02-01

    Early detection of white matter injury in premature newborns can facilitate timely clinical treatments reducing the potential risk of later developmental deficits. It was reported that there were more than 5% premature newborns in British Columbia, Canada, among which 5-10% exhibited major motor deficits and 25-50% exhibited significant developmental and visual deficits. With the advancement of computer assisted detection systems, it is possible to automatically identify white matter injuries, which are found inside the grey matter region of the brain. Atlas registration has been suggested in the literature to distinguish grey matter from the soft tissues inside the skull. However, our subjects are premature newborns delivered at 24 to 32 weeks of gestation. During this period, the grey matter undergoes rapid changes and differs significantly from one to another. Besides, not all detected white spots represent injuries. Additional neighborhood information and expert input are required for verification. In this paper, we propose a white matter feature identification system for premature newborns, which is composed of several steps: (1) Candidate white matter segmentation; (2) Feature extraction from candidates; (3) Validation with data obtained at a later stage on the children; and (4) Feature confirmation for automated detection. The main challenge of this work lies in segmenting white matter injuries from noisy and low resolution data. Our approach integrates image fusion and contrast enhancement together with a fuzzy segmentation technique to achieve promising results. Other applications, such as brain tumor and intra-ventricular haemorrhage detection can also benefit from our approach.

  15. Plasma, The Fourth State of Matter

    ERIC Educational Resources Information Center

    Zandy, Hassan F.

    1970-01-01

    Discusses plasma as a source of energy through nuclear fission processes, as well as the difficulties encountered in such a process. States that 99 percent of the matter in the universe is plasma, and only 1 percent is the common three states of matter. Describes the fundamental properties of plasma, plasma "pinch, and plasma oscillations. (RR)

  16. Bbb Z2 SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Bbb Z2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  17. Viability of the Matter Bounce Scenario

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume

    2015-04-01

    It is shown that teleparallel F(T) theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked that these bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.

  18. Dark Matter, the MCSSM and lattice QCD

    SciTech Connect

    Joel Giedt, Anthony Thomas, Ross Young

    2009-11-01

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  19. Starting and Running the "Libraries Matter" Campaign

    ERIC Educational Resources Information Center

    Pope, Kitty; Chenoweth, Rose; Bersche, Karen; Bell, Lori

    2006-01-01

    Sometimes a simple idea, such as selling gel bracelets that say "Libraries Matter" to raise money, can spark something much bigger. In this article, the authors explain how their Libraries Matter campaign grew beyond their own regional system to cover their whole state and eventually other points around the globe. This successful Web-based…

  20. 7 CFR 29.2520 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any...

  1. 7 CFR 30.21 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 30.21 Section 30.21 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any substance or material extraneous to tobacco leaves, such as dirt, sand,...

  2. 7 CFR 29.6015 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.6015 Section 29.6015 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6015 Foreign matter. Any extraneous substance or material such...

  3. 7 CFR 29.2270 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.2270 Section 29.2270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  4. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  5. 49 CFR 1108.12 - Additional matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Additional matters. 1108.12 Section 1108.12 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT... JURISDICTION OF THE SURFACE TRANSPORTATION BOARD § 1108.12 Additional matters. Where an arbitration demand...

  6. 7 CFR 30.21 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 30.21 Section 30.21 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any substance or material extraneous to tobacco leaves, such as dirt, sand,...

  7. 48 CFR 53.204 - Administrative matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Administrative matters. 53.204 Section 53.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.204 Administrative matters....

  8. 7 CFR 29.2270 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.2270 Section 29.2270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  9. 7 CFR 29.3518 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.3518 Section 29.3518 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3518 Foreign matter. Any extraneous substance or material such as stalks, suckers,...

  10. 32 CFR 700.812 - Postal matters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Postal matters. 700.812 Section 700.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... Officers in General § 700.812 Postal matters. Commanding officers shall ensure that mail and postal...

  11. 7 CFR 30.21 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 30.21 Section 30.21 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any substance or material extraneous to tobacco leaves, such as dirt, sand,...

  12. 32 CFR 700.812 - Postal matters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Postal matters. 700.812 Section 700.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... Officers in General § 700.812 Postal matters. Commanding officers shall ensure that mail and postal...

  13. 7 CFR 29.1020 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.1020 Section 29.1020 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1020 Foreign matter. Any extraneous substance or material such as straw, strings,...

  14. 7 CFR 29.1020 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.1020 Section 29.1020 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1020 Foreign matter. Any extraneous substance or material such as straw, strings,...

  15. 7 CFR 29.1020 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.1020 Section 29.1020 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1020 Foreign matter. Any extraneous substance or material such as straw, strings,...

  16. 48 CFR 53.204 - Administrative matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Administrative matters. 53.204 Section 53.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.204 Administrative matters....

  17. 7 CFR 29.1020 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.1020 Section 29.1020 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1020 Foreign matter. Any extraneous substance or material such as straw, strings,...

  18. 7 CFR 29.2270 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.2270 Section 29.2270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  19. 7 CFR 30.21 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 30.21 Section 30.21 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any substance or material extraneous to tobacco leaves, such as dirt, sand,...

  20. 7 CFR 283.23 - Procedural matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 4 2013-01-01 2013-01-01 false Procedural matters. 283.23 Section 283.23 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... of $50,000 or More § 283.23 Procedural matters. (a) Communications from Hearing Clerk. In order...

  1. 7 CFR 29.3518 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.3518 Section 29.3518 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3518 Foreign matter. Any extraneous substance or material such as stalks, suckers,...

  2. 7 CFR 29.6015 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.6015 Section 29.6015 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6015 Foreign matter. Any extraneous substance or material such...

  3. 49 CFR 1108.12 - Additional matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Additional matters. 1108.12 Section 1108.12 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT... JURISDICTION OF THE SURFACE TRANSPORTATION BOARD § 1108.12 Additional matters. Where an arbitration demand...

  4. 7 CFR 283.23 - Procedural matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Procedural matters. 283.23 Section 283.23 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... of $50,000 or More § 283.23 Procedural matters. (a) Communications from Hearing Clerk. In order...

  5. 7 CFR 29.3023 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.3023 Section 29.3023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  6. 7 CFR 283.23 - Procedural matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 4 2012-01-01 2012-01-01 false Procedural matters. 283.23 Section 283.23 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... of $50,000 or More § 283.23 Procedural matters. (a) Communications from Hearing Clerk. In order...

  7. 32 CFR 700.812 - Postal matters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Postal matters. 700.812 Section 700.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... Officers in General § 700.812 Postal matters. Commanding officers shall ensure that mail and postal...

  8. 7 CFR 283.23 - Procedural matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 4 2011-01-01 2011-01-01 false Procedural matters. 283.23 Section 283.23 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... of $50,000 or More § 283.23 Procedural matters. (a) Communications from Hearing Clerk. In order...

  9. 48 CFR 53.204 - Administrative matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Administrative matters. 53.204 Section 53.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.204 Administrative matters....

  10. 7 CFR 29.6015 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.6015 Section 29.6015 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6015 Foreign matter. Any extraneous substance or material such...

  11. 48 CFR 53.204 - Administrative matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Administrative matters. 53.204 Section 53.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.204 Administrative matters....

  12. 7 CFR 29.2520 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any...

  13. 7 CFR 29.3518 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.3518 Section 29.3518 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3518 Foreign matter. Any extraneous substance or material such as stalks, suckers,...

  14. 7 CFR 29.2520 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any...

  15. 7 CFR 29.2270 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.2270 Section 29.2270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  16. 7 CFR 29.2520 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any...

  17. 48 CFR 53.204 - Administrative matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Administrative matters. 53.204 Section 53.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.204 Administrative matters....

  18. 49 CFR 1108.12 - Additional matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Additional matters. 1108.12 Section 1108.12 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT... JURISDICTION OF THE SURFACE TRANSPORTATION BOARD § 1108.12 Additional matters. Where an arbitration demand...

  19. 7 CFR 29.6015 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.6015 Section 29.6015 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6015 Foreign matter. Any extraneous substance or material such...

  20. 7 CFR 29.3023 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.3023 Section 29.3023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  1. 7 CFR 29.2270 - Foreign matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.2270 Section 29.2270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  2. 7 CFR 29.2520 - Foreign matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any...

  3. Z{sub 2} SIMP dark matter

    SciTech Connect

    Bernal, Nicolás; Chu, Xiaoyong E-mail: xchu@ictp.it

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z{sub 2} symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  4. 32 CFR 700.812 - Postal matters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Postal matters. 700.812 Section 700.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... Officers in General § 700.812 Postal matters. Commanding officers shall ensure that mail and postal...

  5. 7 CFR 29.3023 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.3023 Section 29.3023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  6. 7 CFR 29.3518 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.3518 Section 29.3518 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3518 Foreign matter. Any extraneous substance or material such as stalks, suckers,...

  7. 32 CFR 700.812 - Postal matters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Postal matters. 700.812 Section 700.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... Officers in General § 700.812 Postal matters. Commanding officers shall ensure that mail and postal...

  8. 7 CFR 29.3023 - Foreign matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.3023 Section 29.3023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  9. 7 CFR 29.3023 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.3023 Section 29.3023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any extraneous substance or material such as stalks, suckers, straw, strings, rubber...

  10. 7 CFR 29.6015 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.6015 Section 29.6015 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6015 Foreign matter. Any extraneous substance or material such...

  11. 7 CFR 30.21 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 30.21 Section 30.21 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Foreign matter. Any substance or material extraneous to tobacco leaves, such as dirt, sand,...

  12. 7 CFR 29.3518 - Foreign matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.3518 Section 29.3518 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3518 Foreign matter. Any extraneous substance or material such as stalks, suckers,...

  13. 7 CFR 29.1020 - Foreign matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.1020 Section 29.1020 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1020 Foreign matter. Any extraneous substance or material such as straw, strings,...

  14. 7 CFR 283.23 - Procedural matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Procedural matters. 283.23 Section 283.23 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... of $50,000 or More § 283.23 Procedural matters. (a) Communications from Hearing Clerk. In order...

  15. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  16. The status of neutralino dark matter

    SciTech Connect

    Shakya, Bibhushan

    2014-06-24

    The lightest neutralino in supersymmetry is the most studied dark matter candidate. This writeup reviews the status of neutralino dark matter in minimal and nonminimal supersymmetric models in light of recent null results at the XENON100 experiment and the observation of a 130 GeV gamma ray signal from the Galactic Center by the Fermi LAT.

  17. Radiative neutrino mass, dark matter, and leptogenesis

    SciTech Connect

    Gu Peihong; Sarkar, Utpal

    2008-05-15

    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.

  18. Natural implementation of neutralino dark matter

    NASA Astrophysics Data System (ADS)

    King, Steve F.; Roberts, Jonathan P.

    2006-09-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of ``supernatural dark matter'' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains.

  19. Astrocytes and Developmental White Matter Disorders

    ERIC Educational Resources Information Center

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  20. Students' Progression in Understanding the Matter Concept

    ERIC Educational Resources Information Center

    Hadenfeldt, Jan Christoph; Neumann, Knut; Bernholt, Sascha; Liu, Xiufeng; Parchmann, Ilka

    2016-01-01

    This study presents our attempt to elicit students' progression in understanding the matter concept. Past work has identified the big ideas about matter students need to understand, the many everyday understandings students hold about these ideas, and levels of understanding through which students progress in developing understanding of the big…