Science.gov

Sample records for nonmagnetic iii-v semiconductor

  1. III-V arsenide-nitride semiconductor

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  2. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  3. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A. Paul; Olshavsky, Michael A.

    1996-01-01

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  4. Nonmagnetic semiconductor spin transistor

    NASA Astrophysics Data System (ADS)

    Hall, K. C.; Lau, Wayne H.; Gündoǧdu, K.; Flatté, Michael E.; Boggess, Thomas F.

    2003-10-01

    We propose a spin transistor using only nonmagnetic materials that exploits the characteristics of bulk inversion asymmetry (BIA) in (110) symmetric quantum wells. We show that extremely large spin splittings due to BIA are possible in (110) InAs/GaSb/AlSb heterostructures, which together with the enhanced spin decay times in (110) quantum wells demonstrates the potential for exploitation of BIA effects in semiconductor spintronics devices. Spin injection and detection is achieved using spin-dependent resonant interband tunneling and spin transistor action is realized through control of the electron spin lifetime in an InAs lateral transport channel using an applied electric field (Rashba effect). This device may also be used as a spin valve, or a magnetic field sensor.

  5. III-V semiconductor devices integrated with silicon III-V semiconductor devices integrated with silicon

    NASA Astrophysics Data System (ADS)

    Hopkinson, Mark; Martin, Trevor; Smowton, Peter

    2013-09-01

    The integration of III-V semiconductor devices with silicon is one of the most topical challenges in current electronic materials research. The combination has the potential to exploit the unique optical and electronic functionality of III-V technology with the signal processing capabilities and advanced low-cost volume production techniques associated with silicon. Key industrial drivers include the use of high mobility III-V channel materials (InGaAs, InAs, InSb) to extend the performance of Si CMOS, the unification of electronics and photonics by combining photonic components (GaAs, InP) with a silicon platform for next-generation optical interconnects and the exploitation of large-area silicon substrates and high-volume Si processing capabilities to meet the challenges of low-cost production, a challenge which is particularly important for GaN-based devices in both power management and lighting applications. The diverse nature of the III-V and Si device approaches, materials technologies and the distinct differences between industrial Si and III-V processing have provided a major barrier to integration in the past. However, advances over the last decade in areas such as die transfer, wafer fusion and epitaxial growth have promoted widespread renewed interest. It is now timely to bring some of these topics together in a special issue covering a range of approaches and materials providing a snapshot of recent progress across the field. The issue opens a paper describing a strategy for the epitaxial integration of photonic devices where Kataria et al describe progress in the lateral overgrowth of InP/Si. As an alternative, Benjoucef and Reithmaier report on the potential of InAs quantum dots grown direct onto Si surfaces whilst Sandall et al describe the properties of similar InAs quantum dots as an optical modulator device. As an alternative to epitaxial integration approaches, Yokoyama et al describe a wafer bonding approach using a buried oxide concept, Corbett

  6. Thermodynamically stable Metal/III-V compound-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Williams, R. S.; Lince, J. R.; Tsai, C. T.; Pugh, J. H.

    1986-02-01

    Chemical reactions that occur at a metal/III-V compound-semiconductor interface should be minimized if the change in Gibbs free energy of the bulk materials with respect to any possible reaction products is positive. However, the large positive change in entropy caused by vaporization of the highly volatile group V elements is a very important contribution to the Gibbs free energy of these systems, especially at higher temperatures. Thus, a particular metal/III-V compound-semiconductor interface may be thermodynamically stable at one temperature, but unstable with respect to sublimation of elemental group V species at a higher temperature if the enthalpy change for the reaction is positive. Examination of bulk phase diagrams makes it possible to rationalize the reaction products observed and to predict which will be the most stable interface for any particular metal/III-V system.

  7. III-V semiconductor solid solution single crystal growth

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  8. Low dimensional III-V compound semiconductor structures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhiko P.

    2009-08-01

    Material incompatibilities among dissimilar group III-V compound semiconductors (III-V CSs) often place limits on combining epitaxial thin films, however low-dimensional epitaxial structures (e.g., quantum dots and nanowires) demonstrate coherent growth even on incompatible surfaces. First, InAs QDs grown by molecular beam epitaxy on GaAs are described. Two-dimensional to three-dimensional morphological transition, lateral size evolution and vertical alignment of InAs QDs in a single and multiple stacks will be illustrated. Second, InP nanowires grown on non-single crystalline surfaces by metal organic chemical vapor deposition are described with the view toward applications where III-V CSs are functionally integrated onto various material platforms.

  9. III-V aresenide-nitride semiconductor materials and devices

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  10. Surface Conduction in III-V Semiconductor Infrared Detector Materials

    NASA Astrophysics Data System (ADS)

    Sidor, Daniel Evan

    III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.

  11. Spin-Seebeck Effect in III-V Based Semiconductors

    NASA Astrophysics Data System (ADS)

    Jaworski, Christopher M.; Myers, Roberto C.; Heremans, Joseph P.

    2012-02-01

    The spin-Seebeck effect has now been observed in metals^1 (NiFe), semiconductors^2 (GaMnAs), and insulators^3 (YIG). It consists of a thermally generated spin distribution that is phonon driven. Here we extend our measurements of the spin-Seebeck effect to other group III-V based magnetic semiconductors and present measurements of conventional thermomagnetic and galvanomagnetic properties as well as the spin-Seebeck effect. Work supported by the National Science Foundation, NSF-CBET-1133589 1. K. Uchida, et al., Nature 455 778 (2008) 2. C.M. Jaworski et al., Nature Materials 8 898 (2010), Phys. Rev. Lett. 106 186601 (2011) 3. K. Uchida, et al., Nature Materials 8 893 (2010)

  12. Ballistic transport and luminescence in III-V semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Yi, Wei

    This thesis describes research to develop novel scanning probe methods employing ballistic electron emission to characterize nanoscale carrier transport and luminescence of quantum-confined III-V semiconductor nanostructures. First, spectroscopic and microscopic ballistic electron emission luminescence (BEEL) of an InAs quantum dot heterostructure based on three-terminal hot electron injection using a scanning tunneling microscope and a planar tunnel-junction transistor is described in detail. Second, BEEL device simulation based on one-dimensional Poisson equation and carrier drift-diffusion model is examined. Third, a scheme to integrate a photon detector directly into a BEEL heterostructure to improve the photon collection efficiency is presented. Fourth, experimental results toward development of a dual scanning probe microscopy to study nanoscale metal-semiconductor interfaces without the requirement of an externally-contacted continuous metal thin film are described. Finally, some prospects of ballistic carrier spintronic devices are discussed.

  13. DX centers in III-V semiconductors under hydrostatic pressure

    SciTech Connect

    Wolk, Jeffrey Alan

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the SiGa shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  14. Spectroscopic characterization of III-V semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Crankshaw, Shanna Marie

    III-V semiconductor materials form a broad basis for optoelectronic applications, including the broad basis of the telecom industry as well as smaller markets for high-mobility transistors. In a somewhat analogous manner as the traditional silicon logic industry has so heavily depended upon process manufacturing development, optoelectronics often relies instead on materials innovations. This thesis focuses particularly on III-V semiconductor nanomaterials, detailed characterization of which is invaluable for translating the exhibited behavior into useful applications. Specifically, the original research described in these thesis chapters is an investigation of semiconductors at a fundamental materials level, because the nanostructures in which they appear crystallize in quite atypical forms for the given semiconductors. Rather than restricting the experimental approaches to any one particular technique, many different types of optical spectroscopies are developed and applied where relevant to elucidate the connection between the crystalline structure and exhibited properties. In the first chapters, for example, a wurtzite crystalline form of the prototypical zincblende III-V binary semiconductor, GaAs, is explored through polarization-dependent Raman spectroscopy and temperature-dependent photoluminescence, as well as second-harmonic generation (SHG). The altered symmetry properties of the wurtzite crystalline structure are particularly evident in the Raman and SHG polarization dependences, all within a bulk material realm. A rather different but deeply elegant aspect of crystalline symmetry in GaAs is explored in a separate study on zincblende GaAs samples quantum-confined in one direction, i.e. quantum well structures, whose quantization direction corresponds to the (110) direction. The (110) orientation modifies the low-temperature electron spin relaxation mechanisms available compared to the usual (001) samples, leading to altered spin coherence times explored

  15. Carbon doping of III-V compound semiconductors

    SciTech Connect

    Moll, Amy Jo

    1994-09-01

    Focus of the study is C acceptor doping of GaAs, since C diffusion coefficient is at least one order of magnitude lower than that of other common p-type dopants in GaAs. C ion implantation results in a concentration of free holes in the valence band < 10% of that of the implanted C atoms for doses > 1014/cm2. Rutherford backscattering, electrical measurements, Raman spectroscopy, and Fourier transform infrared spectroscopy were amonth the techniques used. Ga co-implantation increased the C activation in two steps: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer, reducing the number of compensating native defects. In InP, the behavior of C was different from that in GaAs. C acts as n-type dopant in the In site; however, its incorporation by implantation was difficult to control; experiments using P co-implants were inconsistent. The lattice position of inactive C in GaAs in implanted and epitaxial layers is discussed; evidence for formation of C precipitates in GaAs and InP was found. Correlation of the results with literature on C doping in III-V semiconductors led to a phenomenological description of C in III-V compounds (particularly GaAs): The behavior of C is controlled by the chemical nature of C and the instrinsic Fermi level stabilization energy of the material.

  16. Antisites in III-V semiconductors: Density functional theory calculations

    SciTech Connect

    Chroneos, A.; Tahini, H. A.; Schwingenschlögl, U.; Grimes, R. W.

    2014-07-14

    Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.

  17. Chemical vapour transport of III-V semiconductor materials

    NASA Astrophysics Data System (ADS)

    Davis, Mervyn Howard

    Over the temperature range 770 to 1310 K, however, two bromides compete for prominence, dependent upon temperature. In both instances, it is shown that vapour transport becomes rate limited at low temperature. Further to the chemical vapour transport of indium phosphide, the dissociative sublimation of the compound has also been investigated. Raman spectroscopy has been used to identify high temperature molecular species involved in vapour transport of III-V semiconductor materials. Supplementary work has been performed on the thermochemistry of indium monobromide. The heat of formation of indium bromide crystals has been determined using a solution calormetric technique. Differential scanning calorimetry was used to measure the heat capacity and heat of fusion, of the salt. An entrainment study of the evaporation of liquid indium monobromide was undertaken to yield a value for its heat of vaporisation. Using a statistical thermodynamic approach, the heat capacity of the vapour was calculated. Collating the information, a value for the heat of formation of indium monobromide gas at 1000 K has been calculated for use in other thermodynamic calculations.

  18. Thermal conductivity of III-V semiconductor superlattices

    SciTech Connect

    Mei, S. Knezevic, I.

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivities in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.

  19. Methods for enhancing P-type doping in III-V semiconductor films

    DOEpatents

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  20. Monte Carlo Studies of Nonlinear Electron Transport in III-V semiconductors

    DTIC Science & Technology

    1988-01-01

    ELECTRON TRANSPORT IN III-V SEMICONDUCTORS DTIC Ki Wook Kim EL, .4 .SEP2 3198 H UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAICIN Approved for Public Release... semiconductors , GaAs/AlGaAs materia * system, Nonequilibrium situations, Monte Carlo simulation method, Analysis of transport properties, Semiclassical...Boltzmar k. £8TRACT Contfinue on verse Inecesar. and ideneity by bloci, n,Mbr, transport picture. Electron transport in III-V semiconductors , especially the

  1. Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors

    DTIC Science & Technology

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0143 Electrically-generated spin polarization in non-magnetic semiconductors Vanessa Sih UNIVERSITY OF MICHIGAN Final Report 03...SUBTITLE (YIP) - Electrically-generated spin polarization in non-magnetic semiconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0258 5c...that produced electrically-generated electron spin polarization in non-magnetic semiconductor heterostructures. Electrically-generated electron spin

  2. Resonant Raman Scattering Studies of Iii-V Semiconductor Microstructures

    NASA Astrophysics Data System (ADS)

    Delaney, Malcolm Emil

    1991-02-01

    Raman spectroscopy, an inelastic light scattering technique, explores III-V semiconductors by conveying crystal lattice structural information and by probing carrier dynamics both directly and via the electron-phonon interaction. We have examined three physical systems accentuating three aspects of Raman utility. Al_{rm x}Ga_{rm 1-x} As alloy work emphasizes electronic behavior, migration enhanced epitaxy (MEE) studies highlight structural results, and a phonon-assisted lasing project underscores electron -phonon interaction. The disorder-induced frequency difference between the dipole-forbidden and dipole-allowed longitudinal optic (LO) modes in Al_{rm x} Ga_{rm 1-x}As alloys has been investigated as a function of laser photon energy, aluminum mole fraction x, and the indirect versus direct nature of the electronic band gap. For the indirect gap alloy, the intermediate resonant state is an X-valley electron effectively localized because of its short inelastic lifetime. Raman scattering via this state is described by a calculation of the Raman susceptibility that considers the random alloy potential generated by local concentration fluctuations. MEE is a new growth technology that can order these materials in two spatial directions. In a GaSb/AlSb system we show Raman evidence of this ordering via observation of zone folded acoustic modes and compare to AlAs/GaAs results. In other work resonant Raman documents the effects on the dipole-forbidden interface mode of a periodic corrugation introduced in AlAs barrier GaAs single quantum wells. Finally, we investigate "phonon-assisted" lasing in photopumped quantum well heterostructure lasers. Resonant Raman is the natural choice to probe this system purported to have an enhanced electron-phonon interaction. For both the AlGaAs/GaAs and AlGaAs/GaAs/InGaAs structures examined, we provide evidence that indicates first order "phonon -assisted" lasing is actually renormalized band gap luminescence filtered by absorption from

  3. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  4. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices on Silicon (Abstracts)

    DTIC Science & Technology

    1990-06-01

    REPORT DATE 3. R E PO R T T Y P E A N D DATES COVERED TITLE AND SUBTITLE S. FUNDING NUMBERS N III-V Semiconductor Quantum Well Lasers and Related T...continued on reverse side) 14. SUtJECT TERMS 15. NUMBER OF PAGES Semiconductor Conductor Quantum Well Lasers, Optoelectronic Devices, Silicon...Further work, which is to appear later, is listed as Refs. 11-15. I * * II | | *, | I .. . . 3 III-V SEMICONDUCTOR QUANTUM WELL LASERS AND RELATED

  5. III-V nitride semiconductors for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Parameshwaran, Vijay; Gallinat, Chad; Enck, Ryan W.; Sampath, Anand V.; Shen, Paul H.; Kuykendall, Tevye; Aloni, Shaul; Wraback, Michael; Clemens, Bruce M.

    2012-06-01

    Photoelectrochemical cells are devices that can convert solar radiation to hydrogen gas through a water decomposition process. In this process, energy is converted from incident photons to the bonds of the generated H2 molecules. The solar radiation absorption, electron-hole pair splitting, and photoelectrolysis half reactions all occur in the vicinity of the electrode-electrolyte interface. As a result, engineering the electrode material and its interaction with the electrolyte is important in investigating and improving the energy conversion process in these devices. III-V nitride materials are promising candidates for photoelectrochemical energy applications. We demonstrate solar-to-hydrogen conversion in these cells using p-type GaN and n-type InGaN as a photocathode and photoanode material, respectively. Additionally, we demonstrate heteroepitaxial MOCVD growth of GaP on Si, enabling future work in developing GaPN as a photocathode material.

  6. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  7. Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator

    DTIC Science & Technology

    2011-01-01

    patterned width of 350 nm–5 m and wet etched using a mixture of citric acid 1 g/ml in de-ionized DI H2O and hydrogen peroxide 30% at 1:20 volume...Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator Hui Fang,1,2,3 Morten Madsen,1,2,3 Carlo Carraro...10.1063/1.3537963 III-V compound semiconductors have been extensively explored in the recent years for energy-efficient and high- speed electronics due

  8. The coupling of thermochemistry and phase diagrams for group III-V semiconductor systems. Final report

    SciTech Connect

    Anderson, T.J.

    1998-07-21

    The project was directed at linking the thermochemical properties of III-V compound semiconductors systems with the reported phase diagrams. The solid-liquid phase equilibrium problem was formulated and three approaches to calculating the reduced standard state chemical potential were identified and values were calculated. In addition, thermochemical values for critical properties were measured using solid state electrochemical techniques. These values, along with the standard state chemical potentials and other available thermochemical and phase diagram data, were combined with a critical assessment of selected III-V systems. This work was culminated with a comprehensive assessment of all the III-V binary systems. A novel aspect of the experimental part of this project was the demonstration of the use of a liquid encapsulate to measure component activities by a solid state emf technique in liquid III-V systems that exhibit high vapor pressures at the measurement temperature.

  9. Fourier transform infrared spectroscopy of III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Tarhan, Enver

    The 3d-transition metal impurities (Mn, Co, and Cu) incorporated into III-V zinc-blende hosts (GaAs, GaP, or InP) exhibit well resolved excitation lines followed by a photoionization continuum in their infrared absorption spectra. They are as sociated with transitions from a "1s-like" ground state to various "p-like" excited states characteristic of a hole bound to a Coulomb center. Their spacings agree remarkably well with those predicted in the effective mass theory for single acceptors (A. Baldereschi and N. O. Lipari, Phys. Rev. B 9, 1525 (1974)) as expected for 3d-transition metal ions substitutionally replacing the group III cations of the host. The shape of the photoionization spectra: the occurrence of the simultaneous excitation of the Lyman transitions in combination with the zone center longitudinal optical (LO) phonon and hence lying in the photoionization continuum and displaying Fano-like asymmetries; the additional continuum excitations to and beyond the p1/2 valence band maximum; ..., all these features are described and interpreted. Cu acceptors in GaAs show Lyman doublets, indicative of two independent centers; it is speculated that they could arise from He-like 3d104 s24p1, Cu2- , and H-like 3d94s 24p1, Cu-, Coulomb centers. The infrared transmission spectrum of Si doped MBE-grown GaAs epilayers, 2--2.5 mum thick, measured in the oblique (Berreman) geometry, revealed distinct minima in p-polarization. Given epilayer thickness << reststrahlen wavelength, the minima are identified as the zone center transverse optic phonon (oTO) and the high frequency LO phonon-plasmon coupled mode (o+). Analysis of the experimental data yielded free carrier concentrations, ranging from 2.5 x 1017 to 1.4 x 1018 cm-3. The same technique with MBE-grown Si doped In0.53Ga0.47As epilayers (0.5 to 1 mum thick) yielded o+ modes corresponding to free carrier concentrations 8.2 x 1016 to 2.7 x 10 19 cm-3. The observations of the transmission minima in the Berreman geometry

  10. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  11. Carbon films grown from plasma on III-V semiconductors

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Warner, J. D.; Liu, D. C.

    1985-01-01

    Dielectric carbon films were grown on n- and p-type GaAs and InP substrates using plasmas generated at 30 KHz from gaseous hydrocarbons. The effect of gas source, flow rate, and power on film growth were investigated. Methane and n-butane gases were utilized. The flow rate and power ranged from 30 to 50 sccm and 25 to 300 W, respectively. AES measurements show only carbon to be present in the films. The relative Ar ion sputtering rate (3 KeV) of carbon depends on the ratio power/pressure. In addition, the degree of asymmetry associated with the carbon-semiconductor interface is approximately power-independent. SIMS spectra indicate different H-C bonding configurations to be present in the films. Band gaps as high as 3.05 eV are obtained from optical absorption studies.

  12. Dislocation effects in FinFETs for different III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-04-01

    While Si-based devices are facing the limits of scaling, III-V materials, having high mobility, have attracted more and more attention. However, their advantages are obtained by ignoring the drawbacks of inevitably present dislocations. In this paper, we present a theoretical model that describes the degradation in carrier mobility caused by these inevitable charged dislocations in nanometer-sized, quantum-confined III-V compound semiconductor fin-shaped field effect transistors. We conclude that the Fermi-level pinning effect needs to be resolved to give carriers high enough energy (Fermi energy in the channel) to effectively ignore Coulomb scattering of charges at dislocations in a channel made by III-V compound semiconductors.

  13. Nuclear Magnetic Resonance Studies of II-Vi and Iii-V Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Jian-Hui

    In this thesis, I show how the basic solid-state NMR techniques can be used to study the local electronic structures of II-VI and III-V semiconductor alloys on an atomic scale. We have focused our studies on a few high quality samples, mainly Hg_{rm 1-x}Cd_{rm x} Te in the II-VI group, In-based binary III-V bulk semiconductors InP, InAs and InSb, and the III-V alloys Ga_{rm 1-x}In _{rm x}As. For solid-state-recrystallized device-quality bulk Hg_{rm 1-x}Cd _{rm x}Te samples, with x equal to 0.2, 0.22 and 0.28, corresponding to the narrow-gap semiconducting side of the band-inversion configurations, we have obtained detailed band-edge symmetry information, and site-selective quantitative charge carrier orbital characteristics on an atomic scale. Our study also indicated that a random cation distribution model well described the materials. We have investigated ^{115 }In magnetic resonance frequency shifts and the temperature dependence of these shifts in In-based III-V binary semiconductors. We have extracted the chemical shifts from the total shifts for these III-V semiconductors at 303K and 77K. Our NMR study of these binary semiconductors not only enhanced the understanding of electronic properties of these compounds, but also served as a reference for our NMR studies of III-V alloys. We performed ^{115}In NMR studies for dilute III-V semiconductor alloy Ga _{rm 1-x}In_ {rm x}As with x equal to 0.72%. Spectra clearly indicating the local electronic configurations were obtained. We carried out a series of field orientation studies, and determined the field gradient which is due to In-In pairs. This study provided evidence of local clustering of In atoms.

  14. Properties of Group-IV, III-V and II-VI Semiconductors

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    2005-03-01

    Almost all the semiconductors of practical interest are the group-IV, III-V and II-VI semiconductors and the range of technical applications of such semiconductors is extremely wide. The purpose of this book is twofold: * to discuss the key properties of the group-IV, III-V and II-VI semiconductors * to systemize these properties from a solid-state physics aspect The majority of the text is devoted to the description of the lattice structural, thermal, elastic, lattice dynamic, electronic energy-band structural, optical and carrier transport properties of these semiconductors. Some corrective effects and related properties, such as piezoelectric, elastooptic and electrooptic properties, are also discussed. The book contains convenient tables summarizing the various material parameters and the definitions of important semiconductor properties. In addition, graphs are included in order to make the information more quantitative and intuitive. The book is intended not only for semiconductor device engineers, but also physicists and physical chemists, and particularly students specializing in the fields of semiconductor synthesis, crystal growth, semiconductor device physics and technology.

  15. Methods for forming group III-V arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  16. Relaxation Models of the (110) Zinc-Blende III-V Semiconductor Surfaces: Density Functional Study

    SciTech Connect

    Ye, H.; Chen, G.; Wu, Y.; Zhu, Y.; Wei, S. H.

    2008-11-01

    Clean III-V zinc-blende (110) surfaces are the most extensively studied semiconductor surface. For conventional III-V compounds such as GaAs and InP, the surface relaxation follows a bond rotation relaxation model. However, for III-nitrides recent study indicates that they follow a bond-constricting relaxation model. First-principles atom relaxation calculations are performed to explore the origin of the difference between the two groups of materials. By analyzing the individual shift trends and ionic properties of the top layer anions and cations, we attribute the difference between the conventional and nitride III-V compounds to the strong electronegativity of N, which leads to the s{sup 2}p{sup 3} pyramid bond angle to be larger than the ideal one in bulk (109.5{sup o}). The general trends of the atomic relaxation at the III-nitrides (110) surfaces are explained.

  17. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  18. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices on Silicon

    DTIC Science & Technology

    1989-12-01

    GaIxAs-GaAs Quantum Well Heterostructure Laser Structures Grown by MOCVD on TI MBE GaAs-on-Si "Substrates." Crystal Growth Buffer Layers Photopumped...Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. ACCESSIN NO. 11. TITLE (include Security Oas filcation) III-V Semiconductor Quantum Well ...further develop quantum well heterostructure (QWH) lasers and to realize reliable Al Ga, As-GaAs QWH lasers on Si. In spite of the significant lattice

  19. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices (On Silicon)

    DTIC Science & Technology

    1992-06-01

    heterostructure (QWH) lasers. Silicon IILD is used to intermix the quantum well and waveguide regions with the surrounding confining layers (beyond the laser...SUBTITLE S. FUNDING NUMBERS III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices (On Silicon) DAAL03-89-K-0008 6 AUTHOR(S) N. Holonyak...Maximum 200 words) Since the beginning of this project (10+ years ago) we have been concerned with quantum well heterostructures (QWHs) and their use in

  20. Electron microscopy techniques for evaluating epitaxial and bulk III-V compound semiconductors

    SciTech Connect

    Frigeri, C.

    1996-12-01

    Electron microscopy is an important technique to study interfaces and microdefects in advanced III-V compound semiconductors. The paper briefly reviews some of the TEM methods used to this purpose and shows examples of their application to the characterization of epitaxial structures such as InGaAs/GaAs and GaAs/Ge as well as processed substrates like implanted InP.

  1. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  2. Quantification of trap densities at dielectric/III-V semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Engel-Herbert, Roman; Hwang, Yoontae; Stemmer, Susanne

    2010-08-01

    High-frequency capacitance-voltage curves for capacitors with high-k gate dielectrics and III-V semiconductor channels are modeled. The model takes into account the low conduction band density of states, the nonparabolicity of the Γ valley, and the population of higher lying conduction band valleys. The model is used to determine interface trap densities (Dit) and band bending of HfO2/In0.53Ga0.47As interfaces with different Dit and with pinned and unpinned Fermi levels, respectively. Potential sources of errors in extracting Dit are discussed and criteria that establish unpinned interfaces are developed.

  3. Electronic Structure and Valence of Mn impurities in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2003-11-01

    Mn doped III-V semiconductors have recently become very popular materials since they are ferromagnetic at reasonably high temperatures and in some cases show carrier induced magnetism, where the Curie temperature can be altered by changes in the carrier concentration. It is expected that these materials will play an important role in Spintronics devices. Substitutional Mn impurities in III-V semiconductors can acquire either a divalent or a trivalent configuration. For example, it is generally accepted that Mn in GaAs is in a (d^5+h) configuration with five occupied Mn d-orbitals and a delocalized hole in the valence band. In contrast, Mn in GaN is believed to be in a d^4 configuration with a deep impurity state that has d-character. But there have recently been some discussions about the possibility of having some Mn ion in GaN assuming a divalent (d^5+h) type configuration. In order to achieve carrier induced ferromagnetism, the desired state of the Mn ions in III-V semiconductors is the (d^5+h) configuration. We have therefore performed ab-initio calculations of the Mn valence when it substitutes Ga in various III-V semiconductor hosts. We use the self-interaction corrected local spin density (SIC-LSD) method which is able to treat localized impurity orbitals properly. In particular we find that the method is capable of predicting the (d^5+h) state of Mn in GaAs. For Mn in GaP and GaN the calculations predict a trivalent d^4 state in the idealized system. The energy differences between d^4 and (d^5+h) configurations in GaP are, however, very small. Introduction of defects or donors does change the valence of Mn in GaP, favoring the divalent state under certain circumstances. Work done in collaboration with W. Temmerman and S. Szotek, Daresbury Laboratory, G. M. Stocks, ORNL, and W. H. Butler, MINT Center University of Alabama. This work supported by the Defense Advanced Research Agency and by DOE Office of Science trough ASCR/MICS and BES/DMSE under Contract No

  4. Vibrational properties of III-V semiconductor in wurtzite phase: A comparative density functional theory study

    NASA Astrophysics Data System (ADS)

    Gajaria, Trupti K.; Dabhi, Shweta D.; Baraiya, Bhumi A.; Mankad, Venu; Jha, Prafulla K.

    2017-05-01

    A First principles study of structural, vibrational and thermal properties of III-V semiconductor compounds viz. Indium Arsenide (InAs) and Gallium Arsenide (GaAs) are investigated in their wurtzite phase which is normally observed in the case of nanosystems. Phonon dispersion curve, Debye temperature and specific heat behavior for both the compounds are compared and discussed. The present work will have its implication for making devices with tunable properties using InAs and GaAs based heterojuction solar cells.

  5. Phase transitions in Group III-V and II-VI semiconductors at high pressure

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Liu, C. Y.; Spain, I. L.; Skelton, E. F.

    1979-01-01

    The structures and transition pressures of Group III-V and II-VI semiconductors and of a pseudobinary system (Ga/x/In/1-x/Sb) have been investigated. Results indicate that GaP, InSb, GaSb, GaAs and possible AlP assume Metallic structures at high pressures; a tetragonal, beta-Sn-like structure is adopted by only InSb and GaSb. The rocksalt phase is preferred in InP, InAs, AlSb, ZnO and ZnS. The model of Van Vechten (1973) gives transition pressures which are in good agreement with measured values, but must be refined to account for the occurrence of the ionic rocksalt structure in some compounds. In addition, discrepancies between the theoretical scaling values for volume changes at the semiconductor-to-metal transitions are observed.

  6. Realization of III-V Semiconductor Periodic Nanostructures by Laser Direct Writing Technique

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-qing; Huang, Rong; Liu, Qing-lu; Zheng, Chang-cheng; Ning, Ji-qiang; Peng, Yong; Zhang, Zi-yang

    2017-01-01

    In this paper, we demonstrated the fabrication of one-dimensional (1D) and two-dimensional (2D) periodic nanostructures on III-V GaAs substrates utilizing laser direct writing (LDW) technique. Metal thin films (Ti) and phase change materials (Ge2Sb2Te5 (GST) and Ge2Sb1.8Bi0.2Te5 (GSBT)) were chosen as photoresists to achieve small feature sizes of semiconductor nanostructures. A minimum feature size of about 50 nm about a quarter of the optical diffraction limit was obtained on the photoresists, and 1D III-V semiconductor nanolines with a minimum width of 150 nm were successfully acquired on the GaAs substrate which was smaller than the best results acquired on Si substrate ever reported. 2D nanosquare holes were fabricated as well by using Ti thin film as the photoresist, with a side width of about 200 nm, but the square holes changed to a rectangle shape when GST or GSBT was employed as the photoresist, which mainly resulted from the interaction of two cross-temperature fields induced by two scanning laser beams. The interacting mechanism of different photoresists in preparing periodic nanostructures with the LDW technique was discussed in detail.

  7. Band offsets of high K gate oxides on III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Falabretti, B.

    2006-07-01

    III-V semiconductors have high mobility and will be used in field effect transistors with the appropriate gate dielectric. The dielectrics must have band offsets over 1eV to inhibit leakage. The band offsets of various gate dielectrics including HfO2, Al2O3, Gd2O3, Si3N4, and SiO2 on III-V semiconductors such as GaAs, InAs, GaSb, and GaN have been calculated using the method of charge neutrality levels. Generally, the conduction band offsets are found to be over 1eV, so they should inhibit leakage for these dielectrics. On the other hand, SrTiO3 has minimal conduction band offset. The valence band offsets are also reasonably large, except for Si nitride on GaN and Sc2O3 on GaN which are 0.6-0.8eV. There is reasonable agreement with experiment where it exists, although the GaAs :SrTiO3 case is even worse in experiment.

  8. Realization of III-V Semiconductor Periodic Nanostructures by Laser Direct Writing Technique.

    PubMed

    Huang, Yuan-Qing; Huang, Rong; Liu, Qing-Lu; Zheng, Chang-Cheng; Ning, Ji-Qiang; Peng, Yong; Zhang, Zi-Yang

    2017-12-01

    In this paper, we demonstrated the fabrication of one-dimensional (1D) and two-dimensional (2D) periodic nanostructures on III-V GaAs substrates utilizing laser direct writing (LDW) technique. Metal thin films (Ti) and phase change materials (Ge2Sb2Te5 (GST) and Ge2Sb1.8Bi0.2Te5 (GSBT)) were chosen as photoresists to achieve small feature sizes of semiconductor nanostructures. A minimum feature size of about 50 nm about a quarter of the optical diffraction limit was obtained on the photoresists, and 1D III-V semiconductor nanolines with a minimum width of 150 nm were successfully acquired on the GaAs substrate which was smaller than the best results acquired on Si substrate ever reported. 2D nanosquare holes were fabricated as well by using Ti thin film as the photoresist, with a side width of about 200 nm, but the square holes changed to a rectangle shape when GST or GSBT was employed as the photoresist, which mainly resulted from the interaction of two cross-temperature fields induced by two scanning laser beams. The interacting mechanism of different photoresists in preparing periodic nanostructures with the LDW technique was discussed in detail.

  9. Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis

    NASA Astrophysics Data System (ADS)

    Dick, Kimberly A.; Caroff, Philippe

    2014-02-01

    Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. In this Feature we review the progress towards developing gold-free bottom-up synthesis techniques for III-V semiconductor nanowires. Three main categories of nanowire synthesis are discussed: selective-area epitaxy, self-seeding and foreign metal seeding, with main focus on the metal-seeded techniques. For comparison, we also review the development of foreign metal seeded synthesis of silicon and germanium nanowires. Finally, directions for future development and anticipated important trends are discussed. We anticipate significant development in the use of foreign metal seeding in particular. In addition, we speculate that multiple different techniques must be developed in order to replace gold and to provide a variety of nanowire structures and properties suited to a diverse range of applications.

  10. Fabrication and photonics properties of III-V semiconductor nanowire structures

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-ging

    III-V semiconductor nanowires (NWs) have shown great potential to be building blocks for optical, optoelectronic, and electronic devices due to their special transverse confinement of electrons and photons along the nanowire axis. In addition, semiconductor nanowires with subwavelength structures exhibit strong optical Mie resonance, making them ideal platforms for realizing novel optical devices, such as extreme solar energy absorbers and broadband light trapping devices. This special 1D optical Mie resonance can be enhanced by using semiconductor-core dielectric-shell (CS) and metal-core semiconductor-shell dielectric-outer shell (CSS) nanowire heterostructures. Those advantages can be even leveraged up by utilizing nanowire arrays, attributing to the increasing optical inter-wire interaction between incident light and nanostructures. However, to form a very thin, vertical IIIV nanowire array is challenging for both conventional top-down and bottom-up approaches due to the limitation of the resolution of lithographically defined masks and thermodynamic limits of growth direction and diameter of nanowires, respectively. By employing nanoscale self-mask effects, those limitations can be circumvented. In this dissertation, we presented a novel top-down etching method to fabricate very thin, high aspect ratio and vertical III-V nanowire arrays without lithographically defined masks. The mechanism of the formation of nanowire arrays was proposed and verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this work. Optical characterizations, such as optical reflectance and Raman spectroscopy, were also performed on those nanowire arrays. By employing those nanowire arrays, broadband light trapping can be achieved. Besides, the effects of contact electrodes, such as indium tin oxide (ITO), silver, and copper, on semiconductor nanowire solar cell devices with different bandgaps were also investigated with a focus on optical

  11. III-V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation.

    PubMed

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-02-25

    As silicon-based electronics approach the limit of scaling for increasing the performance and chip density, III-V compound semiconductors have started to attract significant attention owing to their high carrier mobility. However, the mobility benefits of III-V compounds are too easily accepted, ignoring a harmful effect of unavoidable threading dislocations that could fundamentally limit the applicability of these materials in nanometer-scale electronics. In this paper, we present a theoretical model that describes the degradation of carrier mobility by charged dislocations in quantum-confined III-V semiconductor metal oxide field effect transistors (MOSFETs). Based on the results, we conclude that in order for III-V compound MOSFETs to outperform silicon MOSFETs, Fermi level pinning in the channel should be eliminated for yielding carriers with high injection velocity.

  12. Ultraviolet photosulfidation of III-V compound semiconductors for electronic passivation

    SciTech Connect

    Zavadil, K.R.; Ashby, C.I.H.; Howard, A.J.; Hammons, B.E.

    1993-10-01

    A new vacuum-compatible passivation technique for III-V compound semiconductors has been developed. Sulfur passivation of GaAs(100) is produced by ultraviolet photolytic deposition of a sulfide species from vapor phase elemental sulfur. Photoluminescence studies of the photosulfided GaAs reveal a degree of passivation greater than or equal to that produced by conventional (NH{sub 4}{sub 2}S) solution treatment. X-ray Photoelectron Spectroscopy has shown that the sulfur resides on the surface as a single reduced sulfur species, either as sulfide of disulfide, indicating complete fragmentation of the S{sub 8} ring by UV light in proximity to the surface. The degree of photosulfidation depends strongly on surface preparation as demonstrated by the described surface oxide removal studies.

  13. Progress in the growth and optical properties of dilute bismide III-V semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Beaton, Daniel A.; Christian, T.; Lewis, R. B.; Alberi, K.; Mascarenhas, A.

    2015-03-01

    The dilute bismuth containing III-V semiconducting alloys of have great potential for application in many areas of semiconductor technology, such as multijunction photvoltaics and solid-state lighting. There is a large reduction of the fundamental bandgap of GaAs with bismuth incorporation resultant from the raising of the valence band maximum. Dilute bismide alloys have long been compared to the dilute nitride alloy because bismuth introduces a state near the valence band edge of the host GaAs (instrad of near the conduction band edge in the nitride alloys) that affects its optical and electronic properties. Here I will discuss some recent advances in our understanding of the surface processes involved in dilute bismide alloy growth by molecular beam epitaxy which have lead to improved film quality and the growth of new bismide alloys. The improved film quality has made it possible to further explore the properties of this material.

  14. Seebeck Enhancement Through Miniband Conduction in III-V Semiconductor Superlattices at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Bahk, Je-Hyeong; Sadeghian, Ramin Banan; Bian, Zhixi; Shakouri, Ali

    2012-06-01

    We present theoretically that the cross-plane Seebeck coefficient of InGaAs/InGaAlAs III-V semiconductor superlattices can be significantly enhanced through miniband transport at low temperatures. The miniband dispersion curves are calculated by self-consistently solving the Schrödinger equation with the periodic potential, and the Poisson equation taking into account the charge transfer between the two layers. Boltzmann transport in the relaxation-time approximation is used to calculate the thermoelectric transport properties in the cross-plane direction based on the modified density of states and group velocity. It is found that the cross-plane Seebeck coefficient can be enhanced more than 60% over the bulk values at an equivalent doping level at 80 K when the Fermi level is aligned at an edge of the minibands. Other thermoelectric transport properties are also calculated and discussed to further enhance the thermoelectric power factor.

  15. Density-functional calculations of carbon doping in III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Latham, C. D.; Jones, R.; Öberg, S.; Briddon, P. R.

    2001-04-01

    This article reports the results of investigations based on local-density-functional theory into the relative formation energies for single substitutional carbon atoms in nine III-V compound semiconductors. The calculations are performed using a supercell formalism derived from the AIMPRO real-space cluster method. Only a very slight trend is discernible down the periodic table. When a metal atom is replaced with carbon, it is energetically least favorable in the phosphides, very marginally lower energy in the arsenides, and ~0.5-0.7 eV lower in the antimonides. The situation is approximately reversed when a P, As, or Sb atom is substituted by a C atom: for the In compounds the energy is ~0.4-0.8 eV higher than for the Al and Ga compounds.

  16. Low-noise III-V metasurface based semiconductor vortex laser and rotational Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Seghilani, Mohamed; Chomet, Baptiste; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Beaudoin, Gregoire; Sagnes, Isabelle; Lalanne, Philippe; Garnache, Arnaud

    2017-03-01

    We demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis.24 We use a first order phase perturbation to introduce a weak orbital anisotropy, based on a dielectric metasurface and non-linear laser dynamics, allowing selecting vortex handedness. Moreover, similarly to linear Doppler Shift, light carrying orbital angular momentum L, scattered by a rotating object at angular velocity, experiences a rotational Doppler shift L. We show that this fundamental light matter interaction can be detected exploiting self-mixing in a vortex laser under Doppler-shifted optical feedback, with quantum noise-limited light detection.25 This will allow us to combine a velocity sensor with optical tweezers for micro-manipulation applications, with high performances, simplicity and compactness. Such high performance laser opens the path to widespread new photonic applications.

  17. Integration of III-V compound semiconductors on silicon MEMS structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    2000-09-01

    We have exploited several technologies to integrating III-V compound semiconductors on silicon-based MEMS structures. They included utilizing silicon nano-structures as compliant substrates to improve the quality of heteroeptaxial III-V semiconductors on silicon; building optical active devices on MEMS; and using a MEMS micro-instrument for testing the optical properties of OMVPE thin films. A light emitting tip-array has been fabricated by selectively growing high quality GaInP on Si filed emission tips through OMVPE. The unique sharp tip structure with a small dielectric aperture relieves the lattice and thermal mismatch problems encountered in the heteroepitaxial growth and makes growing a single crystal GaInP on a silicon tip top possible. This technique produces a high yield of working tips. An individual tip-structure is about 0.4mum in size, and the spacing between tips can be as small as 3mum. Test results and theoretical analysis suggest a very narrow depletion region in the p-n junction and a high carrier injection efficiency. The tips begin emitting light even on an indirect GaInP crystal at bias as low as 2 volts. Besides offering a method to make a high resolution flat panel display that works at atmospheric pressure, this process can be easily integrated into MEMS structures to make active MEMS optical devices. Methods to extend the above tip technology to wedges and thin membranes have been studied. If we call a nano-tip as a 0-dimensional structure, a wedge and a membrane can be called 1-dimensional and 2-dimensional structure accordingly. By moving from 0-dimension to higher dimensions, more constraints are added to epitaxial films, and the same difficulties plaguing the conventional III-V on silicon growth once again occur. They are analyzed in this thesis and possible solutions are addressed. We have also demonstrated a micro-loading machine to measure the energy band gap changes of a GaN epitaxial film with a uniaxial stress in the c-plane. The

  18. Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature.

    PubMed

    Lahiri, Abhishek; Borisenko, Natalia; Olschewski, Mark; Gustus, René; Zahlbach, Janine; Endres, Frank

    2015-09-28

    Group III-V semiconductor nanostructures are important materials in optoelectronic devices and are being researched in energy-related fields. A simple approach for the synthesis of these semiconductors with well-defined nanostructures is desired. Electroless deposition (galvanic displacement) is a fast and versatile technique for deposition of one material on another and depends on the redox potentials of the two materials. Herein we show that GaSb can be directly synthesized at room temperature by galvanic displacement of SbCl3 /ionic liquid on electrodeposited Ga, on Ga nanowires, and also on commercial Ga. In situ AFM revealed the galvanic displacement process of Sb on Ga and showed that the displacement process continues even after the formation of GaSb. The bandgap of the deposited GaSb was 0.9±0.1 eV compared to its usual bandgap of 0.7 eV. By changing the cation in the ionic liquid, the redox process could be varied leading to GaSb with different optical properties.

  19. Electrical and optical conductivities of hole gas in p-doped bulk III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Halder, Pushpajit; Ghosh, Barun; Ghosh, Tarun Kanti

    2016-09-01

    We study electrical and optical conductivities of hole gas in p-doped bulk III-V semiconductors described by the Luttinger Hamiltonian. We provide exact analytical expressions of the Drude conductivity, inverse relaxation time for various impurity potentials, Drude weight, and optical conductivity in terms of the Luttinger parameters γ1 and γ2. The back scattering is completely suppressed as a result of the helicity conservation of the heavy and light hole states. The energy dependence of the relaxation time for the hole states is different from the Brooks-Herring formula for electron gas in n-doped semiconductors. We find that the inverse relaxation time of heavy holes is much less than that of the light holes for Coulomb-type and Gaussian-type impurity potentials and vice-versa for a short-range impurity potential. The Drude conductivity increases non-linearly with the increase in the hole density. The exponent of the density dependence of the conductivity is obtained in the Thomas-Fermi limit. The Drude weight varies linearly with the density even in the presence of the spin-orbit coupling. The finite-frequency optical conductivity goes as √{ ω} , and its amplitude strongly depends on the Luttinger parameters. The Luttinger parameters can be extracted from the optical conductivity measurement.

  20. Mapping the effective mass of electrons in III-V semiconductor quantum confined structures

    NASA Astrophysics Data System (ADS)

    Gass, M. H.; Papworth, A. J.; Beanland, R.; Bullough, T. J.; Chalker, P. R.

    2006-01-01

    The electron effective mass me* can be calculated from the Kramers-Kronig transformation of electron energy loss spectra (EELS) for III-V semiconductor materials. The mapping capabilities of a scanning transmission electron microscope, equipped with a GatanEnfina™ EELS system are exploited to produce maps showing the variation of me* with nanometer scale resolution for a range of semiconductors. The analysis was carried out on three material systems: a GaInNAs quantum well in a GaAs matrix; InAs quantum dots in a GaAs matrix, and bulk wurzitic GaN. Values of me* were measured as ˜0.07m0 for GaAs and 0.183m0 for GaN, both in excellent agreement with the literature. It has also been shown that the high frequency dielectric constant can be calculated using the Kramers-Kronig methodology. When the high frequency dielectric constant is incorporated into the calculations a much more accurate visual representation of me* is displayed in the maps.

  1. Localization of Electronic States in III-V Semiconductor Alloys: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Pashartis, C.; Rubel, O.

    2017-06-01

    Electronic properties of III-V semiconductor alloys are examined using first principles, with the focus on the spatial localization of electronic states. We compare localization at the band edges due to various isovalent impurities in a host GaAs, including its impact on the photoluminescence linewidths and carrier mobilities. The extremity of localization at the band edges is correlated with the ability of individual elements to change the band gap and the relative band alignment. Additionally, the formation energies of substitutional defects are calculated and linked to challenges associated with the growth and formability of alloys. A spectrally resolved inverse participation ratio is used to map localization in prospective GaAs-based materials alloyed with B, N, In, Sb, and Bi for 1.55 -μ m -wavelength telecommunication lasers. This analysis is complemented by a band unfolding of the electronic structure and a discussion of the implications of localization on the optical gain and Auger losses. Correspondence with experimental data on the broadening of the photoluminescence spectrum and charge-carrier mobilities show that the localization characteristics can serve as a guideline for the engineering of semiconductor alloys.

  2. Bismuth-induced surface structure and morphology in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.

    2015-04-01

    Bi is the largest group V element and has a number of advantages in III-V semiconductor properties, such as bandgap reduction, spin-orbit coupling, a preserved electron mobility over III-V-N materials, and nearly ideal surfactant properties resulting in a surface smoothing effect on GaAs. However, the mechanism for this behavior is not well understood. Insight on the mechanism is obtained through study of the Bi-terminated GaAs surface morphology and atomic reconstructions produced via molecular beam epitaxy (MBE). Experimental scanning tunneling microscopy (STM) characterization of the Bi/GaAs surface reveal disordered (1x3), (2x3), and (4x3) reconstructions, often sharing the same reflective high-energy electron diffraction (RHEED) patterns. Roughness on the micron length scale decreases as the step widen, attributed to the concurrent increase of opposite direction step edges on the nanometer length scale. Corresponding cluster expansion, density functional theory (DFT), and Monte Carlo simulations all point to the stability of the disordered (4x3) reconstruction at finite temperature as observed in experimental STM. The effects of incorporated Bi are determined through epitaxial GaSbBi growth on GaSb with various Ga:Sb:Bi flux ratios. Biphasic surface droplets are observed with sub-droplets, facets, and substrate etching. Despite the rough growth front, X-ray diffraction (XRD) and Rutherford backscatter (RBS) measurements show significant Bi incorporation of up to 12% into GaSb, along with a concurrent increase of background As concentration. This is attributed to a strain auto-compensation effect. Bi incorporation of up to 10% is observed for the highest Bi fluxes while maintaining low surface droplet density.

  3. Analytical Electron Diffraction from Iii-V and II-Vi Semiconductors

    NASA Astrophysics Data System (ADS)

    Spellward, Paul

    Available from UMI in association with The British Library. This thesis describes the development and evaluation of a number of new TEM-based techniques for the measurement of composition in ternary III-V and II-VI semiconductors. New methods of polarity determination in binary and ternary compounds are also presented. The theory of high energy electron diffraction is outlined, with particular emphasis on zone axis diffraction from well-defined strings. An account of TEM microstructural studies of Cd_{rm x}Hg _{rm 1-x}Te and CdTe epitaxial layers, which provided the impetus for developing the diffraction-based analytical techniques, is given. The wide range of TEM-based compositional determination techniques is described. The use of HOLZ deficiency lines to infer composition from a lattice parameter measurement is evaluated. In the case of Cd_{ rm x}Hg_{rm 1-x}Te, it is found to be inferior to other techniques developed. Studies of dynamical aspects of HOLZ diffraction can yield information about the dispersion surface from which a measure of composition may be obtained. This technique is evaluated for Al_{rm x}Ga_{rm 1-x} As, in which it is found to be of some use, and for Cd_{rm x}Hg _{rm 1-x}Te, in which the large Debye-Waller factor associated with mercury in discovered to render the method of little value. A number of critical voltages may be measured in medium voltage TEMs. The (111) zone axis critical voltage of Cd_{rm x}Hg _{rm 1-x}Te is found to vary significantly with x and forms the basis of an accurate technique for composition measurement in that ternary compound. Other critical voltage phenomena are investigated. In Al _{rm x}Ga_ {rm 1-x}As and other light ternaries, a non-systematic critical voltage is found to vary with x, providing a good indicator of composition. Critical voltage measurements may be made by conventional CBED or by various other techniques, which may also simultaneously yield information on the spatial variation of composition. The

  4. Spin Relaxation in III-V Semiconductors in various systems: Contribution of Electron-Electron Interaction

    NASA Astrophysics Data System (ADS)

    Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien

    2015-03-01

    In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.

  5. Novel planarization and passivation in the integration of III-V semiconductor devices

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Fei; Hanberg, Peter J.; Demir, Hilmi V.; Sabnis, Vijit A.; Fidaner, Onur; Harris, James S., Jr.; Miller, David A. B.

    2004-06-01

    III-V semiconductor devices typically use structures grown layer-by-layer and require passivation of sidewalls by vertical etching to reduce leakage current. The passivation is conventionally achieved by sealing the sidewalls using polymer and the polymer needs to be planarized by polymer etch-back method to device top for metal interconnection. It is very challenging to achieve perfect planarization needed for sidewalls of all the device layers including the top layer to be completely sealed. We introduce a novel hard-mask-assisted self-aligned planarization process that allows the polymer in 1-3 μm vicinity of the devices to be planarized perfectly to the top of devices. The hard-mask-assisted process also allows self-aligned via formation for metal interconnection to device top of μm size. The hard mask is removed to expose a very clean device top surface for depositing metals for low ohmic contact resistance metal interconnection. The process is robust because it is insensitive to device height difference, spin-on polymer thickness variation, and polymer etch non-uniformity. We have demonstrated high yield fabrication of monolithically integrated optical switch arrays with mesa diodes and waveguide electroabsorption modulators on InP substrate with yield > 90%, high breakdown voltage of > 15 Volts, and low ohmic contact resistance of 10-20 Ω.

  6. High Resolution Double Crystal X-Ray Diffractometry and Topography of Iii-V Semiconductor Compounds

    NASA Astrophysics Data System (ADS)

    Cockerton, Simon

    Available from UMI in association with The British Library. Requires signed TDF. Double crystal diffractometry and topography are now routinely used in many laboratories for the inspection of epitaxially grown devices. However the trend towards thinner layers and more complex structures requires the continual development of novel approaches using these techniques. This thesis is concerned with the development of these approaches to study the structural uniformity of semiconductor materials. The uniformity of large single crystals of lithium niobate has been studied using synchrotron radiation and double crystal X-ray topography. This study has shown a variety of contrast features including low angle grain boundaries and non-uniform dislocation densities. The abruptness of an interface between a layer and the underlying substrate has been studied using glancing incidence asymmetric reflections. Comparisons to simulated structures revealed that a closer match was achieved by the inclusion of a highly mismatched interfacial layer. This study illustrates the need for careful comparison between experimental and simulated rocking curves as different structures may produce very similar rocking curves. A double crystal topographic study of a AlGaAs laser structure revealed X-ray interference fringes. These are shown to be produced from the interaction of two simultaneously diffracting layers separated by a thin layer. Possible formation mechanisms have been discussed showing that these fringes are capable of revealing changes in the active layer at the atomic level. A novel approach has also been developed using synchrotron radiation to study the non -stoichiometry of GaAs. This approach uses the quasi-forbidden reflections which are present in III-V semiconductors due to the differences in the atomic scattering factors. This study has also discussed the behaviour of strong and weak reflections in the region of absorption edges and modelled their behaviour using the

  7. III-V semiconductor waveguides for photonic functionality at 780 nm

    NASA Astrophysics Data System (ADS)

    Maclean, Jessica O.; Greenaway, Mark T.; Campion, Richard P.; Pyragius, Tadas; Fromhold, T. Mark; Kent, Anthony J.; Mellor, Christopher J.

    2014-03-01

    Photonic integrated circuits based on III-V semiconductor polarization-maintaining waveguides were designed and fabricated for the first time for application in a compact cold-atom gravimeter1,2 at an operational wavelength of 780 nm. Compared with optical fiber-based components, semiconductor waveguides achieve very compact guiding of optical signals for both passive functions, such as splitting and recombining, and for active functions, such as switching or modulation. Quantum sensors, which have enhanced sensitivity to a physical parameter as a result of their quantum nature, can be made from quantum gases of ultra-cold atoms. A cloud of ultra-cold atoms may start to exhibit quantum-mechanical properties when it is trapped and cooled using laser cooling in a magneto-optical trap, to reach milli-Kelvin temperatures. The work presented here focuses on the design and fabrication of optical devices for a quantum sensor to measure the acceleration of gravity precisely and accurately. In this case the cloud of ultra-cold atoms consists of rubidium (87Rb) atoms and the sensor exploits the hyperfine structure of the D1 transition, from an outer electronic state of 5 2S ½ to 5 2P3/2 which has an energy of 1.589 eV or 780.241 nm. The short wavelength of operation of the devices dictated stringent requirements on the Molecular Beam Epitaxy (MBE) and device fabrication in terms of anisotropy and smoothness of plasma etch processes, cross-wafer uniformities and alignment tolerances. Initial measurements of the optical loss of the polarization-maintaining waveguide, assuming Fresnel reflection losses only at the facets, suggested a loss of 8 dB cm-1, a loss coefficient, α, of 1.9 (+/-0.3) cm-1.

  8. The Development of III-V Semiconductor MOSFETs for Future CMOS Applications

    NASA Astrophysics Data System (ADS)

    Greene, Andrew M.

    Alternative channel materials with superior transport properties over conventional strained silicon are required for supply voltage scaling in low power complementary metal-oxide-semiconductor (CMOS) integrated circuits. Group III-V compound semiconductor systems offer a potential solution due to their high carrier mobility, low carrier effective mass and large injection velocity. The enhancement in transistor drive current at a lower overdrive voltage allows for the scaling of supply voltage while maintaining high switching performance. This thesis focuses on overcoming several material and processing challenges associated with III-V semiconductor development including a low thermal processing budget, high interface trap state density (Dit), low resistance source/drain contacts and growth on lattice mismatched substrates. Non-planar In0.53Ga0.47As FinFETs were developed using both "gate-first" and "gate-last" fabrication methods for n-channel MOSFETs. Electron beam lithography and anisotropic plasma etching processes were optimized to create highly scaled fins with near vertical sidewalls. Plasma damage was removed using a wet etch process and improvements in gate efficiency were characterized on MOS capacitor structures. A two-step, selective removal of the pre-grown n+ contact layer was developed for "gate-last" recess etching. The final In0.53Ga 0.47As FinFET devices demonstrated an ION = 70 mA/mm, I ON/IOFF ratio = 15,700 and sub-threshold swing = 210 mV/dec. Bulk GaSb and strained In0.36Ga0.64Sb quantum well (QW) heterostructures were developed for p-channel MOSFETs. Dit was reduced to 2 - 3 x 1012 cm-2eV-1 using an InAs surface layer, (NH4)2S passivation and atomic layer deposition (ALD) of Al2O3. A self-aligned "gate-first" In0.36Ga0.64Sb MOSFET fabrication process was invented using a "T-shaped" electron beam resist patterning stack and intermetallic source/drain contacts. Ni contacts annealed at 300°C demonstrated an ION = 166 mA/mm, ION/IOFF ratio = 1

  9. Materials design parameters for infrared device applications based on III-V semiconductors.

    PubMed

    Svensson, Stefan P; Sarney, Wendy L; Donetsky, Dmitry; Kipshidze, Gela; Lin, Youxi; Shterengas, Leon; Xu, Ye; Belenky, Gregory

    2017-01-20

    The collaborative development of infrared detector materials by the Army Research Laboratory and Stony Brook University has led to new fundamental understandings of materials, as well as new levels of control and flexibility in III-V semiconductor crystal growth by molecular beam epitaxy. Early work on mid-wave strained layer superlattice (SLS) cameras led to a subsequent focus on minority carrier lifetime studies, which resulted in the proposal of the Ga-free SLS on GaSb substrates. The later demonstration of virtual substrate technology allowed the lattice constant to become a design parameter and enabled growth of undistorted bulk InAsSb. When grown in that manner, InAsSb has a bandgap bowing parameter large enough to cover absorption wavelengths across the entire long-wavelength band (8-12 μm). Even longer wavelengths are achieved with a general Ga-free SLS approach, with a virtual substrate having a lattice constant significantly larger than that of GaSb and with InAsSb in both bi-layers in the period. Since these layers can also be made very thin, the general Ga-free SLS does not suffer from the relatively low optical absorption and poor hole transport, which is characteristic of the special Ga-free SLS on GaSb for long-wavelength designs. Finally, the general Ga-free InAsSb SLS provides a method to induce and control sustained atomic ordering, which is yet another new design parameter.

  10. Iii-V Semiconductor Electroabsorption Waveguide Modulators for Long Wavelength Fiber Communication.

    NASA Astrophysics Data System (ADS)

    Lin, Shyh-Chung

    Long wavelength fiber communication has particular advantages in high speed, long haul communication system applications due to the intrinsic low chromatic dispersion and low attenuation of silica fibers at 1.3 mu m and 1.55 μm wavelengths. However, its implementation has been hampered by the lack of a high speed laser light modulator which has a small frequency variation (chirp) of its optical carrier. This thesis concerns III-V semiconductor electroabsorption waveguide modulators with the intention of improving their chirping characteristics and high speed performance. Analytical work performed in the course of this thesis has led to the following conclusions concerning the design and construction of electroabsorption waveguide modulators (EWM) for laser light modulation. (i) In order to minimize frequency chirping, semiconducting materials chosen for EWM applications should have a direct, fundamental bandgap somewhat greater than that of the incident laser photon energy. (ii) High speed EWMs require some compromises in terms of material parameters as well as dimensional constraints intended to minimize parasitic coupling impedances while providing basic, optimized, modulator functions such as low insertion loss, high modulation index, low driving voltage, and minimum frequency chirping. Experimental research on EWMs performed in the course of this thesis using liquid phase, epitaxially grown, quaternary alloy In_ xGa _{1-x}As_ yP _{1-y} and a laser wavelength of 1.3 μm includes: (i) Design, construction, and performance evaluation of a low capacitance ridge EWM. (ii) Design, construction, and performance evaluation of a buried channel EWM with large on-off ratio and the monolithic integration, in cascade, of such EWMs in order to perform the functions of a high speed phase comparator.

  11. The role of strain in the surface structures of III-V alloyed semiconductor films

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica E.

    As length scales continue to decrease, it is vital to understand the fundamental physical parameters governing surfaces and surface interactions. In semiconductors particularly, surface reconstructions are known to impact film growth, bulk atomic ordering and the development of interfacial structure, all of which can drastically impact device growth. While the parameters that determine surface reconstructions in homoepitaxially grown films are well known and understood, those that impact alloy film growth are less studied. This work examines the impact of strain on alloy surface reconstructions, using the III-V semiconductors as a model system for any covalently bonded crystal structure. The presence of surface reconstruction coexistence in both mixed cation and mixed anion systems suggests that localized strain fields on alloy surfaces stabilize elastic relaxation at boundaries, resulting in more complex surface structures than those seen on binary, unstrained films. Atomic size mismatch strain is shown to induce an ordering in alloyed surface reconstructions that is not seen in the non-alloyed constituent surfaces. Lattice mismatch strain is shown to both stabilize new reconstructions not common to the homoepitaxial system and to induce surface reconstruction coexistence on alloy surfaces. The supplied flux of material is shown to affect the kinetics of transformation between the two coexisting surface reconstructions and an incorporation model for material on the alloy surface is developed. The effects of strained surface reconstructions on subsequent film growth is explored and it is shown that identical films grown on two different surfaces have very different strain relaxation profiles, surface topographies and defect structures. The strain fields of surface reconstructions and defects are also shown to interact which may have an impact on the insertion of dislocations in these films. Combined together, this deep understanding of the role that alloy induced

  12. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  13. The Electronic and Electro-Optic Future of III-V Semiconductor Compounds.

    DTIC Science & Technology

    1978-12-01

    An assessment of material development of III-V compounds for electro - optic , microwave and millimeter wave technology is presented. Questions concerning material selection, needs and processing is addressed. (Author)

  14. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    PubMed

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (<100 nm) particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  15. Second-order optical susceptibility in doped III-V piezoelectric semiconductors in the presence of a magnetostatic field

    NASA Astrophysics Data System (ADS)

    Lal, B.; Aghamkar, P.; Kumar, S.; Kashyap, M. K.

    2011-02-01

    A detailed analytical investigation of second-order optical susceptibility has been made in moderately doped III-V weakly piezoelectric semiconductor crystal, viz. n-InSb, in the absence and presence of an external magnetostatic field, using the coupled mode theory. The second-order optical susceptibility arises from the nonlinear interaction of a pump beam with internally generated density and acoustic perturbations. The effect of doping concentration, magnetostatic field and pump intensity on second-order optical susceptibility of III-V semiconductors has been studied in detail. The numerical estimates are made for n-type InSb crystals duly shined by pulsed 10.6 μm CO2 laser and efforts are made towards optimising the doping level, applied magnetostatic field and pump intensity to achieve a large value of second-order optical susceptibility and change of its sign. The enhancement in magnitude and change of sign of second-order optical susceptibility, in weakly piezoelectric III-V semiconductor under proper selection of doping concentration and externally applied magnetostatic field, confirms the chosen nonlinear medium as a potential candidate material for the fabrication of nonlinear optical devices. In particular, at B 0 = 14.1 T, the second-order susceptibility was found to be 3.4 × 10-7 (SI unit) near the resonance condition.

  16. Metabolomic and proteomic biomarkers for III-V semiconductors: Chemical-specific porphyrinurias and proteinurias

    SciTech Connect

    Fowler, Bruce A. . E-mail: bxf9@cdc.gov; Conner, Elizabeth A.; Yamauchi, Hiroshi

    2005-08-07

    A pressing need exists to develop and validate molecular biomarkers to assess the early effects of chemical agents, both individually and in mixtures. This is particularly true for new and chemically intensive industries such as the semiconductor industry. Previous studies from this laboratory and others have demonstrated element-specific alterations of the heme biosynthetic pathway for the III-V semiconductors gallium arsenide (GaAs) and indium arsenide (InAs) with attendant increased urinary excretion of specific heme precursors. These data represent an example of a metabolomic biomarker to assess chemical effects early, before clinical disease develops. Previous studies have demonstrated that the intratracheal or subcutaneous administration of GaAs and InAs particles to hamsters produces the induction of the major stress protein gene families in renal proximal tubule cells. This was monitored by 35-S methionine labeling of gene products followed by two-dimensional gel electrophoresis after exposure to InAs particles. The present studies examined whether these effects were associated with the development of compound-specific proteinuria after 10 or 30 days following subcutaneous injection of GaAs or InAs particles in hamsters. The results of these studies demonstrated the development of GaAs- and InAs-specific alterations in renal tubule cell protein expression patterns that varied at 10 and 30 days. At the 30-day point, cells in hamsters that received InAs particles showed marked attenuation of protein expression, suggesting inhibition of the stress protein response. These changes were associated with GaAs and InAs proteinuria patterns as monitored by two-dimensional gel electrophoresis and silver staining. The intensity of the protein excretion patterns increased between the 10- and 30-day points and was most pronounced for animals in the 30-day InAs treatment group. No overt morphologic signs of cell death were seen in renal tubule cells of these animals

  17. Metabolomic and proteomic biomarkers for III-V semiconductors: chemical-specific porphyrinurias and proteinurias.

    PubMed

    Fowler, Bruce A; Conner, Elizabeth A; Yamauchi, Hiroshi

    2005-08-07

    A pressing need exists to develop and validate molecular biomarkers to assess the early effects of chemical agents, both individually and in mixtures. This is particularly true for new and chemically intensive industries such as the semiconductor industry. Previous studies from this laboratory and others have demonstrated element-specific alterations of the heme biosynthetic pathway for the III-V semiconductors gallium arsenide (GaAs) and indium arsenide (InAs) with attendant increased urinary excretion of specific heme precursors. These data represent an example of a metabolomic biomarker to assess chemical effects early, before clinical disease develops. Previous studies have demonstrated that the intratracheal or subcutaneous administration of GaAs and InAs particles to hamsters produces the induction of the major stress protein gene families in renal proximal tubule cells. This was monitored by 35-S methionine labeling of gene products followed by two-dimensional gel electrophoresis after exposure to InAs particles. The present studies examined whether these effects were associated with the development of compound-specific proteinuria after 10 or 30 days following subcutaneous injection of GaAs or InAs particles in hamsters. The results of these studies demonstrated the development of GaAs- and InAs-specific alterations in renal tubule cell protein expression patterns that varied at 10 and 30 days. At the 30-day point, cells in hamsters that received InAs particles showed marked attenuation of protein expression, suggesting inhibition of the stress protein response. These changes were associated with GaAs and InAs proteinuria patterns as monitored by two-dimensional gel electrophoresis and silver staining. The intensity of the protein excretion patterns increased between the 10- and 30-day points and was most pronounced for animals in the 30-day InAs treatment group. No overt morphologic signs of cell death were seen in renal tubule cells of these animals

  18. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  19. Optical Absorption, Emission, and Modulation in Iii-V Semiconductor Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Shank, Steven Marc

    An experimental study of topics relating to optical absorption, emission, and modulation in III-V semiconductor GaAs/AlGaAs quantum well structures is presented. Several novel quantum well structures are examined and evaluated for use in electrooptic modulators, laser diodes, and monolithically integrated laser diodes and passive waveguides. The design of the epitaxial structures, the molecular beam epitaxy growth, the optical characterization of the wafers, the fabrication of the wafers into basic optoelectronic devices (electrooptic waveguides, laser diodes, and segmented laser diodes), and the characterization of these devices are described. The quantum confined Stark effect and its influence on the electrooptic properties of quantum wells are described. In particular, electroabsorption and electrobirefringence in (111)B quantum wells are investigated. This quantum well system is chosen due to the larger heavy hole effective mass compared to standard (100) quantum wells. It is demonstrated that electroabsorption and electrobirefringence are enhanced in (111)B quantum wells, which agrees with theoretical predictions based on the heavy hole mass anisotropy. Computer simulations of the quantum confined Stark effect in asymmetric quantum well structures are described. It is demonstrated that asymmetric quantum wells can exhibit enhanced red shifts of the absorption edge, and blue shifts of the absorption edge under an applied reverse bias. An experimental investigation of laser diodes with asymmetric quantum well active regions is described. An evaluation of the blue shift effect on the interband absorption at the laser wavelength is made and related to the efficiency of these structures for monolithic integration with passive waveguides. The optical properties of n-type modulation doped quantum wells are described. It is shown that the interband absorption at the spontaneous emission peak can be greatly reduced compared to undoped quantum wells. N-type modulation

  20. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  1. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  2. III-V compound semiconductor growth on silicon via germanium buffer and surface passivation for CMOS technology

    NASA Astrophysics Data System (ADS)

    Choi, Donghun

    Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre

  3. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  4. Two-dimensional bulk bands and surface resonances originated from (100) surfaces of III-V semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Olguín, D.; de Coss, R.; Baquero, R.

    1996-07-01

    We have calculated the electronic band structure of the (100) surface of the III-V zinc blende semiconductor compounds, using the standard tight binding method and the surface Green's function matching method. We have found that the creation of the surface gives place to new states in the electronic structure: surface resonances and two dimensional bulk states. The two dimensional bulk states are of the same character of those reported recently in CdTe(100) [Phys. Rev. 50, 1980 (1994)]. We analyze the states in the valence band region and compare with photoemission spectroscopy data.

  5. Synthesis and Characterization of Mixed III-V and II-VI Semiconductor Monomers Included in the Borate Sodalite Analogue

    DTIC Science & Technology

    1993-04-30

    Characterization of Mixed III-V and .I-VI N00014-k0-J-er59Semiconductor Monomrers Included in the Borate Sodalite Analogue ..... C LL AU N.𔃾 K.L. Moran...dependent static and magic angle spinning and solid state NMR experiments. Inclusion of GaP within the borate sodalite analogue results in the formation of an...properties of compounds can be dramatically altered by inclusion into the sodalite framework, which is one of several reasons why this zeolite structure

  6. Examination of the Ion Beam Response of III-V Semiconductor Substrates

    NASA Astrophysics Data System (ADS)

    Grossklaus, Kevin A.

    This work examines the response of the III-V materials to ion beam irradiation in a series of four experimental studies and describes the observed results in terms of the fundamental materials processes and properties that control ion-induced change in those compounds. Two studies investigate the use of Ga+ focused ion beam (FIB) irradiation of III-V substrate materials to create nanostructures. In the first, the creation of FIB induced group III nanodots on GaAs, InP, InAs, and AlAs is studied. The analysis of those results in terms of basic material properties and a simple nanodot growth model represents the first unified investigation of the fundamental processes that drive the nanodot forming behavior of the III-V compounds. The second nanostructure formation study reports the discovery and characterization of unique spike-like InAs nanostructures, termed "nanospikes," which may be useful for nanoscale electronic or thermoelectric applications. A novel method for controlling nanospike formation using InAs/InP heterostructures and film pre-patterning is developed, and the electrical properties of these ion erosion created nanostructures are characterized by in-situ TEM nanoprobe testing in a first-of-its-kind examination. The two remaining studies examine methods for using ion beam modification of III-V substrates to accommodate lattice-mismatched film growth with improved film properties. The first examines the effects of film growth on a wide range of different FIB created 3-D substrate patterns, and finds that 3-D surface features and patterns significantly alter film morphology and that growth on or near FIB irradiated regions does not improve film threading defect density. The second substrate modification study examines broad beam ion pre-implantation of GaAs wafers before InGaAs film growth, and is the first reported study of III-V substrate pre-implantation. Ar + pre-implantation was found to enhance the formation of threading defects in InGaAs films and

  7. Influence of plasma composition on reflectance anisotropy spectra for in situ III-V semiconductor dry-etch monitoring

    NASA Astrophysics Data System (ADS)

    Barzen, Lars; Kleinschmidt, Ann-Kathrin; Strassner, Johannes; Doering, Christoph; Fouckhardt, Henning; Bock, Wolfgang; Wahl, Michael; Kopnarski, Michael

    2015-12-01

    Reflectance anisotropy spectroscopy (RAS) can be used to monitor (reactive) ion etching (RIE) of semiconductor samples. We present results on the influence of the Cl2 content of the plasma gas on the RAS spectra during reactive ion etching. In a first step GaAs samples have been used and the RAS spectra are compared to results of secondary ion mass spectrometry (SIMS) on sample surfaces and depth profiles. In a second step a III-V semiconductor multilayer system has been investigated using the time-evolution of the average reflected intensity as an indication for the etch rate. In both cases usually even a high amount of Cl2 does not disturb the surface-sensitivity of the RAS signal.

  8. Fully first-principles sX-LDA calculations of excited states and optical properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Hyon Rhim, Sung; Kim, Miyoung; Freeman, A. J.

    2004-03-01

    III-V semiconductors are important for their extensive applications as optical devices such as laser diodes and infrared sensors. Optical properties, [ɛ_2(ω), n, k, R, and α], of III-V semiconductors (InAs, InSb, GaSb, and AlSb), are investigated using our highly precise full-potential linearized augmented plane wave(E.Wimmer,H.Krakauer, M.Weinert, A.J.Freeman, PRB,24), 864 (1981)(FLAPW) method with the screened-exchange local density approximation( R.Asahi,W.Mannstadt, A.J.Freeman,PRB,59), 7486 (1999)(sX-LDA) solved self-consistently and with spin-orbit coupling included. The imaginary part of the dielectric constant, ɛ_2(ω) is calculated using the longitudinal expression with full e^iqotr matrix elements, due to the nonlocality of the potential in the sX-LDA method(R.Del Sole, R.Girlanda, PRB 48), 11789 (1993). The structure of the ɛ_2(ω)'s are analyzed with band structures and consideration of interband transitions. The result shows good agreement of the peak positions in ɛ_2(ω) with experiment( D.E.Aspnes,A.A.Studna, PRB 27), 985 (1983) .

  9. DX centers in III-V semiconductors under hydrostatic pressure. [GaAs:Si; InP:S

    SciTech Connect

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si[sub Ga] shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  10. Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors

    SciTech Connect

    Bui, Dinh-Hoi; Phan, Van-Nham

    2016-12-15

    In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.

  11. Lattice Dynamical, Elastic and Thermodynamical Properties of III-V Semiconductor AlSb, GaSb and Their Mixed Semiconductor Ga_{1-x}AlxSb

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.

    2017-07-01

    A proposed eleven-parameter three-body shell model is used to study the lattice dynamical properties such as phonon dispersion relations along high symmetry directions, phonon density of states, variation of specific heat and Debye characteristic temperature with absolute temperature, elastic constants and related properties for III-V semiconductor AlSb, GaSb and their mixed semiconductor Ga_{1-x}AlxSb having zinc-blende structure. We found an overall good agreement with the available experimental and theoretical results available in the literature.

  12. Integrating III-V compound semiconductors with silicon using wafer bonding

    NASA Astrophysics Data System (ADS)

    Zhou, Yucai

    2000-12-01

    From Main Street to Wall Street, everyone has felt the effects caused by the Internet revolution. The Internet has created a new economy in the New Information Age and has brought significant changes in both business and personal life. This revolution has placed strong demands for higher bandwidth and higher computing speed due to high data traffic on today's information highway. In order to alleviate this problem, growing interconnection bottlenecks in digital designs have to be solved. The most feasible and practical way is to replace the conventional electrical interconnect with an optical interconnect. Since silicon does not have the optical properties necessary to accommodate these optical interconnect requirements, III-V based devices, most of which are GaAs-based or InP-based, must be intimately interconnected with the Si circuit at chip level. This monolithic integration technology enables the development of both intrachip and interchip optical connectors to take advantage of the enormous bandwidth provided by both high-performance very-large-scale integrated (VLSI) circuits and allied fiber and free-space optical technologies. However, lattice mismatch and thermal expansion mismatches between III-V materials and Si create enormous challenges for developing a feasible technology to tackle this problem. Among all the available approaches today, wafer bonding distinguishes itself as the most promising technology for integration due to its ability to overcome the constraints of both lattice constant mismatch and thermal expansion coefficient differences and even strain due to the crystal orientation. We present our development of wafer bonding technology for integrating III-V with Si in my dissertation. First, the pick-and-place multiple-wafer bonding technology was introduced. Then we systematically studied the wafer bonding of GaAs and InP with Si. Both high temperature wafer fusion and low/room temperature (LT/RT) wafer bonding have been investigated for

  13. Temperature dependence of the photoluminescence polarization of ordered III-V semiconductor alloys

    SciTech Connect

    Prutskij, T.; Makarov, N.; Attolini, G.

    2016-03-21

    We studied the linear polarization of the photoluminescence (PL) emission of atomically ordered GaInAsP and GaInP alloys with different ordering parameters in the temperature range from 10 to 300 K. The epitaxial layers of these alloys were grown on GaAs and Ge (001) substrates by metal organic vapor phase epitaxy. The polarization of the PL emission propagating along different crystallographic axes depends on the value of biaxial strain in the layer and changes with temperature. We calculated the PL polarization patterns for different propagation directions as a function of biaxial strain using an existing model developed for ternary atomically ordered III-V alloys. Comparing the calculated PL polarization patterns with those obtained experimentally, we separated the variation of the PL polarization due to change of biaxial strain with temperature.

  14. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms.

    PubMed

    Santis, Christos Theodoros; Steger, Scott T; Vilenchik, Yaakov; Vasilyev, Arseny; Yariv, Amnon

    2014-02-25

    The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 μm, achieved using a single-mode silicon resonator with Q of 10(6).

  15. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms

    PubMed Central

    Santis, Christos Theodoros; Steger, Scott T.; Vilenchik, Yaakov; Vasilyev, Arseny; Yariv, Amnon

    2014-01-01

    The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 μm, achieved using a single-mode silicon resonator with Q of 106. PMID:24516134

  16. Semiconductor structural damage attendant to contact formation in III-V solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  17. Atomic-scale studies of nanometer-sized graphene on III-V semiconductors using scanning tunneling microscopy.

    NASA Astrophysics Data System (ADS)

    He, Kevin; Koepke, Justin; Lyding, Joseph

    2009-03-01

    We utilize the Dry Contact Transfer (DCT) method [1] to deposit nanometer-sized, monolayer graphene flakes, in situ, onto cleaved GaAs (110) and InAs (110) surfaces. The flakes were characterized using a homebuilt, room temperature, ultrahigh-vacuum scanning tunneling microscope. We report on the apparent electronic semi-transparency of the monolayer graphene flakes, such that the underlying III-V semiconductor lattice is revealed in our topographic images. This transparency is strongly dependent on the applied sample bias, similar to results seen on SiC (1000) for large sheets of graphene grown via thermal desorption [2]. [3pt] [1] P.M. Albrecht and J.W. Lyding, APL 83, 5029 (2003). [0pt] [2] G.M. Rutter et al, Phys. Rev. B 76, 235416 (2007).

  18. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  19. Monolithic integration in III-V semiconductors via a universal damage enhanced quantum well intermixing technique

    NASA Astrophysics Data System (ADS)

    Marsh, John H.; Kowalski, Olek P.; McDougall, Stewart D.; Hamilton, Craig J.; Camacho, Fernando; Qiu, Bocang; Ke, Maolong; De La Rue, Richard M.; Bryce, A. Catrina

    1998-09-01

    A novel technique for quantum well intermixing is demonstrated which has proven to be a reliable means for obtaining post-growth shifts in the band edge of a wide range of III-V material systems. The techniques relies upon the generation of point defects via plasma induced damage during the deposition of sputtered silica, and provides a simple and reliable process for the fabrication of both wavelength tuned lasers and monolithically integrated devices. Wavelength tuned board area oxide stripe lasers are demonstrated in InGaAs-InAlGaAs, InGaAs-InGaAsP, and GaInP- AlInP quantum well systems, and it is shown that low absorption losses are obtained after intermixing. Oxide stripe lasers with integrated slab waveguides have also enabled the production of a narrow single lobed far field pattern in both InGaAs-InAlGaAs, and GaInP-AlGaInP devices. Extended cavity ridge waveguide lasers operating at 1.5 micrometers are demonstrated with low loss waveguides, and it is shown that this loss is limited only by free carrier absorption in the waveguide cladding layers. In addition, the operation of intermixed multi-mode interference coupler lasers is demonstrated, where four GaAs-AlGaAs laser amplifiers are monolithically integrated to produce high output powers of 180 mW in a single fundamental mode. The results illustrate that the technique can routinely be used to fabricate low los optical interconnects and offers a very promising route toward photonic integration.

  20. Semiconductor quantum well lasers and related optoelectronic devices on silicon, III-V

    NASA Astrophysics Data System (ADS)

    Holonyak, N., Jr.; Hsieh, K. C.; Stillman, G. E.

    1989-06-01

    Although an ultimate goal of this work is to achieve long term reliable laser operation of Al(x)Ga(1-x)As-GaAs quantum well heterostructures (QWH's), or similar III-V QWH's, grown on Si, this has proven to be a formidable enough problem that to the best of our knowledge no one has exceeded the results we reported in 1987 and 1988. This problem is of such dimensions that it may not be solved for as much as 10 years, or even more. All we know so far is that continuous (CW) 300 K Al(x)Ga(1-x)As-GaAs QWH lasers can be grown on Si, and that, indeed, the heat sinking of an Al(x)Ga(1-x)As-GaAs QWH laser on Si is better than a similar laser on a GaAs substrate. Nevertheless, the problem of growing better versions of these devices (i.e., long-lived high performance CW 300 K lasers on Si) has run into the fundamental issue of the large GaAs-Si lattice and thermal expansion mismatch, and hence the built-in difficulty in reducing the defects guaranteed by mismatch. Accordingly, and as much as we have worked further on the problem of Al(x)Ga(1-x)As-GaAs QWH lasers on Si, we have worked as hard on other QWH laser problems, as well as a impurity-induced layer disordering (or layer intermixing, IILD) and its application in laser devices. We briefly describe this work below and append the titles and abstracts of the papers we have published on laser studies and IILD.

  1. The Longwave Silicon Chip - Integrated Plasma-Photonics in Group IV And III-V Semiconductors

    DTIC Science & Technology

    2013-10-01

    infrared, nanophotonics, semiconductor lasers , spasers, optical waveguiding, optical sensors, modulators, optical switches, photodetectors, quantum wells ...a Si-based lattice-matched room-temperature SiGeSn/GeSn/SiGeSn multi- quantum - well mid-infrared laser diode”, Optics Express, vol. 19, pp. 19957...GeSn/SiGeSn multi- quantum - well laser diodes, first-principles band theory of all SiGeSn alloys, Fano nano-membrane devices, ultralow-energy MOS

  2. Electronic Properties and Device Applications of III-V Compound Semiconductor Native Oxides

    DTIC Science & Technology

    2006-03-02

    variable-temperature impedance spectroscopy measurement technique to determine low total interface state density of Dit= 8 x 1011 cm-2 for a 110 nm thick...Zhang and R. D. Dupuis, “Electrical characterization of native-oxide InAlP/GaAs metal-oxide-semiconductor heterostuctures using impedance spectroscopy ...State Density Measured by Impedance Spectroscopy ,” 46th Electronic Materials Conference, paper GG4 (Notre Dame, Indiana, June 23-25, 2004). [8] T. H

  3. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    NASA Astrophysics Data System (ADS)

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-07-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems.

  4. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    PubMed Central

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-01-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769

  5. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation.

    PubMed

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-07-19

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems.

  6. Study of magnetism in dilute magnetic semiconductors based on III-V nitrides

    NASA Astrophysics Data System (ADS)

    Rajaram, Rekha

    Spin based electronics, commonly referred to as "spintronics", seeks to expand the functionalities of microelectronic devices by introducing the ability to manipulate the carrier's spin, in addition to or instead of its charge. Key steps in spintronic devices include the injection, manipulation and detection of the carrier's spin. Metal-based spintronic devices such as spin valves have already found applications in high capacity hard disk drive read heads and have potential in non-volatile solid state memories. However, in order to realize the full potential of spintronics, spin manipulation must be introduced into semiconductor devices. This in turn, requires the development of magnetic semiconductors. Dilute magnetic semiconductors (DMS) are a class of magnetic semiconductors in which a fraction of the cations are substitutionally replaced by magnetic ions. The exchange interaction between the spin of the dopant atoms and the carriers in the semiconductor host is expected to bring about global ferromagnetic order in the entire lattice in these materials. The search for novel DMS candidates has been driven by two cardinal requirements - a material system with well-developed growth technology, and a high Curie temperature. In this work, we have investigated the growth and characteristics of one such promising candidate, transition-metal doped InN. InN films were deposited on c-sapphire substrates by molecular beam epitaxy, employing GaN underlayers to reduce the lattice mismatch between the film and substrate. The films were doped from 0.1-6% Cr with no noticeable trace of crystalline secondary phases detected by X-ray diffraction. However, Mn-doping led to segregation of manganese nitride. Hall effect measurements revealed n-type behavior in both undoped as well as Cr-doped films. A magnetic hysteresis, with a small remanence and coercivity was observed in Cr:InN up to room temperature, confirming long-range magnetic order in this material. X-ray magnetic circular

  7. Photoelectrochemical Characterization of Iii-V Semiconductors Utilizing Impedance Spectroscopy Methods

    NASA Astrophysics Data System (ADS)

    Kocha, Shyam Sunder

    The thermodynamic reversible potential required to decompose water into hydrogen and oxygen is about 1.23 eV. An overpotential of 100-400 mV may have to be overcome at the semiconductor/electrolyte interface to successfully photo-electrolyze water. An optimal bandgap of a semiconductor utilized in photoelectrolysis of water would be in the range 1.6-2.0 eV. Single crystal GaInP_2 , (Eg = 1.83 eV) and Ga_{rm 1-x}Al_{rm x} As (Eg = 1.5-1.8 eV), Ga_{rm 1-x}Al_{rm x} As with embeded single quantum wells of GaAs, Ga _{rm x}As _{rm 1-x}P, Ga_ {rm x}Al_{rm y}In1-x-yP, GaAs and InP grown epitaxially in a MOCVD reactor (at NREL) were the subject of this study since, by virtue of their bandgaps, they show promise of being capable of photodecomposition of water in the absence of an external bias. These materials were studied when immersed in various aqueous electrolyte solutions of different pHs. Electrochemical impedance spectroscopy (EIS) was used to investigate the semiconductor-electrolyte interface, which was modeled using an equivalent electrical circuit analog that represented the physical phenomena. Based on the space-charge layer capacitance, the flat-band potential and hence, the corresponding position of band edges relative to the hydrogen and oxygen redox levels were determined. Capacitance measurements, current-voltage measurements and photocurrent spectroscopy were also carried out on these interfaces. Based on favorable results obtained for GaInP_2 , a tandem cell structure consisting of GaInP _2 and GaAs was utilized in photoelectrolysis of water in acidic solutions and efficiencies of 7-14% reported.

  8. Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices

    SciTech Connect

    Robertson, J.; Guo, Y.; Lin, L.

    2015-03-21

    The paper describes the reasons for the greater difficulty in the passivation of interface defects of III–V semiconductors like GaAs. These include the more complex reconstructions of the starting surface which already possess defect configurations, the possibility of injecting As antisites into the substrate which give rise to gap states, and the need to avoid As-As bonds and As dangling bonds which give rise to gap states. The nature of likely defect configurations in terms of their electronic structure is described. The benefits of diffusion barriers and surface nitridation are discussed.

  9. Orthogonal and Non-Orthogonal Tight Binding Parameters for III-V Semiconductors Nitrides

    NASA Astrophysics Data System (ADS)

    Martins, A. S.; Fellows, C. E.

    2016-12-01

    A simulated annealing (SA) approach is employed in the determination of different tight binding (TB) sets of parameters for the nitride semiconductors AlN, GaN and InN, as well their limitations and potentialities are also discussed. Two kinds of atomic basis set are considered: (i) the orthogonal sp 3 s∗ with interaction up to second neighbors and (ii) a spd non-orthogonal set, with the Hamiltonian matrix elements calculated within the Extended Hückel Theory (EHT) prescriptions. For the non-orthogonal method, TB parameters are given for both zincblend and wurtzite crystalline structures.

  10. Cathodic and anodic photocurrent enhancement at III-V semiconductor electrodes

    SciTech Connect

    Gomes, W.P.; Theuwis, A.; Vermeir, I.E.

    1996-10-01

    The phenomenon of limiting photocurrent enhancement at semiconductor electrodes due to the addition of redox components to the solution is known since many years. In the present contribution, this effect has been studied on the systems GaAs/HIO{sub 3} InP/HIO{sub 3} and InP/H{sub 2}O{sub 2}. The cathodic enhancement observed at p-type electrodes for the three systems can be interpreted in the usual way, i.e. by assuming that the electroreduction of the oxidizing agent involves not only minority carrier capture but also majority carrier injection steps. In the case of GaAs/HIO{sub 3}, up to five injection steps may be involved. In contrast, anodic current-doubling at n-InP by HIO{sub 3} and by H{sub 2}O{sub 2} is attributed to the influence of the oxidizing agent upon the photoelectrochemical dissolution of the semiconductor. Reaction mechanisms for these processes are proposed on the basis of combined current-potential, IMPS and etch rate results.

  11. A survey of ohmic contacts to III-V compound semiconductors

    SciTech Connect

    Baca, A.G.; Zolper, J.C.; Briggs, R.D.; Ren, F.; Pearton, S.J.

    1997-04-01

    A survey of ohmic contact materials and properties to GaAs, InP, GaN will be presented along with critical issues pertaining to each semiconductor material. Au-based alloys (e.g., GeAuNi for n-type GaAs) are the most commonly used contacts for GaAs and InP materials for both n- and p-type contacts due to the excellent contact resistivity, reliability, and usefulness over a wide range of doping levels. Research into new contacting schemes for these materials has focused on addressing limitations of the conventional Au-alloys in thermal stability, propensity for spiking, poor edge definition, and new approaches for a non-alloyed contact. The alternative contacts to GaAs and InP include alloys with higher temperature stability, contacts based on solid phase regrowth, and contacts that react with the substrate to form lower bandgap semiconductors alloys at the interface. A new area of contact studies is for the wide bandgap group III-Nitride materials. At present, low resistivity ohmic contact to p-type GaN has not been obtained primarily due to the large acceptor ionization energy and the resultant difficulty in achieving high free hole concentrations at room temperature. For n-type GaN, however, significant progress has been reported with reactive Ti-based metalization schemes or the use of graded InGaN layers. The present status of these approaches will be reviewed.

  12. Exploiting strain to enhance the Bi incorporation in GaAs-based III/V semiconductors using MOVPE

    NASA Astrophysics Data System (ADS)

    Nattermann, L.; Ludewig, P.; Sterzer, E.; Volz, K.

    2017-07-01

    Bi containing III/V semiconductors are frequently mentioned for their importance as part of the next generation of optoelectronic devices. Bi containing ternary and quaternary materials like Ga(AsBi), Ga(NAsBi) or Ga(PAsBi) are promising candidates to meet the requirements for new laser structures for telecommunications and solar cell applications. However, in previous studies it was determined that the incorporation of sufficient amounts of Bi still poses a challenge, especially when using MOVPE (metalorganic vapour phase epitaxy) as the growth technique. In order to figure out which mechanisms are responsible for the limitation of Bi incorporation, this work deals with the question of whether there is a relationship between strain, induced by the large Bi atoms, and the saturation level of Bi incorporation in Ga(AsBi). Ga(NAsBi) structures were grown by MOVPE at a low temperature, 400 °C, and compared to Ga(PAsBi) as well as Ga(AsBi) growth. By using the two group V atoms P and N, which have a smaller covalent radius than Bi, the effect of local strain compensation was investigated systematically. The comparison of Bi incorporation in the two quaternary materials systems proved the importance of local strain for the limitation of Bi incorporation, in addition to other effects, like Bi surface coverage and hydrocarbon groups at the growth surface. This, of course, also opens up ways to strain-state-engineer the Bi incorporation in semiconductor alloys.

  13. Electric field control of spin splitting in III-V semiconductor quantum dots without magnetic field

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick

    2015-10-01

    We provide an alternative means of electric field control for spin manipulation in the absence of magnetic fields by transporting quantum dots adiabatically in the plane of two-dimensional electron gas. We show that the spin splitting energy of moving quantum dots is possible due to the presence of quasi-Hamiltonian that might be implemented to make the next generation spintronic devices of post CMOS technology. Such spin splitting energy is highly dependent on the material properties of semiconductor. It turns out that this energy is in the range of meV and can be further enhanced with increasing pulse frequency. In particular, we show that quantum oscillations in phonon mediated spin-flip behaviors can be observed. We also confirm that no oscillations in spin-flip behaviors can be observed for the pure Rashba or pure Dresselhaus cases.

  14. The Rise of III-V Semiconductors and Their Impact on Environmental Indium Concentrations

    NASA Astrophysics Data System (ADS)

    White, S. O.; Hemond, H.

    2008-12-01

    New semiconductor manufacturing processes are critical to emerging energy technologies. While these technologies will inevitably employ the use of novel materials, potentially in large quantities, little is known about the environmental behavior or toxicology of many of the materials that will be employed. This work investigates the potential environmental impact of novel metals on hydrologic systems, using indium as a case study. Indium production has been predicted to increase as much as 1000-fold in the next two decades, driven by its use in new high-efficiency photovoltaic cells, LEDs, and in indium tin oxide (ITO) electrical coatings for photovoltaics and displays (e.g. flat panel and liquid crystal displays). We propose the comparison of anthropogenic fluxes to natural fluxes of a metal as a useful early approach for flagging elements for priority study if it appears that projected anthropogenic fluxes may rival or exceed their natural fluxes. Analyses of sediment core data provide an historical record of metal concentrations in overlying waters, revealing information about natural, background concentrations and the importance of present-day anthropogenic and natural inputs to the system. Data from an industrial watershed in Massachusetts supports published data from a Swedish lake that suggests that indium concentrations have been increasing for the past 150 years, much before indium was used widely, and are now 1.5-10 times higher than background levels. These cores also show that while indium use has been increasing since the mid-1970s, concentrations in sediments have been decreasing. Initial calculations suggest that the mining/smelting of zinc ores are the largest contribution of indium to local watersheds, but that use by the semiconductor industry may drive a demand for indium that enhances its recovery from zinc ores (of which indium is a byproduct) and actually decreases local watershed releases.

  15. Chemical trends of stability and band alignment of lattice-matched II-VI/III-V semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Luo, Jun-Wei; Wei, Su-Huai

    2015-02-01

    Using the first-principles density functional theory method, we systematically investigate the structural and electronic properties of heterovalent interfaces of the lattice-matched II-VI/III-V semiconductors, i.e., ZnTe/GaSb, ZnSe/GaAs, ZnS/GaP, and ZnO/GaN. We find that, independent of the orientations, the heterovalent superlattices with period n =6 are energetically more favorable to form nonpolar interfaces. For the [001] interface, the stable nonpolar interfaces are formed by mixing 50% group-III with 50% group-II atoms or by mixing 50% group-V with 50% group-VI atoms; for the [111] nonpolar interfaces, the mixings are 25% group-III (II) and 75% group-II (III) atoms or 25% group-V (VI) and 75% group-VI (V) atoms. For all the nonpolar interfaces, the [110] interface has the lowest interfacial energy because it has the minimum number of II-V or III-VI "wrong bonds" per unit interfacial area. The interfacial energy increases when the atomic number of the elements decreases, except for the ZnO/GaN system. The band alignments between the II-VI and III-V compounds are drastically different depending on whether they have mixed-cation or mixed-anion interfaces, but the averaged values are nearly independent of the orientations. Similarly, other than ZnO/GaN, the valence-band offsets also increase as the atomic number of the elements decreases. The abnormal trends in interfacial energy and band alignment for ZnO/GaN are primarily attributed to the very short bond lengths in this system. The underlying physics behind these trends are explained.

  16. A controllable mechanism of forming extremely low-resistance nonalloyed ohmic contacts to group III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Stareev, G.; Künzel, H.; Dortmann, G.

    1993-12-01

    This work refers basically to the detailed understanding of the natural phenomena in real tunneling metal-semiconductor contacts. A mechanism of forming extremely low-resistance nonalloyed Ti/Pt/Au ohmic contacts to a variety of III-V compound semiconductors, e.g., InGaAs, InAs, and GaAs, is presented. Epitaxial layers of either type with different doping levels ranging from 1×1019 to 2×1020 cm-3 were employed in order to determine electrical parameters that guarantee pure tunneling behavior of the contacts. Ti/Pt/Au contacts formed on p-InGaAs Zn doped to 1×1020 cm-3 and on n-InGaAs Si doped to 5×1019 cm-3 yielded a specific contact resistance of 4.8×10-8 and 4.3×10-8 Ω cm2, respectively. The same metallization scheme applied to 4×1019 cm-3 Si-doped n-InAs gave a specific contact resistance of 1.7×10-8 Ω cm2 for the as-deposited and annealed samples. An extremely low value of 2.8×10-8 Ω cm2 was evaluated for contacts on p-GaAs doped with Be to 2×1020 cm-3. The contact properties are discussed in relation to the effect of ion-beam cleaning and postdeposition annealing. Of particular concern was the cleaning of the semiconductor surface with low-energy (60 eV) Ar+ ions for 40 s prior to the metallization process. This opens also the possibility to investigate ion damage defects and trap-assisted increase of the depletion depth. The contact design was based on the concept that the detrimental influence of the ion beam on the semiconductor properties can be neutralized with a proper annealing. It has been demonstrated that even very rapid thermal processing for 1 s at elevated temperatures was sufficient to restore the stoichiometry in the As-depleted subsurface layer arising as a result of ion damage. The fabrication sequences used provide formation of intimate contacts without interfacial films and carrier compensation effects. Optimal processing conditions have been empirically established that stimulate substantially the ohmic behavior of the contacts

  17. Spin selector based on periodic diluted-magnetic-semiconductor/nonmagnetic-barrier superlattices

    SciTech Connect

    Yang, Ping-Fan; Guo, Yong; Zhu, Rui

    2015-07-15

    We propose a spin selector based on periodic diluted-magnetic-semiconductor/nonmagnetic-barrier (DMS/NB) superlattices subjected to an external magnetic field. We find that the periodic DMS/NB superlattices can achieve 100% spin filtering over a dramatically broader range of incident energies than the diluted-magnetic-semiconductor/semiconductor (DMS/S) case studied previously. And the positions and widths of spin-filtering bands can be manipulated effectively by adjusting the geometric parameters of the system or the strength of external magnetic field. Such a compelling filtering feature stems from the introduction of nonmagnetic barrier and the spin-dependent giant Zeeman effect induced by the external magnetic field. We also find that the external electric field can exert a significant influence on the spin-polarized transport through the DMS/NB superlattices.

  18. An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.

    PubMed

    Baig, Sarwat A; Boland, Jessica L; Damry, Djamshid A; Tan, H Hoe; Jagadish, Chennupati; Joyce, Hannah J; Johnston, Michael B

    2017-04-12

    Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.

  19. Growth and Characterization of III-V Semiconductors for Device Applications

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  20. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    SciTech Connect

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  1. Intersubband transitions in III-V semiconductors for novel infrared optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammed Imrul

    Intersubband transitions (ISBTs) in the conduction band (CB) of semiconductor multiple quantum wells (QW) have led to devices, like quantum-well infrared photodetectors and quantum cascade lasers (QCL). Due to the complexities related to the valence band (VB), hole ISBTs have not been explored as intensively as their electronic counterparts. Absorption and photoluminescence due to ISBT in the VB have been reported for p-type Si-SiGe QWs but this material system suffers from significant challenges associated with the built-in strain of these lattice mismatched materials. The GaAs/AlGaAs material system is virtually strain-free and quite mature. We are investigating the properties of bound-to-bound inter-valence subband transitions in GaAs QWs with high Al composition barriers for mid-infrared emitters. Hole ISBTs are interesting because the polarization of the light emitted in heavy-to-light hole transitions is not restricted to the perpendicular of the quantum wells (unlike electron ISBTs in the CB due to selection rules), therefore surface emitting QCLs and ultimately vertical-cavity surface emitting devices are possible using these transitions. Moreover the valence-band offset for pure GaAs and AlAs is comparable with the conduction-band offset in the traditional InGaAs/InAlAs lattice matched to InP system. Very recently we have observed strong heavy to light hole absorption and heavy to heavy hole electroluminescence from ridge waveguide structures in the mid infra-red range. We are also investigating dual wavelength mid infra-red QCLs in the InGaAs/InAlAs system lattice matched to InP. This device may be useful in applications like differential absorption lidar where light has to be evaluated and compared at two different frequencies for environmental sensing application. Most approaches to multi-wavelength QCL operation involve the use of heterogeneous cascades. Our design involves a single type of active region, emitting at two widely different wavelengths in

  2. Iii-V Compound Semiconductor Integrated Charge Storage Structures for Dynamic and Non-Volatile Memory Elements

    NASA Astrophysics Data System (ADS)

    Hetherington, Dale Laird

    This thesis presents an investigation into a novel group of GaAs charge storage devices. These devices, which are an integration of bipolar and junction field effect transistor structures were conceived, designed, fabricated, and tested within this study. The purpose was to analyse new types of charge storage devices, which are suitable for fabrication and lead to the development of dynamic and nonvolatile memories in III-V compound semiconductors. Currently, III-V semiconductor storage devices consist only of capacitors, where data is destroyed during reading and electrical erasure is difficult. In this work, four devices types were demonstrated that exhibit nondestructive reading, and three of the prototypes can be electrically erased. All types use the junction field effect transistor (JFET) for charge sensing, with each having different bipolar or epitaxial layer structure controlling the junction gate. The bottom epitaxial layer in each case served as the JFET channel. Two of the device types have three alternately doped layers, while the remaining two have four alternately doped layers. In all cases, removal of majority carriers from the middle layers constitutes stored charge. The missing carriers deplete the current carrying a region of the JFET channel. Drain current of the JFET becomes an indicator of stored charge. The basic function of each JFET memory element type is independent of interchanging n- and p- type doping within the structure type. Some performance advantage can be realized, however, by sensing with an n-type channel as compared to p- type due to increased carrier mobility. All device types exhibit storage time characteristics of order ten seconds. Devices are constructed in epitaxial layers grown by molecular beam epitaxy (MBE) reactors. The design of the epitaxial layers is an intrinsic part, together with the electrical design, of the storage device concept. These concepts are implemented first with photolithography masks which are used

  3. The Mechanical Properties of III-V Compound Semiconductors Used in High Efficiency Multijunction Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Zakaria, Abdallah

    Lattice-mismatched heteroepitaxy enables the fabrication of metamorphic solar cells that have reached record light conversion efficiencies in the last five years. These devices are accelerating the commercialization of concentrator photovoltaics that can compete with fossil fuels for terrestrial energy production. A critical part of metamorphic structures is the graded buffer layer (GBL) needed to progressively change the lattice constant of the substrate to that the epilayer of interest. The effectiveness of the graded buffer layer in relieving misfit strain affects the quality of the device grown and depends on a variety of parameters. This study focuses on the mechanical properties of semiconductor compounds used in graded buffer layers. First, the effect of compound semiconductor spontaneous atomic ordering on hardness is assessed. In1--xGaxP was deposited on Ge wafers in two structures. A surfactant was used in experiment A to induce a lower degree of order. High resolution x-ray diffraction (HRXRD) estimated a theoretical band gap energy Eg corrected for strain effects. Photoluminescence measured the actual Eg. By comparing the two, the degree of order eta was determined to be 0.12-0.15 for samples A and 0.43-0.44 for samples B. Atomic force microscopy (AFM) demonstrated that all wafers had an equivalent surface roughness of 6.1-7.4 A. Nanoindentation measurements determined that the degree of order has no effect on the hardness of InGaP. Using 1/2 (115) superlattice reflection scans, the InGaP ordered domains size was estimated to be 28.5 nm for sample B1. No superlattice peak was detected in sample A1. The large ordered domain size in B1 explains why no order-hardening behavior was observed in InGaP. Second, a correlation between the composition of a ternary compound semiconductor and hardness is established and the effect of oxidation is determined. A structure consisting of three different AlxGa1--xAs layers separated by In0.01Ga0.99As etch stops was

  4. Tunable Optical Phenomena and Carrier Recombination Dynamics in III-V Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar Thota, Venkata Ramana

    Semiconductor nanostructures such as quantum dots, quantum wires and quantum wells have gained significant attention in the scientific community due to their peculiar properties, which arise from the quantum confinement of charge carriers. In such systems, confinement plays key role and governs the emission spectra. With the advancements in growth techniques, which enable the fabrication of these nanostructured devices with great precision down to the atomic scale, it is intriguing to study and observe quantum mechanical effects through light-matter interactions and new physics governed by the confinement, size, shape and alloy composition. The goal is to reduce the size of semiconductor bulk material to few nanometers, which in turn localizes the charge carriers inside these structures such that the spin associated with them is used to carry and process information within ultra-short time scales. The main focus of this dissertation is the optical studies of quantum dot molecule (QDM) systems. A system where the electrons can tunnel between the two dots leading to observable tunneling effects. The emission spectra of such system has been demonstrated to have both intradot transitions (electron-hole pair residing in the same dot) and interdot transitions (electron-hole pair participating in the recombination origin from different dots). In such a system, it is possible to apply electric field such that the wavefunction associated with the charge carriers can be tuned to an extent of delocalizing between the two dots. This forms the first project of this dissertation, which addresses the origin of the fine structure splitting in the exciton-biexciton cascade. Moreover, we also show how this fine structure can be tuned in the quantum dot molecule system with the application of electric field along the growth direction. This is demonstrated through high resolution polarization dependent photoluminescence spectroscopy on a single QDM, which was described in great detail

  5. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures

    NASA Astrophysics Data System (ADS)

    Walker, A. W.; Heckelmann, S.; Karcher, C.; Höhn, O.; Went, C.; Niemeyer, M.; Bett, A. W.; Lackner, D.

    2016-04-01

    A power-dependent relative photoluminescence measurement method is developed for double-heterostructures composed of III-V semiconductors. Analyzing the data yields insight into the radiative efficiency of the absorbing layer as a function of laser intensity. Four GaAs samples of different thicknesses are characterized, and the measured data are corrected for dependencies of carrier concentration and photon recycling. This correction procedure is described and discussed in detail in order to determine the material's Shockley-Read-Hall lifetime as a function of excitation intensity. The procedure assumes 100% internal radiative efficiency under the highest injection conditions, and we show this leads to less than 0.5% uncertainty. The resulting GaAs material demonstrates a 5.7 ± 0.5 ns nonradiative lifetime across all samples of similar doping (2-3 × 1017 cm-3) for an injected excess carrier concentration below 4 × 1012 cm-3. This increases considerably up to longer than 1 μs under high injection levels due to a trap saturation effect. The method is also shown to give insight into bulk and interface recombination.

  6. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures

    SciTech Connect

    Walker, A. W. Heckelmann, S.; Karcher, C.; Höhn, O.; Went, C.; Niemeyer, M.; Bett, A. W.; Lackner, D.

    2016-04-21

    A power-dependent relative photoluminescence measurement method is developed for double-heterostructures composed of III-V semiconductors. Analyzing the data yields insight into the radiative efficiency of the absorbing layer as a function of laser intensity. Four GaAs samples of different thicknesses are characterized, and the measured data are corrected for dependencies of carrier concentration and photon recycling. This correction procedure is described and discussed in detail in order to determine the material's Shockley-Read-Hall lifetime as a function of excitation intensity. The procedure assumes 100% internal radiative efficiency under the highest injection conditions, and we show this leads to less than 0.5% uncertainty. The resulting GaAs material demonstrates a 5.7 ± 0.5 ns nonradiative lifetime across all samples of similar doping (2–3 × 10{sup 17 }cm{sup −3}) for an injected excess carrier concentration below 4 × 10{sup 12 }cm{sup −3}. This increases considerably up to longer than 1 μs under high injection levels due to a trap saturation effect. The method is also shown to give insight into bulk and interface recombination.

  7. Ion beam nanopatterning of III-V semiconductors: Consistency of experimental and simulation trends within a chemistry-driven theory

    DOE PAGES

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; ...

    2015-12-16

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less

  8. Ion beam nanopatterning of III-V semiconductors: Consistency of experimental and simulation trends within a chemistry-driven theory

    SciTech Connect

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; Gonderman, S.; Allain, J. P.

    2015-12-16

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends on several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.

  9. Proteomic and metabolomic biomarkers for III-V semiconductors: And prospects for application to nano-materials

    SciTech Connect

    Fowler, Bruce A. Conner, Elizabeth A.; Yamauchi, Hiroshi

    2008-11-15

    There has been an increased appreciation over the last 20 years that chemical agents at very low dose levels can produce biological responses in protein expression patterns (proteomic responses) or alterations in sensitive metabolic pathways (metabolomic responses). Marked improvements in analytical methodologies, such as 2-D gel electrophoresis, matrix-assisted laser desorption-time of flight (MALDI-TOF) and surface enhanced laser desorption-time of flight (SELDI-TOF) technologies are capable of identifying specific protein patterns related to exposure to chemicals either alone or as mixtures. The detection and interpretation of early cellular responses to chemical agents have also made great advances through correlative ultrastructural morphometric and biochemical studies. Similarly, advances in analytical technologies such as HPLC, proton NMR, MALDI-TOF, and SELDI-TOF have permitted early detection of changes in a number of essential metabolic pathways following chemical exposures by measurement of alterations in metabolic products from those pathways. Data from these approaches are increasingly regarded as potentially useful biomarkers of chemical exposure and early cellular responses. Validation and establishment of linkages to biological outcomes are needed in order for biomarkers of effect to be established. This short review will cover a number of the above techniques and report data from chemical exposures to two binary III-V semiconductor compounds to illustrate gender differences in proteomic responses. In addition, the use of these methodologies in relation to rapid safety evaluations of nanotechnology products will be discussed. (Supported in part by NIH R01-ES4879)

  10. III-V compound semiconductor multi-junction solar cells fabricated by room-temperature wafer-bonding technique

    NASA Astrophysics Data System (ADS)

    Arimochi, Masayuki; Watanabe, Tomomasa; Yoshida, Hiroshi; Tange, Takashi; Nomachi, Ichiro; Ikeda, Masao; Dai, Pan; He, Wei; Ji, Lian; Lu, Shulong; Yang, Hui; Uchida, Shiro

    2015-05-01

    We have developed III-V compound semiconductor multi-junction solar cells by a room-temperature wafer-bonding technique to avoid the formation of dislocations and voids due to lattice mismatch and thermal damage during a conventional high-temperature wafer-bonding process. First, we separately grew an (Al)GaAs top cell on a GaAs substrate and an InGaAs bottom cell on an InP substrate by metal solid source molecular beam epitaxy. Thereafter, we successfully bonded these sub-cells by the room-temperature wafer-bonding technique and fabricated (Al)GaAs ∥ InGaAs wafer-bonded solar cells. To the best of our knowledge, the obtained GaAs ∥ InGaAs and AlGaAs ∥ InGaAs wafer-bonded solar cells exhibited the lowest electrical and optical losses ever reported. The AlGaAs ∥ InGaAs solar cells reached the maximum efficiency of 27.7% at 120 suns. These results suggest that the room-temperature wafer-bonding technique has high potential for achieving higher conversion efficiencies.

  11. Ion beam nanopatterning of III-V semiconductors: consistency of experimental and simulation trends within a chemistry-driven theory

    PubMed Central

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; Gonderman, S.; Allain, J. P.

    2015-01-01

    Several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends on several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades. PMID:26670948

  12. Two Dimensional Effective Electron Mass at the Fermi Level in Quantum Wells of III-V, Ternary and Quaternary Semiconductors.

    PubMed

    Chakrabarti, S; Chatterjee, B; Debbarma, S; Ghatak, K P

    2015-09-01

    In this paper we study the influence of strong electric field on the two dimensional (2D)effective electron mass (EEM) at the Fermi level in quantum wells of III-V, ternary and quaternary semiconductors within the framework of k x p formalism by formulating a new 2D electron energy spectrum. It appears taking quantum wells of InSb, InAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(y) lattice matched to InP as examples that the EEM increases with decreasing film thickness, increasing electric field and increases with increasing surface electron concentration exhibiting spikey oscillations because of the crossing over of the Fermi level by the quantized level in quantum wells and the quantized oscillation occurs when the Fermi energy touches the sub-band energy. The electric field makes the mass quantum number dependent and the oscillatory mass introduces quantum number dependent mass anisotropy in addition to energy. The EEM increases with decreasing alloy composition where the variations are totally band structure dependent. Under certain limiting conditions all the results for all the cases get simplified into the well-known parabolic energy bands and thus confirming the compatibility test. The content of this paper finds three applications in the fields of nano-science and technology.

  13. Interdiffusion of Iii-V Semiconductor Quantum Well Heterostructures and its Application to Integrated Electro-Optical Devices

    NASA Astrophysics Data System (ADS)

    O'Brien, Stephen

    The selective intermixing of semiconductor quantum well heterostructures will produce significant changes in the optical and electrical properties of the semiconductor crystal. In this work, SiO_2 encapsulation and rapid thermal annealing have been used to selectively intermix different III-V semiconductor quantum well heterostructures. Specifically, four different material systems have been studies: GaAs/AlGaAs on GaAs, GaInAs/(Al)GaAs on GaAs, GaInAs/AlInAs on InP and GaInP/AlInP on GaAs. Photoluminescence and absorption spectroscopies have been used to characterize the intermixing processes for each material system. For example, Arrhenius plots of the diffusion coefficient versus inverse temperature have been obtained for each material system which yield activation energies for the intermixing processes. Materials studies have shown that Si incorporation does not occur for the GaAs/AlGaAs and GaInAs/GaAs quantum well heterostructures and that the intermixing mechanism is due to the creation of Ga vacancies in the crystal caused by the out-diffusion of Ga into the SiO_2 cap. For the other two material systems, the epitaxial material at the surface contained aluminum causing significant Si incorporation to occur and hence the intermixing was impurity-induced. The effects of partial intermixing on confined, room-temperature excitons and inter-subband transitions have also been studied in the GaAs/AlGaAs system. The tunability of quantum well optical transitions afforded by selective partial intermixing has been used to fabricate single model multiple quantum well lasers from the same device wafer which operate at many different wavelengths (Deltalambda~ 120A). Selective intermixing has also been used to integrate an intracavity electroabsorption modulator with a multiple quantum well laser. The modulator structure uses the quantum confined Stark effect to introduce additional absorption into the laser cavity with an applied voltage allowing for amplitude, phase and

  14. Surface reactions during the atomic layer deposition of high-kappa dielectrics on III-V semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ye, Liwang

    The quality of the dielectric/semiconductor interface is one of the most critical parameters for the fabrication of high-speed and low-power-consumption III-V semiconductor based metal-oxide-semiconductor field effect transistors (MOSFETs), as it determines the device performance. This dissertation contains investigations of the deposition and interface of binary oxide films on GaAs(100) and InAs(100) surfaces aiming at understanding the removal of the surface native oxides during certain atomic layer deposition (ALD) processes. To accomplish that, two complementary experimental approaches have been used. Initially, films were deposited in a conventional ALD reactor and characterized ex situ using spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The systems examined were Ta2O 5 on GaAs(100) surfaces from pentakis(dimethylamino) tantalum (Ta(N(CH 3)2)5, PDMAT) and TiO2 on GaAs(100) and InAs(100) surfaces from tetrakis(dimethylamino) titanium (Ti(N(CH 3)2)4, TDMAT). For these systems, deposition at the optimal ALD temperature resulted in practically sharp interfaces. Indium oxides were found to diffuse through ~ 6 nm of TiO2 film and accumulate on the topmost film layer. For the ALD of Ta2O5 on GaAs(100) surfaces, native oxide removal was enhanced at deposition temperatures above the ALD window; for ALD of TiO2 on both GaAs(100) and InAs(100) surfaces, native oxide removal was enhanced as the deposition temperatures increased up to 250 A°C, while oxidation of the interface was observed for deposition above 300 A°C due to the formation of noncontinuous films. To elucidate the surface reactions occurring during the deposition, an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy apparatus was constructed and used to investigate the surface reactions during the ALD of TiO2 and HfO2 on GaAs(100) surfaces. The

  15. Low Field, Large Magnetoresistance in Nonmagnetic Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    2007-03-01

    Transport in various thin-film organic semiconductors has been shown to have an anomalously high sensitivity to low magnetic fields at room temperature (RT). Early experiments on polydiacetylene single crystals and poly(phenylenevinylene)s revealed increases in photoconductivity of a few percent at RT. Further magnetotransport studies showed larger effects in π-conjugated backbone polymers and small molecules. We report magnetoresistance (MR) for semiconducting oligomer and nonconjugated polymer materials in addition to small molecule and conjugated backbone polymer materials. For example, films of the light emitters poly(N-vinylcarbazole) and Alq3 each have an MR response greater than 5% at an unusually low magnetic field of 100 Oe (μBH ˜0.0006 meV) at an unusually high temperature of 300 K (kBT ˜26 meV). Increasing the spin-orbit coupling in Alq3 films by doping with the phosphorescent sensitizers Ir(ppy)3 or PtOEP strongly suppresses the MR signal. MR in thin films of the oligomer α-sexithiophene can be negative, similar to the behavior of other organic semiconductors, or positive depending on the temperature, layer thickness, or applied voltage. We have developed a model, termed Magnetoresistance by the Interconversion of Singlets and Triplets (MIST), accounting for this anomalous MR. At zero field, the singlet and triplet e-h pair states are degenerate and the states can readily interconvert due to hyperfine interaction. Finite magnetic fields lift triplet degeneracy which affects the hyperfine interconversion of e-h pairs between singlet and triplet states. By changing the carrier recombination the MIST mechanism gives rise to a space-charge-limited current that depends on magnetic field, producing MR. E.L. Frankevich, et al., Mol. Cryst. Liq. Cryst.175, 41 (1989); E.L. Frankevich, et al., Phys. Rev. B 46, 9320 (1992). O. Mermer, et al., Phys. Rev. B 72, 205202 (2005). V.N. Prigodin, et al., Synth. Met.156, 757 (2006).

  16. Fast pixelated sensors for radiation detection and imaging based on quantum confined structures in III/V semiconductors

    NASA Astrophysics Data System (ADS)

    Tortora, M.; Biasiol, G.; Cautero, G.; Menk, R. H.; Plaisier, J. R.; Antonelli, M.

    2017-03-01

    In order to improve the characterisation of the delivered beams in many types of photon sources, innovative beam profilers based on III/V semiconductor materials (InGaAs/InAlAs) have been deeply investigated. Owing to a tunable and direct band gap these devices allow radiation detection in a wide spectral range. In order to increase the sensitivity of the device in radiation detection charge amplification on the sensor level is implemented. This is obtained by exploiting In0.75Ga0.25As/In0.75Al0.25As quantum wells (QW) hosting a two-dimensional electron gas (2DEG) through molecular beam epitaxy (MBE). Internal charge-amplification mechanism can be achieved for very low applied voltages, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times. This technology has been preliminarily exploited to fabricate prototype beam profilers with a strip geometry (with 50-μm-wide strips). Tests were carried out both with conventional X-ray tubes and at the Elettra synchrotron facility. The results testify how these profilers are capable of reconstructing the shape of the beam, as well as estimating the position of the beam centroid with a precision of about 400 nm. Further measurements with different samples of decreasing thickness have shown how this precision could be further improved by an optimised microfabrication. For this reason a new design, based on a membrane-photodetector, is proposed. Results regarding the spatial resolution as function of the sensor thickness will be presented and discussed.

  17. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy.

    PubMed

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro

    2012-01-01

    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  18. Influence of nonmagnetic impurity scattering on spin dynamics in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Cygorek, M.; Ungar, F.; Tamborenea, P. I.; Axt, V. M.

    2017-01-01

    The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between quasifree carriers and magnetic impurities but also to a local spin-independent disorder potential for the carriers. Based on a quantum kinetic theory for the carrier and impurity density matrices as well as the magnetic and nonmagnetic carrier-impurity correlations, the influence of the nonmagnetic scattering potential on the spin dynamics in DMS after optical excitation with circularly polarized light is investigated using the example of Mn-doped CdTe. It is shown that non-Markovian effects, which are predicted in calculations where only the magnetic carrier-impurity interaction is accounted for, can be strongly suppressed in the presence of nonmagnetic impurity scattering. This effect can be traced back to a significant redistribution of carriers in k -space which is enabled by the build-up of large carrier-impurity correlation energies. A comparison with the Markov limit of the quantum kinetic theory shows that, in the presence of an external magnetic field parallel to the initial carrier polarization, the asymptotic value of the spin polarization at long times is significantly different in the quantum kinetic and the Markovian calculations. This effect can also be attributed to the formation of strong correlations, which invalidates the semiclassical Markovian picture and it is stronger when the nonmagnetic carrier-impurity interaction is accounted for. In an external magnetic field perpendicular to the initial carrier spin, the correlations are also responsible for a renormalization of the carrier spin precession frequency. Considering only the magnetic carrier-impurity interaction, a significant renormalization is predicted for a very limited set of material parameters and excitation conditions. Accounting also for the nonmagnetic interaction, a relevant renormalization of the precession frequency is found to be more ubiquitous.

  19. Spin-dependent tunneling time in periodic diluted-magnetic-semiconductor/nonmagnetic-barrier superlattices

    SciTech Connect

    Yang, Ping-Fan; Guo, Yong

    2016-02-01

    We investigate the tunneling time (dwell time) in periodic diluted-magnetic-semiconductor/nonmagnetic-barrier (DMS/NB) superlattices subjected to an external magnetic field. It is found that spin-dependent resonant bands form in the spectra of dwell time, which can be effectively manipulated by not only the external magnetic field but also the geometric parameters of the system. Moreover, an intuitive semiclassical delay is defined to illustrate the behavior of the dwell time, and the former one is shown to be the result of “smoothing out” the latter one. We also find that the dwell time in diluted-magnetic-semiconductor/semiconductor superlattices behaves surprisingly different from the DMS/NB case, especially for spin-down electrons.

  20. III-V-semiconductor-on-insulator n-channel metal-insulator-semiconductor field-effect transistors with buried Al2O3 layers and sulfur passivation: Reduction in carrier scattering at the bottom interface

    NASA Astrophysics Data System (ADS)

    Yokoyama, Masafumi; Yasuda, Tetsuji; Takagi, Hideki; Miyata, Noriyuki; Urabe, Yuji; Ishii, Hiroyuki; Yamada, Hisashi; Fukuhara, Noboru; Hata, Masahiko; Sugiyama, Masakazu; Nakano, Yoshiaki; Takenaka, Mitsuru; Takagi, Shinichi

    2010-04-01

    We have developed III-V-semiconductor-on-insulator (III-V-OI) structures on Si wafers with excellent bottom interfaces between In0.53Ga0.47As-OI channel layers and atomic-layer-deposited Al2O3 (ALD-Al2O3) buried oxides (BOXs). A surface activated bonding process and the sulfur passivation pretreatment have realized the excellent In0.53Ga0.47As-OI/ALD-Al2O3 BOX bottom interface properties. As a result, the III-V-OI n-channel metal-insulator-semiconductor field-effect transistors under the back-gate configuration showed the peak mobility of 1800 cm2/V s and the higher electron mobility than the Si universal one even in the high effective electric field range because of the reduction in the surface roughness and fixed charges.

  1. Investigation of the abnormal Zn diffusion phenomenon in III-V compound semiconductors induced by the surface self-diffusion of matrix atoms

    NASA Astrophysics Data System (ADS)

    Tang, Liangliang; Xu, Chang; Liu, Zhuming

    2017-01-01

    Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.

  2. III-V-on-nothing metal-oxide-semiconductor field-effect transistors enabled by top-down nanowire release process: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Gu, J. J.; Koybasi, O.; Wu, Y. Q.; Ye, P. D.

    2011-09-01

    III-V-on-nothing (III-VON) metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally demonstrated with In0.53Ga0.47As as channel and atomic layer deposited Al2O3 as gate dielectric. A hydrochloric acid based release process has been developed to create an air gap beneath the InGaAs channel layer, forming the nanowire channel with width down to 40 nm. III-VON MOSFETs with channel lengths down to 50 nm are fabricated and show promising improvement in drain-induced barrier lowering, due to suppressed short-channel effects. The top-down processing technique provides a viable pathway towards fully gate-all-around III-V MOSFETs.

  3. In Situ Thermal Annealing Transmission Electron Microscopy (TEM) Investigation of III/V Semiconductor Heterostructures Using a Setup for Safe Usage of Toxic and Pyrophoric Gases.

    PubMed

    Straubinger, Rainer; Beyer, Andreas; Ochs, Thomas; Stolz, Wolfgang; Volz, Kerstin

    2017-08-01

    In this study we compare two thermal annealing series of III/V semiconductor heterostructures on Si, where during the first series nitrogen is present in the in situ holder. The second, comparative, measurement is done in a tertiarybutylphosphine (TBP) environment. The sample annealed in a TBP environment shows favorable thermal stability up to 500°C compared to the unstabilized sample, which begins to degrade at less than 300°C. Evaporation of P from the material is tracked qualitatively by measuring the thickness of the sample during thermal annealing with and without stabilization. Finally, we investigate the in situ thermal annealing processes at atomic resolution. Here it is possible to study phase separation as well as the diffusion of As from a Ga(NAsP) quantum well in the surrounding GaP material during thermal annealing. To make these investigations possible we developed an extension for our in situ transmission electron microscopy setup for the safe usage of toxic and pyrophoric III/V semiconductor precursors. A commercially available gas cell and gas supply system were expanded with a gas mixing system, an appropriate toxic gas monitoring system and a gas scrubbing system. These components allow in situ studies of semiconductor growth and annealing under the purity conditions required for these materials.

  4. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  5. Flow of the current along metallic shunts in ohmic contacts to wide-gap III-V semiconductors

    SciTech Connect

    Blank, T. V. Goldberg, Yu. A.; Posse, E. A.

    2009-09-15

    It is established experimentally that the contact metal-wide-gap semiconductor (GaAs, GaP, GaN) with the Schottky barrier transforms into the ohmic contact either in the process of continuous heating or in the process of holding at an elevated temperature before the formation of any recrystallized layers. In this case, resistance of the contact reduced to the unit area increases as the temperature increases for semiconductors with a high dislocation density (GaP, GaN). It is assumed that in such contacts, the current flows along the metallic shunts, which shorten the layer of space charge and are formed by metal atoms diffused along the dislocation lines or other imperfections of the semiconductor. In semiconductors with a low dislocation density (GaAs), resistance of the ohmic contact per unit area decreases with increasing the temperature as it was expected for the thermionic mechanism of current flowing.

  6. Optically detected carrier transport in III/V semiconductor QW structures: experiments, model calculations and applications in fast 1.55 µm laser devices

    NASA Astrophysics Data System (ADS)

    Hillmer, H.; Marcinkevičius, S.

    1998-01-01

    This paper reviews optically detected carrier dynamics in III/V semiconductor quantum well (QW) heterostructures perpendicular to the interfaces. Photoluminescence emissions originating from different semiconductor layers are recorded in a time-resolved way to monitor the carrier dynamics between these layers. The experimental methods presented provide a very high spatial and temporal resolution, partly even in the nanometer and sub-picosecond ranges, respectively. Model calculations based on a self-consistent solution of the continuity equation, the Poisson equation and rate-equation(s) are used to evaluate the experimental data. It will be demonstrated that experiments using several specially tailored semiconductor heterostructures enable the following individual dynamic effects to be studied and separated: transport in extended unquantized layers, capture into the QWs, relaxation in the QWs, tunneling between the QWs and thermal re-emission from the QWs. It will be shown that several basic physical effects have to be studied and understood before modern high-speed semiconductor laser devices can be designed and implemented. By adding levels of increasing complexity, this review starts from simple basic structures to finally approach real laser structures in a sequence of consecutive steps. AlGaInAs and GaInAsP heterostructures are compared with respect to interwell transfer efficiencies and problems in technological implementation. This review proceeds from basic research on carrier dynamics to applications in high-speed laser devices. Throughout the review an overview of the experimental and theoretical literature is given.

  7. Tunability of room-temperature ferromagnetism in spintronic semiconductors through nonmagnetic atoms

    NASA Astrophysics Data System (ADS)

    Leedahl, Brett; Abooalizadeh, Zahra; LeBlanc, Kyle; Moewes, Alexander

    2017-07-01

    The implementation and control of room-temperature ferromagnetism (RTFM) by adding magnetic atoms to a semiconductor's lattice has been one of the most important problems in solid-state physics in the last decade. Herein we report on the mechanism that allows RTFM to be tuned by the inclusion of nonmagnetic aluminum in nickel ferrite. This material, NiFe2 -xAlxO4 (x =0 ,0.5 ,1.5 ), has already shown much promise for magnetic semiconductor technologies, and we are able to add to its versatility technological viability with our results. The site occupancies and valencies of Fe atoms (Fe3 +Td , Fe2 +Oh , and Fe3 +Oh ) can be methodically controlled by including aluminum. Using the fact that aluminum strongly prefers a 3+ octahedral environment, we can selectively fill iron sites with aluminum atoms, and hence specifically tune the magnetic contributions for each of the iron sites, and therefore the bulk material as well. Interestingly, the influence of the aluminum is weak on the electronic structure, allowing one to retain the desirable electronic properties while achieving desirable magnetic properties.

  8. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  9. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  10. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Refractive indices of superlattices made of III-V semiconductor compounds and their solid solutions and semiconductor waveguide laser structures

    NASA Astrophysics Data System (ADS)

    Unger, K.

    1988-11-01

    An analysis is made of the theoretical problems encountered in precision calculations of refractive indices of semiconductor materials arising in connection with the use of superlattices as active layers in double-heterostructure lasers and in connection with the use of the impurity-induced disordering effect, i.e., the ability to transform selectively a superlattice into a corresponding solid solution. This can be done by diffusion or ion implantation. A review is given of calculations of refractive indices based on the knowledge of the energy band structure and the role of disorder is considered particularly. An anomaly observed in the (InAl)As system is considered. It is shown that the local field effects and exciton transitions are important. A reasonable approach is clearly a direct calculation of the difference between the refractive indices of superlattices based on compounds and of those based on their solid solutions.

  11. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  12. Local structure and dynamics of III-V semiconductor alloys by high resolution x-ray pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Jeong, Il-Kyoung

    In semiconductor alloys such as In1-xGaxAs, the energy band gap as well as the lattice parameter can be engineered by changing the concentration, x. Due to these properties, semiconductor alloys have found wide applications in optoelectronic devices. In these alloys, local structure information is of fundamental importance in understanding the physical properties such as band structure. Using the high real-space resolution atomic Pair Distribution Function, we obtained more complete structural information such as bond length, bond length distributions, and far-neighbor distances and distributions. From such experimental information and the Kirkwood model we studied both local static displacements and correlations in the displacements of atoms. The 3-dimensional As and (In,Ga) atom iso-probability surfaces were obtained from the supercell relaxed using the Kirkwood potential. This shows that the As atom displacements are very directional and can be represented as a combination of <100> and <111> displacements. On the contrary, the (In,Ga) atom displacements are more or less isotropic. In addition, the single crystal diffuse scattering calculation of the relaxed supercell shows that the atomic displacements are correlated over longer range along [110] directions although the displacements of As atoms are along <100> and <111> directions. Besides the local static displacements, we studied correlations in thermal atomic motions of atom pairs from the PDF peak width changes as a function of atom pair distance. In the PDF the near-neighbor peaks are sharper than those of far-neighbors due to the correlation in near-neighbor thermal motions. We also determined bond stretching and bond bending force constants of semiconductor compounds by fitting the nearest neighbor and far-neighbor peak widths to the lattice dynamic calculations using the Kirkwood model.

  13. Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Bruneval, Fabien

    2015-12-01

    The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.

  14. A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III-V semiconductors

    SciTech Connect

    Hurle, D. T. J.

    2010-06-15

    A thermodynamic model is used to analyze available experimental data relevant to point defects in the binary zinc-blende III-V compounds (Ga,In)-(P,As,Sb). The important point defects and their complexes in each of the materials are identified and included in the model. Essentially all of the available experimental data on dopant solubility, crystal density, and lattice parameter of melt and solution grown crystals and epilayers are reproduced by the model. It extends an earlier study [Hurle, J. Appl. Phys. 85, 6957 (1999)] devoted solely to GaAs. Values for the enthalpy and entropy of formation of both native and dopant related point defects are obtained by fitting to experimental data. In undoped material, vacancies, and interstitials on the Group V sublattice dominate in the vicinity of the melting point (MP) in both the phosphides and arsenides, whereas, in the antimonides, vacancies on both sublattices dominate. The calculated concentrations of the native point defects are used to construct the solidus curves of all the compounds. The charged native point defect concentrations at the MP in four of the six materials are significantly higher than their intrinsic carrier concentrations. Thus the usually assumed high temperature 'intrinsic' electroneutrality condition for undoped material (n=p) is not valid for these materials. In GaSb, the Ga{sub Sb} antisite defect appears to be grown-in from the melt. This contrasts with the As{sub Ga} defect in GaAs for which the concentration grown-in at the MP is negligibly small. Compensation of donor-doped material by donor-Group III vacancy complexes is shown to exist in all the compounds except InP where Group VI doped crystals are uncompensated and in InSb where there is a lack of experimental data. The annealing effects in n{sup +} GaAs, including lattice superdilation, which were shown in the earlier paper to be due to Group III vacancy undersaturation during cooling, are found to be present also in GaSb and In

  15. A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Hurle, D. T. J.

    2010-06-01

    A thermodynamic model is used to analyze available experimental data relevant to point defects in the binary zinc-blende III-V compounds (Ga,In)-(P,As,Sb). The important point defects and their complexes in each of the materials are identified and included in the model. Essentially all of the available experimental data on dopant solubility, crystal density, and lattice parameter of melt and solution grown crystals and epilayers are reproduced by the model. It extends an earlier study [Hurle, J. Appl. Phys. 85, 6957 (1999)] devoted solely to GaAs. Values for the enthalpy and entropy of formation of both native and dopant related point defects are obtained by fitting to experimental data. In undoped material, vacancies, and interstitials on the Group V sublattice dominate in the vicinity of the melting point (MP) in both the phosphides and arsenides, whereas, in the antimonides, vacancies on both sublattices dominate. The calculated concentrations of the native point defects are used to construct the solidus curves of all the compounds. The charged native point defect concentrations at the MP in four of the six materials are significantly higher than their intrinsic carrier concentrations. Thus the usually assumed high temperature "intrinsic" electroneutrality condition for undoped material (n=p) is not valid for these materials. In GaSb, the GaSb antisite defect appears to be grown-in from the melt. This contrasts with the AsGa defect in GaAs for which the concentration grown-in at the MP is negligibly small. Compensation of donor-doped material by donor-Group III vacancy complexes is shown to exist in all the compounds except InP where Group VI doped crystals are uncompensated and in InSb where there is a lack of experimental data. The annealing effects in n+ GaAs, including lattice superdilation, which were shown in the earlier paper to be due to Group III vacancy undersaturation during cooling, are found to be present also in GaSb and InAs. Results for native

  16. Wet Oxidation of High-Al-Content III-V Semiconductors: Important Materials Considerations for Device Applications

    SciTech Connect

    Ashby, Carol I.H.

    1999-05-19

    Wet oxidation of high-Al-content AIGaAs semiconductor layers in vertical cavity surface emitting lasers (VCSELS) has produced devices with record low threshold currents and voltages and with wall-plug efficiencies greater than 50%. Wet oxidation of buried AlGaAs layers has been employed to reduce the problems associated with substrate current leakage in GaAs-on- insulator (GOI) MESFETS. Wet oxidation of high-Al-content AlGaAs semiconductor layers in vertical cavity surface emitting lasers (VCSELS) has produced devices with record low threshold currents and voltages and with wall-plug efficiencies greater than 50%. Wet oxidation of buried AlGaAs layers has been employed to reduce the problems associated with substrate current leakage in GaAs-on- insulator (GOI) MESFETS. Wet oxidation has also been considered as a route to the long-sought goal of a IH-V MIS technology. To continue improving device designs for even higher performance and to establish a truly manufacturable technology based on wet oxidation, the effect of oxidation of a given layer on the properties of the entire device structure must be understood. The oxidation of a given layer can strongly affect the electrical and chemical properties of adjacent layers. Many of these effects are derived from the production of large amounts of elemental As during the oxidation reaction, the resultant generation of point defects, and the diffusion of these defects into adjacent regions. This can modify the chemical and electrical properties of these regions in ways that can impact device design, fabrication, and performance. Current understanding of the problem is discussed here.

  17. Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials.

    PubMed

    Zeng, Chao; Gonzalez-Alvarez, Adrian; Orenstein, Emily; Field, Jim A; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-06-01

    III-V materials such as indium arsenide (InAs) and gallium arsenide (GaAs) are increasingly used in electronic and photovoltaic devices. The extensive application of these materials may lead to release of III-V ionic species during semiconductor manufacturing or disposal of decommissioned devices into the environment. Although arsenic is recognized as an important contaminant due to its high toxicity, there is a lack of information about the toxic effects of indium and gallium ions. In this study, acute toxicity of As(III), As(V), In(III) and Ga(III) species was evaluated using two microbial assays testing for methanogenic activity and O2 uptake, as well as two bioassays targeting aquatic organisms, including the marine bacterium Aliivibrio fischeri (bioluminescence inhibition) and the crustacean Daphnia magna (mortality). The most noteworthy finding was that the toxicity is mostly impacted by the element tested. Secondarily, the toxicity of these species also depended on the bioassay target. In(III) and Ga(III) were not or only mildly toxic in the experiments. D. magna was the most sensitive organism for In(III) and Ga(III) with 50% lethal concentrations of 0.5 and 3.4mM, respectively. On the other hand, As(III) and As(V) caused clear inhibitory effects, particularly in the methanogenic toxicity bioassay. The 50% inhibitory concentrations of both arsenic species towards methanogens were about 0.02mM, which is lower than the regulated maximum allowable daily effluent discharge concentration (2.09mg/L or 0.03mM) for facilities manufacturing electronic components in the US. Overall, the results indicate that the ecotoxicity of In(III) and Ga(III) is much lower than that of the As species tested. This finding is important in filling the knowledge gap regarding the ecotoxicology of In and Ga. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Application of Iii-V Semiconductor Heterojunction Structures Grown by Molecular Beam Epitaxy to Microwave Devices

    NASA Astrophysics Data System (ADS)

    Schaff, William Joseph

    Semiconductor devices capable of higher speeds and higher frequency operation have been a subject of great interest for many years. New fabrication techniques have provided the tools for pushing conventional device performance to new limits. These new techniques have also made possible entirely new clases of devices such as inverted High Electron Mobility Transistors and AlGaAs buffered GaAs MESFETs. The production of such state of the art devices invariably leads to a discovery of materials and process limitations that need to be eliminated. The requirement for achieving changes in composition in semiconductor materials within a single atomic layer is central to the above devices as well as many proposed devices. Molecular Beam Epitaxy has already produced materials with atomic monolayer abruptness in some structures. There are however, some desirable structures that have not been successfully produced by this technique. The fundamental problem is that good quality AlGaAs/GaAs interfaces for GaAs on AlGaAs have not been obtained when the thickness of the AlGaAs is comparable to that needed for inverted High Electron Mobility Transistors or AlGaAs buffered power Field Effect Transistors. It has been found that impurity contamination of GaAs grown on top of AlGaAs can be a severe problem. The purpose of this work is to understand the difficulties which occur and demonstrate the successful application of some techniques which minimize, or eliminate, some of the limitations on current and anticipated device performance. The concept of impurity gettering by an interface and a form of strained layer superlattice effected lattice matching are explored for GaAs and AlGaAs structures. A GaAs MESFET has been fabricated on a superlattice buffer for the first time. It has superior performance to devices with simpler structures. The improved material properties obtained by substitution of a superlattice buffer for the homogeneous GaAs buffer are measured, as a final test, by

  19. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    PubMed Central

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-01-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885

  20. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-12-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  1. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum.

    PubMed

    Seghilani, Mohamed S; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-12-05

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here "orbital birefringence", based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create "orbital gain dichroism" allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  2. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    PubMed

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  3. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors

    DTIC Science & Technology

    2015-08-27

    effect is present in the device. The EQE was determined by measuring the photocurrent under a 633 nm laser light confined onto the pixel under test...photodetector for visible light detection and a well- developed InSb PIN sub-photodetector for MWIR detection, which are electrically connected by a...the desire to use III-V substrates for II-VI material epitaxial growth, and the possibility of developing novel optoelectronic devices utilizing III-V

  4. Investigating the growth, structural and electrical properties of III-V semiconductor nanopillars for the next-generation electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Andrew

    Extensive research efforts have been devoted to the study and development of III-V compound semiconductor nanowires (NWs) and nanopillars (NPs) because of their unique physical properties and ability to form high quality, highly lattice-mismatched axial and radial heterostructures. These advantages lead to precise nano-bandgap engineering to achieve new device functionalities. One unique and powerful approach to realize these NPs is by catalyst-free, selective-area epitaxy (SAE) via metal-organic chemical vapor deposition, in which the NP location and diameter can be precisely controlled lithographically. Early demonstrations of electronic and optoelectronic devices based on these NPs, however, are often inferior compared to their planar counterparts due to a few factors: (1) interface/surface states, (2) inaccurate doping calibration, and (3) increased carrier scattering and trapping from stacking fault formation in the NPs. In this study, the detailed growth mechanisms of different III-As, III-Sb and III-P NPs and their heterostructures are investigated. These NPs are then fabricated into single-NP field-effect transistors (FETs) to probe their electrical properties. It is shown that these devices are highly diameter-dependent, mainly because of the effects of surface states. By growing a high band-gap shell around the NP cores to passivate the surface, the device performance can be significantly improved. Further fabrication and characterization of vertical surround-gate FETs using a high-mobility InAs/InP NP channel is also discussed. Aside from the radial NP heterostructures, different approaches to achieve purely axial heterostructures in InAs/In(As)P materials are also presented with excellent interface quality. Both single barrier and double barrier structures are realized and fabricated into devices that show carrier transport characteristics over a barrier and even resonant tunneling behavior. Antimonide-based NPs are also studied for their immense

  5. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting.

    PubMed

    Demkó, L; Schober, G A H; Kocsis, V; Bahramy, M S; Murakawa, H; Lee, J S; Kézsmárki, I; Arita, R; Nagaosa, N; Tokura, Y

    2012-10-19

    We study the magneto-optical (MO) response of the polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  6. Magnetism at the Interface of Magnetic Oxide and Nonmagnetic Semiconductor Quantum Dots.

    PubMed

    Saha, Avijit; Viswanatha, Ranjani

    2017-03-28

    Engineering interfaces specifically in quantum dot (QD) heterostructures provide several prospects for developing multifunctional building block materials. Precise control over internal structure by chemical synthesis offers a combination of different properties in QDs and allows us to study their fundamental properties, depending on their structure. Herein, we studied the interface of magnetic/nonmagnetic Fe3O4/CdS QD heterostructures. In this work, we demonstrate the decrease in the size of the magnetic core due to annealing at high temperature by the decrease in saturation magnetization and blocking temperature. Furthermore, surprisingly, in a prominently optically active and magnetically inactive material such as CdS, we observe the presence of substantial exchange bias in spite of the nonmagnetic nature of CdS QDs. The presence of exchange bias was proven by the increase in magnetic anisotropy as well as the presence of exchange bias field (HE) during the field-cooled magnetic measurements. This exchange coupling was eventually traced to the in situ formation of a thin antiferromagnetic FeS layer at the interface. This is verified by the study of Fe local structure using X-ray absorption fine structure spectroscopy, demonstrating the importance of interface engineering in QDs.

  7. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further

  8. Organometallic Vapor-Phase Epitaxial Growth and Characterization of Iii-V Semiconductor Alloys Emitting Visible Light: Gallium Arsenic Phosphide, Gallium Indium Phosphide, and Aluminum Gallium Indium Phosphide

    NASA Astrophysics Data System (ADS)

    Cao, Diansheng

    High band gap III-V semiconductor alloys, GaAs _{rm 1-x}P _{rm x}, Ga_ {rm x}In_{rm 1-x}P, and (Al_{rm x}Ga_{rm 1-x} )_{rm y}In _{rm 1-y}P, have been successfully grown on GaAs substrates using atmospheric pressure organometallic vapor-phase epitaxy (OMVPE). Trimethylgallium (TMGa), trimethylindium (TMIn), and trimethylaluminum (TMAI), were used as group III source materials, and arsine (AsH _3), phosphine (PH_3 ), and tertiarybutylphosphine (TBP) were used as group V source materials. For the growth of GaAs_{rm 1-x}P_{rm x} , strained layer superlattices (SLSs) were used to reduce misfit dislocation density. The grown structure consisted of a 2-μm P compositionally graded layer, a GaAs_{rm 1-y' }P_{rm y'}/GaAs _{rm 1-y}P _{rm y} SLS, and a 1- μm GaAs_{0.6}P _{0.4} layer. It was found that linear grading gave the lowest dislocation density among the three grading layers investigated: sublinear, hyperlinear, and linear. A novel method, called "overshoot," was developed to prevent the release of residual strain in the 2-μm linearly graded layer. Using the overshoot method and SLSs, GaAs_{0.6 }P_{0.4} with good surface morphology, strong visible photoluminescence(PL) intensity, and a dislocation density of 6.5 times 10^5 cm^ {-2} has been obtained. For growth of GaInP, the effect of growth rate on the properties of the layers was investigated. It was observed that surface morphology degraded, the band gap at 300K decreased by 40meV, and the degree of ordering and size of ordered domains increased when the growth rate was changed from 12 to 4.1 mum/hr. At high growth rates (~12 mum/hr), the 300-K band gap of epilayer had the same values as the layers grown by LPE and was independent of the V/III ratio. The epilayers grown at a rate of 12 mum/hr and a V/III ratio of 148 had PL halfwidths of 35 and 7.2meV at 300K and 10K, respectively, the best reported results to date. A mechanism for the growth rate effect on the properties of OMVPE-grown GaInP is discussed. For the

  9. Hybrid III-V/silicon lasers

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.

    2014-05-01

    The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.

  10. Magneto-optical studies of magnetic and non-magnetic narrow-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Khodaparast, Giti

    2005-03-01

    In light of the growing interest in spin-related phenomena and devices, there is now renewed interest in the science and engineering of narrow gap semiconductors. Narrow gap semiconductors (NGS) offer many unique features such as small effective masses, high intrinsic mobilities, large effective g- factors, and large spin-orbit coupling effects. This talk will discuss our recent magneto-optical studies on InSb quantum wells (QWs) and InMnAs ferromagnetic heterostructures. In InSb QWs, we observe spin-resolved cyclotron resonance (CR) caused by the non- parabolicity in conduction band and electron spin resonance in symmetric and asymmetric confinement potentials. The asymmetric wells exhibit a strong deviation in behavior from the symmetric wells at low magnetic fields with far more spin splitting than expected from the bulk g-factor of InSb. In InMnAs/GaSb we observe light and heavy hole CR peaks which demonstrate the existence of delocalized p-like carriers. In addition, In order to increase our understanding of the dynamics of carriers and spins, we performed time resolved measurements such as time- resolved CR spectroscopy on undoped InSb QWs and time-resolved magneto-optical Kerr effect on InMnAs/GaSb. Our results are important for understanding the electronic and magnetic states in NGS. This work was performed in collaboration with M. B. Santos and R. E. Doezema at the Univ. of Oklahoma, J. Wang and J. Kono at Rice Univ., H. Munekata at Tokyo Institute of Technology, C. J. Stanton at the Univ. of Florida, and Y. H. Matsuda and N. Miura at the Univ. of Tokyo.

  11. Exploring Cryogenic Focused Ion Beam Milling as a Group III-V Device Fabrication Tool

    DTIC Science & Technology

    2013-09-01

    focused ion beam (cryo-FIB) milling as a Group III-V device fabrication tool. Cryogenic cooling of III-V semiconductor material during Ga + FIB irradiation...potential applications of cryogenic focused ion beam (cryo-FIB) milling as a Group III-V device fabrication tool. Cryogenic cooling of III-V semiconductor...sensitivity to the Ga ion beam . This sensitivity is manifested as changes in the structure and chemical composition of the starting material upon exposure to

  12. Magnetic field effect in non-magnetic organic semiconductor thin film devices and its applications

    NASA Astrophysics Data System (ADS)

    Mermer, Omer

    Organic pi-conjugated materials have been used to manufacture devices such as organic light-emitting diodes (OLEDs), photovoltaic cells and field-effect transistors. Recently there has been growing interest in spin and magnetic field effects in these materials. In this thesis, I report on the discovery and experimental characterization of a large and intriguing magnetoresistance effect, which we dubbed organic magnetoresistance (OMAR), in various pi-conjugated polymer and small molecular OLEDs. OMAR may find application in magnetic field sensors in OLED interactive displays (patent pending). We discovered OMAR originally in devices made from the pi-conjugated polymer polyfluorene. We found ≈ 10% magnetoresistance at 10 mT fields at room temperature. The effect is independent of the field direction, and is only weakly temperature dependent. We show that OMAR is a bulk effect related to the majority carrier transport. Studying polymer films with different amount of disorder we found that low disorder/large mobility is not a necessary prerequisite for large OMAR response. We also studied a possible interrelation between spin-orbit coupling and the OMAR effect in platinum-containing polymers. We found that spin-orbit coupling has apparently little effect on OMAR. A large OMAR effect was also observed in devices made from the prototypical small molecule, Alq3 that is similar in size to that in the polyfluorene devices. Our study shows that the basic properties are equivalent to polymer devices. To the best of our knowledge, OMAR is not adequately described by any of the magnetoresistance mechanisms known to date. A future explanation for this effect may lead to a breakthrough in the scientific understanding of organic semiconductors. In a largely unrelated effort, we also modelled spin-dependent exciton formation in OLEDs. Our work leads to the following picture of exciton formation: Since the triplet exciton states lie lower in energy than singlets, more phonons must

  13. A comprehensive study of the magnetic, structural, and transport properties of the III-V ferromagnetic semiconductor InMnP

    SciTech Connect

    Khalid, M.; Hübner, R.; Baehtz, C.; Skorupa, W.; Zhou, Shengqiang; Gao, Kun; Helm, M.; Weschke, E.; Gordan, O.; Salvan, G.; Zahn, D. R. T.

    2015-01-28

    The manganese induced magnetic, electrical, and structural modification in InMnP epilayers, prepared by Mn ion implantation and pulsed laser annealing, are investigated in the following work. All samples exhibit clear hysteresis loops and strong spin polarization at the Fermi level. The degree of magnetization, the Curie temperature, and the spin polarization depend on the Mn concentration. The bright-field transmission electron micrographs show that InP samples become almost amorphous after Mn implantation but recrystallize after pulsed laser annealing. We did not observe an insulator-metal transition in InMnP up to a Mn concentration of 5 at. %. Instead all InMnP samples show insulating characteristics up to the lowest measured temperature. Magnetoresistance results obtained at low temperatures support the hopping conduction mechanism in InMnP. We find that the Mn impurity band remains detached from the valence band in InMnP up to 5 at. % Mn doping. Our findings indicate that the local environment of Mn ions in InP is similar to GaMnAs, GaMnP, and InMnAs; however, the electrical properties of these Mn implanted III-V compounds are different. This is one of the consequences of the different Mn binding energy in these compounds.

  14. Heating of carriers as controlled by the combined interactions with acoustic and piezoelectric phonons in degenerate III-V semiconductors at low lattice temperature

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.

    2017-09-01

    In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.

  15. Monolithic III-V and hybrid polysilicon-III-V microelectromechanical tunable vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Ochoa, Edward M.; Lott, James A.; Nelson, Thomas R., Jr.; Harvey, M. C.; Raley, J. A.; Stintz, Andreas; Malloy, Kevin J.

    2003-04-01

    We report our progress on the design and fabrication of electrostatically-actuated microelectromechanical (MEM) tunable wavelength filters and vertical cavity surface-emitting lasers (VCSELs). We investigate both an all-semiconductor monolithic approach and a hybrid approach based on the combination of conventional polysilicon microelectromechanical systems (MEMS) and III-V semiconductor thin-film distributed Bragg reflector (DBR) and VCSEL structures. In the tunable hybrid structures the III-V semiconductor layers are flip-bonded onto specially designed polysilicon foundry MEMS structures and separated from their lattice-matched parent substrates by a novel post-bonding lift-off process.

  16. Practical routes to (SiH₃)₃P: applications in group IV semiconductor activation and in group III-V molecular synthesis.

    PubMed

    Tice, Jesse B; Chizmeshya, A V G; Tolle, J; D' Costa, V R; Menendez, J; Kouvetakis, J

    2010-05-21

    The (SiH₃)₃P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH₃)₂P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH₃Br and (Me₃Sn)₃P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me₂M-P(SiH₃)₂ (M = Al, Ga, In) derivatives of Me₃M containing the (SiH₃)₂P ligand for the first time, in analogy to the known Me₂M-P(SiMe₃)₂ counterparts. A dimeric structure of Me₂M-P(SiH₃)₂ is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH₃)₃P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹⁹ atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²⁰ atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si₃P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.

  17. Optical properties of InAsBi and optimal designs of lattice-matched and strain-balanced III-V semiconductor superlattices

    SciTech Connect

    Webster, P. T. Riordan, N. A.; Gogineni, C.; Liang, H.; Sharma, A. R.; Johnson, S. R.; Shalindar, A. J.

    2016-06-14

    The optical properties of bulk InAs{sub 0.936}Bi{sub 0.064} grown by molecular beam epitaxy on a (100)-oriented GaSb substrate are measured using spectroscopic ellipsometry. The index of refraction and absorption coefficient are measured over photon energies ranging from 44 meV to 4.4 eV and are used to identify the room temperature bandgap energy of bulk InAs{sub 0.936}Bi{sub 0.064} as 60.6 meV. The bandgap of InAsBi is expressed as a function of Bi mole fraction using the band anticrossing model and a characteristic coupling strength of 1.529 eV between the Bi impurity state and the InAs valence band. These results are programmed into a software tool that calculates the miniband structure of semiconductor superlattices and identifies optimal designs in terms of maximizing the electron-hole wavefunction overlap as a function of transition energy. These functionalities are demonstrated by mapping the design spaces of lattice-matched GaSb/InAs{sub 0.911}Sb{sub 0.089} and GaSb/InAs{sub 0.932}Bi{sub 0.068} and strain-balanced InAs/InAsSb, InAs/GaInSb, and InAs/InAsBi superlattices on GaSb. The absorption properties of each of these material systems are directly compared by relating the wavefunction overlap square to the absorption coefficient of each optimized design. Optimal design criteria are provided for key detector wavelengths for each superlattice system. The optimal design mid-wave infrared InAs/InAsSb superlattice is grown using molecular beam epitaxy, and its optical properties are evaluated using spectroscopic ellipsometry and photoluminescence spectroscopy.

  18. The Influence of Interstitial Ga and Interfacial Au (sub 2)P (sub 3) on the Electrical and Metallurgical Behavior of Au-Contacted III-V Semiconductors

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1991-01-01

    The introduction of a very small amount of Ga into Au contact metallization on InP is shown to have a significant effect on both the metallurgical and electrical behavior of that contact system. Ga atoms in the interstices of the Au lattice are shown to be effective in preventing the solid state reactions that normally take place between Au and InP during contact sintering. In addition to suppressing the metallurgical interaction, the presence of small amounts of Ga is shown to cause an order of magnitude reduction in the specific contact resistivity. Evidence is presented that the reactions of GaP and GaAs with Au contacts are also drastically affected by the presence of Ga. The sintering behavior of the Au-GaP and the Au-GaAs systems (as contrasted with that of the Au-InP system) is explained as due to the presence of interstitial Ga in the contact metallization. Finally the large, two-to-three order of magnitude drop in the contact resistance that occurs in the Au-InP system upon sintering at 400 degrees Centigrade is shown to be a result of the formation of an Au (sub 2) P (sub 3) layer at the metal-semiconductor interface. Contact resistivities in the 10 (sup -6) ohm square centimeter range are obtained for as-deposited Au on InP when a thin (20 Angstrom) layer of Au (sub 2) P (sub 3) is introduced between the InP and the Au contacts.

  19. A review on the empirical calculation of the electronic band structure of the valence band of the ideal (001) surface of the III-V and II-VI semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Olguín, D.; Baquero, R.; de Coss, R.

    2012-02-01

    In our previous work we have discussed the valence band electronic band structure of a (001) oriented surface (semi-infinite medium) of some II-VI and III-V zinc-blende semiconductor compounds. For these systems, we have found three characteristic surface resonances, besides the known bulk bands (hh, lh and spin-orbit bands). Two of these resonances correspond to the anion terminated surface and the third one to the cation terminated one. We have shown, specifically, that three non dispersive (001)-surface induced bulk states, in the Γ-X direction of the 2D Brillouin zone, do exist and are characteristic of these systems. The existence of these states has been confirmed, independently, by different experimental groups. In this work, we briefly review the main characteristics of the electronic structure of the (001)-surfaces to up-date their analysis. We found that, in general, the nondispersive states occur in several, if not all, crystal surfaces, and, on general grounds, as the consequence of introducing to an infinite medium a frontier of any kind (not only the vacuum). For that reason we propose here, to name them, more appropriately as Frontier Induced Semi-Infinite Medium (FISIM) states.

  20. Dielectric Layers on III-V Semiconductors.

    DTIC Science & Technology

    1979-10-01

    designed for high 10 pumping speed, low ultimate pressure, and a clean high vacuum system. All stainless steel construction is used to minimize...investigations of Arnold et al,2 5 it seems feasible to diffuse dopants out of an encapsulating dielectric into semi- insluating material. Ion beam

  1. Characterization of III-V Semiconductors.

    DTIC Science & Technology

    1981-04-01

    Epitaxial GaAs by Transient Capacitance ....................... 71 9.5 Persistent Photoconductivity in GaAs: Relationship to Low-Temperature Solar Cell I - V Characteristiss...the DLTS techniqu&. 66 71 __ 9.5 Persistant Photoconductivitv in GaAs:Relationship to Low- Temperature Solar Cell I - V Characteristics The following

  2. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    NASA Astrophysics Data System (ADS)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.

  3. Study of the Local Structure of GALLIUM(X)INDIUM(1 -X)ARSENIDE(Y)ANTIMONY(1-Y), a Quaternary Iii-V Semiconductor Alloy, Using the Extended X-Ray Absorption Fine Structure (exafs) Technique.

    NASA Astrophysics Data System (ADS)

    Islam, Shaheen Momtaz

    The technological importance of quaternary semiconductor alloys has stimulated considerable interest in the basic physics of these materials. Understanding of the local structure of these alloys is of fundamental importance. In this work, the extended x-ray absorption fine structure (EXAFS) technique has been used to investigate the atomic-scale structure of the III-V quaternary alloy series Ga_{rm x}In _{rm 1-x}As _{rm y}Sb_ {rm 1-y}, where Ga and In atoms occupy one sublattice and As and Sb atoms are distributed over the other sublattice. Two series of these alloys were studied with varying x (from 0.05 to 0.95) and keeping y constant (y = 0.05 or y = 0.10). The samples were polycrystalline powders of various compositions. EXAFS data were obtained at the As K-edge at room temperature for all these alloys. Our measurements reveal the number and types of atoms and the nearest neighbor distances about the average As atom. Our results show a consistent deviation from random site occupation in all these alloys, with Ga-As (and therefore In-Sb) pairs being clearly preferred over In-As and Ga -Sb pairs. This result is consistent with a theoretical model based on the pair approximation. From EXAFS measurements we also observe that the variation of Ga-As and In-As near-neighbor distances with composition is linear and that the bond-lengths remain nearly constant, closer to those in the pure binary compounds and varying only by 0.03 to 0.05A. On the other hand, the x-ray diffraction results show that the average cation -anion distance in the alloys changes by as much as 0.165A in accordance with Vegard's law. This linear variation of lattice constant with composition between the end members suggests that the atomic volume is conserved regardless of the details of the local distortions of lattice.

  4. Integration of III-V materials and Si-CMOS through double layer transfer process

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Fitzgerald, Eugene; Tan, Chuan Seng

    2015-03-01

    A method to integrate III-V compound semiconductor and SOI-CMOS on a common Si substrate is demonstrated. The SOI-CMOS layer is temporarily bonded on a Si handle wafer. Another III-V/Si substrate is then bonded to the SOI-CMOS containing handle wafer. Finally, the handle wafer is released to realize the SOI-CMOS on III-V/Si hybrid structure on a common substrate. Through this method, high temperature III-V materials growth can be completed without the presence of the temperature sensitive CMOS layer, hence damage to the CMOS layer is avoided.

  5. Demonstration of heterogeneous III-V/Si integration with a compact optical vertical interconnect access.

    PubMed

    Ng, Doris Keh Ting; Wang, Qian; Pu, Jing; Lim, Kim Peng; Wei, Yongqiang; Wang, Yadong; Lai, Yicheng; Ho, Seng Tiong

    2013-12-15

    Heterogeneous III-V/Si integration with a compact optical vertical interconnect access is fabricated and the light coupling efficiency between the III-V/Si waveguide and the silicon nanophotonic waveguide is characterized. The III-V semiconductor material is directly bonded to the silicon-on-insulator (SOI) substrate and etched to form the III-V/Si waveguide for a higher light confinement in the active region. The compact optical vertical interconnect access is formed through tapering a III-V and an SOI layer in the same direction. The measured III-V/Si waveguide has a light coupling efficiency above ~90% to the silicon photonic layer with the tapering structure. This heterogeneous and light coupling structure can provide an efficient platform for photonic systems on chip, including passive and active devices.

  6. Discontinuities and bands alignments of strain-balanced III-V-N/III-V-Bi heterojunctions for mid-infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Chakir, K.; Bilel, C.; Habchi, M. M.; Rebey, A.

    2017-02-01

    We have developed a 10- and 14-band anticrossing (BAC) models to investigate the band structures of dilute nitrides and dilute bismides alloys. In fact, the addition of Bi or N to III-V semiconductors causes a significant reduction in the band gap energy and an enhancement of the spin-orbit splitting energy. Further, the conduction and valence offsets between III-V-N/III-V-Bi were also investigated for different nitrogen and bismuth concentrations. For III-V-N/III-V-Bi heterojunctions, the strain-balanced criteria were undertaken by the zero stress analysis. The band alignment of strain-balanced GaAsN/GaAsBi, InPN/InPBi and InAsN/InAsBi is a type II. For InSbN/InSbBi heterostructure, the band lineup can be type I or II.

  7. Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders A Fe2X3 (A =Ba ,K ; X =S ,Se )

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Lin, Lingfang; Zhang, Jun-Jie; Dagotto, Elbio; Dong, Shuai

    2017-03-01

    The recent discovery of superconductivity in BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351] has stimulated considerable interest in 123-type iron chalcogenides. This material is the first reported iron-based two-leg ladder superconductor, as opposed to the prevailing two-dimensional layered structures of the iron superconductor family. Once the hydrostatic pressure exceeds 11 GPa, BaFe2S3 changes from a semiconductor to a superconductor below 24 K. Although previous calculations correctly explained its ground-state magnetic state and electronic structure, the pressure-induced phase transition was not successfully reproduced. In this work, our first-principles calculations show that with increasing pressure the lattice constants as well as local magnetic moments are gradually suppressed, followed by a first-order magnetic transition at a critical pressure, with local magnetic moments dropping to zero suddenly. Our calculations suggest that the self-doping caused by electrons transferred from S to Fe may play a key role in this transition. The development of a nonmagnetic metallic phase at high pressure may pave the way to superconductivity. As extensions of this effort, two other 123-type iron chalcogenides, KFe2S3 and KFe2Se3 , have also been investigated. KFe2S3 also displays a first-order transition with increasing pressure, but KFe2Se3 shows instead a second-order or weakly first-order transition. The required pressures for KFe2S3 and KFe2Se3 to quench the magnetism are higher than for BaFe2S3 . Further experiments could confirm the predicted first-order nature of the transition in BaFe2S3 and KFe2S3 , as well as the possible metallic/superconductivity state in other 123-type iron chalcogenides under high pressure.

  8. Progress in III-V materials technology

    NASA Astrophysics Data System (ADS)

    Grant, Ian R.

    2004-12-01

    Compound semiconductors, in the form of GaAs and InP have achieved major commercial significance in areas of application such as mobile communications, displays and telecoms and offer a versatility of function beyond the capabilities of Si. III-V compounds, and in particular GaAs, have since their early development been the subject of defence related interest. Support from this sector established the basic materials technologies and nurtured development up until their commercial breakthrough into consumer products. GaAs, for example, now provides essential components for mobile phones and CD / DVD players. An overview is presented of the crystal growth and processing methods used in the manufacture of these materials. Current state of the art characteristics on crystal form and quality are discussed, together with the evolution of single crystal growth techniques. Consideration is given to how these principal compounds together with the minor materials, InSb, GaSb and InAs are employed in diverse applications over a broad spectral range, together with information on markets and future perspectives.

  9. Investigation of new semiinsulating behavior of III-V compounds

    NASA Technical Reports Server (NTRS)

    Lagowski, Jacek

    1990-01-01

    The investigation of defect interactions and properties related to semiinsulating behavior of III-V semiconductors resulted in about twenty original publications, six doctoral thesis, one masters thesis and numerous conference presentations. The studies of new compensation mechanisms involving transition metal impurities have defined direct effects associated with deep donor/acceptor levels acting as compensating centers. Electrical and optical properties of vanadium and titanium levels were determined in GaAs, InP and also in ternary compounds InGaAs. The experimental data provided basis for the verification of chemical trends and the VRBE method. They also defined compositional range for III-V mixed crystals whereby semiinsulating behavior can be achieved using transition elements deep levels and a suitable codoping with shallow donor/acceptor impurities.

  10. Subnanometer scale characterization of III-V-heterostructures

    SciTech Connect

    Lakner, H.

    1996-12-31

    Heterostructures based on III-V semiconductors play a dominant role for the production of optoelectronic /1/ and electronic high-speed or high-frequency /2/ devices. The necessary band-gap engineering is achieved by optimized growth procedures which allow to change the chemical composition and the crystal structure (e.g., strain or ordering) on the subnanometer scale. The evaluation of individual heterointerfaces with respect to chemical composition and crystal structure requires characterization techniques which offer the necessary high spatial resolution. Scanning transmission electron microscopy (STEM) offers several of such quantitative techniques. It is the intention of this paper to demonstrate the capabilities of STEM in the subnanometer characterization of III-V-heterostructures based on InP-substrates. Additionally, the data obtained from nanocharacterization can be correlated to device performance.

  11. III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics

    SciTech Connect

    Prucnal, Slawomir Zhou, Shengqiang; Ou, Xin; Facsko, Stefan; Oskar Liedke, Maciej; Bregolin, Felipe; Liedke, Bartosz; Grebing, Jochen; Fritzsche, Monika; Hübner, Rene; Mücklich, Arndt; Rebohle, Lars; Skorupa, Wolfgang; Helm, Manfred; Turek, Marcin; Drozdziel, Andrzej

    2014-02-21

    The unique properties of SOI wafers enable the integration of heterogeneous materials with distinct functionalities in different layers. In particular, III-V compound semiconductors are very attractive for low-noise and high-speed electronic and photonic components integrated on a single chip. We have developed a CMOS compatible and fully integrated solution for the integration of III-V compound semiconductors with silicon technology for optoelectronic applications. InAs compound semiconductor nanostructures are synthesized in SOI wafers using the combined ion beam implantation and millisecond liquid-phase epitaxial growth. Optoelectronic and microstructural investigations carried out on implanted, annealed, and selectively etched samples confirm the formation of high-quality III-V compound semiconductor nanostructures.

  12. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  13. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.; Misra, Mira

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  14. Lazarevicite-type short-range ordering in ternary III-V nanowires

    NASA Astrophysics Data System (ADS)

    Schnedler, M.; Lefebvre, I.; Xu, T.; Portz, V.; Patriarche, G.; Nys, J.-P.; Plissard, S. R.; Caroff, P.; Berthe, M.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Grandidier, B.

    2016-11-01

    Stabilizing ordering instead of randomness in alloy semiconductor materials is a powerful means to change their physical properties. We used scanning tunneling and transmission electron microscopies to reveal the existence of an unrecognized ordering in ternary III-V materials. The lazarevicite short-range order, found in the shell of InAs1 -xSbx nanowires, is driven by the strong Sb-Sb repulsion along <110 > atomic chains during their incorporation on unreconstructed {110 } sidewalls. Its spontaneous formation under group-III-rich conditions of growth offers the prospect to broaden the limited classes of ordered structures occurring in III-V semiconductor alloys.

  15. Hybrid III-V/silicon SOA for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Brenot, R.; Le Liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Duan, G.-H.; Olivier, S.; Jany, Christophe; Kopp, C.; Menezo, S.

    2014-11-01

    Silicon photonics has reached a considerable level of maturity, and the complexity of photonic integrated circuits (PIC) is steadily increasing. As the number of components in a PIC grows, loss management becomes more and more important. Integrated semiconductor optical amplifiers (SOA) will be crucial components in future photonic systems for loss compensation. In addition, there are specific applications, where SOAs can play a key role beyond mere loss compensation, such as modulated reflective SOAs in carrier distributed passive optical networks or optical gates in packet switching. It is, therefore, highly desirable to find a generic integration platform that includes the possibility of integrating SOAs on silicon. Various methods are currently being developed to integrate light emitters on silicon-on-insulator (SOI) waveguide circuits. Many of them use III-V materials for the hybrid integration on SOI. Various types of lasers have been demonstrated by several groups around the globe. In some of the integration approaches, SOAs can be implemented using essentially the same technology as for lasers. In this paper we will focus on SOA devices based on a hybrid integration approach where III-V material is bonded on SOI and a vertical optical mode transfer is used to couple light between SOI waveguides and guides formed in bonded III-V semiconductor layers. In contrast to evanescent coupling schemes, this mode transfer allows for a higher confinement factor in the gain material and thus for efficient light amplification over short propagation distances. We will outline the fabrication process of our hybrid components and present some of the most interesting results from a fabricated and packaged hybrid SOA.

  16. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    NASA Astrophysics Data System (ADS)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, Sanghyeon; Choi, Won Jun

    2016-02-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  17. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  18. Thermodynamic considerations for epitaxial growth of III/V alloys

    NASA Astrophysics Data System (ADS)

    Stringfellow, G. B.

    2017-06-01

    III/V semiconductor alloys have been extensively studied because of their usefulness for electronic and photonic devices. Nevertheless, the search for new alloys for specific applications continues. Often, thermodynamic factors restrict the compositional range accessible by epitaxial growth processes, particularly when the size difference between atoms mixing on a particular sublattice is large. This causes solid phase immiscibility, leading to important effects on the epitaxial growth, the resultant alloy properties, and, consequently, device performance. Stringent thermodynamic limits exist for a number of alloys being considered for advanced LED, laser, and solar cell applications where the atomic sizes are very dissimilar, such as GaInN, GaAsN and GaAsBi. This paper will review the basic thermodynamics of the epitaxial growth processes and mixing in semiconductor alloys, as well as the causes and consequences of the resultant complex microstructures.

  19. MBE growth and processing of III/V-nitride semiconductor thin film structures: Growth of gallium indium arsenic nitride and nano-machining with focused ion beam and electron beam

    NASA Astrophysics Data System (ADS)

    Park, Yeonjoon

    The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.

  20. Precise measurement of charged defects in III-V compounds (supplement 2)

    NASA Technical Reports Server (NTRS)

    Soest, J. F.

    1973-01-01

    Experimental methods and related theory which will permit the measurement of low concentrations of vacancies and other defects in III-V compound semiconductors are discussed. Once the nature of these defects has been determined, this information can be incorporated into a transport theory for devices constructed from these materials, and experiments conducted to test the theory. The vacancies and other defects in the III-V compounds are detected by measurement of the nuclear magnetic resonance (NMR) line width. Most of the III-V compounds have at least one isotope with a nuclear quadrupole moment. In a crystal with a cubic crystal field (characteristic of most III-V compounds) there is no quadrupole splitting of the Zeeman resonance line. However, a defect removes the cubic symmetry locally and causes splitting which result in a change of the NMR width. This change can be used to detect the presence of vacancies.

  1. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.

    1998-12-08

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal. 24 figs.

  2. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.

    1998-01-01

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

  3. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOEpatents

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  4. III-V nanowires grown in a simple, homebuilt system.

    NASA Astrophysics Data System (ADS)

    Schroer, M. D.; Petta, J. R.

    2009-03-01

    Semiconductor nanowires are promising experimental platforms for studying quantum transport due to their built-in one-dimensional confinement of charge carriers. To enable the study of III-V semiconducting nanowires, we built a simple tube furnace based MOCVD reactor. Growth of InP and InAs nanowires using trimethylindium, di-tert-butylphosphine and triethylarsenic has been studied as a function of temperature, pressure, precursor concentration and growth substrate. At optimal growth conditions, wires of 20-100 nm in diameter and up to 10 μm in length are achievable on InAs substrates. Characterization was performed using SEM, EDS and TEM; both wurtzite and zincblende structures have been observed. We will also present transport measurements of nanowires grown using this system. 8pt

  5. III-V Nanowire Array Growth by Selective Area Epitaxy

    SciTech Connect

    Chu, Hyung-Joon; Stewart, Lawrence; Yeh, Tingwei; Dapkus, P. Daniel

    2011-12-23

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH{sub 3} decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  6. Nonclassical devices in SOI: Genuine or copyright from III V

    NASA Astrophysics Data System (ADS)

    Luryi, S.; Zaslavsky, A.

    2007-02-01

    The combination of semiconductor-on-insulator (SOI) substrates with ultrathin Si (or Ge) channel and gate insulator layers opens new opportunities for nonclassical CMOS-compatible devices and possibly optical sources. Unlike their III-V counterparts, which often came first, SOI-based devices have the crucial advantage of potential integrability with dominant silicon technology. We discuss the examples of lateral and vertical tunneling transistors, as well as a tunneling-based SOI intersubband laser. None of these devices has progressed beyond either proof-of-concept demonstrations or, in the case of the intersubband laser, a purely theoretical concept. Still, the unique characteristics deriving from quantum mechanical tunneling make such devices an interesting playground for innovative device research, especially as standard Si CMOS heads towards the rapidly approaching end of scaling.

  7. Modeling of ferromagnetic semiconductor devices for spintronics

    NASA Astrophysics Data System (ADS)

    Lebedeva, N.; Kuivalainen, P.

    2003-06-01

    We develop physical models for magnetic semiconductor devices, where a part of the device structure consists of a ferromagnetic semiconductor layer. First we calculate the effect of the exchange interaction between the charge carrier spins and the spins of the localized magnetic electrons on the electronic states, recombination processes, and charge transport in ferromagnetic semiconductors such as (Ga,Mn)As. Taking into account, e.g., the splitting of the conduction and valence bands due to the exchange interaction, we model the electrical characteristics of the basic magnetic semiconductor devices such as Schottky diodes consisting of a nonmagnetic metal/ferromagnetic semiconductor interface, pn diodes consisting of a ferromagnetic/nonmagnetic junction and bipolar transistors having a ferromagnetic emitter. The models predict that at temperatures close to the Curie temperature TC the electrical properties of the magnetic semiconductor devices become strongly dependent on the average spin polarization of the magnetic atoms. A feature in the models is that many device parameters such as diffusion lengths or potential barriers become spin dependent in magnetic semiconductor devices. In a ferromagnetic Schottky diode the sensitivity of the device current I to the external magnetic field may be as large as (∂I/∂B)I-1≈1/T at temperatures close to TC. In a ferromagnetic pn diode both the ideal and recombination currents become magnetic field dependent. In a ferromagnetic bipolar transistor the current gain shows the same sensitivity to the spin polarization as the dc current in the ferromagnetic pn diodes. According to our model calculations optimal structures showing the largest magnetization dependence of the electrical characteristics in III-V ferromagnetic semiconductor devices would be those where the magnetic side of the junction is of n type.

  8. (Defect studies in III-V thin film semiconductors)

    SciTech Connect

    Not Available

    1991-01-01

    Our primary research objective in 90/91 has been to continue studying misfit dislocation confinement by patterning substrates into mesas before the epitaxial growth of strained layers. This report presents progress for many of the areas of our research. (JL)

  9. Dispersive Phonon Imaging in Iii-V Semiconductors.

    NASA Astrophysics Data System (ADS)

    Hebboul, Saad Eddine

    Low-temperature transport properties of high-frequency acoustic phonons are investigated in GaAs, InSb, InP and InAs using the phonon-imaging technique. In this method, a focused laser beam provides a movable heat source on one side of a cooled crystal (<=q2 K). A single small phonon detector on the opposite face records the transmitted heat flux as a function of propagation direction. Ballistic phonons channel along directions in the crystal which are completely determined by the detailed shape of constant-energy surfaces in wavevector space. The resulting focusing patterns are characterized by sharp phonon caustics which are clearly identified from the continuous background due to scattered phonons. In the dispersive regime, where phonon wavelength is comparable to atomic spacing, the angular positions of these caustic lines are very sensitive to phonon frequency, thus providing a novel test for lattice dynamics theories. Experiments are performed with superconducting tunnel junctions and Al bolometers to probe both the high-frequency and low -frequency regimes, respectively. We find that large-k ballistic phonons give rise to distinct focusing patterns in all four types of crystals, with thicknesses varying between 0.4 and 0.8 mm. Due to isotope scattering in the bulk, tunnel-junction experiments yield well-defined caustic patterns with a dominant frequency given by the detector gap 2Delta. In InSb, where zone boundary frequencies are small (nu_ {TA} ~ 1.2 THz), the frequency dependence of the dispersive phonon focusing patterns are measured using PbTl (0.43, 0.59 THz) and PbBi (0.69, 0.73, 0.78, 0.82 THz) tunnel junction detectors. The results are interpreted with Monte Carlo calculations based on rigid, dipole, shell, and bond-charge models. Although each model yields satisfactory fits to the previously measured dispersion curves, the predicted patterns show remarkable differences in the caustic structures. This result underscores the utility of phonon imaging in providing new information about the elastic forces between atoms in crystals.

  10. Nonlinear Frequency Conversion in III-V Semiconductor Photonic Crystals

    DTIC Science & Technology

    2012-03-01

    polarizing beamsplitter, SPF : short pass filter, PD: photodiode. The incident light traces the red line into the cavity sample. The second harmonic...33 CCD HWP HWP NPBSOLSample Polarizer Laser PBS PD Monochromator SPF 720 730 740 750 760 770 0 10 20 30 40 50 Wavelength [nm] C o u n ts a. b. c...OL: objective lens, PBS: polarizing beamsplitter, SPF : short pass filter, PD: photodiode. The incident light traces the red line into the cavity

  11. Ultrafast Nonlinear Microscopy in III-V Semiconductor Nanostructures

    DTIC Science & Technology

    2016-01-20

    of charge carrier dynamics at different locations within a single ZnO rod, and strain-induced electron-hole recombination in silicon nanowires , all...within a nano-wire (near the end or the middle), and that strain within a silicon nanowire significantly reduces the lifetime of charge carriers...whispering gallery modes, nanowires , REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8

  12. Passivation of III-V Compound Semiconductor Based Devices

    DTIC Science & Technology

    1993-11-29

    approximately 60 A/s. The AES, Rutherford Backscattering, FIIR and stress measurements were also carried out. This work was done in collaboration with Dr ...begun to collaborate with us on the project. A brief description of these projects are listed below: 8 a) HP Research Laboratory ( Drs . S. Camnitz, K. L...DC characterization of devices. b) University of California. Santa Barbara ( Drs . B. Young, L. A. Coldren and V. Malhotra): Passivation of GaAs-based

  13. Ion Implantation in III-V Compound Semiconductors

    DTIC Science & Technology

    1984-09-01

    340 keV H + -0 Ga P  O UES-723-292 !:• (H o>ray *P-K X - rayO Ga-K X -ray iii! RBS * ..I -iO.. 0 10I to1. 01 • .0 -. I0 1 LI =i, O I 0 01 0.J 10...Identity by blo ," pume) Ion Implantation, GaAs, Hall effect, electrical resistivity, Rutherford Backscattering (RBS), channeling, Proton induced x -ray...Mebility (jH) upon Aiinealing Temperature (TA) for 1 X 101 /cm• Dose Samples of GaAs:Mg with Three Different Capping Methods 33 p 14 Dependence of Surface

  14. Novel compound semiconductor devices based on III-V nitrides

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Ren, F.

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  15. Free Surface Properties of III-V Compound Semiconductor Surfaces.

    DTIC Science & Technology

    1980-06-01

    Review of Modern Physics Vol. 42 #3 July 1980, p. 317. 2. A. Kahn, G. Cisneros, M. Bonn, P. Mark and C.B. Duke, Surface Science 71, 387 (1978). 3. A...Kahn, E. So, P. Mark , C.B. Duke, J. Vac. Sci. Technol. 15, 580 (1978). 4. R.J. Meyer, C.B. Duke, A. Paton, A. Kahn, E. So, P. Mark , Phys. Rev. B19 (1979...Yeh, J. Tsang, A. Kahn, P. Mark , Phys. Rev. (to be published). 7. E. So, Ph.D. Dissertation, Princeton University, Department of Electrical Engineering

  16. Growth far from equilibrium: Examples from III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Kuech, Thomas F.; Babcock, Susan E.; Mawst, Luke

    2016-12-01

    The development of new applications has driven the field of materials design and synthesis to investigate materials that are not thermodynamically stable phases. Materials which are not thermodynamically stable can be synthesized and used in many applications. These materials are kinetically stabilized during use. The formation of such metastable materials requires both an understanding of the associated thermochemistry and the key surface transport processes present during growth. Phase separation is most easily accomplished at the growth surface during synthesis where mass transport is most rapid. These surface transport processes are sensitive to the surface stoichiometry, reconstruction, and chemistry as well as the growth temperature. The formation of new metastable semiconducting alloys with compositions deep within a compositional miscibility gap serves as model systems for the understanding of the surface chemical and physical processes controlling their formation. The GaAs1-yBiy system is used here to elucidate the role of surface chemistry in the formation of a homogeneous metastable composition during the chemical vapor deposition of the alloy system.

  17. Enhancing Hole Mobility in III-V Semiconductors

    DTIC Science & Technology

    2012-05-21

    in the channel and also to check for any residual strain present in the metamorphic buffer as it absorbs the lattice mismatch with the GaAs substrate...Figure 10 shows the rocking curves near the (004) GaAs peak for sample A1 (with In0.41Ga0.59Sb chan- nel) and sample B1 (GaSb channel with...superlattice of (AlAs)x(AlSb)1x). The different peaks in the rocking curve for sample A1 (Figure 10(a)) correspond to the peak from the GaAs substrate, the

  18. Microstructural evaluation of heteroepitaxial III-V semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Chen, Eric Brice

    Microstructural features of single and multilayered strained (In xGa1-xAs/GaAs, (Al)GaAs1-ySb y/GaAs) and unstrained (In0.49Ga0.51P/GaAs) heteroepitaxial structures were evaluated. During growth of a 1.5% mismatched InxGa 1-xAs layer on GaAs at 470°C, real-time multibeam optical stress sensor measurements revealed an unexpected shoulder in the strain-thickness profile. Real-time data was used to pause film growth at pre-determined stress-states surrounding the shoulder region (pre-, mid- and post-shoulder) to probe its origin. Dislocation structure of each stress-state was characterized by transmission electron microscopy. The shoulder coincided with reactions between 60° dislocations forming edge dislocations, suggesting an increased dislocation mobility which is required for multiplication. Dislocation half-loops were observed via cross-sectional microscopy, resulting in rapid relaxation of the film. In-graded (InxGa1-xAs) and Sb-graded (Al0.5Ga0.5As1-ySby, GaAs 1-ySby) compositionally step-graded multilayer buffers were analyzed to determine the optimal alloy for preventing the propagation of threading dislocations to the epitaxial surface. Multilayers were graded from a lattice parameter of 0.564 nm to 0.591 nm (4.6% mismatch) over a 1 mum film thickness. Threading dislocation density in the top-most layer of the Sb-graded structures (≤109 cm-2) was lower than the In-graded alloy (>1010 cm-2). In the InxGa1-xAs structure, threading dislocations were observed to congregate in discrete channels directly correlated to surface crosshatches. As/Sb compositional modulations in the Sb-graded structures reveal a more planar growth surface, preventing threading dislocation trapping. Characterization of dislocation structure indicated a directional asymmetry in the 60° and edge dislocation density for the GaAs1-ySb y multilayer. Replacing Ga with Al0.5Ga0.5 in the Sb-graded ternary improved planarity, resulting in a more uniform dislocation density. Residual strain (calculated from quantitative x-ray analysis and dislocation density) in each of the buffer layers was within the bounds predicted by existing relaxation models and dependent upon lattice mismatch strain. Lattice-matched In0.49Ga0.51P-GaAs junctions as active regions of a heterojuction bipolar transistor were evaluated by high-resolution transmission electron microscopy and related to device performance. Microscopy was established as a feasible technique for characterizing interfacial roughness which was related to interface crystal quality (quantified by reverse-biased leakage currents) but not low-voltage device performance.

  19. Characterization of III-V Compound Semiconductor Device Materials.

    DTIC Science & Technology

    1980-02-01

    Cadmium Sulfide ," D...Compounds ( St . Louis ), ed. by Lester F. Eastman (Inst. of Physics, London, 1977) p.201. 17. J. Barrera, in Proc. of the Fifth Biennial Cornell...Rome. 1977) p. 1065. 28. R. D. Fairman, N. Omri, and F. B. Yank, Ref. 2, p. 45. 29. G. W. Iseler (to be pub. in the Proc. of the Seventh Int. Symp. on GaAs and Related Compounds, St . Louis , 1978). 28 28

  20. Growth far from equilibrium: Examples from III-V semiconductors

    SciTech Connect

    Kuech, Thomas F.; Babcock, Susan E.; Mawst, Luke

    2016-12-15

    The development of new applications has driven the field of materials design and synthesis to investigate materials that are not thermodynamically stable phases. Materials which are not thermodynamically stable can be synthesized and used in many applications. These materials are kinetically stabilized during use. The formation of such metastable materials requires both an understanding of the associated thermochemistry and the key surface transport processes present during growth. Phase separation is most easily accomplished at the growth surface during synthesis where mass transport is most rapid. These surface transport processes are sensitive to the surface stoichiometry, reconstruction, and chemistry as well as the growth temperature. The formation of new metastable semiconducting alloys with compositions deep within a compositional miscibility gap serves as model systems for the understanding of the surface chemical and physical processes controlling their formation. The GaAs{sub 1−y}Bi{sub y} system is used here to elucidate the role of surface chemistry in the formation of a homogeneous metastable composition during the chemical vapor deposition of the alloy system.

  1. Characterization of III-V Compound Semiconductor Device Materials.

    DTIC Science & Technology

    1984-05-01

    Wurtzite Structure. Crystal splittings and spin -orbit splittings are indicated schematically. Transitions which are allowed for various polarization ...the number of levels. The splitting caused by the presence of spin is represented by the inner products 5 1/2 7 9 r I x D 7 - and the band structure...W Figure 1. Band Structure and Selection Rules for the Wurtzite Structure. Crystal splittings and spin -orbit splittings are indicated schematically

  2. Assembly of nanostructures in III-V semiconductor films

    NASA Astrophysics Data System (ADS)

    Lee-Feldman, Jennifer Y.

    In film growth, assembly of nanostructures allows precise placement and reliable dimensions for higher efficiency in devices. This work looks at two extremes of assembly: spontaneous assembly manipulated by experimental parameters and directed assembly by altering surface patterns. First we vary experimental procedures to change feature sizes, and then we directly assemble dots on patterned surfaces. The morphologies in these films are characterized and then reproduced. We examine two different strained material systems: mesa formation in 2 monolayer GaAs films on In0.53Ga0.47As/InP and quantum dots in 2 monolayer InAs films on GaAs. We employ focused ion beam (FIB) patterning on the latter system to direct the formation of quantum dots. When varying growth parameters in the GaAs films, the mesa-trench morphology shown by scanning tunneling microscopy images changes significantly. There is roughening and mesa narrowing at higher temperatures, and intermixing is confirmed by X-ray coherent Bragg rod analysis. We use a Ga adatom density model to correspond to step edge density to predict morphological trends. This shows the commonly used metric of VIII growth ratio is not applicable at low As growth rates because of roughening. In the second material system we grow InAs quantum dots on GaAs. Explorations of ex situ FIB patterning show the technique is not successful due to oxide desorption roughness. We instead use in vacuo FIB to successfully assemble quantum dots on FIB-irradiated holes. We vary growth conditions, irradiation dose, and periodicity to yield single or multiple quantum dots. Elastic kinetic Monte Carlo simulations help predict the number of dots at sites and show that dot nucleation begins within the hole walls. The simulations show agreement with multiple dots, but discrepancies arise because of the limited amount of intermixing and initial hole shape. We characterize the quantum dot shape and holes and attempt to reconcile the large range of sizes with our experiments. Photoluminescent structures grown from the FIB-patterned quantum dots are measured. Spatial mapping shows that the FIB decreases InAs quantum dot peaks. Transmission electron microscopy images indicate that the lowered emission is due to the presence of defects caused by FIB.

  3. Chemical beam epitaxy growth of III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Mohummed Noori, Farah T.

    2013-12-01

    Indium- Arsenide (InAs) nanowires were grown in a high vacuum chemical beam epitaxy (CBE) unit on InAs(111) wafers substrates at 425-454°C. Two types of nanogold were used as orientation catalyst, 40nm and 80nm. The measurements were performed using scanning electron microscopy showed that uniform nanowires. The nanowires orient vertically in the InAs nanowire scanning electron microscopy of an array 80nm diameter InAs nanowire with length is in the range 0.5-1 μm and of an array 40nm diameter with length is in the range 0.3-0.7μm. The nanowire length with growth time shows that the linear increase of nanowires start to grow as soon as TMIn is available. The growth rate with temperature was studied.

  4. FOREWORD: The physics of III-V nitrides The physics of III-V nitrides

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    2009-04-01

    The evolution of semiconductor physics is driven by the increasing sophistication of the art of crystal growing and fabrication techniques. From Ge at the birth of the transistor, possibly the purest material ever grown, through Si, the work-horse of the crystal revolution, to the III-Vs, whose optical properties opened up a second front, namely, optoelectronics. Crystal growth with monolayer control gave us quantum wells, superlattices, quantum wires and quantum dots, along with the quantum Hall effect and quantized resistance. The potential for high-power devices triggered interest in the III-V nitrides with their large bandgaps. The nitrides mostly crystallize in the hexagonal form, and this has introduced the phenomenon of spontaneous polarization into mainstream semiconductor physics. Its effect manifests itself in huge electric fields in heterostructures like AlGaN/GaN which, in turn, causes the induction of substantial electron populations in the channel of a HFET without the need for doping. High-power microwave transistors have been successfully fabricated, even though there are features associated with spontaneous polarization that still needs clarifying. Another strange effect is the large electron population on the surface of InN. The lack of a suitable substrate for growing GaN has meant that the dislocation density is higher than we would wish, but that situation is expected to steadily improve. Given the current interest in the physics of nitrides, it is natural to come across a special issue devoted to this topic. The difficulty presented by the surface layer in InN in the attempt to measure transport properties is discussed in the paper by King et al. A property that can affect transport is the lifetime of optical phonons and its dependence on electron density. Measurements of phonon lifetime in InN are reported by Tsen and Ferry, and in GaN channels, via the measure of hot-electron fluctuations, by Matulionis. The dependence on electron density is

  5. Conference on Semi-Insulating III-V Materials (2nd), held 19-21 Apr 82, Evian (France),

    DTIC Science & Technology

    1983-02-28

    Dist Special 19. KEY WORDS (Continue on reverse side If neceary mud Identity by block numb ) Semiconductor devices Field effect transitors Integrated...Sun Tongnien (Hebei Semiconductor pit density. The W Research Institute, People’swith the etch ites of w Republic of China), and a compre-was...of impurities in touched on the topic of residual III-V semiconductors . The boron impurities in undoped GaAs, techniques discussed included a topic

  6. Fabrication and characterization of nanostructured III-V thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Novotny, Clint; Sharifi, Fred

    2013-09-01

    Approximately two thirds of all fossil fuel used is lost as heat. Thermoelectric materials, which convert heat into electrical energy, may provide a solution to partially recover some of this lost energy. To date, most commercial thermoelectric materials are too inefficient to be a viable option for most waste heat applications. This research proposes to investigate the fabrication and characterization of nanostructured III-V semiconductor thermoelectric materials with the goal of increasing the performance of existing technology. In order to improve thermoelectric material efficiency, either the lattice thermal conductivity must be lowered or the thermoelectric power factor must be increased. This research will focus on the latter by modifying the density of states of the semiconductor material and studying the effect of quantum confinement on the material's thermoelectric properties. Using focused ion beam milling, nanostructured cantilevers are fabricated from single crystal wafers. An all around gate dielectric and electrode are deposited to create a depletion region along the outer core of the cantilever, thus creating an inner conductive core. The Seebeck coefficient can then be measured as a function of confinement by varying the gate voltage. This technique can be applied to various material systems to investigate the effects of confinement on their thermoelectric properties.

  7. Heterointegration of III-V on silicon using a crystalline oxide buffer layer

    NASA Astrophysics Data System (ADS)

    Bhatnagar, K.; Rojas-Ramirez, J. S.; Contreras-Guerrero, R.; Caro, M.; Droopad, R.

    2015-09-01

    The integration of III-V compound semiconductors with Si can combine the cost advantage and maturity of Si technology with the superior performance of III-V materials. We have achieved the heteroepitaxial growth of III-V compound semiconductors on a crystalline SrTiO3 buffer layer grown on Si(0 0 1) substrates. A two-step growth process utilizing a high temperature nucleation layer of GaAs, followed by a low-temperature GaAs layer at a higher growth rate was employed to achieve highly crystalline thick GaAs layers on the SrTiO3/Si substrates with low surface roughness as seen by AFM. The effect of the GaAs nucleation layer on different surface terminations for the SrTiO3 layer was studied for both on axis and miscut wafers, which led to the conclusion that the Sr terminated surface on miscut substrates provides the best GaAs films. Using GaAs/STO/Si as virtual substrates, we have optimized the growth of high quality GaSb using the interfacial misfit (IMF) dislocation array technique. This work can lead to the possibility of realizing infrared detectors and next-generation high mobility III-V CMOS within the existing Si substrate infrastructure.

  8. Power-efficient III-V/silicon external cavity DBR lasers.

    PubMed

    Zilkie, A J; Seddighian, P; Bijlani, B J; Qian, W; Lee, D C; Fathololoumi, S; Fong, J; Shafiiha, R; Feng, D; Luff, B J; Zheng, X; Cunningham, J E; Krishnamoorthy, A V; Asghari, M

    2012-10-08

    We report the design and characterization of external-cavity DBR lasers built with a III-V-semiconductor reflective-SOA with spot-size converter edge-coupled to SOI waveguides containing Bragg grating mirrors. The un-cooled lasers have wall-plug-efficiencies of up to 9.5% at powers of 6 mW. The lasers are suitable for making power efficient, hybrid WDM transmitters in a CMOS-compatible SOI optical platform.

  9. Heterogeneous integration of SiGe/Ge and III-V for Si photonics

    NASA Astrophysics Data System (ADS)

    Takenaka, Mitsuru; Kim, Younghyun; Han, Jaehoon; Kang, Jian; Ikku, Yuki; Cheng, Yongpeng; Park, Jinkwon; Takagi, Shinichi

    2016-05-01

    The heterogeneous integration of SiGe/Ge and III-V semiconductors gives us an opportunity to enhance functionalities of Si photonics platform through their superior material properties which lack in Si. In this paper we discuss what SiGe/Ge and III-V can bring to Si photonics. We have predicted that the light effective hole mass in strained SiGe results in the enhanced the free-carrier effects such as the plasma dispersion effect and free-carrier absorption. We observed significantly larger free-carrier absorption in the SiGe optical modulator than in the control Si device. By fabricating asymmetric Mach-Zehnder interferometer (MZI) SiGe optical modulators, the enhancement of the plasma dispersion effect in strained SiGe has been successfully demonstrated. Mid-infrared integrated photonics based on Ge waveguides on Si have also been investigated. Since Ge is transparent to the entire mid-infrared range, Ge photonic integrated circuits on the Ge-on-Insulator (GeOI) wafer are quite attractive. We have successfully fabricated the GeOI wafer with 2-μm-thick buried oxide (BOX) layer by wafer bonding. The passive waveguide components based on Ge strip waveguides have been demonstrated on the GeOI. We have also demonstrated carrier-injection Ge variable optical attenuators. We have proposed and investigate the III-V CMOS photonics platform by using the III-V on Insulator (IIIV- OI) on a Si wafer. The strong optical confinement in the III-V-OI enables us to achieve high-performance photonic devices. We have successfully demonstrated InGaAsP MZI optical switch with the low on-state crosstalk on the III-V-OI. Ultra-low dark current waveguide InGaAs PDs integrated with an InP grating coupler are also achieved.

  10. Nonmagnetic UHV Optical Viewports

    DTIC Science & Technology

    2005-01-01

    Nonmagnetic UHV Optical Viewports Scott Crane and Chrisopher R. Ekstrom Time Service Department, Clock Development Division U. S. Naval... time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...Naval Observatory, Time Service Department,Clock Development Division,Washington,DC,20392 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  11. Surface Leakage Mechanisms in III-V Infrared Barrier Detectors

    NASA Astrophysics Data System (ADS)

    Sidor, D. E.; Savich, G. R.; Wicks, G. W.

    2016-09-01

    Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III-V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.

  12. Photoelectrochemistry of III-V epitaxial layers and nanowires for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Parameshwaran, Vijay; Enck, Ryan; Chung, Roy; Kelley, Stephen; Sampath, Anand; Reed, Meredith; Xu, Xiaoqing; Clemens, Bruce

    2017-05-01

    III-V materials, which exhibit high absorption coefficients and charge carrier mobility, are ideal templates for solar energy conversion applications. This work describes the photoelectrochemistry research in several IIIV/electrolyte junctions as an enabler for device design for solar chemical reactions. By designing lattice-matched epitaxial growth of InGaP and GaP on GaAs and Si, respectively, extended depletion region electrodes achieve photovoltages which provide an additional boost to the underlying substrate photovoltage. The InGaP/GaAs and GaP/Si electrodes drive hydrogen evolution currents under aqueous conditions. By using nanowires of InN and InP under carefully controlled growth conditions, current and capacitance measurements are obtained to reveal the nature of the nanowire-electrolyte interface and how light is translated into photocurrent for InP and a photovoltage in InN. The materials system is expanded into the III-V nitride semiconductors, in which it is shown that varying the morphology of GaN on silicon yields insights to how the interface and light conversion is modulated as a basis for future designs. Current extensions of this work address growth and tuning of the III-V nitride electrodes with doping and polarization engineering for efficient coupling to solar-driven chemical reactions, and rapid-throughput methods for III-V nanomaterials synthesis in this materials space.

  13. Antimony Based III-V Thermophotovoltaic Devices

    SciTech Connect

    CA Wang

    2004-06-09

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  14. Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders AFe2X3 ( A=Ba,K; X=S,Se)

    DOE PAGES

    Zhang, Yang; Lin, Lingfang; Zhang, Jun -Jie; ...

    2017-03-15

    The recent discovery of superconductivity in BaFe2S3 has stimulated considerable interest in 123-type iron chalcogenides. This material is the first reported iron-based two-leg ladder superconductor, as opposed to the prevailing two-dimensional layered structures of the iron superconductor family. Once the hydrostatic pressure exceeds 11 GPa, BaFe2S3 changes from a semiconductor to a superconductor below 24 K. Although previous calculations correctly explained its ground-state magnetic state and electronic structure, the pressure-induced phase transition was not successfully reproduced. In this work, our first-principles calculations show that with increasing pressure the lattice constants as well as local magnetic moments are gradually suppressed, followedmore » by a first-order magnetic transition at a critical pressure, with local magnetic moments dropping to zero suddenly. Our calculations suggest that the self-doping caused by electrons transferred from S to Fe may play a key role in this transition. The development of a nonmagnetic metallic phase at high pressure may pave the way to superconductivity. As extensions of this effort, two other 123-type iron chalcogenides, KFe2S3 and KFe2Se3, have also been investigated. KFe2S3 also displays a first-order transition with increasing pressure, but KFe2Se3 shows instead a second-order or weakly first-order transition. Here, the required pressures for KFe2S3 and KFe2Se3 to quench the magnetism are higher than for BaFe2S3. Further experiments could confirm the predicted first-order nature of the transition in BaFe2S3 and KFe2S3, as well as the possible metallic/superconductivity state in other 123-type iron chalcogenides under high pressure.« less

  15. An extended Hückel study of the electronic properties of III-V compounds and their alloys

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ingrid A.; Ribeiro, Fabio J.; Martins, A. S.

    2014-05-01

    In this work, we performed tight binding calculations of the electronic structure of III-V semiconductors compounds and their alloys based on the Extended Hückel Theory (EHT). In particular, this paper is focused on the dependency between band gap and the applied pressure and also the alloy composition.

  16. Transferable tight binding model for strained group IV and III-V heterostructures

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.

  17. Thin-Film III V Photodetectors Integrated on Silicon-on-Insulator Photonic ICs

    NASA Astrophysics Data System (ADS)

    Brouckaert, Joost; Roelkens, Gunther; van Thourhout, Dries; Baets, Roel

    2007-04-01

    We critically assess recent progress in the integration of near-infrared photodetectors onto nanophotonic silicon-on-insulator (SOI) waveguide circuits. Integration of thin-film InGaAs photodetectors is studied in detail. This method consists of bonding unprocessed III V dies onto the SOI substrate using an intermediate adhesive layer. Both benzocyclobutene and spin-on glass are studied and compared as bonding agents. After the removal of the III V substrate, the thin-film detectors are fabricated using wafer-scale-compatible processes and lithographically aligned to the underlying SOI waveguides. The process is compatible with the fabrication of InP/InGaAsP laser diodes on SOI. A new design of an evanescently coupled metal semiconductor metal detector is proposed, proving the ability to obtain compact and highly efficient integrated InGaAs photodetectors.

  18. Effect of Ge autodoping during III-V MOVPE growth on Ge substrates

    NASA Astrophysics Data System (ADS)

    Barrutia, Laura; Barrigón, Enrique; García, Iván; Rey-Stolle, Ignacio; Algora, Carlos

    2017-10-01

    During the MOVPE growth of III-V layers on Ge substrates, Ge atoms can be evaporated or etched from the back of the wafer and reach the growth surface, becoming incorporated into the epilayers. This is the so-called Ge autodoping effect, which we have studied through a set of growth experiments of GaInP and Ga(In)As layers lattice matched to Ge substrates, which have been characterized by Secondary Ion Mass Spectroscopy. The role of V/III ratio and growth rate on Ge autodoping has been studied and a MOVPE reactor pre-conditioning prior to the epitaxial growth of III-V semiconductor layers that mitigates this Ge autodoping has been identified. In addition, the use of 2-in. versus 4-in. Ge substrates has been compared and the use of a Si3N4 backside coating for the Ge substrates has been evaluated.

  19. Controlled formation of epitaxial III-V nanowires for device applications

    NASA Astrophysics Data System (ADS)

    Martensson, Thomas

    2007-03-01

    For the realization of devices with dimensions on the 10 nm scale, there is today a great interest in the possible use of self-assembly as a tool. In this talk will be described the state-of-the-art in growth of epitaxially nucleated, vertically standing semiconductor nanowires made from III-V semiconductors, with high level of control of dimensions, position and structural properties. Such wires hold great promise for use in future electronics and photonics applications. Three key aspects will be specifically addressed, namely: (1) The combination of top-down and bottom-up processes in lithographically aided formation of nanowires. A concern from industry is that bottom up techniques should suffer from ``fundamental placement problem[s], i.e. there is no practical and reliable way to precisely align and position them.'' (Chau R., et al. Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications. (2005)). One way to resolve this issue is lithography where individual nanowire site control with high precision can be achieved. Electron beam lithography has the advantage of being a flexible high-resolution method, whereas nanoimprint lithography offers great opportunities for up-scaling and high-throughput processing. (2) The successful growth of III-V nanowires on silicon, including designed heterostructures. The special nanowire geometry with tens of nanometer radius and very small nanowire / substrate interface, enables monolithic integration of high-performance III-V materials on Silicon substrates. As an example, GaAsP heterostructure nanowires for photonic applications are discussed. Also the formation of InAs nanowires for high-speed and low-power-electronics directly on Si will be described. In the latter process, the use of foreign metal particles for wire growth is completely avoided, greatly reducing compatibility concerns between CMOS and nanowire technology. (3) Nanowire devices, such as field

  20. Interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates

    NASA Astrophysics Data System (ADS)

    He, Gang; Chen, Xiaoshuang; Sun, Zhaoqi

    2013-03-01

    Recently, III-V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III-V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low interface trap densities. Due to their excellent thermal stability and relatively high dielectric constants, Hf-based high-k gate dielectrics have been recently highlighted as the most promising high-k dielectrics for III-V-based devices. This paper provides an overview of interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without Fermi level pinning, surface passivation and interface state, and integration of novel device structure with Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices.

  1. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  2. Progress Towards III-V Photovoltaics on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    McNatt, Jeremiah S.; Pal, AnnaMaria T.; Clark, Eric B.; Sayir, Ali; Raffaelle, Ryne P.; Bailey, Christopher G.; Hubbard, Seth M.; Maurer, William F.; Fritzemeier, Les

    2008-01-01

    Presented here is the recent progress of the NASA Glenn Research Center OMVPE group's efforts in the development of high efficiency thin-film polycrystalline III-V photovoltaics on optimum substrates. By using bulk polycrystalline germanium (Ge) films, devices of high efficiency and low mass will be developed and incorporated onto low-cost flexible substrates. Our progress towards the integration of high efficiency polycrystalline III-V devices and recrystallized Ge films on thin metal foils is discussed.

  3. Heralded single-photon source in a III-V photonic crystal.

    PubMed

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  4. III-V quantum light source and cavity-QED on silicon.

    PubMed

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  5. 'Junction-Level' Heterogeneous Integration of III-V Materials with Si CMOS for Novel Asymmetric Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung

    Driven by Moore's law, semiconductor chips have become faster, denser and cheaper through aggressive dimension scaling. The continued scaling not only led to dramatic performance improvements in digital logic applications but also in mixed-mode and/or communication applications. Moreover, size/weight/power (SWAP) restrictions on all high-performance system components have resulted in multi-functional integration of multiple integrated circuits (ICs)/dies in 3D packages/ICs by various system-level approaches. However, these approaches still possess shortcomings and in order to truly benefit from the most advanced digital technologies, the future high-speed/high power devices for communication applications need to be fully integrated into a single CMOS chip. Due to limitations in Si device performance in high-frequency/power applications as well as expensive III-V compound semiconductor devices with low integration density, heterogeneous integration of compound semiconductor materials/devices with Si CMOS platform has emerged as a viable solution to low-cost high-performance ICs. In this study, we first discuss on channel and drain engineering approaches in the state-of-the-art multiple-gate field-effect transistor to integrate III-V compound semiconductor materials with Si CMOS for improved device performance in mixed-mode and/or communication applications. Then, growth, characterization and electrical analysis on small-area (diameter < 100nm) complete selective-area epitaxy of GaAs/GaN will be demonstrated for achieving 'dislocation-free' III-V compound semiconductor film on a Si(001) substrate. Based on a success in dislocation-free heterogeneous III-V film growth, we propose a novel ultra-scaled 'junction-level' heterogeneous integration onto mainstream Si CMOS platform. Device architecture and its key features to overcome aforementioned challenges will be given to demonstrate the potential to improve the overall system performance with diverse functionality.

  6. Manipulating Surface States of III-V Nanowires with Uniaxial Stress.

    PubMed

    Signorello, G; Sant, S; Bologna, N; Schraff, M; Drechsler, U; Schmid, H; Wirths, S; Rossell, M D; Schenk, A; Riel, H

    2017-04-10

    III-V compound semiconductors are indispensable materials for today's high-end electronic and optoelectronic devices and are being explored for next-generation transistor logic and quantum technologies. III-V surfaces and interfaces play the leading role in determining device performance, and therefore, methods to control their electronic properties have been developed. Typically, surface passivation studies demonstrated how to limit the density of surface states. Strain has been widely used to improve the electronic transport properties and optoelectronic properties of III-Vs, but the potential of this technology to modify the surface properties still remains to be explored. Here we show that uniaxial stress induces a shift in the energy of the surface states of III-V nanowires, modifying their electronic properties. We demonstrate this phenomenon by modulating the conductivity of InAs nanowires over 4 orders of magnitude with axial strain ranging between -2.5% in compression and 2.1% in tension. The band bending at the surface of the nanostructure is modified from accumulation to depletion reversibly and reproducibly. We provide evidence of this physical effect using a combination of electrical transport measurement, Raman spectroscopy, band-structure modeling, and technology computer aided design (TCAD) simulations. With this methodology, the deformation potentials for the surface states are quantified. These results reveal that strain technology can be used to shift surface states away from energy ranges in which device performance is negatively affected and represent a novel route to engineer the electronic properties of III-V devices.

  7. Band-Gap Engineering by III-V Infill in Sodalite

    NASA Astrophysics Data System (ADS)

    Trave, A.; Buda, F.; Fasolino, A.

    1996-12-01

    We study the structure of III-V clusters in sodalite by ab initio molecular dynamics (Car-Parrinello) and find strong bonding of the group III atoms to the oxygens of the cage with loss of tetrahedral order. The clusters introduce optically active states in the zeolite energy gap and turn it into a semiconductor with energy gap determined by its chemical nature rather than by quantum confinement. Within the local density approximation we find values of ~0.4 and ~1.9 eV for InAs and GaN clusters of the same size. We suggest that the growth of selected compounds in zeolite may lead to wide gap semiconductors for blue light emitting devices.

  8. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  9. III-V/Si hybrid photonic devices by direct fusion bonding

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-04-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration.

  10. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    PubMed

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-05

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion.

  11. Research progress of III-V laser bonding to Si

    NASA Astrophysics Data System (ADS)

    Bo, Ren; Yan, Hou; Yanan, Liang

    2016-12-01

    The vigorous development of silicon photonics makes a silicon-based light source essential for optoelectronics' integration. Bonding of III-V/Si hybrid laser has developed rapidly in the last ten years. In the tireless efforts of researchers, we are privileged to see these bonding methods, such as direct bonding, medium adhesive bonding and low temperature eutectic bonding. They have been developed and applied to the research and fabrication of III-V/Si hybrid lasers. Some research groups have made remarkable progress. Tanabe Katsuaki of Tokyo University successfully implemented a silicon-based InAs/GaAs quantum dot laser with direct bonding method in 2012. They have bonded the InAs/GaAs quantum dot laser to the silicon substrate and the silicon ridge waveguide, respectively. The threshold current of the device is as low as 200 A/cm2. Stevan Stanković and Sui Shaoshuai successfully produced a variety of hybrid III-V/Si laser with the method of BCB bonding, respectively. BCB has high light transmittance and it can provide high bonding strength. Researchers of Tokyo University and Peking University have realized III-V/Si hybrid lasers with metal bonding method. We describe the progress in the fabrication of III-V/Si hybrid lasers with bonding methods by various research groups in recent years. The advantages and disadvantages of these methods are presented. We also introduce the progress of the growth of III-V epitaxial layer on silicon substrate, which is also a promising method to realize silicon-based light source. I hope that readers can have a general understanding of this field from this article and we can attract more researchers to focus on the study in this field.

  12. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  13. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  14. Formation of III-V-on-insulator structures on Si by direct wafer bonding

    NASA Astrophysics Data System (ADS)

    Yokoyama, Masafumi; Iida, Ryo; Ikku, Yuki; Kim, Sanghyeon; Takagi, Hideki; Yasuda, Tetsuji; Yamada, Hisashi; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko; Takenaka, Mitsuru; Takagi, Shinichi

    2013-09-01

    We have studied the formation of III-V-compound-semiconductors-on-insulator (III-V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III-V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O2 plasma-assisted DWB process with ECR sputtered SiO2 BOX layers and a DWB process based on atomic-layer-deposition Al2O3 (ALD-Al2O3) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO2 and ALD-Al2O3 BOX layers are desorption of Ar and H2O gas, respectively. In order to suppress micro-void generation in the ECR-SiO2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al2O3 BOX layers to increase the deposition temperature of the ALD-Al2O3 BOX layers. It is also another possible solution to deposit ALD-Al2O3 BOX layers on thermally oxidized SiO2 layers, which can absorb the desorption gas from ALD-Al2O3 BOX layers.

  15. Large area III-V infrared focal planes

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Soibel, A.; Rafol, S. B.; Keo, S. A.; Mumolo, J. M.; Lee, M. C.; Liu, J. K.; Yang, B.; Liao, A.

    2011-05-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for remote sensing and imaging applications. Currently, we are working on Superlattice detectors, multi-band quantum well infrared photodetectors (QWIPs), and quantum dot infrared photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper, we will discuss the demonstration of long-wavelength 1 K × 1 K QDIP FPA, 1 K × 1K QWIP FPA, the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP FPA, and demonstration of the first mid-wave and long-wave 1K × 1K superlattice FPA. In addition, we will discuss the advantages of III-V material system in the context of large format infrared FPAs.

  16. Silicon surface preparation for III-V molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Madiomanana, K.; Bahri, M.; Rodriguez, J. B.; Largeau, L.; Cerutti, L.; Mauguin, O.; Castellano, A.; Patriarche, G.; Tournié, E.

    2015-03-01

    We report on a silicon substrate preparation for III-V molecular-beam epitaxy (MBE). It combines sequences of ex situ and in situ treatments. The ex situ process is composed of cycles of HF dip and O2 plasma treatments. Ellipsometry and atomic force microscopy performed after each step during the substrate preparation reveal surface cleaning and de-oxidation. The in situ treatment consists in flash annealing the substrate in the MBE chamber prior to epitaxial growth. GaSb-based multiple quantum well heterostructures emitting at 1.55 μm were grown by MBE on Si substrates prepared by different methods. Structural characterizations using XRD and TEM coupled with photoluminescence spectroscopy demonstrates the efficiency of our preparation process. This study thus unravels a simple and reproducible protocol to prepare the Si surface prior to III-V MBE.

  17. Calculation of the electron mobility in III-V inversion layers with high-κ dielectrics

    NASA Astrophysics Data System (ADS)

    O'Regan, T. P.; Fischetti, M. V.; Sorée, B.; Jin, S.; Magnus, W.; Meuris, M.

    2010-11-01

    We calculate the electron mobility for a metal-oxide-semiconductor system with a metallic gate, high-κ dielectric layer, and III-V substrate, including scattering with longitudinal-optical (LO) polar-phonons of the III-V substrate and with the interfacial excitations resulting from the coupling of insulator and substrate optical modes among themselves and with substrate plasmons. In treating scattering with the substrate LO-modes, multisubband dynamic screening is included and compared to the dielectric screening in the static limit and with the commonly used screening model obtained by defining an effective screening wave vector. The electron mobility components limited by substrate LO phonons and interfacial modes are calculated for In0.53Ga0.47As and GaAs substrates with SiO2 and HfO2 gate dielectrics. The mobility components limited by the LO-modes and interfacial phonons are also investigated as a function of temperature. Scattering with surface roughness, fixed interface charge, and nonpolar-phonons is also included to judge the relative impact of each scattering mechanism in the total mobility for In0.53Ga0.47As with HfO2 gate dielectric. We show that InGaAs is affected by interfacial-phonon scattering to an extent larger than Si, lowering the expected performance, but probably not enough to question the technological relevance of InGaAs.

  18. A review on III-V core-multishell nanowires: growth, properties, and applications

    NASA Astrophysics Data System (ADS)

    Royo, Miquel; De Luca, Marta; Rurali, Riccardo; Zardo, Ilaria

    2017-04-01

    This review focuses on the emerging field of core-multishell (CMS) semiconductor nanowires (NWs). In these kinds of wires, a NW grown vertically on a substrate acts as a template for the coaxial growth of two or more layers wrapped around it. Thanks to the peculiar geometry, the strain is partially released along the radial direction, thus allowing the creation of fascinating heterostructures, even based on lattice mismatched materials that would hardly grow in a planar geometry. Enabling the unique bridging of the 1D nature of NWs with the exciting properties of 2D heterostructures, these novel systems are becoming attractive for material science, as well as fundamental and applied physics. We will focus on NWs made of III-V and III-V-based alloys as they represent a model system in which present growth techniques have reached a high degree of control on the material structural properties, and many physical properties have been assessed, from both the theoretical and experimental points of view. In particular, we provide an overview on the growth methods and structural properties of CMS NWs, on the modulation doping mechanisms enabled by these heterostructures, on the effects of a magnetic field, and on the phononic and optical properties typical of CMS NWs. Moreover, we review the main technological applications based on these systems, such as optoelectronic and photovoltaic devices.

  19. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  20. Super-High Iii-V Tandem and Multijunction Cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi

    2015-10-01

    The following sections are included: * Introduction * Principles of super-high-efficiency multijunction solar cells * Epitaxial technologies for growing III-V compound cells * Monolithic vs. multi-terminal connection modes * Key issues for realising high-efficiency multijunction solar cells * High-efficiency InGaP/GaAs/Ge three-junction solar cells and their space applications * Multijunction solar cells: recent results * Future directions * Acknowledgements * References

  1. Highly Scaled High Dielectric Constant Oxides on III-V CMOS with Low Interface Trap and Low Leakage Densities

    NASA Astrophysics Data System (ADS)

    Chobpattana, Varistha

    Complementary metal-oxide-semiconductor (CMOS) transistors are being aggressively scaled, reaching the fundamental limits of silicon. Due to their much higher electron mobilities, III-V semiconductors are being considered as alternative channel materials to potentially replace Si. This requires the integration of high dielectric constant (high-k) oxides with III-V semiconductor layers, which is the most significant challenge to achieve high performance of III-V metal-oxide-semiconductor field-effect transistors (MOSFETs). Large interface trap densities, inherent to these interfaces, degrade the transistor performance. In this dissertation, we utilize in-situ atomic layer deposition (ALD) combined with surface passivation techniques to reduce the interface traps densities between high-k oxides and III-V semiconductors to obtain highly scaled, low defect density interfaces. Cycles of hydrogen and/or nitrogen plasmas and metal-organic precursors were applied directly onto n- and p type In0.53 Ga0.47As surfaces before high-k oxide ALD. The high-k oxides investigated include Al2O 3, HfO2, ZrO2, and TiO2. We examined the electrical characteristics of MOS capacitors (MOSCAPs), surface morphology of the surface, and chemical components of the interface. High quality interfaces of high-k oxide and n-type In0.53Ga0.47As with low interface trap densities (Dit) of 1012 eV-1 cm-2, low leakage current density, and high capacitance densities gate stacks (>5 muF/cm 2) were achieved by the optimized cycles of nitrogen plasma+tetrakis(dimethylamido)titanium (TDMAT) ALD surface cleaning. Using x-ray photoelectron spectroscopy, the interface region indicates that the removing As-oxides, sub-oxides, and As-As bonding are responsible for decreasing frequency dispersion in the midgap region of the n-type In0:53Ga0:47As, reducing midgap Dit, and unpinning Fermi level. The modified interface chemistry from Al2O3 to TiO2 leads to lower frequency dispersion in accumulation. The highly

  2. Macroporous Semiconductors

    PubMed Central

    Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen

    2010-01-01

    Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  3. Physics, fabrication and characterization of III-V multi-gate FETs for low power electronics

    NASA Astrophysics Data System (ADS)

    Thathachary, Arun V.

    With transistor technology close to its limits for power constrained scaling and the simultaneous emergence of mobile devices as the dominant driver for new scaling, a pathway to significant reduction in transistor operating voltage to 0.5V or lower is urgently sought. This however implies a fundamental paradigm shift away from mature Silicon technology. III-V compound semiconductors hold great promise in this regard due to their vastly superior electron transport properties making them prime candidates to replace Silicon in the n-channel transistor. Among the plethora of binary and ternary compounds available in the III-V space, InxGa1-xAs alloys have attracted significant interest due to their excellent electron mobility, ideally placed bandgap and mature growth technology. Simultaneously, electrostatic control mandates multigate transistor designs such as the FinFET at extremely scaled nodes. This dissertation describes the experimental realization of III-V FinFETs incorporating InXGa1-XAs heterostructure channels for high performance, low power logic applications. The chapters that follow present experimental demonstrations, simulations and analysis on the following aspects (a) motivation and key figures of merit driving material selection and design; (b) dielectric integration schemes for high-k metal-gate stack (HKMG) realization on InXGa 1-XAs, including surface clean and passivation techniques developed for high quality interfaces; (c) novel techniques for transport (mobility) characterization in nanoscale multi-gate FET architectures with experimental demonstration on In0.7Ga0.3As nanowires; (d) Indium composition and quantum confined channel design for InXGa 1-XAs FinFETs and (e) InAs heterostructure designs for high performance FinFETs. Each chapter also contains detailed benchmarking of results against state of the art demonstrations in Silicon and III-V material systems. The dissertation concludes by assessing the feasibility of InXGa 1-XAs Fin

  4. New III-V cell design approaches for very high efficiency

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; O'Bradovich, G.J.; Young, M.P. )

    1993-01-01

    This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

  5. New III-V cell design approaches for very high efficiency

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. )

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

  6. Short Wavelength LED Based on III-V Nitride and its Applications

    NASA Astrophysics Data System (ADS)

    Shibata, Naoki; Uemura, Toshiya; Yamaguchi, Hisao; Yasukawa, Takemasa

    The short wavelength LED (“TG Purple”) based on III-V nitride semiconductors is established in addition to blue and green ones. This short wavelength LED is realized by adjusting indium chemical content of the well layer. Light output power of “TG Purple” is high and FWHM (full width at half maximum) is narrow. “TG Purple” is applied to light source of the white LED. Combination of “TG Purple” and various phosphors can generate white light with high luminous intensity and good color rendering. “TG Purple” is also applied to light source of air-purifier. This air-purifier is being offered as standard equipment in luxury automotives and several applications of this system are widely utilized in room air conditioners and refrigerators.

  7. Fabrication of LED based on III-V nitride and its applications

    NASA Astrophysics Data System (ADS)

    Shibata, Naoki; Uemura, Toshiya; Yamaguchi, Hisao; Yasukawa, Takemasa

    2003-11-01

    Short wavelength LED (TG Purple) based on III-V nitride semiconductors is established in addition to blue and green. This short wavelength LED is realized by adjusting the indium chemical content of the well layer. Light output power of TG Purple is high and FWHM is narrow. TG Purple is applied to light sources of white LED. Combination of TG Purple and various phosphors can generate white light with high luminous intensity and good color rendering. TG Purple is also applied to light sources of air-purifiers. Air-purifiers have become standard equipments for luxury-car models. Also, several applications of this system are widely utilized in room air conditioners and refrigerators. (

  8. Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Y.; Zhang, D.; He, S.; Li, X.

    2015-06-01

    In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.

  9. Modeling of the electrical carrier transport in III-V on silicon tandem solar cell structures

    NASA Astrophysics Data System (ADS)

    Maiti, T. K.; Cheong, Dan; Yang, Jingfeng; Kleiman, R. N.

    2011-08-01

    The electrical carrier transport of a tandem cell structure was evaluated by investigating the band alignment of and carrier transport through a tunnel junction. The modeling structure of a tandem cell consists of a III-V (or II-VI) top cell layer, a Si bottom cell layer and tunnel junction layers in-between which connect the top and the bottom cells. The values of energy bandgap and electron affinity of each layer were varied to investigate their effect on the energy barrier height at the interface between Si and compound semiconductors of interest. The contour plots of barrier heights for majority and minority carriers at the hetero-interface are used as a starting point to define the successful regions for electrical carrier transport through the tunnel junctions.

  10. Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.

    PubMed

    Wang, Y; Zhang, Y; Zhang, D; He, S; Li, X

    2015-12-01

    In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.

  11. Lattice-Mismatched III-V Epilayers for High-Efficiency Photovoltaics

    SciTech Connect

    Ahrenkiel, Scott Phillip

    2013-06-30

    The project focused on development of new approaches and materials combinations to expand and improve the quality and versatility of lattice-mismatched (LMM) III-V semiconductor epilayers for use in high-efficiency multijunction photovoltaic (PV) devices. To address these goals, new capabilities for materials synthesis and characterization were established at SDSM&T that have applications in modern opto- and nano-electronics, including epitaxial crystal growth and transmission electron microscopy. Advances were made in analyzing and controlling the strain profiles and quality of compositional grades used for these technologies. In particular, quaternary compositional grades were demonstrated, and a quantitative method for characteristic X-ray analysis was developed. The project allowed enhanced collaboration between scientists at NREL and SDSM&T to address closely related research goals, including materials exchange and characterization.

  12. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  13. Radiation Effects in III-V Nanowire Devices

    DTIC Science & Technology

    2016-09-01

    radionuclides] 3.7 × 10 10 per second (s –1 ) [becquerel (Bq)] roentgen (R) [air exposure] 2.579 760 × 10 –4 coulomb per kilogram ( C kg –1 ) rad [absorbed...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-16-94 Radiation Effects in III-V...PERSON a. REPORT b. ABSTRACT c . THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18

  14. III-V Infrared Research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; hide

    2009-01-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  15. Study of the Electronic Surface State of III - V Compounds

    DTIC Science & Technology

    1976-03-15

    Critical Reviews in Solid State Sciences 5. 7:31 (1975), "Surface and interface electronic structure of GaAs and other III-V compounds ." (Invited...STUDY OF THE ELECTRONIC SURFACE STATE OF TIT - V COMPOUNDS . CO o EMI-ANNUAL TECHNICAL PROGRESS REPlll»; YpTceFI Principal Investigator Telephone...Chapter 2 «^Synchrotron Radiation Studies of Electronic Structure and Surface Chemistry of GaAs, GaSb, and InP-.j^ .... 4 I. Introduction 4 II. Core

  16. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  17. Growth and Characterization of III-V Epitaxial Films

    DTIC Science & Technology

    1991-11-01

    decomposition or pyrolisis of the various III-V constituents. Many researchers feel that the TMG and/or 𔃻I molecules and the AsH3 and/or PH3...of this data implies that the pyrolisis of the AsH3 /PH3 and the T4G/TI is a major step in the growth mechanics. Finally, it has been found that under...dominated by GaCH3 /ICZ molecules and various forms of As/P constituents as explained by the pyrolisis concept. Here the GaCH3 /InC 2 H5 and AsH/PH

  18. Growth and Characterization of III-V Epitaxial Films

    DTIC Science & Technology

    1990-01-01

    pyrolisis of the various III-V constituents. Many researchers feel that the TMG molecule and the AsH3 molecule become pyrolised as they enter and pass...while the GaAs substrate seems to act as a catalyst. Much of this data implies that the pyrolisis of the AsH3 and the TMG is a major step in the growth...molecules and various forms of As constituents as explained by the pyrolisis concept. Here the GaCH3 and AsH molecules are absorbed at the surface, then

  19. Prospects of III-V Tunnel FETs for Logic Applications

    NASA Astrophysics Data System (ADS)

    Datta, Suman

    2015-03-01

    In order to continue and maintain the pace of energy efficient transistor scaling, it is imperative to scale the supply voltage of operation concurrently. In this invited paper, we discuss a promising III-V device architecture such as III-V Heterojunction Tunnel FETs that may break the seemingly inflexible energy vs. performance limit of silicon CMOS transistors and provide high performance, low leakage and low operating voltage for future logic transistor technology. Unlike conventional MOSFETs, the Tunnel FET (TFET) architecture employs a gate modulated Zener tunnel junction at the source which controls the transistor ON and OFF states. This scheme fundamentally eliminates the high-energy tail present in the Fermi-Dirac distribution of the valence band electrons in the p + source region and allows sub-kT/q steep slope device operation near the OFF state. This allows Tunnel FETs to achieve a much higher ION -IOFF ratio over a small gate voltage swing. A major challenge in the demonstration of high performance Tunnel FET is the limited rate of tunneling across the Zener junction which results in low drive current. Our results show, for the first time, that the on-current bottleneck in Tunnel FETs can be overcome by careful bandgap engineering. This work is supported by Intel, NRI/SRC and NSF through ASSIST NERC.

  20. Final Report: Vapor Transport Deposition for Thin Film III-V Photovoltaics

    SciTech Connect

    Boettcher, Shannon; Greenaway, Ann; Boucher, Jason; Aloni, Shaul

    2016-02-10

    Silicon, the dominant photovoltaic (PV) technology, is reaching its fundamental performance limits as a single absorber/junction technology. Higher efficiency devices are needed to reduce cost further because the balance of systems account for about two-thirds of the overall cost of the solar electricity. III-V semiconductors such as GaAs are used to make the highest-efficiency photovoltaic devices, but the costs of manufacture are much too high for non-concentrated terrestrial applications. The cost of III-V’s is driven by two factors: (1) metal-organic chemical vapor deposition (MOCVD), the dominant growth technology, employs expensive, toxic and pyrophoric gas-phase precursors, and (2) the growth substrates conventionally required for high-performance devices are monocrystalline III-V wafers. The primary goal of this project was to show that close-spaced vapor transport (CSVT), using water vapor as a transport agent, is a scalable deposition technology for growing low-cost epitaxial III-V photovoltaic devices. The secondary goal was to integrate those devices on Si substrates for high-efficiency tandem applications using interface nanopatterning to address the lattice mismatch. In the first task, we developed a CSVT process that used only safe solid-source powder precursors to grow epitaxial GaAs with controlled n and p doping and mobilities/lifetimes similar to that obtainable via MOCVD. Using photoelectrochemical characterization, we showed that the best material had near unity internal quantum efficiency for carrier collection and minority carrier diffusions lengths in of ~ 8 μm, suitable for PV devices with >25% efficiency. In the second task we developed the first pn junction photovoltaics using CSVT and showed unpassivated structures with open circuit photovoltages > 915 mV and internal quantum efficiencies >0.9. We also characterized morphological and electrical defects and identified routes to reduce those defects. In task three we grew epitaxial

  1. Predicting the Direct to Indirect Transition in III-V Alloys

    NASA Astrophysics Data System (ADS)

    Nicklas, Jeremy; Wilkins, John

    2011-03-01

    The screened hybrid functional, HSE, used in density functional theory (DFT) has been gaining traction recently for its predictive powers of the band structure in bulk semiconductors. It is natural to assume that these accurate results would carry over to alloy semiconductors, but little work has been done to confirm this. We recently investigated the compositional dependence on the electronic band structure for a range of III-V semiconducting alloys (AlGaAs, InAlAs, AlInP, InGaP, and GaAsP). These alloys have a critical composition where the band gap crosses over from a direct band gap (having optoelectronic uses) to an indirect band gap (window layers in solar cells). A direct comparison of this critical composition is made between HSE and the standard density functional, PBE, revealing crossover compositions within 12% atomic composition when compared to experiment while PBE overestimates by as much as 39% atomic composition. Such results give merit that HSE is a reliable functional for tuning the electronic properties of semiconducting alloys.

  2. Toward a III-V Multijunction Space Cell Technology on Si

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.

    2007-01-01

    High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red

  3. Growth of III-V nitride materials by MOCVD for device applications

    NASA Astrophysics Data System (ADS)

    Eiting, Christopher James

    This dissertation describes an investigation of the growth of gallium nitride (GaN) and aluminum gallium nitride (AlxGa1-x N) semiconductor materials by metalorganic chemical vapor deposition (MOCVD) for heterojunction field-effect transistor (HFET) and photodetector device applications. In Chapter I, the III-V nitride material system is discussed, and the current status of growth and device research in this material system is reviewed. Chapter 2 presents a detailed discussion of two important tensor properties of the wurtzite III-V nitrides: elasticity and piezoelectricity. In this discussion, a series of equations are developed that are used throughout this work to calculate properties such as strain, composition, and piezoelectric charge. In Chapter 3, the characterization techniques used to gather data for this dissertation are described. Particular attention is given to x-ray diffraction because of the usefulness and versatility of this technique. Chapter 4 is a description of the MOCVD reactor used to grow all of the films in this work. Chapter 5 presents a complete discussion of the growth and doping of GaN epitaxial layers. This chapter is divided into five sections: buffer layer optimization, GaN:ud growth, GaN:Si growth, Si-implantation of GaN, and GaN:Mg growth. In Chapter 6, the focus shifts to AlGaN epitaxial growth. The first part of the chapter is devoted to the growth and doping of AlGaN layers, while the second part deals with the characteristics of AlGaN/GaN heterostructures. Chapter 7 displays some of the device data from HFETs and photodetectors fabricated from the material described in Chapter 5 and Chapter 6. Finally, this dissertation concludes with Chapter 8, a summary of results and a discussion of potential research for the future.

  4. III-V-on-silicon multi-frequency lasers.

    PubMed

    Keyvaninia, S; Verstuyft, S; Pathak, S; Lelarge, F; Duan, G-H; Bordel, D; Fedeli, J-M; De Vries, T; Smalbrugge, B; Geluk, E J; Bolk, J; Smit, M; Roelkens, G; Van Thourhout, D

    2013-06-03

    Compact multi-frequency lasers are realized by combining III-V based optical amplifiers with silicon waveguide optical demultiplexers using a heterogeneous integration process based on adhesive wafer bonding. Both devices using arrayed waveguide grating routers as well as devices using ring resonators as the demultiplexer showed lasing with threshold currents between 30 and 40 mA and output powers in the order of a few mW. Laser operation up to 60°C is demonstrated. The small bending radius allowable for the silicon waveguides results in a short cavity length, ensuring stable lasing in a single longitudinal mode, even with relaxed values for the intra-cavity filter bandwidths.

  5. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2016-07-12

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  6. III-V Compound Detectors for CO2 DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2005-01-01

    Profiling of atmospheric carbon dioxide (CO2) is important for understanding the natural carbon cycle on Earth and its influence on global warming and climate change. Differential absorption lidar is a powerful remote sensing technique used for profiling and monitoring atmospheric constituents. Recently there has been an interest to apply this technique, at the 2 m wavelength, for investigating atmospheric CO2. This drives the need for high quality detectors at this wavelength. Although 2 m detectors are commercially available, the quest for a better detector is still on. The detector performance, regarding quantum efficiency, gain and associated noise, affects the DIAL signal-to-noise ratio and background signal, thereby influencing the instrument sensitivity and dynamic range. Detectors based on the III-V based compound materials shows a strong potential for such application. In this paper the detector requirements for a long range CO2 DIAL profiles will be discussed. These requirements were compared to newly developed III-V compound infrared detectors. The performance of ternary InGaSb pn junction devices will be presented using different substrates, as well as quaternary InGaAsSb npn structure. The performance study was based on experimental characterization of the devices dark current, spectral response, gain and noise. The final results are compared to the current state-of-the-art InGaAs technology. Npn phototransistor structure showed the best performance, regarding the internal gain and therefore the device signal-to-noise ratio. 2-micrometers detectivity as high as 3.9 x 10(exp 11) cmHz(sup 1/2)/W was obtained at a temperature of -20 C and 4 V bias voltage. This corresponds to a responsivity of 2650 A/W with about 60% quantum efficiency.

  7. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  8. Effect of III-V on insulator structure on quantum well intermixing

    NASA Astrophysics Data System (ADS)

    Takashima, Seiya; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi

    2016-04-01

    To achieve the monolithic active/passive integration on the III-V CMOS photonics platform, quantum well intermixing (QWI) on III-V on insulator (III-V-OI) is studied for fabricating multi-bandgap III-V-OI wafers. By optimizing the QWI condition for a 250-nm-thick III-V layer, which contains a five-layer InGaAsP-based multi-quantum well (MQW) with 80-nm-thick indium phosphide (InP) cladding layers, we have successfully achieved a photoluminescence (PL) peak shift of over 100 nm on the III-V-OI wafer. We have also found that the progress of QWI on the III-V-OI wafer is slower than that on the InP bulk wafer regardless of the buried oxide (BOX) thickness, bonding interface materials, and handle wafers. We have also found that the progress of QWI on the III-V-OI wafer is slower than that on the InP bulk wafer regardless of the buried oxide (BOX) thickness, bonding interface materials, and bulk support wafers on which the III-V-OI structure is formed (handle wafers). By comparing between the measured PL shift and simulated diffusions of phosphorus vacancies and interstitials during QWI, we have found that the slow QWI progress in the III-V-OI wafer is probably attributed to the enhanced recombination of vacancies and interstitials by the diffusion blocking of vacancies and interstitials at the BOX interface.

  9. Liquid phase epitaxy of binary III-V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Wutzler, Rene; Rebohle, Lars; Prucnal, Slawomir; Bregolin, Felipe L.; Hübner, Rene; Voelskow, Matthias; Helm, Manfred; Skorupa, Wolfgang

    2015-05-01

    The integration of III-V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III-V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO2/Si/SiO2 layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of the III-V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.

  10. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  11. Fullerene Molecules and Other Clusters of III-V Compounds

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; Auxier, John, II; Lucero, Melinda

    2010-03-01

    The goal of the our work is to derive geometries of fullerene-like cages and other clusters of atoms from groups III and V of the periodic table. Our previous research focused on Carbon Fullerenes and on GanAsn clusters (n = 1 thru 12). Our research group has made an original discovery about GanAsn clusters. In our work on nanotechnology to date, we used the hybrid ab initio methods of quantum chemistry to derive the different geometries for the clusters of interest. We also calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps, and IR spectra for these geometries. Of particular significance was the magic number for GaAs cluster stability that we found at n = 8. This is important because materials containing controlled III-V nanostructures provide the capability of preparing new classes of materials with enhanced optical, magnetic, chemical sensor and photo-catalytic properties. The second phase of the investigation will examine the effects of confinement on the optical properties the clusters. It will be interesting to observe novel linear as well as nonlinear optical processes in them. The third phase of the investigation will focus on the improved design of solar cells based on the optical properties of the clusters.

  12. In situ characterisation of epiready III V substrates for MOVPE

    NASA Astrophysics Data System (ADS)

    Allwood, D. A.; Grant, I. R.; Mason, N. J.; Palmer, R. A.; Walker, P. J.

    2000-12-01

    The use of the term epiready in relation to III-V substrates in MOVPE is ill defined and poorly understood. In this paper we attempt to clarify some of the issues associated with the term epiready, in particular, the thickness and distribution of native oxide on the surface of a GaAs wafer. The surface quality of a wafer is established at three stages, fresh from the packet, oxide removed, and after growth. The surface is assessed by means of atomic force microscopy on a microscopic level and laser light scattering and oxide thickness mapping on a macroscopic scale. GaAs substrates from long-term storage are also examined. It is shown that even long-term stored wafers (in excess of six years) with quite thick native oxide layers can be successfully deoxidised to give atomically flat terraces and can subsequently be used for successful homoepitaxial growth provided that atomic hydrogen (in this case, from the arsenic precursor) is used in the deoxidation stage. No difference between various manufacturers substrates has been found in respect to storage and subsequent use, nor has any difference been established between doped and undoped wafers.

  13. Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications

    NASA Astrophysics Data System (ADS)

    Anttu, Nicklas; Dagytė, Vilgailė; Zeng, Xulu; Otnes, Gaute; Borgström, Magnus

    2017-05-01

    III-V semiconductor nanowires are a platform for next-generation photovoltaics. An interesting research direction is to embed a nanowire array in a transparent polymer, either to act as a stand-alone flexible solar cell, or to be stacked on top of a conventional Si bottom cell to create a tandem structure. To optimize the tandem cell performance, high energy photons should be absorbed in the nanowires whereas low energy photons should be transmitted to and absorbed in the Si cell. Here, through optical measurements on 1.95 eV bandgap GaInP nanowire arrays embedded in a polymer membrane, we identify two mechanisms that could be detrimental for the performance of the tandem cell. First, the Au particles used in the nanowire synthesis can absorb >50% of the low-energy photons, leading to a <40% transmittance, even though the Au particles cover <15% of the surface area. The removal of the Au particles can recover the transmission of low energy photons to >80%. Second, after the removal of the Au particles, a 40% reflectance peak shows up due to resonant back-scattering of light from in-plane waveguide modes. To avoid the excitation of these optical modes in the nanowire array, we propose to limit the pitch of the nanowire array.

  14. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    SciTech Connect

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V.; Sardela, Mauro; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  15. Impact of photon recycling and luminescence coupling in III-V photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Walker, A. W.; Höhn, O.; Micha, D. N.; Wagner, L.; Helmers, H.; Bett, A. W.; Dimroth, F.

    2015-03-01

    Single junction photovoltaic devices composed of direct bandgap III-V semiconductors such as GaAs can exploit the effects of photon recycling to achieve record-high open circuit voltages. Modeling such devices yields insight into the design and material criteria required to achieve high efficiencies. For a GaAs cell to reach 28 % efficiency without a substrate, the Shockley-Read-Hall (SRH) lifetimes of the electrons and holes must be longer than 3 μs and 100 ns respectively in a 2 μm thin active region coupled to a very high reflective (>99%) rear-side mirror. The model is generalized to account for luminescence coupling in tandem devices, which yields direct insight into the top cell's non-radiative lifetimes. A heavily current mismatched GaAs/GaAs tandem device is simulated and measured experimentally as a function of concentration between 3 and 100 suns. The luminescence coupling increases from 14 % to 33 % experimentally, whereas the model requires an increasing SRH lifetime for both electrons and holes to explain these experimental results. However, intermediate absorbing GaAs layers between the two sub-cells may also increasingly contribute to the luminescence coupling as a function of concentration.

  16. Ion implantation for high performance III-V JFETS and HFETS

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-06-01

    Ion implantation has been an enabling technology for realizing many high performance electronic devices in III-V semiconductor materials. We report on advances in ion implantation processing for GaAs JFETs (joint field effect transistors), AlGaAs/GaAs HFETs (heterostructure field effect transistors), and InGaP or InAlP-barrier HFETs. The GaAs JFET has required the development of shallow p-type implants using Zn or Cd with junction depths down to 35 nm after the activation anneal. Implant activation and ionization issues for AlGaAs are reported along with those for InGaP and InAlP. A comprehensive treatment of Si-implant doping of AlGaAs is given based on donor ionization energies and conduction band density-of-states dependence on Al-composition. Si and Si+P implants in InGaP are shown to achieve higher electron concentrations than for similar implants in AlGaAs due to absence of the deep donor level. An optimized P co- implantation scheme in InGaP is shown to increase the implanted donor saturation level by 65%.

  17. Bulk crystal growth of antimonide based III-V compounds for thermophotovoltaics applications

    SciTech Connect

    Dutta, P.S.; Ostrogorsky, A.G.; Gutmann, R.J.

    1998-10-01

    In this paper, the bulk growth of crack-free GaInSb and single phase GaInAsSb alloys are presented. A new class of III-V quasi-binary [A{sub III}B{sub V}]{sub 12{minus}x}[C{sub III}D{sub V}]{sub x} semiconductor alloys has been synthesized and bulk crystals grown from the melt for the first time. The present investigation is focused on the quasi-binary alloy (GaSb){sub 1{minus}x}(InAs){sub x} (0 < x < 0.05) due to its importance for thermophotovoltaic applications. The structural properties of this melt-grown quasi-binary alloy are found to be significantly different from the conventional quaternary compound Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} with composition x = y. Synthesis and growth procedures are discussed. For the growth of ternary alloys, it was demonstrated that forced convection or mixing in the melt during directional solidification of In{sub x}Ga{sub 1{minus}x}Sb (0 < x < 0.1) significantly reduces cracks in the crystals.

  18. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  19. Gas-source molecular beam epitaxy of III V nitrides

    NASA Astrophysics Data System (ADS)

    Davis, R. F.; Paisley, M. J.; Sitar, Z.; Kester, D. J.; Ailey, K. S.; Linthicum, K.; Rowland, L. B.; Tanaka, S.; Kern, R. S.

    1997-06-01

    Amorphous, hexagonal and cubic phases of BN were grown via ion beam assisted deposition on Si(1 0 0) substrates. Gas-source molecular beam epitaxy of the III-V nitrides is reviewed. Sapphire(0 0 0 1) is the most commonly employed substrate with 6H-SiC(0 0 0 1), ZnO(1 1 1) and Si(1 1 1) also being used primarily for the growth of wurtzite GaN(0 0 0 1) in tandem with previously deposited GaN(0 0 0 1) or AlN(0 0 0 1) buffer layers. Silicon(0 0 1), GaAs(0 0 1), GaP(0 0 1) and 3C-SiC(0 0 1) have been employed for growth of cubic (zincblende) β-GaN(0 0 1). The precursor materials are evaporated metals and reactive N species produced either via ECR or RF plasma decomposition of N 2 or from ammonia. However, point defect damage from the plasma-derived species has resulted in a steady increase in the number of investigators now using ammonia. The growth temperatures for wurtzite GaN have increased from 650 ± 50°C to 800 ± 50°C to enhance the surface mobility of the reactants and, in turn, the efficiency of decomposition of ammonia and the microstructure and the growth rate of the films. Doping has been achieved primarily with Si (donor) and Mg (acceptor); the latter has been activated without post-growth annealing. Simple heterostructures, a p-n junction LED and a modulation-doped field-effect transistor have been achieved using GSMBE-grown material.

  20. Vertical III-V nanowire device integration on Si(100).

    PubMed

    Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike

    2014-01-01

    We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

  1. Investigation of proton damage in III-V semiconductors by optical spectroscopy

    SciTech Connect

    Yaccuzzi, E.; Giudici, P.; Khachadorian, S.; Strittmatter, A.; Hoffmann, A.; Suárez, S.; Reinoso, M.; Goñi, A. R.

    2016-06-21

    We studied the damage produced by 2 MeV proton radiation on epitaxially grown InGaP/GaAs structure by means of spatially resolved Raman and photoluminescence (PL) spectroscopy. The irradiation was performed parallel to the sample surface in order to determine the proton penetration range in both compounds. An increase in the intensity of longitudinal optical phonons and a decrease in the luminescence were observed. We associate these changes with the creation of defects in the damaged region, also responsible for the observed change of the carrier concentration in the GaAs layer, determined by the shift of the phonon-plasmon coupled mode frequency. From the spatially resolved profile of the PL and phonon intensities, we obtained the proton range in both materials and we compared them with stopping and range of ions in matter simulations. The comparison between the experimentally obtained proton range and simulations shows a very good agreement for GaAs but a discrepancy of 20% for InGaP. This discrepancy can be explained in terms of limitations of the model to simulate the electronic orbitals and bonding structure of the simulated compound. In order to overcome this limitation, we propose an increase in 40% in the electronic stopping power for InGaP.

  2. Group II Cubic Fluorides as Dielectrics for III-V Compound Semiconductors

    DTIC Science & Technology

    1989-09-01

    bllItY_Code Avail and/or D is t Special * -2- A. Statement of problem investigated Under ARO contract number DAAL03-86-K-0059, we have investigated the...interfaces with a low density of interface states; 3. the vapor pressures of CaF2 or SrF 2 are very low, and their evaporation is compatible with standard...and GaAs makes these systems potential candi- dates for wave guiding and other optoelectronic applications; 6. fluorides decom- pose (loss of F) under

  3. Theoretical Study of Defect Signatures in III-V and II-VI Semiconductors

    DTIC Science & Technology

    2006-03-01

    sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden...interstitial ( GaI ) complexes. c) We have investigated and identified two important mechanisms that deactivate nitrogen doped ZnO and turns them into...measurements found ODMR lines that correspond to Gai but has much weaker Fermi contact values. We believed that the observed FC -11- came from a

  4. Nanometer-Scale Compositional Structure in III-V Semiconductor Heterostructures Characterized by Scanning Tunneling Microscopy

    SciTech Connect

    Allerman, A.A.; Bi, W.G.; Biefeld, R.M.; Tu, C.W.; Yu, E.T.; Zuo, S.L.

    1998-11-10

    Nanometer-scale compositional structure in InAsxP1.InNYAsxPl.x-Y/InP, grown by gas-source molecular-beam epitaxy and in InAsl-xPJkAsl$b#InAs heterostructures heterostructures grown by metal-organic chemical vapor deposition has been characterized using cross-sectional scanning tunneling microscopy. InAsxP1-x alloy layers are found to contain As-rich and P-rich clusters with boundaries formed preferentially within (T 11) and (111) crystal planes. Similar compositional structure is observed within InNYAsxP1-x-Y alloy layers. Imaging of InAsl-xp@Asl#bY superlattices reveals nanometer-scale clustering within both the hAsI-.p and InAsl$bY alloy layers, with preferential alignment of compositional features in the direction. Instances are observed of compositional structure correlated across a heterojunction interface, with regions whose composition corresponds to a smaller unstrained lattice, constant relative to the surrounding alloy material appearing to propagate across the interface.

  5. Spin relaxation of Mn + h complexes in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Sliwa, Cezary

    2010-03-01

    Splitting between heavy and light hole levels is known to results in long spin relaxation times of holes confined in compressively strained InAs quantum dots [1]. We show theoretically that T1 can be elongated by orders of magnitudes if the hole resides on a Mn acceptor, as the p-d exchange interaction introduces a magnetic anisotropy barrier for spin relaxation. In order to compare the magnitudes of thermally activated over-barrier spin relaxation with a competing non-stationary quantum tunnelling at level anticrossings we evaluate also the expected magnitude of the ground state splitting by various intrinsic and extrinsic effects, including random in-plane strains. The relevance of our results for optical [2] and transport studies [3] of Mn-containing InAs quantum dots and quantum wells, respectively is examined and shown to elucidate the origin of the observed anisotropies and hystereses. [4pt] [1] D. Heiss et al., Phys. Rev. B 76, 241306(R) (2007). [0pt] [2] O Krebs et al., Phys. Rev. B 80, 165315 (2009).[0pt] [3] U. Wurstbauer et al., J. Crystal Growth 311, 2160 (2009); Phys. Rev. B 79, 155444 (2009); Phys. E [doi:10.1016/j.physe.2009.11.012].

  6. Calculation of strain compensation thickness for III-V semiconductor quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Polly, S. J.; Bailey, C. G.; Grede, A. J.; Forbes, D. V.; Hubbard, S. M.

    2016-11-01

    Models based on continuum elasticity theory are discussed to calculate the necessary thickness of a strain compensation (SC) layer for a superlattice (SL) of strained quantum wells (QW) or quantum dots (QD). These models are then expanded to cover material systems (substrates, QW or QD, and SC) composed of AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, or InSb, as well as the ternary, quaternary, and higher order material alloys possible in the Al/Ga/In/P/As/Sb systems. SC thickness calculation methods were compared against dynamical scattering simulations and experimental X-ray diffraction measurements of the InAs/GaP/GaAs QD/SC/Substrate superlattices of varying SC thickness. Based on the reduced (but not eliminated) strain present, a further modified strain compensation thickness is calculated to maximize the number of SL repeat units before the onset of misfit dislocations is also calculated. These models have been assembled into a free application on nanoHUB for use by the community.

  7. Theoretical Studies of High Field Transport in III-V Semiconductors.

    DTIC Science & Technology

    1980-09-01

    AD-A123 947 THEORETICAL STUDIES OF HIGH FIELD TRANSPORT IN Ill-V- 1/2 SENXCONDUCTORS(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB H SHICHIJO...CATALOG NUMBER 4. TITLE (and Subtitleo S. TYPE Of REPORT & PERIOD COVERED THEORETICAL STUDIES OF HIGH FIELD TRANSPORT Technical Report IN IllI-V...Continue on reverse aide It necessary and identitfy by block number) High field transport , 3-5 semicopductors, Monte Carlo simulation 20. ABSTRACT

  8. The Surface Structure, Scattering Losses and Schottky Barrier Model of III-V Compound Semiconductors.

    DTIC Science & Technology

    1982-12-21

    complete equation is reduced to 20 (-/moZZ /IR-o +V /r)+Zf (rs) s j-1 sj The strong resemblance of Eq. (2.12) to a simple one- particle Schrodinger ...and the physical origin of the LEED patterns are first described and then the physical model for a one-electron schrodinger equation is constructed from...in detail, so it will not be discussed. The dynamical formulation constructed from a one-electron Schrodinger equation will be developed. As the

  9. Nucleation, Growth, and Strain Relaxation of Lattice-Mismatched III-V Semiconductor Epitaxial Layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111) B GaAs substrates. The InAs epilayer / GaAs substrate combination has been chosen because the lattice-mismatch is severe (approx. 7.20%), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites Instead of the more common In(x)Ga(1-x)As alloy, we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters -- susceptor temperature, TMIn flux, and AsH3 flux -- have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approx. 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer / substrate interface.

  10. Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.

    1992-01-01

    An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.

  11. Etching Chemistry of III-V Semiconductors and the Development of Surface Roughness

    DTIC Science & Technology

    1998-02-13

    Photoelectron Spectroscopy Study of the Reaction of XeF2 with GaAs", J. Vac. Sei. Technol. A 13, 1709- 1713 (1995). 3. P.R. Varekamp, M.C. Häkansson, J. Kanski ...InSb; I. Chemical interaction with the substrate", Phys. Rev. B 54, 2101- 2113 (1996). 4. P.R. Varekamp, M.C. Häkansson, J. Kanski , M. Björkqvist, M...Ordering of the iodine overlayer", Phys. Rev. B 54, 2114-2120(1996). 5. P.R. Varekamp, M.C. Häkansson, J. Kanski , B.J.Kowalski, L.Ö. Olsson, L. liver

  12. Study of non-linear photoemission effects in III-V semiconductors

    SciTech Connect

    Tang, H.; Alley, R.K.; Aoyagi, H.

    1993-10-01

    Our experience at SLAC with photoemission-based polarized electron sources has shown that charge limit is an important phenomenon that may significantly limit the performance of a photocathode for applications requiring high intensity electron beams. In the process of developing high performance photocathodes for the ongoing and future SLC high energy physics programs, we have studied the various aspects of the charge limit phenomenon. We find that the charge limit effect arises as a result of non-linear response of a photocathode to high intensity light illumination. The size of the charge limit not only depends on the quantum efficiency of the cathode but also depends critically on the extraction electric field. In addition, we report the observation of charge oversaturation when the intensity of the incident light becomes too large.

  13. Absolute pressure derivatives of deep level defects in III-V semiconductors

    SciTech Connect

    Nolte, D.D.; Walukiewicz, W.; Haller, E.E.

    1987-11-01

    Based on transition metal reference levels, we present absolute pressure derivatives for band-edges in GaAs and InP and defects in GaAs. The defect deformation potentials are directly related to the electron-lattice coupling which drives lattice relaxation around the defects. We find an exceedingly large inward lattice relaxation of the EL2 defect in GaAs upon electron emission. 12 refs., 1 fig.

  14. Electronic Properties of Semimetal-Semiconductor (V/III-V) Heterostructures and Devices

    DTIC Science & Technology

    2007-11-02

    structures exhibiting negative differential resistances and Sb submicron loops displaying Aharonov - Bohm oscil- lations. 14. SUBJECT TERMS 17...resonant tunneling structures exhibiting negative differential resistances and Sb submicron loops displaying Aharonov - Bohm oscillations. B...structures were fabricated using ion beam milling techniques. Aharonov - Bohm effects were studied in a l|i.m diameter Sb loop. Variation of the sample

  15. Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Sinclair, Michael B.; Saravi, Sina; Keeler, Gordon A.; Yang, Yuanmu; Reno, John; Peake, Gregory M.; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; Brener, Igal

    2016-09-01

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently, allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using Gallium Arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance we measure an absolute nonlinear conversion efficiency of ~2X10^(-5) with ~3.4 GW/cm2 pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.

  16. Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces.

    PubMed

    Liu, Sheng; Sinclair, Michael B; Saravi, Sina; Keeler, Gordon A; Yang, Yuanmu; Reno, John; Peake, Gregory M; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; Brener, Igal

    2016-09-14

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 10(4) relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10(-5) with ∼3.4 GW/cm(2) pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.

  17. Implantation enhanced interdiffusion of III/V semiconductor quantum well heterostructures

    NASA Astrophysics Data System (ADS)

    Piva, Paul Garrett

    2002-01-01

    The techniques of continuous-wave photoluminescence, cross-sectional scanning tunneling microscopy (XSTM), X-ray diffraction (XRD), and grazing incidence X-ray analysis (GIXA) are applied to the problem of determining the compositional profiles of as-grown, and intermixed InGaAs/InP quantum wells (QWs). Using the technique of ion implantation enhanced QW intermixing (QWII), the relative range of the implanted ions to the QWs is shown to modify the extent of interdiffusion occurring on each of the group III and group V sublattices. If ions are implanted through the QWs, XSTM and XRD measurements reveal that interdiffusion proceeds equally on both sublattices, while GIXA measurements indicate the compositional profiles to be non-Fickian and compatible with uniformly broadened square well distributions on both sublattices. Following shallow ion implants (where implanted ions are deposited between the QWs and the sample surface) XSTM and XRD measurements indicate preferential group V interdiffusion. Simulations of the superlattice envelope in the XRD rocking curves, and of the topographical profiles of the elastically relaxed (1--10) cleave surfaces obtained by XSTM, show the compositional profiles to be non-Fickian and compatible with a square well model for the broadened compositional profiles. In an application, QWII is used to integrate 980 nm InGaAs/GaAs/AlGaAs laser diodes with bandgap shifted extended cavities. Photo-reflectance thermography measurements indicate that these extended cavity structures are effective in reducing laser facet heating in spite of the generation of non-radiative centres in the QWs by 'through the well' arsenic implants. The QWII response of alternative "Al-free" InGaP based laser structures is examined, and found to be compatible with shallow implant QWII. As QWII processes can be initiated in these structures without generating displacement damage directly in the QWs during irradiation, this material system promises to extend the range of QWII applicability to include the bandgap shifting of active QW devices in GaAs based structures.

  18. Multi-color Long Wavelength Infrared Detectors Based On III-V Semiconductors

    DTIC Science & Technology

    2010-07-30

    reduced Voc and Isc problem in current InAs quantum dots based intermediate band solar cells. 2 3 4 5 6 0.000 0.005 0.010 0.015 0.020 0.025 0.030...broad- band photodetector based on interband and intersubband transitions in InAs quantum dots embedded in graded InGaAs quantum wells,” B. S. Passmore...system for the practical implementation of intermediate band (IB) solar cells, where the IB could arise from the energy levels of the electronic

  19. Diffusion length measurement in bulk and epitaxially grown III-V semiconductors using charge collection microscopy

    NASA Technical Reports Server (NTRS)

    Leon, R. P.

    1987-01-01

    Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic technique used was charge collection microscopy, also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line-scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended-generation and point-generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.

  20. The coupling of thermochemistry and phase diagrams for group III-V semiconductor systems

    NASA Astrophysics Data System (ADS)

    Anderson, T. J.

    Progress in the first year of the renewal and fourth year of the program has primarily occurred in the experimental area and subsequent assessment of binary and ternary systems. Thermodynamic studies of the Al-In and Al-Sb systems have been carried out using solid electrolyte galvanic cells. Using the sensitive coulometric titration technique, aluminum activities were obtained for both systems. In addition, liquidus data were obtained for the Al-Sb system, and the Gibbs energy of formation of AlSb was determined. A detailed description of the work for the Al-In system is given in Appendix 1 while that for the Al-Sb system in Appendix 2. For the Al-Sb system, the coulometric titration technique was also used to investigate, for the first time, the very narrow region of homogeneity in the Al-Sb compound. The experimental data obtained in this study were used along with the available literature data in the critical assessment and calculation of the Al-In and Al-Sb systems.

  1. Structural and magnetic properties of nanoclusters formed in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, Krystyna; Wolska, Anna; Klepka, Marcin T.

    2016-05-01

    Studies of X-ray magnetic circular dichroism (XMCD) were performed for a set of GaMnAs films with different Mn concentrations priory and after high temperature annealing (500 and 600 oC). After thermal treatment, GaMnAs samples with zinc blende structure and MnAs hexagonal nano-clusters were formed. In most of the samples, both types of clusters were detected by EXAFS studies. Dependence of the orbital and the spin moments on magnetic field were calculated from XMCD data by applying the sum rule. It was shown that both moments were much larger for MnAs nano-clusters. When these inclusions are formed even in a small amount, they dominate the XMCD signal. Interestingly, in some of samples the zinc blende GaMnAs nano-clusters were observed at a surface while in the bulk of hexagonal MnAs. Therefore, the location of magnetic ions in the host matrix is crucial for their magnetic properties. This unique information can be provided by XAS and XMCD.

  2. Advanced crystal growth techniques with III-V boron compound semiconductors

    NASA Astrophysics Data System (ADS)

    Whiteley, Clinton E.

    2011-12-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron and arsenic in a sealed quartz ampoule. B12As2 crystals of 8--10 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48--72 hours and slowly cooled (3°C/hr). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), Raman spectroscopy, and defect selective etching confirmed that the crystals had the expected rhombohedral structure and a low density of defects (5x107 cm-2). The concentrations of residual impurities (nickel, carbon, etc) were found to be relatively high (1019 cm-3 for carbon) as measured by secondary ion mass spectrometry (SIMS) and elemental analysis by energy dispersive x-ray spectroscopy (EDS). The boron arsenide crystals were found to have favorable electrical properties (μ = 24.5 cm2 / Vs), but no interaction between a prototype detector and an alpha particle bombardment was observed. Thus, the flux growth method is viable for growing large B12As2 crystals, but the impurity concentrations remain a problem.

  3. Low Temperature Photoluminescence Study of Holmium and Thulium Implanted into III-V Semiconductors and Silicon.

    DTIC Science & Technology

    1990-12-01

    4f 8 7 F6 66 Dy 4f9 6 His/2 67 Ho 4f10 I8 68 Er 4f11 4 Il 5 / 2 69 Tm 4f’ 2 3 H6 70 Yb 4f’ 3 2 F7 /z 71 Lu 4f 1 4 ’so (after Pappalardo , 1978:176...I I i I Appendix I The Hamiltonian which describes a RE ion in a weak 3 crystal field is given by ( Pappalardo , 1978:187): i H = Ho - Hee + Hso + Hcf...York: Dover, 1971. Pappalardo , R. G. "Spectroscopy and Luminescence of Lanthanides and Actinides," Luminescence of Inorganic Solids edited by B

  4. Theoretical Crystal-Field Calculations for Rare-Earth Ions in III-V semiconductor Compounds

    DTIC Science & Technology

    1991-10-01

    has recently generated a great deal of interest, motivated primarily by potential applications in optoelectronic devices. Many groups have reported...values again correspond to ionic charges larger than ±3. In general , it is more difficult to fit data measured in emission than in absorption, and it is...Washougal, WA 98671 Attn SLCHD-NW-TN, Chief Attn SLCHD-NW-TS, Chief Departmento Quimica Fundamental Attn SLCHD-PO, Chief Universidade Federal de

  5. Optical Properties of III-V Semiconductor Nanostructures and Quantum Wells

    DTIC Science & Technology

    2006-12-31

    Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Publici,, ting u P for this collection of information is estimated to average 1 hour per...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 31-12...wells. 5b. GRANT NUMBER FA9550-04- 1 -0002 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Omar Manasreh 59. TASK NUMBER 5f. WORK UNIT NUMBER

  6. Fully subthreshold current-based characterization of interface traps and surface potential in III-V-on-insulator MOSFETs

    NASA Astrophysics Data System (ADS)

    Kim, Seong Kwang; Lee, Jungmin; Geum, Dae-Myeong; Park, Min-Su; Choi, Won Jun; Choi, Sung-Jin; Kim, Dae Hwan; Kim, Sanghyeon; Kim, Dong Myong

    2016-08-01

    We report characterization of the interface trap distribution (Dit(E)) over the bandgap in III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) on insulator. Based only on the experimental subthreshold current data and differential coupling factor, we simultaneously obtained Dit(E) and a nonlinear mapping of the gate bias (VGS) to the trap level (Et) via the effective surface potential (ψS,eff). The proposed technique allows direct extraction of the interface traps at the In0.53Ga0.47As-on insulator (-OI) MOSFETs only from the experimental subthreshold current data. Applying the technique to the In0.53Ga0.47As channel III-V-OI MOSFETs with the gate width/length W/L = 100/50, 100/25, and 100/10 μm/μm, we obtained Dit(E) ≅ 1011-1012 eV-1 cm-2 over the bandgap without the dimension dependence.

  7. Characterization of III-V materials by optical interferometry

    NASA Astrophysics Data System (ADS)

    Montgomery, P. C.; Vabre, P.; Montaner, D.; Fillard, J. P.

    1993-09-01

    Digital interference microscopy is a new measuring technique with submicron horizontal resolution and nanometric vertical resolution, that can be used for the three-dimensional analysis of surface defects and device features in many microelectronics applications on bulk materials and epitaxial layers. In this paper we show how certain defects can be analysed on III-V materials and devices using two different interferometric techniques. The choice of the technique depends on the height and the slope of the surface features to be measured. We show that small defects less than λ/2 in height, or surfaces with shallow continuous slopes upto one or two microns high are best profiled with the phase stepping technique (PSM) because of the high vertical resolution of 1 nm and the higher speed and precision. This is illustrated by studies of the surface polish of InP wafers, defects after chemical etching of tin doped InP, defects on an epitaxial layer of GaAs on InP and quantum dot structures on GaAs. For measuring devices which contain mesas and grooves with step heights greater than λ/2, the peak fringe scanning (PFSM) method is the better choice. The vertical resolution is slightly less (4 nm), but the vertical range is higher (upto 15 μm) as demonstrated with the measurement of an etched groove in a laser/detector device on a quaternary layer on InP, and a MESFET device on GaAs. Compared with electron microscopy and the new near field scanning techniques, digital interference microscopy has the advantages of ease of use and speed of analysis and being able to resolve certain problems that are difficult or not possible by other means, such as profiling deep narrow etched grooves, or measuring the relief of a surface hidden under a transparent layer. The main disadvantages are that the horizontal resolution is limited to the resolving power of the objective and that errors due to variations in the optical properties of the sample need to be taken into account. La

  8. Delta-doping of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schubert, E. F.

    2005-08-01

    Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.

  9. Time-dependent density functional theory calculations for the excitation spectra of III-V ternary alloys

    NASA Astrophysics Data System (ADS)

    Ning, Zhenhua; Liang, Ching-Tarng; Chang, Yia-Chung

    2017-08-01

    We adopted the time-dependent density functional theory (TDDFT) within the linear augmented Slater-type orbitals basis and the cluster averaging method to compute the excitation spectra of III-V ternary alloys with arbitrary concentration x . The TDDFT was carried out with the use of adiabatic meta-generalized gradient approximation (mGGA), which contains the 1 /q2 singularity in the dynamical exchange-correlation kernel [fXC,00(q ) ] as q →0 . We found that, by using wave functions obtained in local density approximation while using mGGA to compute self-energy correction to the band structures, we can get good overall agreement between theoretical results and experimental data for the excitation spectra. Thus, our paper provides some insight into the theoretical calculation of optical spectra of semiconductor alloys.

  10. Transforming common III-V/II-VI insulating building blocks into topological heterostructure via the intrinsic electric polarization

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang

    Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).

  11. Scalable, epitaxy-free fabrication of super-absorbing sparse III-V nanowire arrays for photovoltaic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hui; Fountaine, Katherine T.; Bukowsky, Colton R.; Atwater, Harry A.

    2016-09-01

    III-V compound semiconductor nanowire arrays are promising candidates for photovoltaics applications due to their high volumetric absorption. Uniform nanowire arrays exhibit high absorption at certain wavelengths due to strong coupling into lossy waveguide modes. Previously, simulations predicted near-unity, broadband absorption in sparse semiconductor nanowire arrays (<5% fill fraction) with multi-radii and tapered nanowire array designs [1]. Herein, we experimentally demonstrate near-unity broadband absorption in InP nanowire arrays via a scalable, epitaxy-free fabrication method, using nanoimprint lithography and ICP-RIE to define nanowire arrays in bulk InP wafers. In addition to mask pattern design (wire radius and spacing) and etch chemistry (wire taper), appropriate selection of a hard mask for the InP etch is critical to precise dimension control and reproducibility. Polymer-embedded wires are removed from the bulk InP substrate by a mechanical method that facilitates extensive reuse of a single bulk InP wafer to synthesize many polymer-embedded nanowire array thin films. Arrays containing multiple nanowire radii and tapered nanowires were successfully fabricated. For both designs, the polymer-embedded arrays achieved 90% broadband absorption (λ=400-900 nm) in less than 100 nm planar equivalence of InP. The addition of a silver back reflector increased this broadband absorption to 95%. The repeatable process of imprinting, etching and peeling to obtain many nanowire arrays from one single wafer represents an economical manufacturing route for high efficiency III-V photovoltaics. [1] K.T. Fountaine, C.G. Kendall, Harry A. Atwater, "Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation," Opt. Exp. (2014).

  12. Imaging electron emission from diamond and III V nitride surfaces with photo-electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Nemanich, R. J.; English, S. L.; Hartman, J. D.; Sowers, A. T.; Ward, B. L.; Ade, H.; Davis, R. F.

    1999-05-01

    Wide bandgap semiconductors such as diamond and the III-V nitrides (GaN, AlN, and AlGaN alloys) exhibit small or even negative electron affinities. Results have shown that different surface treatments will modify the electron affinity of diamond to cause a positive or negative electron affinity (NEA). This study describes the characterization of these surfaces with photo-electron emission microscopy (PEEM). The PEEM technique is unique in that it combines aspects of UV photoemission and field emission. In this study, PEEM images are obtained with either a traditional Hg lamp or with tunable UV excitation from a free electron laser. The UV-free electron laser at Duke University provides tunable emission from 3.5 to greater than 7 eV. PEEM images of boron or nitrogen (N)-doped diamond are similar to SEM of the same surface indicating relatively uniform emission. For the N-doped samples, PEEM images were obtained for different photon energies ranging from 5.0 to 6.0 eV. In these experiments, the hydrogen terminated surface showed more intense PEEM images at lower photon energy indicating a lower photothreshold than annealed surfaces which are presumed to be adsorbate free. For the nitrides, the emission properties of an array of GaN emitter structures is imaged. Emission is observed from the peaks, and relatively uniform emission is observed from the array. The field at the sample surface is approximately 10 V/μm which is sufficient to obtain an image without UV light. This process is termed field emission electron microscopy (FEEM).

  13. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  14. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators.

    PubMed

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main 'symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted 'electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted 'nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and 'continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  15. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  16. Giant spin Seebeck effect in a non-magnetic material.

    PubMed

    Jaworski, C M; Myers, R C; Johnston-Halperin, E; Heremans, J P

    2012-07-11

    The spin Seebeck effect is observed when a thermal gradient applied to a spin-polarized material leads to a spatially varying transverse spin current in an adjacent non-spin-polarized material, where it gets converted into a measurable voltage. It has been previously observed with a magnitude of microvolts per kelvin in magnetically ordered materials, ferromagnetic metals, semiconductors and insulators. Here we describe a signal in a non-magnetic semiconductor (InSb) that has the hallmarks of being produced by the spin Seebeck effect, but is three orders of magnitude larger (millivolts per kelvin). We refer to the phenomenon that produces it as the giant spin Seebeck effect. Quantizing magnetic fields spin-polarize conduction electrons in semiconductors by means of Zeeman splitting, which spin-orbit coupling amplifies by a factor of ∼25 in InSb. We propose that the giant spin Seebeck effect is mediated by phonon-electron drag, which changes the electrons' momentum and directly modifies the spin-splitting energy through spin-orbit interactions. Owing to the simultaneously strong phonon-electron drag and spin-orbit coupling in InSb, the magnitude of the giant spin Seebeck voltage is comparable to the largest known classical thermopower values.

  17. Effects of Humidity on Non-Hermetically Packaged III-V Structures and Devices

    NASA Technical Reports Server (NTRS)

    Leon, R.; Martin, S.; Lee, T.; Okuno, J.; Ruiz, R.; Gauldin, R.; Gaidis, M.; Smith, R.

    1999-01-01

    High humidity and temperature test (known as 85/85 tests) were performed on various III-V devices and structures to determine environmental effects in non-hermetically packaged GaAs membrane mixer diodes.

  18. Evidence of Formation of Superdense Nonmagnetic Cobalt

    PubMed Central

    Banu, Nasrin; Singh, Surendra; Satpati, B.; Roy, A.; Basu, S.; Chakraborty, P.; Movva, Hema C. P.; Lauter, V.; Dev, B. N.

    2017-01-01

    Because of the presence of 3d transition metals in the Earth’s core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2–1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth’s core under high pressure. PMID:28157186

  19. Evidence of Formation of Superdense Nonmagnetic Cobalt

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Satpati, B.; Roy, A.; Basu, S.; Chakraborty, P.; Movva, Hema C. P.; Lauter, V.; Dev, B. N.

    2017-02-01

    Because of the presence of 3d transition metals in the Earth’s core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2–1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth’s core under high pressure.

  20. Growth and Characterization of III-V Nitride Quantum Dots and Quantum Wires

    DTIC Science & Technology

    2010-03-26

    REPORT Growth and Characterization of III - V Nitride Quantum Dots and Quantum Wires 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Our research program...ANSI Std. Z39.18 - 14-Sep-2009 Final report Growth and Characterization of III - V Nitride Quantum Dots and Quantum Wires Statement of the...has two interrelated components: the growth of GaN nanowires and the fabrication of electronic devices, including gas sensors, on these nanowires . A

  1. III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Ying

    As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing

  2. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-05-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.

  3. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    PubMed Central

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca i Cabarrocas, Pere

    2016-01-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs. PMID:27166163

  4. Piezoelectricity and growth polarization in III-V nitrides

    NASA Astrophysics Data System (ADS)

    Tavernier, Philip Ross

    GaN, AlN and InN form a relatively new class of semiconductors being utilized for their direct wide bandgap and polarization effects. Novel transistors using only piezoelectric doping have already surpassed the power handling capabilities of traditional silicon transistors. GaN light emitting diodes and solid state lasers, sensitive to the effects of piezoelectric polarization, are rapidly proliferating for use in lighting and next generation optical storage devices. GaN and AIN sensors and MEMS devices using the strong piezoelectric coupling coefficients of these materials are slowly being introduced into communications and chemical sensing applications. Despite the importance of the piezoelectric effect in each of these devices, relatively little is known of the magnitude of the effect in GaN and AIN as measured experimentally. The present work seeks to develop an experimental method of measuring the piezoelectric effect in thin films of GaN and AIN. Using a stress pulse induced by the single shot of a Nd:YAG laser, substrates of polar GaAs and ZnO are subject to short duration loading which generates piezoelectric dipoles. The orientation and magnitude of these dipoles induces current flow in an external circuit which is measured as a function time. By comparing the magnitude of the current generated in this circuit and the applied stress, it is shown that the axial piezoelectric constant, e 33, can be determined. Extending the measurement technique to thin films of GaN and AIN on sapphire and silicon, we have observed the magnitude and orientation of the piezoelectric dipoles in these materials. A value of 0.45 C/m2 for e33 in GaN was determined. This work motivated a closer investigation of the polarity of GaN during crystal growth. The addition of Mg during MOCVD was found to cause a uniform inversion of the growth axis producing nitrogen terminated surfaces under certain growth conditions. Chemical-mechanical polishing of these surfaces with colloidal silica

  5. III-V/Ge MOS device technologies for low power integrated systems

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Noguchi, M.; Kim, M.; Kim, S.-H.; Chang, C.-Y.; Yokoyama, M.; Nishi, K.; Zhang, R.; Ke, M.; Takenaka, M.

    2016-11-01

    CMOS utilizing high mobility III-V/Ge channels on Si substrates is expected to be one of the promising devices for high performance and low power integrated systems in the future technology nodes, because of the enhanced carrier transport properties. In addition, Tunneling-FETs (TFETs) using Ge/III-V materials are regarded as one of the most important steep slope devices for the ultra-low power applications. In this paper, we address the device and process technologies of Ge/III-V MOSFETs and TFETs on the Si CMOS platform. The channel formation, source/drain (S/D) formation and gate stack engineering are introduced for satisfying the device requirements. The plasma post oxidation to form GeOx interfacial layers is a key gate stack technology for Ge CMOS. Also, direct wafer bonding of ultrathin body quantum well III-V-OI channels, combined with Tri-gate structures, realizes high performance III-V n-MOSFETs on Si. We also demonstrate planar-type InGaAs and Ge/strained SOI TFETs. The defect-less p+-n source junction formation with steep impurity profiles is a key for high performance TFET operation.

  6. Electronic structure of and quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach

    NASA Astrophysics Data System (ADS)

    Viswanatha, Ranjani; Sapra, Sameer; Saha-Dasgupta, Tanusri; Sarma, D. D.

    2005-07-01

    We analyze the electronic structure of group III-V semiconductors obtained within full potential linearized augmented plane wave (FP-LAPW) method and arrive at a realistic and minimal tight-binding model, parametrized to provide an accurate description of both valence and conduction bands. It is shown that the cation sp3 - anion sp3d5 basis along with the next nearest neighbor model for hopping interactions is sufficient to describe the electronic structure of these systems over a wide energy range, obviating the use of any fictitious s* orbital, employed previously. Similar analyses were also performed for the II-VI semiconductors, using the more accurate FP-LAPW method compared to previous approaches, in order to enhance reliability of the parameter values. Using these parameters, we calculate the electronic structure of III-V and II-VI nanocrystals in real space with sizes ranging up to about 7nm in diameter, establishing a quantitatively accurate description of the bandgap variation with sizes for the various nanocrystals by comparing with available experimental results from the literature.

  7. Impact of Rotational Twin Boundaries and Lattice Mismatch on III-V Nanowire Growth.

    PubMed

    Steidl, Matthias; Koppka, Christian; Winterfeld, Lars; Peh, Katharina; Galiana, Beatriz; Supplie, Oliver; Kleinschmidt, Peter; Runge, Erich; Hannappel, Thomas

    2017-09-26

    Pseudomorphic planar III-V transition layers greatly facilitate the epitaxial integration of vapor-liquid-solid grown III-V nanowires (NW) on Si(111) substrates. Heteroepitaxial (111) layer growth, however, is commonly accompanied by the formation of rotational twins. We find that rotational twin boundaries (RTBs), which intersect the surface of GaP/Si(111) heterosubstrates, generally cause horizontal NW growth and may even suppress NW growth entirely. Away from RTBs, the NW growth direction switches from horizontal to vertical in the case of homoepitaxial GaP NWs, whereas heteroepitaxial GaAs NWs continue growing horizontally. To understand this rich phenomenology, we develop a model based on classical nucleation theory. Independent of the occurrence of RTBs and specific transition layers, our model can generally explain the prevalent observation of horizontal III-V NW growth in lattice mismatched systems and the high crystal quality of horizontal nanowires.

  8. Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells

    SciTech Connect

    Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.; Woodhouse, Michael; van Hest, Maikel F. A. M.; Norman, Andrew G.; Steiner, Myles A.; Stradins, Paul

    2015-06-14

    Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted, bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.

  9. Design of the partial concentrator lens for III-V on Si static concentration

    NASA Astrophysics Data System (ADS)

    Araki, Kenji; Ota, Yasuyuki; Lee, Kan-Hua; Nishioka, Kensuke; Yamaguchi, Masafumi

    2017-09-01

    To compete with the flat-plate crystalline Silicon cell module, III-V on Si structure is developed. However, it is clear that the situation of the higher cost of III-V cell relative to the Silicon cell will be unchanged. Then, it is preferred concentrating III-V cell for further savings. The partial concentrator is expanding the acceptance angle despite the higher concentration ratio. It is achieved by better performance balance of on-axis and high incidence angle. The new and generalized design method of the partial concentrator was developed. The profile function was constructed by selected Zernike's polynomial considering rotational symmetry. The full conditions of the calculation including the initial value and the radial and azimuthal degree of the function were examined. It was found that the recommended radial and azimuthal degree were 12 and 12.

  10. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    SciTech Connect

    Tamboli, Adele C. Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul; Perl, Emmett E.

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  11. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser.

    PubMed

    Keyvaninia, Shahram; Roelkens, Gunther; Van Thourhout, Dries; Jany, Christophe; Lamponi, Marco; Le Liepvre, Alban; Lelarge, Francois; Make, Dalila; Duan, Guang-Hua; Bordel, Damien; Fedeli, Jean-Marc

    2013-02-11

    A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 °C and a thermo-optic wavelength tuning range of 8 nm are achieved. The laser linewidth is found to be 1.7 MHz.

  12. Silicon MCM substrates for integration of III-V photonic devices and CMOS IC`s

    SciTech Connect

    Seigal, P.; Carson, R.; Flores, R.; Rose, B.

    1993-07-01

    The progress made in advanced packaging development at Sandia National Laboratories for integration of III-V photonic devices and CMOS IC`s on Silicon MCM substrates for planar aid stacked applications will be reported. Studies to characterize precision alignment techniques using solder attach materials compatible with both silicon IC`s and III-V devices will be discussed. Examples of the use of back-side alignment and IR through-wafer inspection will be shown along with the extra processing steps that are used. Under bump metallurgy considerations are also addressed.

  13. III-V/silicon germanium tandem solar cells on silicon substrates

    NASA Astrophysics Data System (ADS)

    Schmieder, Kenneth J.

    The development of a cost-effective high voltage tandem solar cell that can be grown directly on a silicon (Si) platform can lead to a 34% increase in efficiency over the present best monocrystalline Si laboratory device. III-V devices are known to yield some of the highest efficiencies in photovoltaics, but the high cost of lattice matched substrates and metal organic chemical vapor deposition (MOCVD) and device development make them prohibitively expensive in many markets. By utilizing silicon substrates and limiting the thickness of the III-V MOCVD material growth, this cost can be reduced. The leveraging technology of this initiative is a metamorphic silicon:germanium (SiGe) buffer between the silicon substrate and the active device layers. As developed by AmberWave Inc., it provides a low-dislocation interface for III-V nucleation and a high quality bottom cell grown by reduced pressure chemical vapor deposition (RPCVD). This research first reports on the theoretical limits of a III-V/SiGe tandem solar cell. Results will evaluate multiple III-V materials for the determination of optimal material composition to be lattice-matched with SiGe. Following this, a more complex device simulation, incorporating all major loss mechanisms, is accomplished in order to predict ideal efficiency targets and evaluate present experimental structures. Results demonstrate a robust model capable of simulating a wide range of binary and ternary III-V devices. Predictions show the capability of a tandem device operating at 32.5% 1-sun efficiency without requiring TDD improvement beyond that of the present SiGe layers. Following simulations, experimental III-V structures are grown via MOCVD and characterized, indicating successful process development for growth of III-V materials on the SiGe platform. This growth is then validated via the design and development of experimental solar device structures. Each iteration, beginning with the single-junction windowless GaAsP solar cell and

  14. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  15. Silicon, germanium, and III-V-based tunneling devices for low-power applications

    NASA Astrophysics Data System (ADS)

    Smith, Joshua T.

    While the scaling of transistor dimensions has kept pace with Moore's Law, the voltages applied to these devices have not scaled in tandem, giving rise to ever-increasing power/heating challenges in state-of-the-art integrated circuits. A primary reason for this scaling mismatch is due to the thermal limit---the 60 mV minimum required at room temperature to change the current through the device by one order of magnitude. This voltage scaling limitation is inherent in devices that rely on the mechanism of thermal emission of charge carriers over a gate-controlled barrier to transition between the ON- and OFF-states, such as in the case of conventional CMOS-based technologies. To overcome this voltage scaling barrier, several steep-slope device concepts have been pursued that have experimentally demonstrated sub-60-mV/decade operation since 2004, including the tunneling-field effect transistor (TFET), impact ionization metal-oxide-semiconductor (IMOS), suspended-gate FET (SG-FET), and ferroelectric FET (Fe-FET). These reports have excited strong efforts within the semiconductor research community toward the realization of a low-power device that will support continued scaling efforts, while alleviating the heating issues prevalent in modern computer chips. Literature is replete with claims of sub-60-mV/decade operation, but often with neglect to other voltage scaling factors that offset this result. Ideally, a low-power device should be able to attain sub-60-mV/decade inverse subthreshold slopes (S) employing low supply and gate voltages with a foreseeable path toward integration. This dissertation describes the experimental development and realization of CMOS-compatible processes to enhance tunneling efficiency in Si and Si/Ge nanowire (NW) TFETs for improved average S (S avg) and ON-currents (ION), and a novel, III-V-based tunneling device alternative is also proposed. After reviewing reported efforts on the TFET, IMOS, and SG-FET, the TFET is highlighted as the

  16. EUVE Observations of Nonmagnetic Cataclysmic Variables

    SciTech Connect

    Mauche, C W

    2001-09-05

    The authors summarize EUVE's contribution to the study of the boundary layer emission of high accretion-rate nonmagnetic cataclysmic variables, especially the dwarf novae SS Cyg, U Gem, VW Hyi, and OY Car in outburst. They discuss the optical and EUV light curves of dwarf nova outbursts, the quasi-coherent oscillations of the EUV flux of SS Cyg, the EUV spectra of dwarf novae, and the future of EUV observations of cataclysmic variables.

  17. Low-index nanopatterned barrier for hybrid oxide-free III-V silicon conductive bonding.

    PubMed

    Bougot-Robin, Kristelle; Talneau, Anne; Benisty, Henri

    2014-09-22

    Oxide-free bonding of a III-V active stack emitting at 1300-1600 nm to a silicon-on-insulator wafer offers the capability to electrically inject lasers from the silicon side. However, a typical 500-nm-thick silicon layer notably attracts the fundamental guided mode of the silicon + III-V stack, a detrimental feature compared to established III-V Separate-Confinement Heterostructure (SCH) stacks. We experimentally probe with photoluminescence as an internal light source the guiding behavior for oxide-free bonding to a nanopatterned silicon wafer that acts as a low-index barrier. We use a sub-wavelength square array of small holes as an effective "low-index silicon" medium. It is weakly modulated along one dimension (superperiodic array) to outcouple the resulting guided modes to free space, where we use an angle-resolved spectroscopy study. Analysis of experimental branches confirms the capability to operate with a fundamental mode well localized in the III-V heterostructures.

  18. Photo-induced Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Redfield, David; Bube, Richard H.

    2006-03-01

    1. Introduction: metastable defects; 2. III-V compounds: DX2 and EL2 centers; 3. Other crystalline materials; 4. Hydrogenated amorphous silicon: properties of defects; 5. Hydrogenated amorphous silicon: photo-induced defect kinetics and processes; 6. Other amorphous semiconductors; 7. Photo-induced defect effects in devices; References; Index.

  19. Impact of photon recycling and luminescence coupling on III-V single and dual junction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Walker, Alexandre W.; Höhn, Oliver; Micha, Daniel N.; Wagner, Lukas; Helmers, Henning; Bett, Andreas W.; Dimroth, Frank

    2015-01-01

    Modeling single junction solar cells composed of III-V semiconductors such as GaAs with the effects of photon recycling yields insight into design and material criteria required for high efficiencies. For a thin-film single junction GaAs cell to reach 28.5% efficiency, simulation results using a recently developed model which accounts for photon recycling indicate that Shockley-Read-Hall (SRH) lifetimes of electrons and holes must be longer than 3 and 1 μs, respectively, in a 2-μm thin active region, and that the native substrate must be removed such that the cell is coupled to a highly reflective rear-side mirror. The model is generalized to account for luminescence coupling in tandem devices, which yields direct insight into the top cell's nonradiative lifetimes. A heavily current mismatched GaAs/GaAs tandem device is simulated and measured experimentally as a function of concentration between 3 and 100 suns. The luminescence coupling increases from 14% to 33% experimentally, whereas the model requires increasing electron and hole SRH lifetimes to explain these results. This could be an indication of the saturating defects which mediate the SRH process. However, intermediate GaAs layers between the two subcells may also contribute to the luminescence coupling as a function of concentration.

  20. Intrinsic spin dynamics in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Valín-Rodríguez, Manuel

    2005-12-01

    We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.

  1. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  2. Fabrication and Characterization of III-V Tunnel Field-Effect Transistors for Low Voltage Logic Applications

    NASA Astrophysics Data System (ADS)

    Romanczyk, Brian R.

    With voltage scaling to reduce power consumption in scaled transistors the subthreshold swing is becoming a critical factor influencing the minimum voltage margin between the transistor on and off-states. Conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) are fundamentally limited to a 60 mV/dec swing due to the thermionic emission current transport mechanism at room temperature. Tunnel field-effect transistors (TFETs) utilize band-to-band tunneling as the current transport mechanism resulting in the potential for sub-60 mV/dec subthreshold swings and have been identified as a possible replacement to the MOSFET for low-voltage logic applications. The TFET operates as a gated p-i-n diode under reverse bias where the gate electrode is placed over the intrinsic channel allowing for modulation of the tunnel barrier thickness. When the barrier is sufficiently thin the tunneling probability increases enough to allow for significant number of electrons to tunnel from the source into the channel. To date, experimental TFET reports using III-V semiconductors have failed to produce devices that combine a steep subthreshold swing with a large enough drive current to compete with scaled CMOS. This study developed the foundations for TFET fabrication by improving an established Esaki tunnel diode process flow and extending it to include the addition of a gate electrode to form a TFET. The gating process was developed using an In0.53Ga 0.57As TFET which demonstrated a minimum subthreshold slope of 100 mV/dec. To address the issue of TFET drive current an InAs/GaSb heterojunction TFET structure was investigated taking advantage of the smaller tunnel barrier height.

  3. Selective determination of arsenic (III, V), antimony (III, V), selenium (IV, VI) and tellurium (IV, VI) by extraction and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Chung, Chan-Huan; Iwamoto, Etsuro; Yamamoto, Manabu; Yamamoto, Yuroku

    Parameters were investigated for the selective determination of arsenic (III, V), antimony (III, V), selenium (IV, VI) and tellurium (IV, VI) by graphite furnace atomic absorption spectrometry combined with extraction using an ammonium pyrrolidinedithiocarbamate and chloroform + carbon tetrachloride solvent mixture. Selenium (VI) and tellurium (VI) were not extracted over the entire range of pH studied, although the extraction conditions for the other species were not critical. It was found that the incorporation of titanium (III) chloride as a reducing agent in the extraction procedure made it possible to differentiate the above elements in the higher and lower oxidation states. The four elements at the low oxidation state were first extracted at pH 5 and after the addition of titanium chloride to the aqueous phase, the species in the high oxidation state were extracted at about pH 0.3. High sensitivity for the determination of the eight species was obtained. Interferences by many foreign ions have been studied.

  4. Semiconductor Eutectic Solar Cell.

    DTIC Science & Technology

    1986-12-01

    InSb - NiSb Es an... InSb - NiSb , InSb -FeSb, InSb -MnSb und InSb -CrSb", J. Phys. Chem. Solids, 26, 2021 (1965). 11. A. Muller and M. Wilhelm, "Das Eutektikum InSb -Mg 3 Sb’" Z...infant stages for use. In semiconducting eutectics, efforts were paid to eutectic systems which consist of III-V semiconductor phases, such as GaAs, InSb

  5. Theory of hole mobility in strained Ge and III-V p-channel inversion layers with high-κ insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Fischetti, M. V.; Sorée, B.; O'Regan, T.

    2010-12-01

    We present a comprehensive investigation of the low-field hole mobility in strained Ge and III-V (GaAs, GaSb, InSb, and In1-xGaxAs) p-channel inversion layers with both SiO2 and high-κ insulators. The valence (sub)band structure of Ge and III-V channels, relaxed and under biaxial strain (tensile and compressive) is calculated using an efficient self-consistent method based on the six-band k ṡp perturbation theory. The hole mobility is then computed using the Kubo-Greenwood formalism accounting for nonpolar hole-phonon scattering (acoustic and optical), surface roughness scattering, polar phonon scattering (III-Vs only), alloy scattering (alloys only) and remote phonon scattering, accounting for multisubband dielectric screening. As expected, we find that Ge and III-V semiconductors exhibit a mobility significantly larger than the "universal" Si mobility. This is true for MOS systems with either SiO2 or high-κ insulators, although the latter ones are found to degrade the hole mobility compared to SiO2 due to scattering with interfacial optical phonons. In addition, III-Vs are more sensitive to the interfacial optical phonons than Ge due to the existence of the substrate polar phonons. Strain—especially biaxial tensile stress for Ge and biaxial compressive stress for III-Vs (except for GaAs)—is found to have a significant beneficial effect with both SiO2 and HfO2. Among strained p-channels, InSb exhibits the largest mobility enhancement. In0.7Ga0.3As also exhibits an increased hole mobility compared to Si, although the enhancement is not as large. Finally, our theoretical results are favorably compared with available experimental data for a relaxed Ge p-channel with a HfO2 insulator.

  6. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  7. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  8. Graded core/shell semiconductor nanorods and nanorod barcodes

    SciTech Connect

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  9. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1990-01-01

    The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).

  10. The Physics of III-V Heterojunction Devices in Wireless Communications

    NASA Astrophysics Data System (ADS)

    Johnson, Karl

    2003-03-01

    III-V heterojunction devices have become pervasive in wireless communication appliances. In particular, the low voltage, high efficiency power amplifier transmitters in cellular phones are dominated by heterojunction bipolar transistors (HBT), psuedomorphic high electron mobility transistors (pHEMT) and heterojunction field effect transistors (HFET). Further, these III-V heterojunction devices are also appearing in infrastructure applications such as cellular base stations, wireless local area network (WLAN) and cable television (CATV) line amplifiers. The design of these devices requires unique band gap engineering in order to meet the cost, performance and ruggedness in the linear and saturated power modes required by today's cellular modulation protocols. This presentation will address the physics behind the design, development and operation of these technologies leading to their optimization for the wireless market place.

  11. Threading dislocation density characterization in III-V photovoltaic materials by electron channeling contrast imaging

    NASA Astrophysics Data System (ADS)

    Yaung, Kevin Nay; Kirnstoetter, Stefan; Faucher, Joseph; Gerger, Andy; Lochtefeld, Anthony; Barnett, Allen; Lee, Minjoo Larry

    2016-11-01

    Accurate and rapid threading dislocation density (TDD) characterization of III-V photovoltaic materials using electron channeling contrast imaging (ECCI) is demonstrated. TDDs measured using ECCI showed close agreement with those from electron beam-induced current mapping (EBIC) and defect selective etching (DSE). ECCI is shown to be well-suited for measuring TDD values over a range of 5×106-5×108 cm-2. ECCI can distinguish individual dislocations in clusters closer than 0.2 μm, highlighting its excellent spatial resolution compared to DSE and EBIC. Taken together, ECCI is shown to be a versatile and complementary method to rapidly quantify TDD in III-V solar cells.

  12. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group II and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation to low temperature, and to permit the film to relax to equilibrium. The method of the invention 1) minimizes starting step density on sample surface; 2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 mono-layers at a time); 3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and 4) uses time-resolved RHEED to achieve aspects (1)-14 (3).

  13. Nucleation and initial radius of self-catalyzed III-V nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Borie, S.; Dagnet, T.; Reynes, L.; André, Y.; Gil, E.

    2017-02-01

    We treat theoretically the initial nucleation step of self-catalyzed III-V nanowires under simultaneously deposited group III and V vapor fluxes and with surface diffusion of a group III element. Our model is capable of describing the droplet size at which the very first nanowire monolayer nucleates depending on the element fluxes and surface temperature. This size determines the initial nanowire radius in growth techniques without pre-deposition of gallium. We show that useful self-catalyzed III-V nanowires can form only under the appropriately balanced V/III flux ratios and temperatures. Such balance is required to obtain nucleation from reasonably sized droplets that are neither too small under excessive arsenic flux nor too large in the arsenic-poor conditions.

  14. MOCVD Growth of III-V Photodetectors and Light Emitters for Integration of Optoelectronic Devices on Si substrates

    NASA Astrophysics Data System (ADS)

    Geng, Yu

    With the increase of clock speed and wiring density in integrated circuits, inter-chip and intra-chip interconnects through conventional electrical wires encounter increasing difficulties because of the large power loss and bandwidth limitation. Optical interconnects have been proposed as an alternative to copper-based interconnects and are under intense study due to their large data capacity, high data quality and low power consumption. III-V compound semiconductors offer high intrinsic electron mobility, small effective electron mass and direct bandgap, which make this material system advantageous for high-speed optoelectronic devices. The integration of III-V optoelectronic devices on Si substrates will provide the combined advantage of a high level of integration and large volume production of Si-based electronic circuitry with the superior electrical and optical performance of III-V components, paving the way to a new generation of hybrid integrated circuits. In this thesis, the direct heteroepitaxy of photodetectors (PDs) and light emitters using metal-organic chemical vapor deposition for the integration of photonic devices on Si substrates were studied. First we studied the selective-area growth of InP/GaAs on patterned Si substrates for PDs. To overcome the loading effect, a multi-temperature composite growth technique for GaAs was developed. By decreasing various defects such as dislocations and anti-phase domains, the GaAs and InP buffer layers are with good crystalline quality and the PDs show high speed and low dark current performance both at the edge and center of the large growth well. Then the growth and fabrication of GaAs/AlGaAs QW lasers were studied. Ellipsometry was used to calibrate the Al composition of AlGaAs. Thick p and n type AlGaAs with a mirrorlike surface were grown by high V/III ratio and high temperature. The GaAs/AlGaAs broad area QW laser was successfully grown and fabricated on GaAs substrate and showed a pulsed lasing result

  15. To the understanding of the formation of the droplet-epitaxial III-V based nanostructures

    SciTech Connect

    Nemcsics, Ákos

    2014-05-15

    In this work, we discuss the evolution of the self-assembling III-V based nanostructures. These nano-structures were prepared by droplet epitaxial technique. The different nanostructures such as quantum dot, quantum ring, double quantum ring, or nanohole form similarly from an initial Ga droplet but under different substrate temperature and various arsenic pressures. Started from few atomic courses, we give here a qualitative description of the key processes for all of the aforementioned nanostructures.

  16. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.

    PubMed

    Zi, Yunlong; Suslov, Sergey; Yang, Chen

    2017-02-08

    The self-catalyzed growth of III-V nanowires has drawn plenty of attention due to the potential of integration in current Si-based technologies. The homoparticle-assisted vapor-liquid-solid growth mechanism has been demonstrated for self-catalyzed III-V nanowire growth. However, the understandings of the preferred growth sites of these nanowires are still limited, which obstructs the controlled synthesis and the applications of self-catalyzed nanowire arrays. Here, we experimentally demonstrated that thermally created pits could serve as the preferred sites for self-catalyzed InAs nanowire growth. On that basis, we performed a pregrowth annealing strategy to promote the nanowire density by enhancing the pits formation on the substrate surface and enable the nanowire growth on the substrate that was not capable to facilitate the growth. The discovery of the preferred self-catalyzed nanowire growth sites and the pregrowth annealing strategy have shown great potentials for controlled self-catalyzed III-V nanowire array growth with preferred locations and density.

  17. High mobility CMOS technologies using III-V/Ge channels on Si platform

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Kim, S.-H.; Yokoyama, M.; Zhang, R.; Taoka, N.; Urabe, Y.; Yasuda, T.; Yamada, H.; Ichikawa, O.; Fukuhara, N.; Hata, M.; Takenaka, M.

    2013-10-01

    MOSFETs using channel materials with high mobility and low effective mass have been regarded as strongly important for obtaining high current drive and low supply voltage CMOS under sub 10 nm regime. From this viewpoint, attentions have recently been paid to Ge and III-V channels. In this paper, possible solutions for realizing III-V/Ge MOSFETs on the Si platform are presented. The high quality III-V channel formation on Si substrates can be realized through direct wafer bonding. The gate stack formation is constructed on a basis of atomic layer deposition (ALD) Al2O3 gate insulators for both InGaAs and Ge MOSFETs. As the source/drain (S/D) formation, Ni-based metal S/D is implemented for both InGaAs and Ge MOSFETs. By combining these technologies, we demonstrate successful integration of InGaAs-OI nMOSFETs and Ge p-MOSFETs on a same wafer and their superior device performance.

  18. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate

    NASA Astrophysics Data System (ADS)

    Kunert, B.; Guo, W.; Mols, Y.; Tian, B.; Wang, Z.; Shi, Y.; Van Thourhout, D.; Pantouvaki, M.; Van Campenhout, J.; Langer, R.; Barla, K.

    2016-08-01

    We report on an integration approach of III/V nano ridges on patterned silicon (Si) wafers by metal organic vapor phase epitaxy (MOVPE). Trenches of different widths (≤500 nm) were processed in a silicon oxide (SiO2) layer on top of a 300 mm (001) Si substrate. The MOVPE growth conditions were chosen in a way to guarantee an efficient defect trapping within narrow trenches and to form a box shaped ridge with increased III/V volume when growing out of the trench. Compressively strained InGaAs/GaAs multi-quantum wells with 19% indium were deposited on top of the fully relaxed GaAs ridges as an active material for optical applications. Transmission electron microcopy investigation shows that very flat quantum well (QW) interfaces were realized. A clear defect trapping inside the trenches is observed whereas the ridge material is free of threading dislocations with only a very low density of planar defects. Pronounced QW photoluminescence (PL) is detected from different ridge sizes at room temperature. The potential of these III/V nano ridges for laser integration on Si substrates is emphasized by the achieved ridge volume which could enable wave guidance and by the high crystal quality in line with the distinct PL.

  19. Fatigue failure of concentrator III-V solar cells - Does forward bias current injection really kill III-V CPV cells?

    NASA Astrophysics Data System (ADS)

    Araki, Kenji; Nagai, Hirokazu; Tamura, Kazuyuki

    2012-10-01

    CPV cells are successively exposed by cycles of concentrated sunlight and huge cycling current flows out of contacts. The purpose of this research is to identify if the fatigue will be one of the life-end and wearing modes of CPV cells and how long the life-time will be. One of the best ways of giving cycling stress on cells and contacts is cycling forward bias injection. First, it is important to investigate if forward bias itself damages concentrator III-V cells. To confirm the forward bias current itself does not damage the CPV solar cells but cycling does, we applied 4 times of Isc continuously in 500 hours, equivalently total injection of 90,000 cycles, but no damage or degradation was observed. What's more, we applied the cycling test after the stress of 500 hour continuous forward bias injection. We did not identify any changes between groups of with stress of continuous forward bias and without them. On-Off tests giving forward bias current as high as 4 times of Isc are conducted. The failure was analyzed by the Weible function. About 2,000 cells in total were examined. A small number of initial failure, that of failure number of cycles lied along exponential distribution and distinct portion of wear mode failure that of failure number of cycles lied along Gaussian distribution were identified. The EL measurement indicated that all the damaged cells in wear mode were local shunt under the top contacts suggesting stress under the top contacts would be possibly responsible to the fatigue failure. Advanced contact design that leads to reduce the stress on the top contact is expected to prolong the lifetime of the III-V concentrator cells.

  20. New III-V cell design approaches for very high efficiency. Annual subcontract report, 1 August 1990--31 July 1991

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; O`Bradovich, G.J.; Young, M.P.

    1993-01-01

    This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

  1. New III-V cell design approaches for very high efficiency. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P.

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell`s efficiency less dependent on materialquality.

  2. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  3. Semimetal/semiconductor nanocomposites for thermoelectrics.

    PubMed

    Lu, Hong; Burke, Peter G; Gossard, Arthur C; Zeng, Gehong; Ramu, Ashok T; Bahk, Je-Hyeong; Bowers, John E

    2011-05-24

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:In(x)Ga(1−x)Sb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By co-doping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μ m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  4. Metal-insulator-semiconductor photodetectors.

    PubMed

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  5. Stable surface passivation process for compound semiconductors

    DOEpatents

    Ashby, Carol I. H.

    2001-01-01

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  6. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices (On Silicon). Oxide-Defined Semiconductor Quantum Well Lasers and Optoelectrnic Devices: A1-Based III-V Native Oxides

    DTIC Science & Technology

    1992-05-01

    crystal growth (EMCORE reactor), and our NSF MRL has supported our TEM and SIMS analyses, which are spread throughout much of the work reported here. 10...AIGa .,As-GaAs quantum well heterostruct’ires two -600 A Al0.2 Ga,, As waveguide (WG) layers. Then a (QWHs) to suppress the effectr of alloy clu;tering...8217 the use thick (-0.5 um) AlAs p-type upper confining layer is of AlAs layers in QWHs has becomae cuite common in lasers grown, followed by the growth

  7. Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications

    SciTech Connect

    Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

    2006-01-01

    Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  8. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios: Economic competitiveness of III-V on on silicon tandem modules

    SciTech Connect

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael; Horowitz, Kelsey A. W.; Basore, Paul A.

    2016-09-05

    Tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells. We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.

  9. Advances in III-V bulk and superlattice-based high operating temperature MWIR detector technology

    NASA Astrophysics Data System (ADS)

    Sharifi, H.; Roebuck, M.; Terterian, S.; Jenkins, J.; Tu, B.; Strong, W.; De Lyon, T. J.; Rajavel, R. D.; Caulfield, J.; Curzan, J. P.

    2017-02-01

    Barrier detectors based on III-V materials have recently been developed to realize substantial improvements in the performance of mid-wave infrared (MWIR) detectors, enabling FPA performance at high operating temperatures. The relative ease of processing the III-V materials into large-format, small-pitch FPAs offers a cost-effective solution for tactical imaging applications in the MWIR band as an attractive alternative to HgCdTe detectors. In addition, small pixel (5-10μm pitch) detector technology enables a reduction in size of the system components, from the detector and ROIC chips to the focal length of the optics and lens size, resulting in an overall compactness of the sensor package, cooling and associated electronics. To exploit the substantial cost advantages, scalability to larger format (2kx2k/10μm) and superior wafer quality of large-area GaAs substrates, we have fabricated antimony based III-V bulk detectors that were metamorphically grown by MBE on GaAs substrates. The electro-optical characterization of fabricated 2kx2k/10μm FPAs shows low median dark current (3 x 10-5 A/cm2 with λco = 5.11μm or 2.2 x 10-6 A/cm2 with λco = 4.6μm) at 150K, high NEdT operability (3x median value) >99.8% and >60% quantum efficiency (non-ARC). In addition, we report our initial result in developing small pixel (5μm pitch), high definition (HD) MWIR detector technology based on superlattice III-V absorbing layers grown by MBE on GaSb substrates. The FPA radiometric result is showing low median dark current (6.3 x 10-6 A/cm2 at 150K with λco = 5.0μm) with 50% quantum efficiency (non-ARC), and low NEdT of 20mK (with averaging) at 150K. The detector and FPA test results that validate the viability of Sb-based bulk and superlattice high operating temperature MWIR FPA technology will be discussed during the presentation.

  10. General theory of the transverse dielectric constant of III-V semiconducting compounds

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1985-01-01

    A general model of the transverse dielectric constant of III-V compounds is developed using a hybrid method which combines the kp method with a nonlocal pseudopotential calculation. In this method the Brillouin zone is partitioned into three regions by expanding the energy bands and matrix elements about the F, X, and L symmetry points. The real and imaginary parts of the dielectric constant are calculated as a sum of the individual contributions of each region. By using this partition method, it is possible to get good insight into the dependence of the dielectric constant on the shape of the band structure.

  11. Solid-state lighting : the III-V Epi Killer App.

    SciTech Connect

    Tsao, Jeffrey Yeenien

    2010-06-01

    Throughout its history, lighting technology has made tremendous progress: the efficiency with which power is converted into usable light has increased 2.8 orders of magnitude over three centuries. This progress has, in turn, fueled large increases in the consumption of light and productivity of human society. In this talk, we review an emerging new technology, solid-state lighting: its frontier performance potential; the underlying advances in physics and materials that might enable this performance potential; the resulting energy consumption and human productivity benefits; and the impact on worldwide III-V epi manufacture.

  12. Techno-economic analysis of three different substrate removal and reuse strategies for III-V solar cells: Techno-economic analysis for III-V solar cells

    SciTech Connect

    Ward, J. Scott; Remo, Timothy; Horowitz, Kelsey; Woodhouse, Michael; Sopori, Bhushan; VanSant, Kaitlyn; Basore, Paul

    2016-05-10

    The high cost of wafers suitable for epitaxial deposition of III-V solar cells has been a primary barrier to widespread use of these cells in low-concentration and one-sun terrestrial solar applications. A possible solution is to reuse the substrate many times, thus spreading its cost across many cells. We performed a bottom-up techno-economic analysis of three different strategies for substrate reuse in high-volume manufacturing: epitaxial lift-off, spalling, and the use of a porous germanium release layer. The analysis shows that the potential cost reduction resulting from substrate reuse is limited in all three strategies--not by the number of reuse cycles achievable, but by the costs that are incurred in each cycle to prepare the substrate for another epitaxial deposition. The dominant substrate-preparation cost component is different for each of the three strategies, and the cost-ranking of these strategies is subject to change if future developments substantially reduce the cost of epitaxial deposition.

  13. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios

    DOE PAGES

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael; ...

    2016-09-05

    Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less

  14. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios

    SciTech Connect

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael; Horowitz, Kelsey A. W.; Basore, Paul A.

    2016-09-05

    Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells. We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.

  15. Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Wolf, D.; Lichte, H.; Pozzi, G.; Prete, P.; Lovergine, N.

    2011-06-01

    Electron holographic tomography (EHT), the combination of off-axis electron holography with electron tomography, is a technique, which can be applied to the quantitative 3-dimensional (3D) mapping of electrostatic potential at the nanoscale. Here, we show the results obtained in the EHT investigation of GaAs and GaAs-AlGaAs core-shell nanowires grown by Au-catalysed metalorganic vapor phase epitaxy. The unique ability of EHT of disentangling the materials mean inner potential (MIP) from the specimen projected thickness allows reconstruction of the nanowire 3D morphology and inner compositional structure as well as the measurement of the MIP.

  16. Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires

    SciTech Connect

    Wolf, D.; Lichte, H.; Pozzi, G.; Lovergine, N.

    2011-06-27

    Electron holographic tomography (EHT), the combination of off-axis electron holography with electron tomography, is a technique, which can be applied to the quantitative 3-dimensional (3D) mapping of electrostatic potential at the nanoscale. Here, we show the results obtained in the EHT investigation of GaAs and GaAs-AlGaAs core-shell nanowires grown by Au-catalysed metalorganic vapor phase epitaxy. The unique ability of EHT of disentangling the materials mean inner potential (MIP) from the specimen projected thickness allows reconstruction of the nanowire 3D morphology and inner compositional structure as well as the measurement of the MIP.

  17. Atomic Layer Epitaxy of III-V Compound Semiconductors by Thermal and Laser-Assisted Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1989-01-31

    37 2.6 C onclusions ............................................................ 38 3.0 REACTION KINETICS STUDY OF METALORGANIC... Reaction K inetics ................................................... 42 3.2.1 MOCVD Kinetic Steps .................................... 42 3.2.2 Theory... Reaction Mechanism ................. 71 3.5.3 DEAsH/TEAsActivation Energies .................... 73 3.5.4 TEAS Decomposition Kinetics Model

  18. [Structure and electronic properties of defects at nonlattice matched III-V semiconductor interfaces]. Progress report, 1989--90

    SciTech Connect

    Ast, D.G.

    1990-12-31

    Research focused on control of misfit dislocations in strained epitaxial layers of GaAs through prepatterning of the substrate. Patterning and etching trenches into GaAs substrates before epitaxial growth results in nonplanar wafer surface, which makes device fabrication more difficult. Selective ion damaging the substrate prior to growth was investigated. The question of whether the overlayer must or must not be discontinuous was addressed. The third research direction was to extend results from molecular beam epitaxially grown material to organometallic chemical vapor deposition. Effort was increased to study the patterning processes and the damage it introduces into the substrate. The research program was initiated after the discovery that 500-eV dry etching in GaAs damages the substrate much deeper than the ion range.

  19. Epitaxial Growth, Surface, and Electronic Properties of Unconventional Semiconductors: RE-V/III-V Nanocomposites and Semiconducting Half Heusler Alloys

    DTIC Science & Technology

    2014-09-01

    Ohno, Anthony Rice , Nate Wilson, Mihir Pendharkar, Anisa Myzaferi, Tony McFadden, Alan Liu, Steven Brown, Thomas Neulinger, Linda Johansson, Sean...kinematic factors respectively. The optical transition of step 1 can be described using time dependent perturbation theory. Using Fermi’s Golden Rule the...annealed indium contacts, and Seebeck measurements (courtesy of Anthony Rice ) were measured in a Seebeck bar geometry also using annealed indium. In general

  20. Studies of Growth-In Defects and Transport Properties Versus Growth Parameters in III-V Compound Semiconductors.

    DTIC Science & Technology

    1982-06-10

    calls [1-51. For example, a cas- cade p-n junction solar cell structure with open circuit 273 I-$5iS/I2/11024VI] 0UM 0 I" AIME t 73 - *tj--e --.- I I f...electrical properties of the grown-in defects and their correlation to the performance character- istics of the AlxGalxAs/GaAs cascade solar cells . To achieve...as a window layer in the solar cell ’structure, and is much more heavily doped (S5xlO 18 cm- 3) than the undoped n-AlO. 3GaO.7As and n-GaAs LPE layers

  1. Ion Implantation and Laser Processing of III-V Compound Semiconductors with Applications to the Fabrication of Microwave Devices

    DTIC Science & Technology

    1981-10-01

    removed in boiling HCl and surface electrical measurements were carried out using a van der Pauw technique. Complete activation of the implanted dopants...mobilities obtained by the differen- tial Van der Pauw measurements, along with the Sze and Irvin mobility corresponding to the measured carrier con...M m) ble to the electrically active concentration of Sn. We can see FIG. I. Van der Pauw stripping and SIMS profile for a sample ramped to that

  2. A simple and reliable method of thermoelectic effect spectroscopy for semi-insulating III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Z. C.; Xie, K.; Wie, C. R.

    1991-08-01

    We have developed a simpler and more reliable method of thermoelectric effect spectroscopy (TEES), eliminating the second heater in the technique. We have applied this method to the deep level studies in the semi-insulating undoped or Cr-doped GaAs materials and in the GaAs epitaxial layers grown at a low temperature by molecular beam epitaxy. We have found that the electrical contacts made on front and back surfaces of the sample are more reliable for the TEES measurement than both contacts made on the same surface. In this contact arrangement, the temperature difference of about 1-2 K between the back and front surfaces is enough to produce a clear and reliable TEES data, without the need for a second heater. The results obtained by TEES are consistent with the results obtained by photoinduced transient spectroscopy (PITS) and by thermally stimulated current (TSC) measurements. The TEES results clearly distinguish between the electron traps and the hole traps. We discuss the results on the various semi-insulating GaAs samples and the advantages and limitations of the TEES technique.

  3. Nucleation, propagation, electronic levels and elimination of misfit dislocations in III-V semiconductor interfaces. Final report

    SciTech Connect

    Watson, G.P.; Matragrano, M.

    1995-03-01

    This report discusses the following topics: strained layer defects; the structural and electronic characteristics of misfit dislocations; requirements for the growth of high quality, low defect density InGaAs strained epitaxial layers; the isolation and nucleation of misfit dislocations in strained epitaxial layers grown on patterned, ion-damaged GaAs; the effect of pattern substrate trench depth on misfit dislocation density; the thermal stability of lattice mismatched InGaAs grown on patterned GaAs; misfit dislocations in ZnSe strained epitaxial layers grown on patterned GaAs; and the measurement of deep level states caused by misfit dislocations in InGaAs/GaAs grown on patterned GaAs substrates.

  4. Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors for Advanced Space Photovoltaics

    DTIC Science & Technology

    2014-05-15

    superlattice” that separates photogenerated electrons and holes into separate transport channels , would greatly benefit from QD incorporation to expand...substrates were produced by way of tensile-strained step- graded GaAsyP1-y buffers. Threading dislocation density (TDD) for the GaAs0.90P0.10/GaAs...substrates (with a threading dislocation density of ~1x106 cm-2) using a range of Ga0.55In0.45As coverages, starting slightly above the expected QD

  5. Engineered Heterostructures of 6.1 A III-V Semiconductors for Advanced Electronic and Optoelectronic Applications

    DTIC Science & Technology

    1999-01-01

    properties, single quantum wells of InAs clad by AlSb are predicted to define a new state of the art in low-power, high-frequency HEMTs. In order to achieve...4 ML Si- doped InAs quantum well .13 Because of the large confinement energy of such a narrow quantum well and because Si-doping in InAs results in n...length. E0 CB VB CB InAs quantum wells were employed to determine the feasibility of the proposed approach under a variety of growth conditions. At the

  6. Low Temperature Photoluminescence Study of Uranium Implanted Into III-V Semiconductors and A1GaAs

    DTIC Science & Technology

    1989-12-04

    U4 + has been assigned as 3H4 with a configuration of 5f 2 . (9) Additional work was also done with neptunium , plutonium, americium, curium, and... neptunium , plutonium, and americium may be studied in semicon- ductors. I I I I I I I 52 I U _ _ _ _ _ _ _ _ _ _ _ _ I I BibliographyI 3 1. Colon, Capt J. E

  7. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Recombination-induced motion of dislocations in III-V compounds

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Leipner, H. S.

    1988-11-01

    The methods of in situ cathodoluminescence and scanning electron microscopy were used in a study of stimulated dislocation glide. Dislocations generated by deliberate surface damage were found to be highly mobile when excited above a certain threshold. A study was made of the dependence of the glide velocity on the excitation rate and the first quantitative results on low-temperature dislocation motion are reported.

  8. Luminescence of Lanthanides and Actinides Implanted into Binary III-V semiconductors and AlGaAs

    DTIC Science & Technology

    1989-12-01

    140.91 +3,+4 hex [Xe]4f 36s 2 Neodymium Nd 60 144.24 +3 hex [Xe]4f 4 6s 2 Promethium Pm* 61 145 +3 hex [Xe]4f 5 6s 2 Samarium Sm 62 150.4 +3,+2 rhomb...4f 2(3 H) 3,(4) 60O Neodymium Nd 4f 6s ( I ) 4f 1 I3,(3, (,1 Promethium Pm 4f 5 6s82 6 9/2 51 62 Samarium St" 4f 6 s ~2 (6F 0) 4f 6( 14)5/ 3, 63

  9. Precise characterization of self-catalyzed III-V nanowire heterostructures via optical second harmonic generation.

    PubMed

    Yu, Ying; Wang, Jing; Wei, Yu-Ming; Zhou, Zhang-Kai; Ni, Hai-Qiao; Niu, Zhi-Chuan; Wang, Xue-Hua; Yu, Si-Yuan

    2017-09-27

    We demonstrate the utility of optical second harmonic generation (SHG) polarimetry to perform structural characterization of self-assembled zinc-blende/wurtzite III-V nanowire heterostructures. By analyzing four anisotropic SHG polarimetric patterns, we distinguish between wurtzite (WZ), zinc-blende (ZB) and ZB/WZ mixing III-V semiconducting crystal structures in nanowire systems. By neglecting the surface contributions and treating the bulk crystal within the quasi-static approximation, we can well explain the optical SHG polarimetry from the NWs with diameter from 200-600 nm. We show that the optical in-coupling and out-coupling coefficients arising from depolarization field can determine the polarization of the SHG. We also demonstrate micro-photoluminescence of GaAs quantum dots in related ZB and ZB/WZ mixing sections of core-shell NW structure, in agreement with the SHG polarimetry results. The ability to perform in situ SHG-based crystallographic study of semiconducting single and multi-crystalline nanowire heterostructures will be useful in displaying structure-property relationships of nanodevices.

  10. A study of capping layers for sulfur monolayer doping on III-V junctions

    NASA Astrophysics Data System (ADS)

    Yum, J. H.; Shin, H. S.; Hill, R.; Oh, J.; Lee, H. D.; Mushinski, Ryan M.; Hudnall, Todd W.; Bielawski, C. W.; Banerjee, S. K.; Loh, W. Y.; Wang, Wei-E.; Kirsch, Paul

    2012-12-01

    Recently, high dosage doping on Si multi-gate field effect transistors and III-V planar structures using a self-limiting monolayer doping technique was reported to overcome challenges in scaling nano-sized transistors. The stoichiometry or composition of the capping layer was found to affect the diffusion efficiency of this process. In this work, we study the effect of a capping layer in sulfur monolayer doping on III-V junctions. Various capping temperatures and growth methods were compared. Based on the theoretical and experimental results, we suggest an optimized scheme consisting of a bi-layer capping structure. From Hall measurements and secondary ion mass spectrometry, a SiNx/BeO bi-layer capping, compared to single layer cap, exhibited the best results with a surface sheet resistance of 232 Ω/sq, junction depth of 11 nm, dopant profile abruptness of 3.5 nm/dec, electrically active S concentration of 4.9 × 1019/cm3 (=1.34 × 1013/cm2), and 3 times higher activation efficiency without significant transient-enhanced dopant diffusion.

  11. III-V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse.

    PubMed

    Liu, Wenyong; Lee, Jong-Soo; Talapin, Dmitri V

    2013-01-30

    In this work, we synthesized InP and InAs nanocrystals (NCs) capped with different inorganic ligands, including various molecular metal chalcogenide complexes (MCCs) and chalcogenide ions. We found that MCCs and chalcogenide ions can quantitatively displace organic ligands from the surface of III-V NCs and serve as the inorganic capping groups for III-V NC surfaces. These inorganic ligands stabilize colloidal solutions of InP and InAs NCs in polar solvents and greatly facilitate charge transport between individual NCs. Charge transport studies revealed high electron mobility in the films of MCC-capped InP and InAs NCs. For example, we found that bridging InAs NCs with Cu(7)S(4)(-) MCC ligands can lead to very high electron mobility exceeding 15 cm(2)/(V s). In addition, we observed unprecedented ambipolar (positive/negative) photoresponse of MCC-capped InAs NC solids that changed sign depending on the ligand chemistry, illumination wavelength, and doping of the NC solid. For example, the sign of photoconductance of InAs NCs capped with Cu(7)S(4)(-) or Sn(2)S(6)(4-) ions converted from positive at 0.80 and 0.95 eV to negative at 1.27 and 1.91 eV. We propose an explanation of this unusually complex photoconductivity of InAs NC solids.

  12. Progressive materials integration: III-V on insulator by wafer bonding

    NASA Astrophysics Data System (ADS)

    Hayashi, Sumiko Lynn

    The development of wafer bonded III-V on insulator structures aims to provide advancements in high-speed electronic applications such as High Electron Mobility Transistors. This study demonstrates the feasibility of hydrogen exfoliated template layers for the growth III-V based device structures. InP layers are transferred to GaAs substrates to assess the suitability of the InP layer as a template for metal-organic vapor phase epitaxial growth. Strong, large area bonds between III-V wafers are achieved using SiN intermediate layers, which provide robust structures at high temperatures. The bonding mechanisms of SiN layers with a short oxygen plasma exposure are found to mimic those of SiO2. These bonds are strong enough to withstand thermal strain imposed by bonded wafers that exhibit appreciable coefficient of thermal expansion mismatch, such as InP and GaAs. These bonded wafers exhibit some stability against defect formation for low thermal strains. However, depending upon the thermal expansion coefficient mismatch and required thermal processing, misfit dislocations can form to relieve this thermal strain. Careful control of both template thickness and annealing temperatures leads to a stable template for subsequent epitaxial growth. Once bonding is complete, the template layer is separated from the bulk by a technique of hydrogen ion implantation and exfoliation. The layer exfoliation from a hydrogen implanted InP substrate is facilitated by the formation of extended defects in a certain temperature regime due to hydrogen trapping. Subsequently increasing the temperature produces rapid planar exfoliation. This two-step annealing scheme simultaneously allows the wafer bond to strengthen during the low temperature defect nucleation phase. After exfoliation, the surface of the template layer is generally very rough, therefore a chemical mechanical polishing step was developed to planarize this layer for subsequent epitaxial growth. Damage-free planarization of the

  13. Effect of low temperature anneals and nonthermal treatments on the properties of gap fill oxides used in SiGe and III-V devices

    NASA Astrophysics Data System (ADS)

    Ryan, E. Todd; Morin, Pierre; Madan, Anita; Mehta, Sanjay

    2016-07-01

    Silicon dioxide is used to electrically isolate CMOS devices such as fin field effect transistors by filling gaps between the devices (also known as shallow trench isolation). The gap fill oxide typically requires a high temperature anneal in excess of 1000 °C to achieve adequate electrical properties and oxide densification to make the oxide compatible with subsequent fabrication steps such as fin reveal etch. However, the transition from Si-based devices to high mobility channel materials such as SiGe and III-V semiconductors imposes more severe thermal limitations on the processes used for device fabrication, including gap fill oxide annealing. This study provides a framework to quantify and model the effect of anneal temperature and time on the densification of a flowable silicon dioxide as measured by wet etch rate. The experimental wet etch rates allowed the determination of the activation energy and anneal time dependence for oxide densification. Dopant and self-diffusion can degrade the channel material above a critical temperature. We present a model of self-diffusion of Ge and Si in SiGe materials. Together these data allowed us to map the thermal process space for acceptable oxide wet etch rate and self-diffusion. The methodology is also applicable to III-V devices, which require even lower thermal budget. The results highlight the need for nonthermal oxide densification methods such as ultraviolet (UV) and plasma treatments. We demonstrate that several plasma treatments, in place of high temperature annealing, improved the properties of flowable oxide. In addition, UV curing prior to thermal annealing enables acceptable densification with dramatically reduced anneal temperature.

  14. Vapor phase growth technique of III-V compounds utilizing a preheating step

    NASA Technical Reports Server (NTRS)

    Olsen, Gregory Hammond (Inventor); Zamerowski, Thomas Joseph (Inventor); Buiocchi, Charles Joseph (Inventor)

    1978-01-01

    In the vapor phase epitaxy fabrication of semiconductor devices and in particular semiconductor lasers, the deposition body on which a particular layer of the laser is to be grown is preheated to a temperature about 40.degree. to 60.degree. C. lower than the temperature at which deposition occurs. It has been discovered that by preheating at this lower temperature there is reduced thermal decomposition at the deposition surface, especially for semiconductor materials such as indium gallium phosphide and gallium arsenide phosphide. A reduction in thermal decomposition reduces imperfections in the deposition body in the vicinity of the deposition surface, thereby providing a device with higher efficiency and longer lifetime.

  15. Modeling of High-Frequency Noise in III-V Double-Gate HFETs

    NASA Astrophysics Data System (ADS)

    Vasallo, B. G.

    2009-04-01

    In this paper, we present a review of recent results on Monte Carlo modeling of high-frequency noise in III-V four-terminal devices. In particular, a study of the noise behavior of InAlAs/InGaAs Double-Gate High Electron Mobility Transistors (DG-HEMTs), operating in common mode, and Velocity Modulation Transistors (VMT), operating in differential mode, has been performed taking as a reference a similar standard HEMT. In the DG-HEMT, the intrinsic P, R and C parameters show a modest improvement, but the extrinsic minimum noise figure NFmin reveals a significantly better extrinsic noise performance due to the lower resistances of the gate contact and the source and drain accesses. In the VMT, very high values of P are obtained since the transconductance is very small, while the differential-mode operation leads to extremely low values of R.

  16. Nanoscale III-V on Si-based junctionless tunnel transistor for EHF band applications

    NASA Astrophysics Data System (ADS)

    Goswami, Yogesh; Asthana, Pranav; Ghosh, Bahniman

    2017-06-01

    A single gate III-V junctionless tunnel field effect transistor (SG-JLTFET) has been reported which shows excellent dc characteristics at low power supply operation. This device has a thin uniformly n-type doped channel of GaSb i.e. gallium antimonide which is grown epitaxially over silicon substrate. The DC performance parameters such as {I}{ON}, {I}{ON}/{I}{OFF}, average and point subthreshold slope as well as device parameters for analog applications viz. transconductance {g}{{m}}, transconductance generation efficiency {g}{{m}}/{I}{{D}}, various capacitances and the unity gain frequency {f}{{T}} are studied using a device simulator. Along with examining its endurance to short channel effects, the performances are also compared with a Silicon Dual Gate Junctionless Tunnel FET (DG-JLTFET). The DC and small signal analog performance reflects that GaSb SG-JLTFET has immense purview for extreme high-frequency and low-power applications.

  17. Effective electron mass in quantum wires of III-V, ternary and quaternary materials.

    PubMed

    Paitya, N; Ghatak, K P

    2012-12-01

    In this paper, an attempt is made to study the effective electron mass (EEM) in Quantum wires (QWs) of III-V, ternary and quaternary materials on the basis of three and two band models of Kane within the framework of k x p formalism. It has been found, taking QWs of InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(t) that the 1D EEM increases with electron concentration per unit length and decreases with increasing film thickness respectively. For ternary and quaternary materials the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the 1-D materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test. The results of this paper find two applications in the fields of nanoscience and technology.

  18. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  19. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  20. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation.

    PubMed

    Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther

    2014-11-15

    We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.

  1. Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser.

    PubMed

    Zhang, Jing; Li, Yanlu; Dhoore, Sören; Morthier, Geert; Roelkens, Gunther

    2017-03-20

    A heterogeneously integrated widely tunable III-V-on-silicon ring laser with unidirectional operation is demonstrated. 40 nm tuning range (from 1560 nm to 1600 nm) is obtained using the Vernier effect between two ring resonators incorporated in the ring laser cavity. Unidirectional operation is obtained by integrating a DBR reflector coupling the clockwise and counterclockwise mode of the ring laser cavity. Unidirectional operation is obtained over the entire tuning range with about 10 dB suppression of the clockwise mode. The laser linewidth is lower than 1 MHz over the entire tuning range, down to 550 kHz in the optimum operation point. The waveguide-coupled output power is above 0 dBm over the entire tuning range.

  2. Electronic structure and transport properties of III-V core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Viñas, Florinda; Leijnse, Martin

    We have modeled electron structure and low-temperature transport in III-V core/shell nanowires to establish a relationship between electron-hole hybridization and signatures in thermoelectrical measurements. Nanowires with a GaSb core and an InAs shell (and inverted) are interesting for studies of hybridization effects due to the bulk broken band gap alignment at the material interface. By varying the core radius and shell thickness of such wires we can modify the size of the band gap and create wires with band structures that exhibit hole-electron hybridization states. The band structures are obtained using 8-band k . p theory together with the envelope function approximation. The calculated energy dispersions are used as input to the Boltzmann equation to study thermoelectric transport quantities such as the Seebeck coefficient, in the diffusive limit.

  3. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    DOE PAGES

    Kang, Joongoo; Park, Ji -Sang; Stradins, Pauls; ...

    2017-07-13

    In this paper, nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent Si2AlP (or Si2ZnS) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, Si2AlP (or Si2ZnS) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronic and opticalmore » properties of the nonisovalent alloys.« less

  4. Method for preparing homogeneous single crystal ternary III-V alloys

    DOEpatents

    Ciszek, Theodore F.

    1991-01-01

    A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.

  5. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Park, Ji-Sang; Stradins, Pauls; Wei, Su-Huai

    2017-07-01

    Nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent S i2AlP (or S i2ZnS ) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, S i2AlP (or S i2ZnS ) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronic and optical properties of the nonisovalent alloys.

  6. Dynamics of Wet Oxidation of High-AL-Content III-V Materials

    SciTech Connect

    Ashby, C.I.H.

    1999-01-27

    Oxidation of layers of high-Al-content III-V materials by water vapor has become the enabling process for high-efficiency vertical cavity surface emitting lasers (VCSELS) and has potential applications for reducing substrate current leakage in GaAs-on-insulator (GOI) MESFETS. Because of the established importance of wet oxidation in optoelectronic devices and its potential applications in electronic devices, it has become increasingly important to understand the mechanism of wet oxidation and how it might be expected to affect both the fabrication and subsequent operation of devices that have been made using this technique. The mechanism of wet oxidation and the consequence of this mechanism for heterostructure design and ultimate device operation are discussed here.

  7. Nonmagnetic metamaterial landscapes for guided electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-09-01

    Transformation optics provides a geometry-based tool to create new components taking advantage of artificial metamaterials with optical properties that are not available in nature. Unfortunately, although guided electromagnetic waves are crucial for optical circuitry, transformation optics is not yet compatible with two-dimensional slab waveguides. Indeed, after determining the propagation of confined waves along the waveguide with a two-dimensional coordinate transformation, the conventional application of transformation optics results in metamaterials whose properties are insensitive to the coordinate perpendicular to the waveguide, leading to bulky, and therefore impractical, designs. In this contribution, we formulate an alternative framework that leads to feasible coordinate-based designs of two-dimensional waveguides. To this end, we characterize a guided transverse-magnetic light mode by relevant electromagnetic equations: a Helmholtz equation to account for wave propagation and a dispersion relation to impose a continuous light profile at the interface. By considering how two-dimensional conformal transformations transform these equations, we are able to materialize the coordinate-designed flows with a nonmagnetic metamaterial core of varying thickness, obtaining a two-dimensional device. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities, a beam bender, a beam splitter and a conformal lens, on a qualitative and quantitative level, by respectively comparing the electromagnetic fields inside and the transmission of our two-dimensional metamaterial devices to that of their three-dimensional counterparts at telecom wavelengths. As a result, we envision that one coordinate-based multifunctional waveguide component may seamlessly split and bend light beams on the landscape of an optical chip.

  8. Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel B., Jr.; Williams, Kristen S.; Baril, Neil F.; Weiland, Conan; Andzelm, Jan W.; Lenhart, Joseph L.; Woicik, Joseph C.; Fischer, Daniel A.; Tidrow, Meimei Z.; Bandara, Sumith V.; Henry, Nathan C.

    2014-11-01

    Focal plane arrays of strained layer superlattices (SLSs) composed of InAs/GaSb are excellent candidates for infrared imaging, but one key factor limiting their utility is the lack of a surface passivation technique capable of protecting the mesa sidewall from degradation. Along these lines, we demonstrate the use of aqueous 3-aminopropyl triethoxysilane (APTES) deposited as a surface functionalizing agent for subsequent polymer passivation on InAs and GaSb surfaces following a HCl/citric acid procedure to remove the conductive oxide In2O3. Using atomic force microscopy, variable angle spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and modeling with density functional theory (DFT), we demonstrate that APTES films can successfully be deposited on III-V substrates by spin coating and directly compare these films to those deposited on silicon substrates. The HCl/citric acid surface preparation treatment is particularly effective at removing In2O3 without the surface segregation of In oxides observed from use of HCl alone. However, HCl/citric acid surface treatment method does result in heavy oxidation of both Ga and Sb, accompanied by segregation of Ga oxide to the surface. Deposited APTES layer thickness did not depend on the substrate choice, and thicknesses between 1 and 20 nm were obtained for APTES solution concentrations ranging from 0.1 to 2.5 vol %. XPS results for the N1s band of APTES showed that the content of ionic nitrogen was high (∼50%) for the thinnest films (∼1 nm), and decreased with increasing film thickness. These results indicate that APTES can indeed be used to form a silane surface layer to cover III-V materials substrates. Such APTES silane layers may prove useful in surface passivation of these materials alone, or as surface functionalizing agents for subsequent covalent binding with polymer overlayers like polyimide.

  9. Advances in Single and Multijunction III-V Photovoltaics on Silicon for Space Power

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fitzgerald, Eugene A.; Ringel, Steven A.

    2005-01-01

    A collaborative research effort at MIT, Ohio State University and NASA has resulted in the demonstration of record quality gallium arsenide (GaAs) based single junction photovoltaic devices on silicon (Si) substrates. The ability to integrate highly efficient, radiation hard III-V based devices on silicon offers the potential for dramatic reductions in cell mass (approx.2x) and increases in cell area. Both of these improvements offer the potential for dramatic reductions in the cost of on-orbit electrical power. Recently, lattice matched InGaP/GaAs and metamorphic InGaP/InGaAs dual junction solar cells were demonstrated by MBE and OMVPE, respectively. Single junction GaAs on Si devices have been integrated into a space flight experiment (MISSES), scheduled to be launched to the International Space Station in March of 2005. I-V performance data from the GaAs/Si will be collected on-orbit and telemetered to ground stations daily. Microcracks in the GaAs epitaxial material, generated because of differences in the thermal expansion coefficient between GaAs and Si, are of concern in the widely varying thermal environment encountered in low Earth orbit. Ground based thermal life cycling (-80 C to + 80 C) equivalent to 1 year in LEO has been conducted on GaAs/Si devices with no discernable degradation in device performance, suggesting that microcracks may not limit the ability to field GaAs/Si in harsh thermal environments. Recent advances in the development and testing of III-V photovoltaic devices on Si will be presented.

  10. Advances in Single and Multijunction III-V Photovoltaics on Silicon for Space Power

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fitzgerald, Eugene A.; Ringel, Steven A.

    2005-01-01

    A collaborative research effort at MIT, Ohio State University and NASA has resulted in the demonstration of record quality gallium arsenide (GaAs) based single junction photovoltaic devices on silicon (Si) substrates. The ability to integrate highly efficient, radiation hard III-V based devices on silicon offers the potential for dramatic reductions in cell mass (approx.2x) and increases in cell area. Both of these improvements offer the potential for dramatic reductions in the cost of on-orbit electrical power. Recently, lattice matched InGaP/GaAs and metamorphic InGaP/InGaAs dual junction solar cells were demonstrated by MBE and OMVPE, respectively. Single junction GaAs on Si devices have been integrated into a space flight experiment (MISSES), scheduled to be launched to the International Space Station in March of 2005. I-V performance data from the GaAs/Si will be collected on-orbit and telemetered to ground stations daily. Microcracks in the GaAs epitaxial material, generated because of differences in the thermal expansion coefficient between GaAs and Si, are of concern in the widely varying thermal environment encountered in low Earth orbit. Ground based thermal life cycling (-80 C to + 80 C) equivalent to 1 year in LEO has been conducted on GaAs/Si devices with no discernable degradation in device performance, suggesting that microcracks may not limit the ability to field GaAs/Si in harsh thermal environments. Recent advances in the development and testing of III-V photovoltaic devices on Si will be presented.

  11. Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics

    NASA Astrophysics Data System (ADS)

    Durel, Jocelyn; Ferrotti, Thomas; Chantre, Alain; Cremer, Sébastien; Harduin, Julie; Bernabé, Stéphane; Kopp, Christophe; Boeuf, Frédéric; Ben Bakir, Badhise; Broquin, Jean-Emmanuel

    2016-02-01

    In this paper, the simulation, design and fabrication of a back-side coupling (BSC) concept for silicon photonics, which targets heterogeneous hybrid III-V/Si laser integration is presented. Though various demonstrations of a complete SOI integration of passive and active photonic devices have been made, they all feature multi-level planar metal interconnects, and a lack of integrated light sources. This is mainly due to the conflict between the need of planar surfaces for III-V/Si bonding and multiple levels of metallization. The proposed BSC solution to this topographical problem consists in fabricating lasers on the back-side of the Si waveguides using a new process sequence. The devices are based on a hybrid structure composed of an InGaAsP MQW active area and a Si-based DBR cavity. The emitted light wavelength is accordable within a range of 20 nm around 1.31μm thanks to thermal heaters and the laser output is fiber coupled through a Grating Coupler (GC). From a manufacturing point of view, the BSC approach provides not only the advantages of allowing the use of a thin-BOX SOI instead of a thick one; but it also shifts the laser processing steps and their materials unfriendly to CMOS process to the far back-end areas of fabrication lines. Moreover, aside from solving technological integration issues, the BSC concept offers several new design opportunities for active and passive devices (heat sink, Bragg gratings, grating couplers enhanced with integrated metallic mirrors, tapers…). These building boxes are explored here theoretically and experimentally.

  12. Linking computational and experimental studies of III-V quantum dots for optoelectronics and photovoltaics

    NASA Astrophysics Data System (ADS)

    Semichaevsky, A. V.; Goldman, R. S.; Johnson, H. T.

    2011-09-01

    Low-dimensional semiconductors (LDS) are semiconductor structures such as quantum dots, quantum wires, and quantum wells in which electron and hole wave functions are confined due to heterogeneous composition and often strongly affected by mismatch strain. Due to the quantum confinement, LDS exhibit unusual electronic and optical properties not found in bulk semiconductor materials. Quantum dots (QD) have found new applications in various semiconductor devices such as lasers, photodetectors, and solar cells. Precise design of QD structures requires understanding of their chemical composition and nanomechanical properties, and relies on both experimental and computational approaches. In this paper we provide an overview of computational and experimental methods for characterization of QD heterostructures. In particular, we review our own concerted efforts to bring together computation and experiment in order to better explain their optoelectronic and photovoltaic properties.

  13. Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys

    NASA Astrophysics Data System (ADS)

    Doppalapudi, Dharanipal

    The family of III-V nitrides are wide band-gap semiconductors with a broad range of opto-electronic applications in LEDs, laser diodes, UV detectors as well as high temperature/high frequency devices. Due to the lack of good quality native substrates, GaN is grown on foreign substrates that have a lattice and thermal mismatch with GaN. This results in a material with a high density of defects, which in turn adversely affects the opto-electronic properties of the epilayer. In this study, GaN films were epitaxially grown on various substrates (C-plane sapphire, A-plane sapphire, SiC and ZnO) by molecular beam epitaxy. Additionally, GaN homoepitaxy onto laterally overgrown thick GaN substrates was investigated. It was demonstrated that the polarity of the GaN film plays a major role in determining the properties of the films. The growth parameters were optimized to eliminate inversion domain boundaries, which result in domains of opposite polarity in the GaN lattice. For growth on A-plane sapphire, it was found that substrate nitridation and low temperature buffer deposition are critical in order to obtain good epitaxial growth, in spite of the relatively small mismatch between the film and substrate. A crystallographic model was developed to explain this observation. By optimizing growth parameters, GaN films with excellent structural, transport, optical and device properties were grown. The second part of this research involves growth of ternary alloys and superlattice structures, which are essential in the fabrication of many devices. It was found that the InN-GaN pseudo-binary system is not homogeneous over the entire composition range. Due to the mismatch between the tetrahedral radii of GaN and InN, InGaN alloys exhibited phase separation and long-range atomic ordering. Investigations of InxGa1-xN films grown over a wide range of compositions by XRD and TEM showed that the predominant strain relieving mechanism was phase separation in films with x > 0.2, and

  14. Plasma processing of III-V materials for energy efficient electronics applications

    NASA Astrophysics Data System (ADS)

    Thayne, Iain; Li, Xu; Millar, David; Fu, Yen-Chun; Peralagu, Uthayasankararan

    2017-03-01

    This paper reviews some recent activity at the James Watt Nanofabrication Centre in the University of Glasgow in the area of plasma processing for energy efficient compound semiconductor-based transistors. Atomic layer etching suitable for controllable recess etching in GaN power transistors will be discussed. In addition, plasma based surface passivation techniques will be reviewed for a variety of compound semiconductor materials ((100) and (110) oriented InGaAs and InGaSb).

  15. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOEpatents

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  16. Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits.

    PubMed

    Wang, Yadong; Wei, Yongqiang; Huang, Yingyan; Tu, Yongming; Ng, Doris; Lee, Cheewei; Zheng, Yunan; Liu, Boyang; Ho, Seng-Tiong

    2011-01-31

    We have demonstrated a heterogeneously integrated III-V-on-Silicon laser based on an ultra-large-angle super-compact grating (SCG). The SCG enables single-wavelength operation due to its high-spectral-resolution aberration-free design, enabling wavelength division multiplexing (WDM) applications in Electronic-Photonic Integrated Circuits (EPICs). The SCG based Si/III-V laser is realized by fabricating the SCG on silicon-on-insulator (SOI) substrate. Optical gain is provided by electrically pumped heterogeneous integrated III-V material on silicon. Single-wavelength lasing at 1550 nm with an output power of over 2 mW and a lasing threshold of around 150 mA were achieved.

  17. Enhancement of Ferromagnetism in Nonmagnetic Metal Oxide Nanoparticles by Facet Engineering.

    PubMed

    Long, Liyuan; Xiong, Shijie; Meng, Ming; Liu, Lizhe; Zhang, Jinlei; Wu, Xinglong; Chu, Paul K

    2017-02-01

    Ferromagnetism in semiconducting metal oxide nanoparticles has been intensively investigated due to their potential applications in spintronics, information storage, and biomedicine. Ferromagnetism can be produced in nonmagnetic metal oxide nanoparticles by a variety of methods or factors, but the saturated magnetization is typically of the order of 10(-4) emu g(-1) and too small to be useful in practice. In this work, it is demonstrated theoretically and experimentally that stronger ferromagnetism can be achieved in undoped nonmagnetic metal oxide semiconductors by exposing some specific polar crystal facets with carvings of special bonds via the interaction with underlying vacancies. In2 O3 microcubes with completely enclosed {001} polar facets show two orders of magnitude enhancement at room temperature compared to nanoparticles with an irregular morphology. The surface magnetic domains on the {001} facets account for the significantly enhanced ferromagnetism. The technique and concept described here can be extended to other types of metal oxide nanostructures to spur their application to spintronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Theoretical Calculations Supporting Investigation of Metal Contacts to Ultrasmall Semiconductor Structures.

    DTIC Science & Technology

    1984-01-01

    SEMICONDUCTOR * I STRUCTURES* Fernando Flores Departamento de Fisica del Estado S6lido Universidad Aut6noma Cantoblanco, 28049 Madrid, Spain CONTRACT: DAJA 45-84...project is to perform ab initio electronic structure calculations of the metal-III-V semi- conductor interface as the semiconductor layer becomes very thin...states. .e- Compared with the usual metal- semiconductor junctions I we have the additional problem associated with the different interfaces * I of the

  19. Persistent Photoconductivity in II-VI Mixed Semiconductors Related Critical Phenomena and Applications

    DTIC Science & Technology

    1991-03-31

    VI Semiconductor Thin Films, (3) Comparison Between II-VI and III-V Semiconductors and (4) PCC Transient Behavior . 14. SIWCT TEI S NtIR0PAE I&Pfcu04 I7...excitation photon dose have been measured. Furthermore, the PPC behavior has been investigated under different bias voltage, Vb. We found for the first... behavior in semiconductor thin films since eventually all the novel opto- electronic devices utilizing PPC mechanism will be fabricated from thin films

  20. The Dependence of Electrical Properties on Miscut Orientation in Direct Bonded III-V Solar Cell Layers

    NASA Astrophysics Data System (ADS)

    Seal, Mark

    interface morphology. No interfacial layer is present in InP//InP structures before or after rapid thermal processing. It is observed that regions adjacent to the interface undergo a process of atomic redistribution and recrystallize into the same lattice arrangement as the bulk semiconductor. GaAs//InP interfaces are observed to contain regions direct substrate contact with oxide inclusions in between after rapid thermal processing, consistent with previous work on GaAs//GaAs interfaces. It is concluded that for III-V direct wafer bonded heterostructures, interface conductivity is a function of both the relative misorientation between the (001) surfaces and the material pair. The significance of this study is that the additional variable of lattice mismatch does not degrade electrical conductivity through GaAs//InP interfaces. This is significant for applications where heterostructure interface conduction must be controlled, such as the direct bonding of III-V wafers for photovoltaic applications.

  1. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  2. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  3. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  4. Analysis of III-V Superlattice nB n Device Characteristics

    NASA Astrophysics Data System (ADS)

    Rhiger, David R.; Smith, Edward P.; Kolasa, Borys P.; Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.

    2016-09-01

    Mid-wavelength infrared nB n detectors built with III-V superlattice materials have been tested by means of both capacitance and direct-current methods. By combining the results, it is possible to achieve clear separation of the two components of dark current, namely the generation-recombination (GR) current due to the Shockley-Read-Hall mechanism in the depletion region, and the diffusion current from the neutral region. The GR current component is unambiguously identified by two characteristics: (a) it is a linear function of the depletion width, and (b) its activation energy is approximately one-half the bandgap. The remaining current is shown to be due to diffusion because of its activation energy equaling the full bandgap. In addition, the activation energy of the total measured dark current in each local region of the temperature-bias parameter space is evaluated. We show the benefits of capacitance analysis applied to the nB n device and review some of the requirements for correct measurements. The carrier concentration of the unintentionally doped absorber region is found to be 1.2 × 1014 cm-3 n-type. It is shown that the depletion region resides almost entirely within the absorber. Also, the doping in the nB n barrier is found to be 4 × 1015 cm-3 p-type. Minority-carrier lifetimes estimated from the dark current components are on the order of 10 μs.

  5. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    SciTech Connect

    Umlor, M.T.; Keeble, D.J.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1994-08-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al{sub 0.32}Ga{sub 0.68}As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al{sub 0.32}Ga{sub 0.68}:Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700{degrees}C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450{degrees}C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500{degrees}C. The nature of the defect was shown to be different for material grown at 350 and 230{degrees}C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230{degrees}C, respectively.

  6. Sensitivity analysis for III-V/Si tandem solar cells: A theoretical study

    NASA Astrophysics Data System (ADS)

    Thway, Maung; Ren, Zekun; Liu, Zhe; Chua, Soo Jin; Aberle, Armin G.; Buonassisi, Tonio; Marius Peters, Ian; Lin, Fen

    2017-08-01

    Material and structural parameters may affect the efficiency of a tandem solar cell differently from the way they do in a single-junction solar cell. We fabricated a III-V/Si four-terminal tandem solar cell and developed an opto-electronic model simulating this device. The optical properties were simulated with the transfer matrix method, while the electrical properties were simulated using the numerical device simulator PC1D. For this simulated tandem structure, we determined the parameters which have the largest potential impact on the device efficiency. A sensitivity analysis of the impact of these parameters on the device efficiency was also performed. In addition, to reduce the cost of the tandem solar cells, we identified the parameters that do not require tight control during the manufacturing process. The Si cell was simulated both as a single-junction cell and as the bottom cell of a tandem device. Finally, we determined those device parameters that are more critical in a tandem configuration than in a single-junction configuration.

  7. Development and operation of research-scale III-V nanowire growth reactors.

    PubMed

    Schroer, M D; Xu, S Y; Bergman, A M; Petta, J R

    2010-02-01

    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2x10(-9) Torr. A load lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm(2)/(V s).

  8. Development and operation of research-scale III-V nanowire growth reactors

    NASA Astrophysics Data System (ADS)

    Schroer, M. D.; Xu, S. Y.; Bergman, A. M.; Petta, J. R.

    2010-02-01

    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2×10-9 Torr. A load lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16 000 cm2/(V s).

  9. Theoretical performance of multi-junction solar cells combining III-V and Si materials.

    PubMed

    Mathews, Ian; O'Mahony, Donagh; Corbett, Brian; Morrison, Alan P

    2012-09-10

    A route to improving the overall efficiency of multi-junction solar cells employing conventional III-V and Si photovoltaic junctions is presented here. A simulation model was developed to consider the performance of several multi-junction solar cell structures in various multi-terminal configurations. For series connected, 2-terminal triple-junction solar cells, incorporating an AlGaAs top junction, a GaAs middle junction and either a Si or InGaAs bottom junction, it was found that the configuration with a Si bottom junction yielded a marginally higher one sun efficiency of 41.5% versus 41.3% for an InGaAs bottom junction. A significant efficiency gain of 1.8% over the two-terminal device can be achieved by providing an additional terminal to the Si bottom junction in a 3-junction mechanically stacked configuration. It is shown that the optimum performance can be achieved by employing a four-junction series-connected mechanically stacked device incorporating a Si subcell between top AlGaAs/GaAs and bottom In0.53Ga0.47As cells.

  10. Reliability of III-V electronic devices -- the defects that cause the trouble

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.

    2012-02-01

    Degradation of electronic devices by hot electrons is universally attributed to the generation of defects, but the mechanisms for defect generation and the specific nature of the pertinent defects are not known for most systems. Here we describe three recent case studies [1] in III-V high-electron-mobility transistors that illustrate the power of combining density functional calculations and experimental data to identify the pertinent defects and associated degradation mechanisms. In all cases, benign pre-existing defects are either depassivated (irreversible degradation) or transformed to a metastable state (reversible degradation). This work was done in collaboration with R.D. Schrimpf, D.M. Fleetwood, Y. Puzyrev, X. Shen, T. Roy, S. DasGupta, and B.R. Tuttle. Devices were provided by D.F. Brown, J. Speck and U. Mishra, and by J. Bergman and B. Brar. [4pt] [1] Y. S. Puzyrev et al., Appl. Phys. Lett. 96, 053505 (2010); T. Roy et al., Appl. Phys. Lett. 96, 133503 (2010); X. Shen et al., J. Appl. Phys. 108, 114505 (2010).

  11. Proton irradiation effects on advanced digital and microwave III-V components

    SciTech Connect

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.; Sandoval, C.E.; Connors, M.P.; Sheridan, T.J.; Sexton, F.W.; Slayton, E.M.; Heise, J.A.; Foster, C.

    1994-09-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10{sup 10} to 2 {times} 10{sup 14} protons/cm{sup 2}. Large soft-error rates were measured for digital GaAs MESFET (3 {times} 10{sup {minus}5} errors/bit-day) and heterojunction bipolar circuits (10{sup {minus}5} errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-{mu}m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10{sup 14} protons/cm{sup 2} [equivalent to total doses in excess of 10 Mrad(GaAs)].

  12. Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission.

    PubMed

    Larrue, Alexandre; Wilhelm, Christophe; Vest, Gwenaelle; Combrié, Sylvain; de Rossi, Alfredo; Soci, Cesare

    2012-03-26

    A novel photonic structure formed by the monolithic integration of a vertical III-V nanowire on top of a L3 two-dimensional photonic crystal microcavity is proposed to enhance light emission from the nanowire. The impact on the nanowire spontaneous emission rate is evaluated by calculating the spontaneous emission factor β, and the material gain at threshold is used as a figure of merit of this vertical emitting nanolaser. An optimal design is identified for a GaAs nanowire geometry with r = 155 nm and L~1.1 μm, where minimum gain at threshold (gth~13×10³ cm⁻¹) and large spontaneous emission factor (β~0.3) are simultaneously achieved. Modification of the directivity of the L3 photonic crystal cavity via the band-folding principle is employed to further optimize the far-field radiation pattern and to increase the directivity of the device. These results lay the foundation for a new approach toward large-scale integration of vertical emitting nanolasers and may enable applications such as intra-chip optical interconnects.

  13. Proton irradiation effects on advanced digital and microwave III-V components

    SciTech Connect

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R. )

    1994-12-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10[sup 10] to 2 [times] 10[sup 14] protons/cm[sup 2]. Large soft-error rates were measured for digital GaAs MESFET (3 [times] 10[sup [minus]5] errors/bit-day) and heterojunction bipolar circuits (10[sup [minus]5] errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-[mu]m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10[sup 14] protons/cm[sup 2] [equivalent to total doses in excess of 10 Mrad (GaAs)].

  14. Laser field induced optical gain in a group III-V quantum wire

    NASA Astrophysics Data System (ADS)

    Saravanan, Subramanian; Peter, Amalorpavam John; Lee, Chang Woo

    2016-08-01

    Effect of intense high frequency laser field on the electronic and optical properties of heavy hole exciton in an InAsP/InP quantum well wire is investigated taking into consideration of the spatial confinement. Laser field induced exciton binding energies, optical band gap, oscillator strength and the optical gain in the InAs0.8P0.2/InP quantum well wire are studied. The variational formulism is applied to find the respective energies. The laser field induced optical properties are studied. The optical gain as a function of photon energy, in the InAs0.8P0.2/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The results show that the 1.55 μm wavelength for the fibre optic telecommunication applications is achieved for 45 Å wire radius in the absence of laser field intensity whereas the 1.55 μm wavelength is obtained for 40 Å if the amplitude of the laser field amplitude parameter is 50 Å. The characterizing wavelength for telecommunication network is optimized when the intense laser field is applied for the system. It is hoped that the obtained optical gain in the group III-V narrow quantum wire can be applied for fabricating laser sources for achieving the preferred telecommunication wavelength.

  15. Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III-V Buckled Honeycombs.

    PubMed

    Crisostomo, Christian P; Yao, Liang-Zi; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Albao, Marvin A; Bansil, Arun

    2015-10-14

    A large gap two-dimensional (2D) topological insulator (TI), also known as a quantum spin Hall (QSH) insulator, is highly desirable for low-power-consuming electronic devices owing to its spin-polarized backscattering-free edge conducting channels. Although many freestanding films have been predicted to harbor the QSH phase, band topology of a film can be modified substantially when it is placed or grown on a substrate, making the materials realization of a 2D TI challenging. Here we report a first-principles study of possible QSH phases in 75 binary combinations of group III (B, Al, Ga, In, and Tl) and group V (N, P, As, Sb, and Bi) elements in the 2D buckled honeycomb structure, including hydrogenation on one or both sides of the films to simulate substrate effects. A total of six compounds (GaBi, InBi, TlBi, TlAs, TlSb, and TlN) are identified to be nontrivial in unhydrogenated case; whereas for hydrogenated case, only four (GaBi, InBi, TlBi, and TlSb) remains nontrivial. The band gap is found to be as large as 855 meV for the hydrogenated TlBi film, making this class of III-V materials suitable for room temperature applications. TlBi remains topologically nontrivial with a large band gap at various hydrogen coverages, indicating the robustness of its band topology against bonding effects of substrates.

  16. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Ready, W. Jud; Vogel, Eric M.

    2016-01-01

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.

  17. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    SciTech Connect

    Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Vogel, Eric M.; Ready, W. Jud

    2016-01-14

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.

  18. The criterion of magnetism in semiconductor nanoobjects

    NASA Astrophysics Data System (ADS)

    Uspenskii, Yu. A.; Tikhonov, E. V.; Matsko, N. L.

    2015-06-01

    The Stoner criterion is known as a useful tool predicting the ferromagnetic state (FM) in metals. This criterion is not applied to nanoobjects, because of their discrete electron spectrum. In our paper we consider a generalization of this criterion, which can be applied to magnetism in semiconductor nanoobjects. To derive it, we compare total energies of the FM and non-magnetic states using many-body perturbation theory. The derived criterion has compact form and may be useful for prediction of ferromagnetism in nanoobjects. To check its precision, we performed first-principle calculations of several semiconductor nanoobjects in the FM and non-magnetic states and compared their results with predicted ones.

  19. Optical detection of spin transport in nonmagnetic metals.

    PubMed

    Fohr, F; Kaltenborn, S; Hamrle, J; Schultheiss, H; Serga, A A; Schneider, H C; Hillebrands, B; Fukuma, Y; Wang, L; Otani, Y

    2011-06-03

    We determine the dynamic magnetization induced in nonmagnetic metal wedges composed of silver, copper, and platinum by means of Brillouin light scattering microscopy. The magnetization is transferred from a ferromagnetic Ni80Fe20 layer to the metal wedge via the spin pumping effect. The spin pumping efficiency can be controlled by adding an insulating interlayer between the magnetic and nonmagnetic layer. By comparing the experimental results to a dynamical macroscopic spin-transport model we determine the transverse relaxation time of the pumped spin current which is much smaller than the longitudinal relaxation time.

  20. Method for fabricating semiconductor devices

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Grunthaner, Frank J. (Inventor); Hecht, Michael H. (Inventor); Bell, Lloyd D. (Inventor)

    1995-01-01

    A process for fabricating gold/gallium arsenide structures, in situ, on molecular beam epitaxially grown gallium arsenide. The resulting interface proves to be Ohmic, an unexpected result which is interpreted in terms of increased electrode interdiffusion. More importantly, the present invention surprisingly permits the fabrication of Ohmic contacts in a III-V semiconductor material at room temperature. Although it may be desireable to heat the Ohmic contact to a temperature of, for example, 200 degrees Centigrade if one wishes to further decrease the resistance of the contact, such low temperature annealing is much less likely to have any deleterious affect on the underlying substrate. The use of the term in situ herein, contemplates continuously maintaining an ultra-high vacuum, that is a vacuum which is at least 10.sup.-8 Torr, until after the metallization has been completed. An alternative embodiment of the present invention comprising an additional step, namely the termination of the gallium arsenide by a two monolayer thickness of epitaxial aluminum arsenide as a diffusion barrier, enables the recovery of Schottky barrier behavior, namely a rectified I-V characteristic. The present invention provides a significant breakthrough in the fabrication of III-V semiconductor devices wherein excellent Ohmic contact and Schottky barrier interfaces to such devices can be achieved simply and inexpensively and without requiring the high temperature processing of the prior art and also without requiring the use of exotic high temperature refractory materials as substitutes for those preferred contact metals such as gold, aluminum and the like.

  1. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    PubMed Central

    2011-01-01

    Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea PMID:21711946

  2. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    NASA Astrophysics Data System (ADS)

    Benedicto, Marcos; Galiana, Beatriz; Molina-Aldareguia, Jon M.; Monaghan, Scott; Hurley, Paul K.; Cherkaoui, Karim; Vazquez, Luis; Tejedor, Paloma

    2011-05-01

    Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea

  3. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application.

    PubMed

    Benedicto, Marcos; Galiana, Beatriz; Molina-Aldareguia, Jon M; Monaghan, Scott; Hurley, Paul K; Cherkaoui, Karim; Vazquez, Luis; Tejedor, Paloma

    2011-05-31

    Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching.PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea.

  4. Methods for forming group III-arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  5. A novel surface preparation methodology for epi-ready antimonide based III-V substrates

    NASA Astrophysics Data System (ADS)

    Dutta, P. S.; Rajagopalan, G.; Kim, H. J.; Kumar, A.

    2005-05-01

    Surfaces of GaSb substrates currently available from various commercial vendors are nowhere close to device grade GaAs, Si or InP wafer surfaces. Hence epitaxial growth and device fabrication on as-received commercial substrates poses significant difficulties amongst antimonide based researchers. Antimonide based materials are known to have poor surface oxide quality and not so well understood chemical reactions with various chemicals used to remove the oxides prior to growth. There are no existing reports on the detailed recipe for the preparation of "atomically flat and clean" surfaces that works on wafers obtained from various commercial vendors. This paper presents a detailed recipe for obtaining atomically flat and clean GaSb surfaces, irrespective of the initial polishing source. The same recipe (with slight modification) has been found to be successful with other III-V and II-VI compounds. The novel surface preparation process developed in our laboratory includes, chemical-mechanical polishing using an agglomerate-free sub-micron alumina slurry on a soft pad such as velvet, surface cleaning using dilute ammonium or potassium hydroxide-H2O solution and surfactant or glycerol, surface degreasing using organic solvents, oxide desorption using HCl-H2O and HF-H2O mixtures, mild chemical etching using ammonium sulfide and a final rinse in high purity deionized (DI) water and methanol. Using this recipe, we have been able to achieve surfaces with atomic flatness (RMS surface roughness close to 0.5 nm over a 10 x 10 mm2) and extremely clean surfaces, irrespective of the initial contamination or the sources of the wafers. Results of wafer surfaces before and after polishing using our recipe will be presented.

  6. Integrating III-V, Si, and polymer waveguides for optical interconnects: RAPIDO

    NASA Astrophysics Data System (ADS)

    Aalto, Timo; Harjanne, Mikko; Offrein, Bert-Jan; Caër, Charles; Neumeyr, Christian; Malacarne, Antonio; Guina, Mircea; Sheehan, Robert N.; Peters, Frank H.; Melanen, Petri

    2016-03-01

    We present a vision for the hybrid integration of advanced transceivers at 1.3 μm wavelength, and the progress done towards this vision in the EU-funded RAPIDO project. The final goal of the project is to make five demonstrators that show the feasibility of the proposed concepts to make optical interconnects and packet-switched optical networks that are scalable to Pb/s systems in data centers and high performance computing. Simplest transceivers are to be made by combining directly modulated InP VCSELs with 12 μm SOI multiplexers to launch, for example, 200 Gbps data into a single polymer waveguide with 4 channels to connect processors on a single line card. For more advanced transceivers we develop novel dilute nitride amplifiers and modulators that are expected to be more power-efficient and temperatureinsensitive than InP devices. These edge-emitting III-V chips are flip-chip bonded on 3 μm SOI chips that also have polarization and temperature independent multiplexers and low-loss coupling to the 12 μm SOI interposers, enabling to launch up to 640 Gbps data into a standard single mode (SM) fiber. In this paper we present a number of experimental results, including low-loss multiplexers on SOI, zero-birefringence Si waveguides, micron-scale mirrors and bends with 0.1 dB loss, direct modulation of VCSELs up to 40 Gbps, +/-0.25μm length control for dilute nitride SOA, strong band edge shifts in dilute nitride EAMs and SM polymer waveguides with 0.4 dB/cm loss.

  7. Investigation of the design parameters of quantum dot enhanced III-V solar cells

    NASA Astrophysics Data System (ADS)

    Driscoll, Kristina; Bennett, Mitchell; Polly, Stephen; Forbes, David V.; Hubbard, Seth M.

    2013-03-01

    The incorporation of nanostructures, such as quantum dots (QD), into the intrinsic region of III-V solar cells has been proposed as a potential route towards boosting conversion efficiencies with immediate applications in concentrator photovoltaic and space power systems. Necessary to the optimization process of this particular class of solar cells is the ability to correlate nanoscale properties with macroscopic device characteristics. To this purpose, the physics-based software Crosslight APSYS has been developed to investigate the design parameters of QD enhanced solar cells with particular focus on the InAs/GaAs system. This methodology is used to study how nanoscale variables, including size, shape and material compositions, influence photovoltaic performance. In addition, device-level engineering of the nanostructures is explored in optimizing the overall device response. Specifically, the effect of the position of the QDs within the intrinsic regions is investigated. Preliminary simulations suggest strategically placing the QDs off-center reduces non-radiative recombination and thereby the dark saturation current, contributing to a marked increase in opencircuit voltage and fill factor. The short-circuit current remains unchanged in the high field region resulting in an increase in overall conversion efficiency. To further explore this finding, a series of three samples with the QDs placed in the center and near the doped regions of a pin-GaAs solar cell have been grown using MOCVD, fabricated and fully characterized. Contrary to predictions, the emitter-shifted devices exhibit a marked decrease in open-circuit voltage and fill factor. This behavior is attributed to non-negligible n-type background doping in the intrinsic region which shifts the region of maximum recombination towards the p-type emitter.

  8. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    SciTech Connect

    Dhaka, Veer Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri; Naureen, Shagufta; Shahid, Naeem; Jiang, Hua; Kauppinen, Esko; Srinivasan, Anand

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  9. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    PubMed

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL

    NASA Astrophysics Data System (ADS)

    Delaunay, Pierre-Yves; Nosho, Brett Z.; Gurga, Alexander R.; Terterian, Sevag; Rajavel, Rajesh D.

    2017-02-01

    Recent advances in superlattice-based infrared detectors have rendered this material system a solid alternative to HgCdTe for dual-band sensing applications. In particular, superlattices are attractive from a manufacturing perspective as the epitaxial wafers can be grown with a high degree of lateral uniformity, low macroscopic defect densities (< 50 cm-2) and achieve dark current levels comparable to HgCdTe detectors. In this paper, we will describe our recent effort on the VISTA program towards producing HD-format (1280x720, 12 μm pitch) superlattice based, dual-band MWIR/LWIR FPAs. We will report results from several multi-wafer fabrication lots of 1280x720, 12 μm pitch FPAs processed over the last two years. To assess the FPA performance, noise equivalent temperature difference (NETD) measurements were conducted at 80K, f/4.21 and using a blackbody range of 22°C to 32°C. For the MWIR band, the NETD was 27.44 mK with a 3x median NETD operability of 99.40%. For the LWIR band, the median NETD was 27.62 mK with a 3x median operability of 99.09%. Over the course of the VISTA program, HRL fabricated over 30 FPAs with similar NETDs and operabilities in excess of 99% for both bands, demonstrating the manufacturability and high uniformity of III-V superlattices. We will also present additional characterization results including blinkers, spatial stability, modulation transfer function and thermal cycles reliability.

  11. Anomalous Magnetoresistance Phenomena in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.; Lincoln, Derek M.; Shima Edelstein, Ruth; Prigodin, Vladimir N.; Epstein, Arthur J.

    2006-03-01

    We report magnetoresistance (MR) phenomena with temperature and bias dependence in organic semiconductor thin films with either nonmagnetic or magnetic contacts through high field reaching 9T. For nonmagnetic organic thin films such as Alq3 we find a low field MR up to 15%. A similar magnetic field effect has been reported earlier^1 but, as noted, the mechanism remains unclear. We propose a model of the anomalous MR where charge transport is space-charge limited. The current is determined by the e-h recombination rate. The recombination rate is field dependent, analogous to the chemical yield for radical pairs^2. Using an organic- based magnetic semiconductor^3, V[TCNE]x, and Co as magnetic contacts, with a nonmagnetic organic semiconductor (α-6T) leads to an order-of-magnitude broader zero-centered MR peak superimposed on a spin-valve effect. Possible origins of this broader MR will be discussed. 1. Francis, et al., New J. Phys. 6 185 (2004); Frankevich, et al., Phys. Rev. B 53 4498 (1996) 2. Steiner and Ulrich, Chem. Rev. 89 51 (1989) 3. Pokhodnya, et al., Adv. Mater. 12 410 (2000); Prigodin, et al., Adv. Mater. 14 1230 (2002); Shima Edelstein, et al., Mater. Res. Soc. Symp. Proc. 871E I7.3 (2005)

  12. Comparison of Epitaxial Growth Techniques for III-V Layer Structures

    DTIC Science & Technology

    1992-05-22

    FOR Ill-V LAYER STRUCTURES DTIC byS ELECTE G. B. STRINGFELLOW MAY 2 819S2 A Prepared for Publication in the Proceedings of croissance de cristaux et de...epitaxial growth techniques have been used for semiconductors, including liquid phase epitaxy (LPE), chloride vapor phase epitaxy (CIVPE) using...MBE (GSMBE), organometallic MBE (OMMBE or MOMBE), and chemical beam epitaxy (CBE). II. LIQUID PHASE EPITAXY The first technique listed, LPE, was one of

  13. Investigation of New SemiInsulating Behavior of III-V Compounds

    DTIC Science & Technology

    1990-02-28

    encapsulated Czochralski and horizontal Bridgman techniques and in epitaxial crystals prepared by liquid-phase electroepitaxy. By employing deep-level...com- crystals by LEG9 ") and horizontal Bridgman (HB)-" tech- plexes could be responsible for deep levels in GaAs. 1 7 niques has also been reported...Fig. 7) became direct band-gap semiconductors (GaAs and CdSe ) and was clearly visible after quenching of the absorption. explained in terms of a

  14. The modified two stream instability at nonmagnetic planets

    SciTech Connect

    Bingham, R.; Kellett, B. J.; Shapiro, V. D.; Uecer, D.; Quest, K. B.

    2010-12-14

    We describe the role the modified two stream instability plays in the interaction of the solar wind with non-magnetized planets. The instability leads to the production of energetic electrons that can be responsible for the observed x-ray emission.

  15. Performance of a beryllium copper nonmagnetic drill collar alloy

    SciTech Connect

    Dunlevey, F.

    1984-09-01

    Laboratory characterization and field testing show the advantages of beryllium copper Alloy 25 for use in non-magnetic drill collars, stabilizers, and subs. Beryllium copper is resistant to stress corrosion cracking failures at elevated temperature and pressure in the presence of hydrogen sulfide and dissolved chloride solutions. The alloy is more resistant than stainless steel to galling failure in threaded joints.

  16. Chemistry related to semiconductor growth involving organometallics

    NASA Astrophysics Data System (ADS)

    Husk, G. R.; Jones, K. A.; Paur, R. J.; Prater, J. T.

    1990-05-01

    OMVPE (OrganoMetallic Vapor-Phase Epitaxy) technology requirements for III-V compounds and chemistry related to semiconductor growth involving organometallics are discussed. The following subject areas are covered: semiconductor device requirements; Army II-VI deposition program/MOMBE (Metal Organic Molecular Beam Epitaxy) for IR detector applications; epitaxial growth of III-V's and II-VI's using organometallics; electrical device requirements; environmental and safety issues in MOVPE; quantum chemistry of vapor phase; carbon doping and selective epitaxy (tailoring growth chemistry in MOVPE); TBA/TBP precursors in GaAs and InP MOCVD; single source precursors for III-V OMCVD (OrganoMetallic Chemical Vapor Deposition) growth; alternate sources for MOMBE of AlGaAs; mechanism of incorporation of impurities and analysis of carbon contamination; growth on nonplanar and patterned substrates; CBE growth mechanisms; TriMethylamine Alane (a new robust precursor for MOMBE growth of AlGaAs); real-time determinations of OMCVD growth kinetics on GaAs by reflectance-difference spectroscopy; photoreflectance measurements; growth and doping mechanisms for HgCdTe; photoassisted CBE (Chemical Beam Epitaxy) of CdTe and HgCdTe alloys; in-situ analysis of ZnSe growth by OMCVD using X-ray scattering; biodegradation of GaAs IC chips and wafers; detailed models of compound semiconductor growth by MOCVD; gas phase probes of GaAs cluster chemistry; photodecomposition of organometallic compounds at 193 nm; manufacturing issues in MOCVD compound semiconductor technology.

  17. Low-Cost Growth of III-V Layers on Si Using Close-Spaced Vapor Transport

    SciTech Connect

    Boucher, Jason W.; Greenaway, Ann L.; Ritenour, Andrew J.; Davis, Allison L.; Bachman, Benjamin F.; Aloni, Shaul; Boettcher, Shannon W.

    2015-06-14

    Close-spaced vapor transport (CSVT) uses solid precursors to deposit material at high rates and with high precursor utilization. The use of solid precursors could significantly reduce the costs associated with III-V photovoltaics, particularly if growth on Si substrates can be demonstrated. We present preliminary results of the growth of GaAs1-xPx with x ≈ 0.3 and 0.6, showing that CSVT can be used to produce III-V-V’ alloys with band gaps suitable for tandem devices. Additionally, we have grown GaAs on Si by first thermally depositing films of Ge and subsequently depositing GaAs by CSVT. Patterning the Ge into islands prevents cracking due to thermal mismatch and is useful for potential tandem structures.

  18. Mono- and polynucleation, atomistic growth, and crystal phase of III-V nanowires under varying group V flow

    SciTech Connect

    Dubrovskii, V. G.

    2015-05-28

    We present a refined model for the vapor-liquid-solid growth and crystal structure of Au-catalyzed III-V nanowires, which revisits several assumptions used so far and is capable of describing the transition from mononuclear to polynuclear regime and ultimately to regular atomistic growth. We construct the crystal phase diagrams and calculate the wurtzite percentages, elongation rates, critical sizes, and polynucleation thresholds of Au-catalyzed GaAs nanowires depending on the As flow. We find a non-monotonic dependence of the crystal phase on the group V flow, with the zincblende structure being preferred at low and high group V flows and the wurtzite structure forming at intermediate group V flows. This correlates with most of the available experimental data. Finally, we discuss the atomistic growth picture which yields zincblende crystal structure and should be very advantageous for fabrication of ternary III-V nanowires with well-controlled composition and heterointerfaces.

  19. Modeling, Growth and Characterization of III-V and Dilute Nitride Antimonide Materials and Solar Cells

    NASA Astrophysics Data System (ADS)

    Maros, Aymeric

    III-V multijunction solar cells have demonstrated record efficiencies with the best device currently at 46 % under concentration. Dilute nitride materials such as GaInNAsSb have been identified as a prime choice for the development of high efficiency, monolithic and lattice-matched multijunction solar cells as they can be lattice-matched to both GaAs and Ge substrates. These types of cells have demonstrated efficiencies of 44% for terrestrial concentrators, and with their upright configuration, they are a direct drop-in product for today's space and concentrator solar panels. The work presented in this dissertation has focused on the development of relatively novel dilute nitride antimonide (GaNAsSb) materials and solar cells using plasma-assisted molecular beam epitaxy, along with the modeling and characterization of single- and multijunction solar cells. Nitrogen-free ternary compounds such as GaInAs and GaAsSb were investigated first in order to understand their structural and optical properties prior to introducing nitrogen. The formation of extended defects and the resulting strain relaxation in these lattice-mismatched materials is investigated through extensive structural characterization. Temperature- and power-dependent photoluminescence revealed an inhomogeneous distribution of Sb in GaAsSb films, leading to carrier localization effects at low temperatures. Tuning of the growth parameters was shown to suppress these Sb-induced localized states. The introduction of nitrogen was then considered and the growth process was optimized to obtain high quality GaNAsSb films lattice-matched to GaAs. Near 1-eV single-junction GaNAsSb solar cells were produced. The best devices used a p-n heterojunction configuration and demonstrated a current density of 20.8 mA/cm2, a fill factor of 64 % and an open-circuit voltage of 0.39 V, corresponding to a bandgap-voltage offset of 0.57 V, comparable with the state-of-the-art for this type of solar cells. Post-growth annealing

  20. III-V nitride micro- and nano-scale cantilevers for multimodal sensing applications

    NASA Astrophysics Data System (ADS)

    Quddus, Ehtesham B.

    Recent research trends in chemical and biological sensing have been geared toward developing molecular sensor devices that are fast, label free, miniaturized and portable. The performance of these devices can be dramatically improved by utilizing multimodal detection techniques, new materials and micro-/nanofabrication technologies. This is especially true for micro-/nanoscale cantilever sensors, which undergo changes in mechanical or electrical properties upon the specific binding of molecules. To develop the sensor devices with the above attributes, we utilized III-V nitride materials: InN nanowires for realizing nanoscale cantilevers and AlGaN/GaN heterostuctures with or without embedded HFETs, for developing microcantilevers. There are mainly two approaches of fabricating these sensor devices: bottom-up approach for nanocantilevers, and top-down approach for microcantilevers. InN NWs, which exhibit interesting properties such as high carrier density, superior electron mobility, strong surface charge accumulation, and chemical inertness, were synthesized using Chemical Vapor Deposition (CVD) technique by Vapor-Liquid-Solid (VLS) mechanism. The synthesis process was optimized to obtain growth direction modulation and enhanced performance of the devices, largely avoiding the complexity of nanofabrication/etching typically involved in the realization of nanoscale sensors. With dimensions much smaller than conventional cantilevers, the nanocantilevers are expected to have dramatically improved physical, chemical, and biological sensitivity for sensor applications. The piezoresistive and piezoelectric properties of AlGaN/GaN heterostructures, their wide bandgap, and chemical inertness make the microcantilevers very attractive for developing highly sensitive sensors suitable for harsh environment applications. The large variation in 2-dimensional electron gas (2DEG) at the interface with mechanical strain makes these microcantilevers much more sensitive than

  1. Chemical and molecular beam epitaxy of III-V nanowires on silicon for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Gokul

    Nanowires, due to their unique structure and carrier transport abilities, have sparked huge interest in the semiconductor industry. An array of nanometric size wires inserted between the p and n conductivity regions of a conventional solar cell or core shell type p-n junction nanowires synergized with semiconductor nanocrystals can lead to faster carrier collection, thereby improving device performance. This work investigates the growth of GaAs and InP semiconductor nanowires on silicon (111) using Chemical Beam Epitaxy (CBE) and Molecular Beam Epitaxy (MBE). Uniform gold nanoparticles acting as growth centers in the Vapor Liquid Solid mode of growth were generated by using the cheap and rapid technique called Nanosphere Lithography (NSL). Variation of the experimental parameters during NSL resulted in honeycomb and hexagonal patterns of gold nanoparticles. A high degree of selectivity was obtained for CBE grown nanowires whereas the MBE grown GaAs nanowires revealed the formation of a thick polycrystalline wetting layer at the interface. The CBE grown InP nanowires mostly maintained the honeycomb structure although they were found to be oriented contrary to the expected <111> direction. SEM analysis of GaAs nanowires grown by CBE showed that during growth, the nanowires may coalesce with each other resulting in unique structures such as bipods, tripods and multipods. High resolution TEM analysis of single GaAs nanowires revealed periodic formation of contrasting materials. Diffraction patterns recorded at these dark contrast areas confirmed the formation of hexagonal wurtzite single crystal structures interspaced with cubic zincblende single crystal structures. These nanowires can be used for photovoltaic applications or as light emitting devices. In addition, the formation of superlattices of different crystal structures can pave the way for novel quantum confined optoelectronic devices.

  2. Specific Approach for Size-Control III-V Quantum/Nano LED Fabrication for Prospective White Light Source

    DTIC Science & Technology

    2007-08-10

    extraction efficiency in III-V nitride LED. The Triangular lattice PC LED with diameter/periodicity of 300/500nm were patterned separately using the AAO... Emitting Devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 11 19a. NAME OF...ηext is the extraction efficiency, and ηel is the electrical efficiency. There are three dominant limiting factors governing WPE in the III-nitride

  3. Study of the Electronic Surface States of III-V Compounds and Silicon

    DTIC Science & Technology

    1980-10-01

    mechanism of Sc ttky barrier formation on Si. ’- \\2# Laser Enhanced Oxidation of GaAs (110): We have demonstrated an increase in the oxygen sticking...probability on the GaAs (110) surface by exposure to low-intensity (O3w/cm2 ) laser radiation. We believe this enhancement is due to an increase in the...using 3-5 semiconductor alloys) of negative electron affin- ity photocathodes, as well as making stable cathodes at lower wavelengths. K > 5. Interaction

  4. III-V photocathode with nitrogen doping for increased quantum efficiency

    NASA Technical Reports Server (NTRS)

    James, L. W. (Inventor)

    1976-01-01

    An increase in the quantum efficiency of a 3-5 photocathode is achieved by doping its semiconductor material with an acceptor and nitrogen, a column-5 isoelectronic element, that introduces a spatially localized energy level just below the conduction band similar to a donor level to which optical transitions can occur. This increases the absorption coefficient, alpha without compensation of the acceptor dopant. A layer of a suitable 1-5, 1-6 or 1-7 compound is included as an activation layer on the electron emission side to lower the work function of the photocathode.

  5. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate

    SciTech Connect

    Kunert, B.; Guo, W.; Mols, Y.; Pantouvaki, M.; Van Campenhout, J.; Langer, R.; Barla, K.; Tian, B.; Wang, Z.; Shi, Y.; Van Thourhout, D.

    2016-08-29

    We report on an integration approach of III/V nano ridges on patterned silicon (Si) wafers by metal organic vapor phase epitaxy (MOVPE). Trenches of different widths (≤500 nm) were processed in a silicon oxide (SiO{sub 2}) layer on top of a 300 mm (001) Si substrate. The MOVPE growth conditions were chosen in a way to guarantee an efficient defect trapping within narrow trenches and to form a box shaped ridge with increased III/V volume when growing out of the trench. Compressively strained InGaAs/GaAs multi-quantum wells with 19% indium were deposited on top of the fully relaxed GaAs ridges as an active material for optical applications. Transmission electron microcopy investigation shows that very flat quantum well (QW) interfaces were realized. A clear defect trapping inside the trenches is observed whereas the ridge material is free of threading dislocations with only a very low density of planar defects. Pronounced QW photoluminescence (PL) is detected from different ridge sizes at room temperature. The potential of these III/V nano ridges for laser integration on Si substrates is emphasized by the achieved ridge volume which could enable wave guidance and by the high crystal quality in line with the distinct PL.

  6. Toward the III-V/Si co-integration by controlling the biatomic steps on hydrogenated Si(001)

    NASA Astrophysics Data System (ADS)

    Martin, M.; Caliste, D.; Cipro, R.; Alcotte, R.; Moeyaert, J.; David, S.; Bassani, F.; Cerba, T.; Bogumilowicz, Y.; Sanchez, E.; Ye, Z.; Bao, X. Y.; Pin, J. B.; Baron, T.; Pochet, P.

    2016-12-01

    The integration of III-V on silicon is still a hot topic as it will open up a way to co-integrate Si CMOS logic with photonic devices. To reach this aim, several hurdles should be solved, and more particularly the generation of antiphase boundaries (APBs) at the III-V/Si(001) interface. Density functional theory (DFT) has been used to demonstrate the existence of a double-layer steps on nominal Si(001) which is formed during annealing under proper hydrogen chemical potential. This phenomenon could be explained by the formation of dimer vacancy lines which could be responsible for the preferential and selective etching of one type of step leading to the double step surface creation. To check this hypothesis, different experiments have been carried in an industrial 300 mm metalorganic chemical vapor deposition where the total pressure during the annealing step of Si(001) surface has been varied. Under optimized conditions, an APBs-free GaAs layer was grown on a nominal Si(001) surface paving the way for III-V integration on silicon industrial platform.

  7. Threading dislocation reduction in III-V films: Theoretical modeling and experimental methods

    NASA Astrophysics Data System (ADS)

    Mathis, Sheila Kathleen

    Heteroepitaxy remains the most efficient and successful way to integrate materials with the same crystal structure but different lattice constants and optoelectronic properties. The purpose of this work is to understand the processes of strain relaxation and subsequent threading dislocation (TD) reduction through modeling and experiment. The interpretation of these data is made according to a previously published model that is based on dislocation reactions. 1,2 These reactions are the sole mechanism for threading dislocation reduction in III--V epitaxial films.3 Gallium nitride, with no available substrate even close to the lattice-matched condition, has a unique microstructure that develops as a result of initial island growth. Dislocation densities on the order of 109--10 10/cm2 are routinely measured in GaN grown on sapphire. Dislocation reduction in these hexagonal films is extremely slow, and it is shown in Chapter II that film thicknesses on the order of a substrate thickness are required to reduce threading dislocation densities to a low (10 6/cm2) level. A model is developed to treat the reduction of TDs in (0001)-oriented films that explains the non-saturating TD density in GaN. Screw dislocation behavior is shown to strongly affect the dislocation density falloff with thickness. Threading dislocation reduction in low-temperature-grown GaAs (250--350°C) and InGaAs was known to be more efficient than in high-temperature-grown GaAs (580°C). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to study the microstructure of GaAs grown on InP substrates at temperatures between 250 and 580°C to determine the mechanism by which TD reduction was enhanced. While a high level of arsenic antisite defects [ASGa] may affect the TD density at temperatures below 300°C, they do not account for the improved dislocation reduction. When dislocations are generated at high temperature, the TD density on the (111)A and (111)B planes is asymmetric

  8. Effects of non-magnetic doping on high- Tc cuprates

    NASA Astrophysics Data System (ADS)

    Ming-wen, Xiao; Zheng-zhong, Li; Da-ning, Shi

    1992-11-01

    The Anderson lattice model (ALM) is adopted to study the substitution effects of non-magnetic impurities at Cu-sites on the properties of high- Tc superconductors by the slave-boson technique. We found that they can weaken the effective strength of Cu O hybridization and lower the characteristic temperature Tk of the normal state. The ability of these effects to depress superconductivity is proved to be important and not negligible. Non-magnetic impurities turn out to be pair-breaking and responsible for the quick decreasing of Tc because of the energy dependence of the superconducting order parameter in ALM. Particularly, the linear relationship between Tc and doping concentration in the dilute case is obtained analytically, which is in good agreement with experiment.

  9. Nonmagnetic impurity in the spin-gap state

    SciTech Connect

    Nagaosa, N.; Ng, T.

    1995-06-01

    The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the {ital d}-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon.

  10. Spin filtering action in a magnetic-nonmagnetic superlattice structure

    NASA Astrophysics Data System (ADS)

    Pal, Biplab

    2017-05-01

    We propose a spin filter device using a model magnetic-nonmagnetic superlattice structure. The spin-dependent electronic transport has been studied in such a superlattice structure using the transfer matrix method (TMM), and it is shown that such structure is capable of exhibiting a well-defined spin filtering action. Our model superlattice structure is composed of magnetic-nonmagnetic atomic sites placed in an alternating sequence. The magnitude and the direction of the magnetic moments attached to each magnetic atom play an important role in controlling the spin transmission for selective range of energies corresponding to the two spin channels leading to a spin filtering effect in such system. To corroborate the spin filtering action we have also studied the density of states (DOS) corresponding to the two spin channels (components) for our system. Experimental realization of our model can be useful in designing potential nanoscale spin filter devices.

  11. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  12. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    PubMed Central

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices. PMID:26387967

  13. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    PubMed

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  14. A new high volume MOVPE reactor for III-V solar cells

    SciTech Connect

    Ermer, J.; Vijaykumar, P.S.; Chang, K.I.; Lillington, D.R.; Cavicchi, B.T.; Woelk, E.; Strauch, G.; Schmitz, D.; Jurgensen, H.

    1994-12-31

    A new MOVPE reactor is described which allows cost effective manufacturing of GaAs/Ge solar cells. The reactor, which has a batch size in excess of 0.25 m{sup 2}, was co-developed by Spectrolab and Aixtron Semiconductor Technologies over a two year time frame and was installed at Spectrolab in late 1993. Manufacturing readiness data on large area single junction GaAs/Ge solar cells show that the thickness and compositional uniformity of GaAs and AlGaAs layers grown in the system are {+-} 3%, and {+-} 1.5% respectively. There is excellent correlation between empirical data and simulations performed during the initial reactor development phase. The minimum average AM0, 28 C efficiencies of 7 mil and 5.5 mil single junction GaAs/Ge solar cells, recently manufactured from material grown on this system, are over 18.5%.

  15. Electronic properties of 3-5 semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Gregg, Jeffrey Robert

    The results of two theoretical investigations of the effects of alloy disorder on the electronic properties of some of the technologically important III-V semiconductor alloys are reported. In the first part, the coherent potential approximation (CPA) for calculating the effects of alloy disorder on the electronic structure of alloys is generalized to treat quaternary semiconductor alloys of the form A(sub x)B(sub y)C(sub 1-x-y)D. This generalized formalism is then used, in conjunction with calculated bandstructures for the alloy constituents, to study the effects of alloy disorder on the electronic properties of several III-V quaternary alloys. Results are presented for the state densities, self-energies, band bowling parameters, and bandstructures of these materials. These properties are compared with results obtained in the virtual crystal approximation (VCA).

  16. Robustness against non-magnetic impurities in topological superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Ota, Y.; Machida, M.

    2014-12-01

    We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.

  17. Electron-hole correlations in semiconductor quantum dots with tight-binding wave fuctions

    NASA Technical Reports Server (NTRS)

    Seungwon, L.; Jonsson, L.; Wilkins, J.; Bryant, G.; Klimeck, G.

    2001-01-01

    The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials.

  18. Electron-hole correlations in semiconductor quantum dots with tight-binding wave fuctions

    NASA Technical Reports Server (NTRS)

    Seungwon, L.; Jonsson, L.; Wilkins, J.; Bryant, G.; Klimeck, G.

    2001-01-01

    The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials.

  19. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    DOEpatents

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  20. Mechanisms of current flow in metal-semiconductor ohmic contacts

    SciTech Connect

    Blank, T. V. Gol'dberg, Yu. A.

    2007-11-15

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.